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This study uses spatio—temporal stability analysis to investigate the convective and
absolute instability properties of a steady unconfined planar liquid jet. The approach
uses a piecewise linear velocity profile with a finite thickness shear layer at the edge of
the jet. This study investigates how properties such as the thickness of the shear layer and
the value of the fluid velocity at the interface within the shear layer affects the stability
properties of the jet. It is found that the presence of a finite thickness shear layer can
lead to an absolute instability for a range of density ratios, not seen when a simpler plug
flow velocity profile is considered. It is also found that the inclusion of surface tension has
a stabilizing effect on the convective instability but a destabilizing effect on the absolute
instability.

The stability results are used to obtain estimates for the break—up length of a planar
liquid jet as the jet velocity varies. It is found that reducing the shear layer thickness
within the jet causes the break—up length to decrease, while increasing the fluid velocity
at the fluid interface within the shear layer causes the break—up length to increase.
Combining these two effects into a profile, which evolves realistically with velocity, gives
results in which the break—up length increases for small velocities and decreases for larger
velocities. This behaviour agrees qualitatively with existing experiments on the break—up
length of axisymmetric jets.

1. Introduction

The injection of Diesel fuel into an engine cylinder is an important process in the overall
running and efficiency of a Diesel engine (Hiroyasu et al. 1982; Stone 1992; Heywood 1998;
Crua 2002). The liquid fuel is injected through an injector (which can have multiple holes)
and the resulting jet breaks up into small droplets. These droplets heat up, evaporate and
the mixture of fuel vapour and air burns up in the autoignition and combustion processes.
During the injection process a useful quantity to predict, or measure, is the break—up
length of the jet. This is the length over which the jet remains intact before it begins to
break up into ligaments and droplets. Modelling this injection process is an important
integral part of the CFD Diesel engine models (Sazhin et al. 2003, 2008). During the
injection process these jets undergo acceleration, but, like most current injection models,
we neglect this process and in this paper we give a more complete analysis of the steady jet
problem by studying parameter ranges that cover those seen in Diesel injection models,
as well as extending the research to look at parameters that cover a wider range of jets

1 Corresponding author: M.R.Turner@brighton.ac.uk



2 M. R. Turner, J. J. Healey, S. S. Sazhin and R. Piazzesi

which will be of interest to problems outside of Diesel injection problems. Furthermore,
when the jet acceleration is relatively weak, the jet may be treated using a quasi—steady
approximation which can give some qualitative insight into how acceleration may affect
break—up. Thus this analysis is expected to help with future studies of the unsteady jet
problem. While the jets in Diesel engines are close to axisymmetric jets, in this paper
we consider only planar jets as these allow us to greatly simplify the analysis and lead
to analytical results. The stability and break—up properties of both axisymmetric and
planar jets has been studied both experimentally and theoretically in the past, and for a
good overview of these studies the reader is directed to the introduction of Séderberg &
Alfredsson (1998).

A planar jet consists of two parallel shear layers where the vorticity at each layer is
equal and opposite. The stability properties of such jets are found by performing a linear
stability analysis about a basic velocity profile U(y) where y is a coordinate normal to
the jet axis. By looking for a traveling wave solution of the linearized Navier—Stokes
equations of the form 9(z,y,t) = v(y)expli(ax — wt)], in the absence of viscosity, we
arrive at the Rayleigh equation

d? d*U
(aU —w) (dys - a2v> — ad—yQU =0, (1.1)

where v(y) is the velocity component normal to the jet axis (in y—direction), ¢ is time,
« is the streamwise wavenumber and w is the angular frequency; see Drazin & Reid
(1981). Here we neglect the effect of viscosity as typical Reynolds numbers for Diesel
jets are O(10*) or larger, which is larger than, 10%, a value above which viscosity can
be neglected in channel flows (Rees & Juniper 2010). Using a piecewise linear profile
for U(y) allows an analytic form of the dispersion relation D(«,w) = 0 to be derived,
on which a temporal stability analysis can be performed. The dispersion relation can be
solved for complex w, for a given real a. For the case of planar and axisymmetric jets,
the range of real wavenumbers which exhibit growth is governed by the width of the
shear layer and the magnitude of the surface tension (Lord Rayleigh 1894; Batchelor &
Gill 1962; Funada et al. 2004; Marmottant & Villermaux 2004). However, a temporal
stability analysis does not show certain aspects of the jet stability, such as whether or
not it is absolutely or convectively unstable, which has important implications for where
it breaks up. The answer to this question requires a different mathematical approach.
This approach uses spatio—temporal stability analysis (Heurre & Monkewitz 1990) in
which both a and w are allowed to become complex and growth rates are obtained
in various frames of reference moving in the axial direction along the jet. The growth
rate is calculated using the method of steepest descent (Hinch 1991) by searching for
special saddle points in the complex a—plane through which the inverse Fourier transform
contour can be deformed (see §2.1). The saddle point on the contour with the largest
growth rate gives the disturbance growth rate in the limit ¢ — oo. For a liquid jet there is
one saddle point in the a—plane whose position is determined by the thickness of the shear
layers and the value of the surface tension (known as the ‘s;” saddle in Juniper (2007) and
‘shear layer mode’ in Lesshafft & Huerre (2007)), and this saddle is located close to the
real a—axis. Also in the a—plane is a set of saddle points close to the imaginary a—axis
which are due to the interaction between the two shear layers (known as ‘sy’ saddles
in Juniper (2007) and ‘jet column modes’ in Lesshafft & Huerre (2007)). In the present
study we examine how the growth rate at these saddles and their positions are affected
when the interface between the two fluids is placed within the shear layer. We find that
this leads to important qualitative differences compared to previous studies where the
density interface was assumed to lie on only one side of the shear layer (Marmottant
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& Villermaux 2004; Juniper 2007). Our assumption to neglect viscosity in this study is
valid because Yu & Monkewitz (1990) showed that the transition to absolute instability
is caused by the interaction between the two shear layers and is not a viscous effect. Lin
et al. (1990) and Li & Tankin (1991) investigated the effect of viscosity on planar liquid
jets and found that the solution contained two convectively unstable modes, identical to
those of Hagerty & Shea (1955), whose growth rates are affected by the presence of the
viscosity, and an unstable mode with zero frequency. Typically viscosity has a damping
effect on the instabilities, but in particular parameter regimes viscosity enhances one of
the convective modes (Li & Tankin 1991).

The parameters we wish to investigate in this study are ¢ = pa/p1, the density ratio
of the outer fluid to that of the liquid jet, W = We™!, the inverse Weber number
(defined below), d; and d2 the thicknesses of the shear layers on either side of the fluid
interface and the ratio of the fluid velocity at the interface to the maximum jet velocity,
0B. It is known that the density ratio has a large effect on the behaviour of absolute
instabilities, in particular that low density jets (¢ > 1) are almost always absolutely
unstable (Sreenivasan et al. 1989; Yu & Monkewitz 1990; Juniper 2006). In this work we
are concerned with jets which have ¢ < 1, but we find that absolute instabilities can occur
at these density ratios for particular velocity profiles. Values of ¢ < 1/10 can typically be
found in Diesel jet injection experiments as the pressure of the gas inside the cylinder is
varied, while values of ¢ > 1/10 provide a wider range of interest to the reader. Rees &
Juniper (2009) showed that the effect of small and moderate surface tension values is to
increase the magnitude of any absolute instability that arises due to the varicose modes
of low density jets, while larger surface tension values are ultimately a stabilizing feature
of the flow. This is one of the main differences between planar jets and axisymmetric jets,
where surface tension has a more destabilizing effect. The effect of the shear layers in
both fluids, and the magnitude of the fluid velocity at the fluid interface, on the absolute
instability properties of jets with ¢ < 1 has not been explored to date and will form
part of this investigation. The case of low density jets (¢ > 1) with a fluid interface in
the shear layer has been examined using smooth velocity and density profiles (Raynal
et al. 1996; Srinivasan et al. 2010). These studies show that low density jets experience a
transition from absolute to convective instability if the shear layer thickness is sufficiently
large compared to the jet diameter.

The stability results are then used to estimate break—up lengths of steady jets, which
are compared with experiments such as those of Hiroyasu et al. (1982). The experiments
show that break—up lengths increase with injection velocity for small injection velocities
and then reduce for larger velocities before eventually leveling off (see figure 13 of Hi-
royasu et al. (1982) which is reproduced as figure 1 here). In the comprehensive review
paper by Eggers & Villermaux (2008) the reducing break—up length for larger velocities
is explained by the thinning shear velocity at the edge of the jet, but no explanation
is given for the rise in break—up length for small velocities. In this paper we show that
the increasing break—up length for small velocities could be due to the value of the fluid
velocity at the fluid interface within the shear layer increasing with velocity. The experi-
ments of Hiroyasu et al. (1982) are not performed using Diesel jets, but this experiment
has non—dimensional parameters which coincide with those we expect in Diesel injection
systems.

The present paper is laid out as follows. In §2 we formulate the problem and derive the
analytic dispersion relation which determines the stability characteristics of the jet. Then
follows a brief discussion of the spatio—temporal stability method used to analyze the jet
stability, including in §2.2 a discussion of the s; and ss saddle points in the complex
a—plane and how they move around as the problem parameters vary. In §3 we calculate
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FIGURE 1. Plot of the break—up length x, (mm) as a function of the injection velocity, v; (ms™'),
for an experiment where water is injected into pressurized Nitrogen (Hiroyasu et al. 1982). The
results are for four different Nitrogen pressures, which correspond to ¢ =~ 1/1000, 1/100, 1/30
and 1/20. These are numbered 14 respectively. The radius of the nozzle used in this experiment
was 0.15mm.

the growth rates for particular parameter regimes and investigate the appearance or
otherwise of absolute instabilities. In §4 we use the convective instability analysis to
examine the break—up length of a steady liquid jet, and compare the results to those in
figure 1. Our concluding remarks and discussion can be found in §5

2. Formulation of the mathematical model

We consider a two—dimensional steady planar jet orientated along the z*—axis in
the (z*,y*) plane with dimensional reference velocity Uj at y* = 0, emerging from a
nozzle of thickness 2L* at * = 0. Using this reference length and velocity we can define
dimensionless variables such as its velocity U =velocity of the jet/Uj and its thickness
2L (where L =thickness of the jet/2L*). The jet fluid has density p; and lies between
an outer fluid of density py. For the stability analysis in §3 we consider a jet profile
with max(U) =V = 1, however when we consider break—up lengths for these jets in §4,
we will allow V' to vary. Thus we leave V explicitly in the equations in this section for
completeness.

We assume that the jet does not spread significantly as we move along the r—axis in
the region we wish to consider, and we neglect any streamwise variation of the jet in this
article. Therefore we can consider the basic velocity profile u = U(y)i as a function of
the normal coordinate y only, where i is the unit vector in the streamwise direction. This
assumption is valid close to the nozzle, where the jet spreads slowly in space. Typically
this velocity profile will be smooth with shear layers in each fluid at the edge of the
jet, such as in the CFD simulations in figure 2. The velocity profiles in figure 2(a) are
calculated for an axisymmetric Diesel jet injecting in static air, normalised by their
axial velocity along the centre of the jet, and non—dimensionalised by the radius of the
nozzle (L* = 0.0675 mm). These profiles are generated using the CFD package ANSYS®
FLUENT®7 where the boundary condition for the mass flow rate of fluid in the nozzle
is given by measurements taken from an in house experiment (see figure 2(b)) (Karimi
2007). The plotted profiles are taken at t* = 3 x 10~% s where the jet has reached a
steady state.

The velocity profiles in figure 2 are calculated using the Eulerian multiphase model. In
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this model a momentum equation for each fluid phase is solved for, giving the respective
velocity field. Since there exist large velocity differences between the two phases, this
approach allows us to overcome the limitations of the shared velocity and temperature
formulation of the Volume of fluid model (VOF), which can affect the fluid velocities
computed across the interface. We consider the two fluids to be immiscible and the
Geo-Reconstruction sharpening scheme (Youngs 1982; Ferziger & Peric 2004) is used
to construct the free surface. The computational domain is a closed cylinder 80 mm in
length and 25 mm in the radial direction which was chosen to approximate the cylinder
of an engine in the experimental facilities at the University of Brighton. The nozzle is
approximated by a cylindrical channel of 1.08 mm x 0.135 mm (axial x radial directions)
and is located at the centre of the main cylinder edge. The computational domain is
covered by a structured mesh of approximately 82000 nodes which is refined inside the
nozzle and in a 0.5 mm X 0.3 mm region immediately outside the nozzle. A coarser and
unstructured mesh is used outside this region and a time step of At* = 5x 1078 s is used.
A standard x — € turbulent model for both fluids is used. Initially the air in the chamber
is considered at rest with a temperature of 355 K and a pressure of 2 MPa. The fuel
is injected into the cylinder through the nozzle at the constant temperature of 355 K,
assuming an adiabatic condition on the walls and applying a mass flow rate boundary
condition, given by figure 2(b), at the nozzle inlet surface. This produces a non—uniform
velocity profile as the fuel enters the main cylinder. A check of the dependency of the
results on the numerical grid was also carried out and the results were found to agree
within a few percent, hence the simulations are consistent.

The mass flow rate in figure 2(b) has been modified so that it levels off once the initial
acceleration of the jet has been completed at around t* = 2.5 x 10~* s. Beyond this
time the jet reaches a steady state, although from t* = 2.5 x 10~* s onwards, the change
in the profiles is very small. The other profiles are generated by considering fractional
multiples of this mass flow rate to generate the lower velocity jets. These profiles are
generated assuming that the jet is axisymmetric, but we expect qualitatively similar
results for a planar jet, so we use these results to motivate the velocity profiles used in
this study. In fact the experimental results of Soderberg & Alfredsson (1998) show planar
jet velocity profiles which have a similar appearance to those shown here, however they
cannot determine the structure of the velocity profile in the outer fluid as we can in our
CFD simulations. The profiles in figure 2(a) are taken at 0.1 mm from the nozzle exit and
the nozzle is assumed to be full of fluid for all times to best model the flow in a Diesel
injector where the nozzle fills with fluid as the injector needle is lifted. In this study we
approximate the CFD profiles in figure 2 by a piecewise linear velocity profile, which is
shown in figure 3. Although this profile is a simplification of the true profile, it captures
important qualitative aspects of the jet, and greatly simplifies the problem when it comes
to studying properties such as absolute instabilities. This piecewise linear profile exhibits
the same qualitative behaviour as a realistic smooth profile, as the exact shape of the shear
layer only has a small effect on the stability characteristics of the flow (Esch 1957), and
Healey (2009) found a co—flow absolute instability for certain confined piecewise linear
shear layers and the same qualitative behaviour, with modest quantitative variation, in
smooth profiles. The piecewise linear profile also allows for an analytical expression for
the dispersion relation, as well as implicitly capturing typical features of a viscous jet
profile, although we do not explicitly consider the effects of viscosity in this model. Other
studies have considered the stability of planar jets using velocity profiles which are more
realistic, i.e. have shear layers either side of the fluid interface, than the simple plug
flow approximation (Hashimoto & Suzuki 1991; Séderberg & Alfredsson 1998; Séderberg
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FIGURE 2. Plot of (a) the normalised velocity profiles, taken at 0.1 mm from the nozzle exit,
for the CFD simulation with ¢ ~ 1/45 for an axisymmetric jet with dimensional maximum
velocity of 1- 44 ms™!, 2- 81 ms™!, 3- 182 ms™! and 4- 340 ms™—!. The fluid interface is denoted
by the vertical dotted line. Panel (b) gives the experimental mass flow rate used to generate
result 4 of panel (a). Note that the mass flow rate has been modified to enter a steady state
for t* > 2.5 x 10™* s. In this simulation pger = 850 kgm ™3, the pressure inside the cylinder is
2 Mpa and the initial temperatures of the fuel and air are 355 K.

Yy

FIGURE 3. Plot of the piecewise velocity profile U(y), where the thickness of the liquid jet is 2L.
The density of the liquid layer is p; and has a shear layer width of §; while the air density is p2
and has a shear layer thickness d2. The parameter 8 € [0, 1] defines the jet velocity at the fluid
interface, normalized by V.

2003), but the current paper is the first to examine the stability properties of such a
realistic profile using the spatio—temporal stability analysis approach.

The piecewise linear velocity profile in figure 3 is symmetric about y = 0, hence we
need only to consider half the jet, of which the top half has the form

0 y > L+ 6a,
—BV(y — L —§,) L+6 L
Yy 2 +2>y> )
U 52 2.1
() VUV _L4§) L>y>L-—6, @1)
1% L—61>y>0.

The parameter (3 defines the jet velocity at the fluid interface normalized by the velocity
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V. It can be seen in figure 2 that 3 increases with increasing V' by considering the velocity
at the fluid interface. In figure 3 we number the layers of the profile 1 — 4 from the top
layer in fluid 2 to the centre layer in fluid 1. The value of L in this study will be set to
L =1, i.e the thickness of the jet is the same as that of the nozzle, although a true value
of L will be slightly smaller than unity due to a thinning of the jet as it leaves the nozzle
(Domann & Hardalupas 2004). This effect is expected to be relatively small in the region
of interest, so we neglect it here.

The stability of profile (2.1) to linear disturbances, in the absence of viscosity, is found
by linearizing the two—dimensional Euler equations. We introduce velocity and pressure
fluctuations of the form

(i1, 0, ) (z, y,t) = (U(y),0,0) + e(u(y), v(y), p(y))e"®* Y + complex conjugate, (2.2)

into the Euler equations where ¢ < 1 and u, v, p = O(1), and time has been non-
dimensionaised by L*/U{. By neglecting nonlinear terms and eliminating the pressure p
and the streamwise velocity perturbation u we arrive at the Rayleigh equation (1.1) in
each of the fluid layers (Drazin & Reid 1981). Here « is the wavenumber in the streamwise
direction and w is the angular frequency of the disturbance, such that w/a = ¢ is the
wave phase speed in the x direction. For high speed jets, it is likely that the fluid within
the jet is close to or could even be turbulent, possibly due to the cavitation in the nozzle
(Arcoumanis et al. 2001). However in this study we assume that any eddies in the jet are
small, and so our assumption that the jet appears as a single velocity profile and can be
approximated as (2.1) still holds.

The modal solutions to the Rayleigh equation can be either sinuous (even functions for
v; v(y = 0) =1, dv/dy(0) = 0) or varicose (odd functions for v; v(0) = 0, dv/dy(0) = 1)
modes, and as any perturbation can be made up of a linear combination of these modes
we have a complete stability representation by considering these modes only. Therefore
for the piecewise linear basic profile (2.1), the form of the eigenmodes can be solved
for exactly in each layer. Also by using the symmetry conditions at y = 0 and the two
matching conditions

v,
. |:aUJ]("):| =0, Alpi(alj —w)v; = pjalju] = x,

across each velocity layer to eliminate the arbitrary constants of the problem, we can
derive the dispersion relation

D(a,w) = é3w* + 3w + éaw? + élw + ¢ = 0, (2.3)
where ¢é4 to ¢y are functions of («,d1,62,5,V,L,q = pa/p1, W) given in Appendix A.
Here the notation is A[ ] = | ]ngi at the discontinuity y = yo and € — 0. When the

second interface condition is applied between two layers of the same fluid y = 0, and
x = Wa?p; at the interface between the two fluids at y = L(= 1). The non—dimensional
constant W = We™t = o /(p1U§?L*), where o is the dimensional surface tension, is the
inverse of the Weber number. In the present study this parameter remains constant, but
the surface tension effects appear as W/V? in the above dispersion relation, so as V
increases the effect of surface tension reduces. Consequently we could fix V' =1 and let
W vary, but in §4 we calculate the break—up length of the jet as a function of V.
For the case of no surface tension, W = 0, the dispersion relation reduces to

c3w® + cow? + clw + ¢g = 0,

by division of the factor (2aV — w). The expressions for ¢3 to ¢y can also be found in
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Appendix A. For more information of the derivation of the dispersion relation, see either
Drazin & Reid (1981); Schmid & Henningson (2001); Healey (2007) or Juniper (2007).

2.1. Spatio—temporal stability analysis

In this study we are interested in how disturbances generated at the nozzle propagate
along the jet. Thus it appears that a simple temporal instability analysis for each real
wavenumber « would suffice for finding unstable waves. However this analysis doesn’t
allow for distinguishing an absolute instability from a convective one, i.e. distinguishing
a disturbance which grows at the same spatial position at which it was forced (the nozzle
in this case) from one which only grows as it propagates downstream. In a steady parallel
jet, an absolute instability is significant because the jet will eventually break up at the
nozzle as long as enough time is allowed to pass. In this paper we examine the fluid
response to the forcing in frames of reference moving at various speeds downstream (or
possibly upstream) of the source of disturbances as in the problems considered by Healey
(2006) and Juniper (2006).

The calculation of this response in one spatial dimension can be found in works such as
Huerre (2000) and Healey (2006) and is outlined below. We assume that a time dependent
forcing is turned on at ¢ = 0 at the nozzle of the jet (x = 0), and that this can be written
as the boundary condition ©(x,0,t) = 8(z)f(t), where f = 0 for ¢ < 0 (Juniper 2007).
The solution for o(x,y,t) can be written as the double inverse Fourier transform

i) =g [ [ Bl dade (2.4)

where D(a,w) is the dispersion relation (2.3). The integration contour F, runs from —oo
to oo along the real axis in the complex a—plane, while the contour L, runs from —oo
to oo above all singularities in the complex w—plane to ensure © = 0 for ¢ < 0.

It is possible to distinguish between convective and absolute instabilities without nu-
merically evaluating the above double integral (Briggs 1964), by considering an impulsive
forcing f(t) = 6(t). The residue theorem can then be used to evaluate the w integration
n (2.4) as

Yy, a,w z(om:—wmt) d 2.5
oz, ,1) %z/Da% e o (25)

where w,, is the m™ root of the dispersion relation. Equation (2.5) can now be evaluated
by the method of steepest descent (Hinch 1991), where in the large time limit with
x/t = O(1) the dominant contribution to the integral comes from the particular saddle
points of the function
x Ow T
Gm = wm —az, where 87(:1 =3 (2.6)
In this study we consider the growth of the perturbation ¢ along all possible real
characteristics Ow/da = x/t, and calculate the growth rate

gi =1Im(g) = w; — ?Oli,
where the subscript ¢ denotes the imaginary part and we have dropped the m subscript
for clarity, knowing we must consider all Riemann surfaces. The saddle points of the
dispersion relation are found by simultaneously solving equations D(g,a) = Da(g, @) =
0, numerically using Newton iterations, where D(g, «) is given by (2.3) with w replaced
by (2.6).
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FIGURE 4. Plot of the contours of g; in the complex a—plane for the sinuous mode with
(61,02,4,8,V,W) = (0.5,0.5,1/500,1/2,1,0) and (a) z/t = 0.6 and (b) xz/t = 0.9. The branch
cut near the real axis is marked by the dashed line while the path of integration is shown by
the solid white line. The saddles are labeled s; and sz as in Juniper (2007).

2.2. Distinction between saddle points

In this section we show how the integral in (2.5) is evaluated, consider the two types of
saddle points which contribute to the integral, and show how the saddles move around
the a—plane as we consider the growth along various x/t characteristics.

The integration path in (2.5) originally lies along the real axis in the complex a—plane.
However the method of steepest descent makes the evaluation of this contour easier by
deforming the integration path to pass through particular saddle points in the a—plane.
This deformation of the integration contour can only be carried out as long as no poles
or branch cuts of g(«) (which correspond to those of w(«)) are crossed. We visualize
the integration by plotting contours of g; in the complex a—plane and then choose an
integration path which solely lies within the valleys of the saddle point (Healey 2006,
2007). A sensible choice for the inversion contour is a path which follows contours of
constant Re(g) = g, (orthogonal to the contours of g;) which is only allowed to change
values of g, at points in the a—plane where g; is strongly negative. This is done so as to
only add a negligible contribution to the integral if we were to evaluate it numerically. If
more than one saddle point with g; > 0 lies on the integration path then both have to be
considered for the growth rate of the disturbance. However the long time response can
solely be inferred from the values of the saddle with the largest value of g;, henceforth
known as the dominant saddle point.

An example of what the contours of g; look like in the complex a—plane for the sinuous
mode with (61,d2,¢,8,V,W) = (0.5,0.5,1/500,1/2,1,0) and «/t = 0.6 and =/t = 0.9
can be seen in figures 4(a) and (b) respectively. These parameters are chosen to give
a typical velocity profile with non—zero shear layers in each fluid. The density ratio
g = 1/500 is considered because it corresponds to cold liquid Diesel liquid fuel being
injected into compressed air at about five atmospheres pressure, which is similar to
the smallest density ratio in the experiments in figure 1. In this paper we adopt the
notation of Juniper (2006, 2007) for the labelling of the saddle points. We denote the
saddle whose position is controlled by the thickness of the shear layer and surface tension
(Rees & Juniper 2009) as s;. This saddle corresponds to waves with moderate and short
wavelengths so the eigenfunctions are confined to a region close to the shear layer, so
shear layer effects and surface tension are important for determining its position. The
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other saddles which are controlled by the interaction of the two shear layers (Juniper
2007) are denoted as so saddles. Unlike s; saddles, these sy saddles correspond to waves
with long wavelengths which have wide eigenfunctions that feel the effect of both shear
layers. As well as the branch cut close to the real axis (denoted by the dashed line)
there are also branch cuts close to the imaginary a—axis, which we have not shown for
clarity. These branch cuts lie so close to the imaginary a—axis, such as the one which
lies approximately between the origin and «; = —3, that they don’t affect our choice
of inversion contour in this study. The position of all the branch points in the a—plane
can be found by simultaneously solving equations D(g, ) = D,,(g, ) = 0, using Newton
iterations. For both cases in figure 4 we note that the only saddle which lies on the
contour of integration is the s; saddle. For z/t = 0.6 in figure 4(a) we see that the sy
saddle lies below the real a—axis, so the inversion contour comes between the two branch
points at the origin, down the right hand side of the branch cut close to the imaginary
axis and then passes over the s; saddle. The contour then passes around the branch
cut close to the real a—axis and off to infinity above the branch cut, but this is not
shown here. As x/t — 0.5 from above, the s; saddle remains the only saddle point on
the integration contour and it moves to large «, while the magnitude of g; tends to zero.
As z/t increases from 0.6 the s; saddle moves around the branch cut on the real a axis
and onto a Riemann sheet with «; > 0, which can be seen for z/t = 0.9 in figure 4(b).
In this case the dominant s; saddle is very close to an sy saddle in the upper complex
plane, but an investigation of the valleys of the respective saddle points shows that for
this parameter set the inversion contour cannot pass over both saddle points. Therefore
as x/t — 1 the s; saddle remains dominant and again moves to large ., with g; — 0,
but this time above the branch cut near the real axis.

As the density ratio ¢ is increased, the s; saddle moves closer to the imaginary a—axis,
but in this paper we find that the so saddles do not contribute to the stability of the
jet. However if the jet were confined between two solid surfaces then a further set of s
saddles would be introduced to the a—plane and then as the position of the walls are
varied, these so saddles could become traversed by the integration contour and hence
affect the stability properties of the jet as found in Juniper (2007). This, however, is not
considered in the present paper.

We note that an absolute instability will occur in the jet if there exists a saddle point on
the inversion contour with g; > 0 for x/t = 0. These absolute instabilities are significant
for steady jets, because eventually the flow will break down at the nozzle as long as
we allow enough time to pass. Thus determining their existence for particular parameter
values is very important and in the next section we calculate parameter sets with absolute
instabilities that have not been documented before.

3. Stability calculations for a steady jet

In this section we present a systematic study of the convective and absolute stability
properties of the velocity profile (2.1) for a wide range of parameter values, such as the
shear layer thickness, surface tension and the value of the jet velocity at the fluid interface.
In §4 we use the relevant results which relate to our profiles in figure 2(a) to make a
connection with jet break—up lengths. Throughout this section we set V = L = 1 without
affecting the qualitative nature of the results, and unless otherwise stated 8 = 1/2.

In figure 5 we plot growth rates g; as a function of the characteristic 2/t for both
sinuous (results 1 and 3) and varicose (results 2 and 4) modes. For both parameter sets
the varicose mode has a smaller maximum growth rate value, ¢g/"**, where g*** is the
maximum value of g;, although as the shear layers thin out the growth rates for both
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FIGURE 5. Plot of the growth rate g; as a function of z/t for 1- the sinuous mode with

(61,02,9,W) = (0.5,0.5,1/500,0), 2— the varicose mode with (0.5,0.5,1/500,0), 3— the sinu-

ous mode with (0.25,0.25,1/500,0) and 4— the varicose mode with (0.25,0.25,1/500, 0).

the sinuous and varicose modes tend to the same values, as is shown by results 3 and 4
which are indistinguishable from one another. This is because as the shear layer thins,
the wavelengths shorten so the eigenfunctions decay faster with distance from the shear
layer, and so whether you use v(0) = 0 or v'(0) = 0 makes very little difference. In this
limit the results should approach those of an isolated mixing layer, as studied in Healey
(2009), but with a modification due to the fluid interface being placed in the middle
of the shear layer. In fact, the varicose modes correspond to the case of a mixing layer
confined by a single plate studied in Healey (2009). As the sinuous modes have larger
maximum growth rate, these modes will become unstable first and so will be significant
to convective instabilities if we are interested in the initial break up of the jet. However
the varicose modes also need to be considered in case they produce a shorter break—up
length. The varicose modes are most significant for the absolute instabilities in the jet,
and it should be noted that the varicose mode with z/t < 0.64 and 6; = d2 = 0.5 has
a growth rate larger than the sinuous modes as well as a maximum growth rate value
occurring at a lower value of z/t.

In figure 5 we also observe that as the thickness of the shear layer decreases the value

of g™ increases. In fact g scales like ;' in this problem, and this can be seen as

K3
g =~ 0.25 for 6; = d2 = 0.5 while ¢g*** ~ 0.5 for §; = d2 = 0.25. The values of g; for
the d; = 0.25 result cannot be calculated for 2/t ~ 0.5 and 1.0 because close to these
values the saddle point in the a—plane has moved to a large value of a.., as discussed
in §2.2. Thus the value of this saddle becomes difficult to calculate numerically because
of numerical inaccuracies that occur in calculating the roots of the dispersion relation.
This problem arises for thin shear layers and small values of ¢ and could be overcome
by evaluating the integral in (2.4) numerically and calculating the growth rate from this.
However, it can be noted by studying the a—plane that in these limits, no s, saddles
become traversed by the integration contour, therefore it can be deduced that g; — 0 as
x/t — 0.5 and 1.0 as for the §; = 0.5 case so no difficult numerical integrals need actually
be evaluated. It is found in §4 that these parts of the growth rate are not required for
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FIGURE 6. Plot of (a) the growth rate g; for sinuous modes as a function of z/t for
(0.5,0.5,1/500,0), (0.5,0.5,1/10,0) and (0.5,0.5,1,0) numbered 1 — 3 respectively. Panel
(b) shows the sinuous mode growth rates for (0.5,0.5,1/500,0), (0.5,0.1,1/500,0) and
(0.5,0.9,1/500,0) numbered 1 — 3 respectively.

calculating the break—up length for this value of ¢, so the calculation of these tails is
irrelevant.

In figure 6(a) we plot g; as a function of z/t for sinuous modes with the different
density ratios (0.5,0.5,1/500,0), (0.5,0.5,1/10,0) and (0.5,0.5,1,0) numbered 1 to 3
respectively. The most striking difference between the results displayed in panel (a) is
that for ¢ = 1 (result 3) there is growth over a much larger range of x/t characteristics.
This is significant because now there is the chance that there could be growth along
the x/t = 0 characteristic for particular parameter values, i.e. there could now exist an
absolute instability. In this case there is a very weak absolute instability for ¢ = 1. As
q is increased from 1/500 to 1 the maximum value of the growth rate, g/™®*, initially
increases up to g = 1/5 before decreasing as ¢ — 1. This can be seen in figure 7(a) for
01 = 93 = 0.5. Figure 7(b) shows that the corresponding z/t value increases slightly
up to g & 1/4 before also reducing as ¢ — 1. This shows that as the density difference
between the two fluids becomes closer to unity, break up will occur at a later time for
the same velocity profile because of the smaller growth rate, but also the disturbance
will move slower along the jet. Weaker growth rates tend to delay break up, but slower
axial propagation velocities tend to move break up towards the nozzle.

Figure 6(b) on the other hand shows the effect on the growth rate of varying the
thickness of the outer shear layer, d2, when ¢ = 1/500. The results show that thinning
the shear layer in the less dense fluid increases the maximum growth rate by a small
amount, and thickening the shear layer reduces the maximum growth rate by an even
smaller amount. This small difference as d5 is varied demonstrates that a thickening of the
outer shear layer alone cannot be responsible for the increased break—up length observed
in axisymmetric Diesel jets (see the discussion in Sazhin et al. (2008)). As ¢ increases
the effect of the outer shear layer increases, but doesn’t really become significant until
q 2 1/10.

In figure 6(a) we find that for ¢ < 1 the smallest value of x/t for which growth is
observed is z/t = 1/2 = 3. Therefore we can generate results with g; > 0 for z/t < 1/2
by considering a fixed shear layer thickness and by varying the magnitude of the jet
velocity at the fluid interface within the shear layer. This is achieved by varying the
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FIGURE 7. Plot of (a) the maximum growth rate g;"** as a function of ¢ for the case
01 = 62 = 0.5 and W = 0, while panel (b) plots the value of 2/t at the maximum value.
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FIGURE 8. Plot of g; as a function of z/t for sinuous modes of the velocity profile (3.1) with
g =1/500 and (a) a = 1 with 8 = 0.6, 0.5, 0.25 and 0.1 numbered 1 — 4 respectively and (b)
(a,B) = (1.25,0.5), (0.75,0.5), (1.25,0.25) and (0.75,0.25) numbered 1 — 4 respectively.

parameter § and allowing the parameters §; and s to vary as
51=a(l—B), & =ap, (3.1)

where a determines the thickness of the shear layer. Figure 8(a) shows that reducing 3
from 0.6 (result 1) to 0.5 (result 2) with a = 1 increases the range of x/t characteristics
along which there is growth. In fact the smallest value of z/t for which there is growth
is exactly (8, which is verified by each of the four cases shown. We also note that the
maximum value of g; varies only slightly as 3 is varied, but the z/t value at the maximum
moves to smaller values as § decreases. This increase in the range of z/t values with [ is
also seen for the varicose mode (not shown), which means that there is the possibility for
an absolute instability, primarily in the varicose mode, as § is reduced. This is examined
further in figure 12. We should also note that for 5 = 0.25 and 0.1, characteristics with
x/t > 1 now have a positive growth rate. The implication of such solutions is discussed
below. Figure 8(b) shows that different values of a give the same effect as § is varied,
except that the overall growth rate is reduced as a is increased and vice versa as a is
reduced.
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.5,0.5,1,0) for 1- sinuous mode and 2- varicose
mode and for sinuous modes with (b) 1- (0.5,0.5,1,0), 2- (0.25,0.25,1,0), 3- (0.5,0.3,1,0) and
4- (0.5,0.7,1,0).

When we consider two fluids of equal density (¢ = 1) we find that varying parameters
such as do have a greater effect on the growth rate than they did for small values of
g (= 1/500). Figure 9(a) plots both the sinuous mode (result 1) and varicose mode
(result 2) for the case (0.5,0.5,1,0), and these results compare to results 1 and 2 for
the ¢ = 1/500 case in figure 5. For the ¢ = 1 results we see that there is a much larger
difference between the maximum values of the growth rates of the two modes, with the
sinuous mode growing more than twice as fast as the varicose mode at its maximum
value. We also observe that the range of z/t characteristics where the varicose mode
is larger than the sinuous mode is greatly reduced for ¢ = 1 and is concentrated to a
small region near z/t = 0. In fact for this parameter set the varicose mode gives an
absolute instability (i.e. g; > 0 at z/t = 0). The sinuous mode on the other hand has
growth along characteristics which can propagate at a group velocity greater than the
speed of the jet (z/t > 1), although the value of g; on these characteristics is much less
than the maximum value of g;. These characteristic values would not be significant for
a steady jet, as the jet is assumed to fill the whole domain x € [0, 00). However for an
accelerating jet emanating from the nozzle, the growth along these characteristics could
prove important, because these wave packets would propagate along the jet, hit the front
of the jet and then reflect back setting up interference with other downstream traveling
wave packets which could induce break up.

So far we have focused on jets with zero surface tension, however surface tension can
have a major effect on both the convective and absolute instability properties of the jet.
In figure 10(a) we consider the growth rate g; for sinuous modes as a function of x /¢ for
the cases (0.5,0.5,1/500,0), (0.5,0.5,1/500,0.001) and (0.5,0.5,1/500,0.01) numbered
1-3 respectively. Here we see that increasing the effect of surface tension decreases the
maximum value of the growth rate, i.e. it has a stabilizing effect on the convective insta-
bility. This is because the surface tension forces act to suppress the instability waves on
the surface of the fluid thus reducing the ability of the free surface to break up. It is also
interesting to note that for this small value of ¢, the value of x/t where the maximum
value of g; occurs increases as W is increased. In figure 10(b) we consider the effect of
surface tension in the case ¢ = 1, i.e. when the two fluids have equal densities, again
for the case §; = 62 = 0.5. Here we find that because ¢ is larger than in panel (a) we
require larger values of W to see a significant change to the growth rate g¢;, thus we
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FIGURE 10. Plot of the sinuous mode growth rate ¢; as a function of z/¢ for (01,d2,q, W) =
(a) 1- (0.5,0.5,1/500,0), 2 (0.5,0.5,1/500,0.001) and 3- (0.5,0.5,1/500,0.01) and (b) 1-
(0.5,0.5,1,0), 2- (0.5,0.5,1,0.01) and 3 (0.5,0.5, 1,0.02).
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FIGURE 11. Plot of g; for varicose modes at the s1 saddle on the inversion contour when z /¢ = 0.
In panel (a) 61 = d2 and 1- (¢, W) = (1,0), 2- (1,0.01), 3— (1/2,0) and 4- (1/2,0.01). In panel
(b) we fix 61 = 0.3 and examine the value of g; at the s; saddle as a function of d2 for 1- (1,0)
and 2— (1,0.01). When this value is greater than 0 there is an absolute instability in the jet.

examine W = 0, 0.01 and 0.02 which are numbered 1-3 respectively. As for ¢ = 1/500
in panel (a), the maximum value of g; reduces as W is increased, but for ¢ = 1 the x /¢
characteristic of the maximum growth rate moves to a smaller value. We also note that
although surface tension has a stabilizing effect on the convective instability, it has a
destabilizing effect on the absolute instability as result 3 in figure 10(b) shows a weak
absolute instability while results 1 and 2 have no absolute instability. The destabilizing
effect of surface tension for absolute instabilities has been studied by Lin & Lian (1989)
and we look at its effect on our jet profiles in figures 11 and 12.

The major part of this study up to now has focused on the sinuous modes of the jet,
but these modes are more stable than the varicose modes when it comes to absolute
instabilities (Juniper 2006). Therefore, for the remainder of this section we focus our
attention on varicose modes and investigate the conditions when they produce absolute
instabilities in the jet. These are very important in the steady jets, as they tell us when
there will be disturbance growth at the nozzle which eventually leads to disintegration
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of the whole jet and a spray is formed. We expect an absolute instability to disintegrate
the jet in this fashion because we expect similar behaviour between this flow and the
wake flow of Chomaz et al. (1987), i.e. the jet is most unstable near the nozzle so an
absolute instability at the nozzle would generate an unstable global instability in the jet.
Also, any vortex rings which occur, such as in the experiments of Monkewitz & Sohn
(1988), would be highly unstable to secondary instabilities at the high Reynolds numbers
considered in this study, so break—up of the jet at the nozzle would be expected.

In figure 11 we plot the value of g; at the s; saddle on the inversion contour for various
parameter values, and where this quantity is greater than zero we have an absolute
instability in the flow. For result 1, which has §; = §3, W = 0 and ¢ = 1, we find that
we have an absolute instability for 0.175 < J; < 0.571. This result extends the work
of Juniper (2007) who suggests that a shear layer in the jet is not hugely significant
to its absolute stability properties, therefore he only considered the §; = 0 case which
gives no absolute instability for the parameter range considered here. However figure
11(a) clearly shows that increasing the thickness of the shear layer will produce absolute
instability, and when the shear layer becomes too wide the absolute instability stabilizes
again. Result 2 shows that increasing the surface tension (W = 0.01) increases the range
of values of d; for which there is an absolute instability to 0.146 < §; < 0.743. It also
increases the magnitude of the absolute instability as discussed in Lin & Lian (1989) and
earlier in this section. Results 3 and 4 show the same absolute instability phenomena
except with ¢ = 1/2. In this case the absolute instability occurs for a larger d; value,
and even extends to d; = 1 where the profile becomes an triangular jet. Note that this
result is the opposite of that observed by Srinivasan et al. (2010) who found that for low
density jets (¢ > 1) the absolute instability occurs as §; — 0 and becomes convectively
unstable as §; increases.

In figure 11(b) we fix 4; = 0.3 with ¢ = 1 and investigate how varying the outer shear
layer 02 affects the absolute instability. From figure 11(a) we know that d2 = 0.3 for this
parameter set leads to an absolute instability, but figure 11(b) shows that reducing the
thickness of the outer shear layer increases the absolute instability down to do = 0.160
and then the absolute instability reduces as do — 0 still giving an absolute instability at
62 = 0. Increasing o from 0.3 just reduces the absolute instability and at o = 0.408 the
absolute instability stabilizes. Result 2 shows the destabilizing effect of W = 0.01. For
the results in figure 11 we found that reducing ¢ much below 1/2 removed the absolute
instability, so for dense jets the flow is only convectively unstable.

In figure 12(a) we examine the absolute instability properties of the fixed shear layer
profile (3.1) with a = 8/5 where we vary the velocity at the fluid interface, effectively
varying the position of the fluid interface relative to a fixed shear layer, for the density
ratio ¢ = 1/2. We plot the value of g; at the s; saddle, which lies on the inversion contour,
as a function of 3. This profile was chosen because from figure 11(a) we know that this
profile, with § = 1/2, has an absolute instability with W = 0. We see that increasing
[ enhances the absolute instability up to § = 0.658, while reducing 3 only stabilizes
the absolute instability and when 8 = 0.440 the absolute instability has vanished and
the flow is only convectively unstable. Here, setting W = 0.01 (result 2) does increase
the range of § for which there is an absolute instability, but only slightly, and it also
shifts the position of the maximum absolute instability to a smaller value of 3. Figure
12(b) shows that absolute instabilities in jets with ¢ < 1 tend to only occur for values
of < 0.7 when 6; = 0 = 0.8. Therefore for the CFD profiles from figure 2(a) that we
consider in §4, we may not encounter an absolute instability. However this study is still
significant to other jets where 8 might be less than 0.7 due to the physical properties of
the fluids being considered.
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FIGURE 12. Plot of the value of g; for the varicose mode at the s; saddle on the inversion
contour when z/t = 0. For panel (a) the velocity profile is fixed by the parameters (3.1) with
a=38/5,¢=1/2 and 1- W = 0 and 2- W = 0.01, while for panel (b) 61 = d2 = 0.8 and 1—
(¢, W) = (1/2,0), 2—- (1/2,0.01) and 3— (1/10,0). The value of g; is plotted as a function of 3,
and an absolute instability develops when g; is greater than 0.

We have now extended the study of the stability properties of a steady planar jet and
identified some new phenomena associated with the inclusion of the shear layer at the
jet edge. In the next section we use these results to help to explain the experimental jet
break up results seen in figure 1.

4. Break—up length calculations

In this section we use the stability results from §3 to estimate break—up lengths of
liquid jets. Experiments, such as those by Hiroyasu et al. (1982), show that a liquid jet
injected from a nozzle has a break—up length which increases for small injection velocities,
reaches a maximum value, and then levels off for large velocities, see figure 13 from their
study or figure 1 of this study. The jets in these experiments were axisymmetric water jets
injected into pressurized nitrogen, where the injection process was long enough to justify
our assumption that the jets are essentially steady, and so our steady theory can be used
to explain the results. The proposed model in this paper includes several undetermined
parameters intended to model physical effects beyond the scope of the present study, such
as the role of nonlinearity in break up. In principle, improved quantitative agreement
could be sought through empirically adjusting the parameters to fit the data better, but
this is not the approach we have taken nor is that the goal of this research, our intention is
to obtain a qualitative understanding of the important physical processes. This limitation
of our goal is partly related to the fact that Hiroyasu et al. (1982) considered axisymmetric
jets while our model was developed for planar jets.

We examine how the parameters used in §3 affect the jet break—up length by studying
four different profiles. Before discussing the profiles we first need to relate the parameters
61, 62 and [ to the maximal velocity V of the jet. By considering the CFD results in
figure 2 we can estimate these parameters.By considering these parameters in figure 13
we can see that d; has the approximate form

) = 0o + 8V (4.1)

to leading order, where ¢’ + 0o is the non—dimensional thickness of the shear layer of
the jet when V =1 and d, is the thickness of the shear layer in the limit V' — oo. This
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Max velocity 3 81 02
(ms)

44 0.48 0.85 0.27
81 0.49 0.77 0.26
182 0.56 0.60 0.24
340 0.63 0.44 0.23

TABLE 1. The approximate values of §1, d2 and 8 for the CFD simulations shown in figure 2(a).
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F1GURE 13. Plot of the normalized data from table 1 with the profile 1 approximations.

result also agrees with the experimental results of Marmottant & Villermaux (2004)
who plot the velocity profiles of an air jet injected into static air and again find that
the shear layer in the jet is proportional to V~1/2. The variation of § with V is much
smaller than for §;, however it still increases with increasing V', and this variation has
an effect on the break—up length calculations. We fix the parameter do with respect to
V', as this is approximately true for the CFD calculations. Note here that as V' is varied
the parameters that depend upon V are also varied, such as the surface tension effects,
which appear as W/V? in the dispersion relation (2.3).
The four profiles we examine in this section are the following

Profile 1: & =0.2+40.75V Y2 §,=0.26, B=0.75—0.35V"1/2,
Profile 2: 6, =d, =0.2+0.75V "2, 3=0.5,

Profile 3: 6, =0.2+0.75V "2 §,=10.26, =05,

Profile 4: 6, =0.8(1—0), 6 =088, [=0.75-0.35V"12

Profile 1 gives a profile the parameters d1, do and § which fit the table 1 data. The values
in table 1 are estimated at the dotted fluid interface in figure 2 and then profile 1 is
generated by fitting curves through the data, as shown in figure 13. Note that we have
non—dimensionalised the data in table 1 by the velocity of the slowest jet. A different
non—dimensionalisation would have lead to different functions d;, d2 and (3. Profiles 24
pull out particular characteristics from profile 1, so that their individual effects on the
break—up length can be investigated. Profile 2 fixes the value of 3, and allows both §;
and J2 to thin with V, highlighting the effect of reducing J; in the small g limit where the
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FIGURE 14. Plot of velocity profiles 1-4 in panels (a)—-(d) at V =1, 5 and 10. The dotted line
indicates the fluid interface.

effect of dy is small (see figure 6(b)). Profile 3 is like profile 2, but now we fix o = 0.26 so
that comparisons with profile 2 will show how variations in d5 affect the break—up length
for g close to unity, where this effect is significant. Also this profile shows the effect of
fixing 0 when compared to profile 1. Profile 4 allows us to investigate the effect of allowing
[ to increase on the break—up length by fixing the shear layer profile and increasing (8
with V. One point to note is that profiles 1-4 have been chosen to approximately coincide
in the V' — oo limit, and plots of each profile at V' =1, 5 and 10 can be seen in figure
14.

The actual break—up length calculation is not a stability problem, it is a transition
problem, where we wish to calculate the position at which the initial disturbance from
the nozzle has reached some threshold amplitude where the disturbance can no longer be
assumed to be a linear perturbation to the basic jet velocity and nonlinear effects occur.
We are concerned with calculating the disturbance amplitude relative to a range of basic
flow velocities, so we expect that the quantity |0|max/|V| will be relevant in estimating
the position when nonlinearity starts to dominate, and we assume further that this will
be a pre—cursor to rapid jet break—up. The subscript max above means maximising over
the y direction. This ratio was studied by Shen (1961) who used it in unsteady flows
to determine whether or not the flow was instantaneously stable or unstable. Therefore
we calculate when the ratio |0|max/|V| reaches some critical value and we say that at
this point break up has occurred. It is equally possible to consider the ratio of the
streamwise disturbance velocity and the basic velocity |i|max/|V| or the ratio of the
disturbance kinetic energy to the base flow kinetic energy, but this would just correspond
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FIGURE 15. Schematic diagram of the z — ¢ plane showing the definition of the break—up
length 3, the corresponding break—up time ¢, and the initial break—up time .

to choosing a different critical threshold value. The threshold amplitude is unknown; we
have chosen |Up|max/|V| = 407 in this paper where |0y |max is the disturbance amplitude
that triggers jet break up and ¥y = |vg|max/|V| is the initial disturbance amplitude
ratio. Thus we assume the initial amplitude of the eigenfunction grows linearly with
|V|. It may turn out that this is not the case, and in general |vg|max = f(|V]) for some
function f, however there is no experimental evidence to determine this function, and
so fixing |vg|max/|V| reduces the number of parameters we have to consider, as well as
being a sensible assumption, as the initial disturbance amplitude is likely to increase
with jet velocity. A 40 fold amplification of the eigenmode may not be the correct value
for break—up, but changing this value will only have a quantitative effect on the results
presented in this section, and the overall trend of the results will be the same. Typically
the amplification factor is a function of ¢, but we fix it in this study as we are only
seeking qualitative agreement with experiments.

Under these assumptions, the ratio of the initial disturbance amplitude, |vg|max, to the
amplitude of the jet at break—up along the characteristic 2/t = C' = constant is found
from the method of steepest descent to be the solution of

|6b|max "U0|max

VI~ VG029 0a?], oo ? “P 9 (O)e(C)). (4.2)

where t,(C') is the time of break—up along the particular characteristic C' and vy (y) is
the corresponding initial disturbance eigenfunction at the saddle point corresponding to
x/t = C, whose magnitude can be adjusted. Then for a steady jet the break—up length
along the characteristic 2/t = C is given by the following formula:

_ Ow

z, " (C) = o o
x/t=

t,"(C) = " (0), (4.3)
where Jw/0a evaluated at the dominant saddle point on z/t = C is equal to C. The
superscript s or v signifies whether this is the break—up length is for the sinuous or
varicose mode. The actual break—up length a; is then taken to be the min(x7,x}) over
every characteristic x/t = C with ¢;(C) > 0. A schematic diagram of the x — ¢ plane
defining x;, and ¢ is given in figure 15.

In figure 16(a) we see that (V) for ¢ = 1/500 (result 1) shows an increase in value
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FIGURE 16. Plot of (a) 1— zp(V) for (¢, W) = (1/500,0), 2— x(V) for (1/10,0) and 3— z»(V)
for (1/2,0) all for profile 1. Panel (b) replots results 1 and 2 of panel (a), and the primes denote
the corresponding results with W = 0.01.

for small V' before decreasing as V' continues to increase. In these results the break—up
length is dominated by the sinuous modes of the jet. As ¢ is increased to ¢ = 1/10 (result
2) we see a similar structure as for ¢ = 1/500, except now the overall break—up length is
reduced. When these results are compared to the experimental results in figure 1 (or figure
13 of Hiroyasu et al. (1982)), we see qualitative agreement. The results in Hiroyasu et al.
(1982) were plotted for various gas pressures P, into which the fluid is injected. Increasing
P, corresponds to increasing ¢, and the results in figure 13 of Hiroyasu et al. (1982)
correspond to ¢ = 1/1000, 1/100, 1/30 and 1/25 from top to bottom respectively. In
figure 16(a), the ¢ = 1/2 result shows a slightly different behaviour, with z; (V') reducing
and leveling off as V' increases. The main reason for this is because the parameters d7, do
and [ are actually functions of g as well as V, so a jet with ¢ = 1/2 may have a different
profile than that given by profile 1. However we have ignored this extra complication in
this study for simplicity.

Figure 16(b) replots the ¢ = 1/500 and ¢ = 1/10 results of figure 16(a) and includes the
corresponding results with W = 0.01 denoted by primes. For both results the inclusion
of surface tension stabilizes the flow and causes the break—up length to increase, also the
increase in x; for small V' is removed. Note that as V is increased the effect of surface
tension decreases and the W # 0 results tend to the W = 0 results rapidly, due to surface
tension occurring as W/V? in the dispersion relation (2.3). The surface tension from the
experiments of Hiroyasu et al. (1982) is O(10™%), so the surface tensions we consider here
are larger than the experiments.

In figure 17 we plot (V') for profiles 2-4 with (a) (¢, W) = (1/500, 0) and (b) (1/2,0).
In panel (a) the results for profile 3 are not plotted as they cannot be distinguished from
the profile 2 results for this value of ¢q. This confirms the unimportance of the value of do
at this particular density ratio. For curve 1 in figure 17(a), we already know that thinning
the shear layer d; causes the maximum growth rate to increase (see figure 5) which itself
causes the break—up length to reduce as a function of V. For this value of ¢, the value
of z/t along which break—up occurs is within 5% of the characteristic along which g; is
maximum, see figure 18(a). However, increasing the fluid velocity at the fluid interface
(profile 4, curve 2) in figure 17(a) causes the break—up length to increase slightly at small
values of V' before remaining approximately constant over the rest of the range. This is
due to the maximum growth rate reducing as [ increases (see figure 8). In figure 17(b)
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FIGURE 17. Plot of (a) 1- z3(V) for profile 2 and 2— (V') for profile 4 for (¢, W) = (1/500,0).
Panel (b) shows 1- z(V) for profile 2, 2— z(V) for profile 4 and 3— z(V') for profile 3 for
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FIGURE 18. Plot of (a) the value of x/t along which break up occurs for the sinuous mode of
profile 2 for 1- (1/500,0) and 3— (1/2,0). Results 2 and 4 give the corresponding characteristics
for the maximum value of the growth rate. Panel (b) plots the = — ¢ plane for the sinuous mode
of result 1 figure 16(a) at V = 1. The curve gives the contour along which |3|/|V| = |0s|/|V],
while the solid straight lines give the edges of the wavepacket. The dotted lines give the values
of 3, and the initial time of break up ..
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for ¢ = 1/2 we see similar results for profile 2 (curve 1) and profile 4 (curve 2), but now
break up occurs along characteristics further away from the characteristic along which g;
is maximum with approximately 8% difference in characteristic values (see figure 18(a)).
Therefore we cannot just examine how the maximum growth rate varies with V' to give
an indication of how x; will vary. These differences can also be seen in the z — ¢ plot
of figure 18(b) for the ¢ = 1/500 result from figure 16(a). Here we plot the contour at
the edges of the wavepacket and the contour where |0|/|V| = |0p|/|V]| to show where
break—up occurs. We can see the clear difference between the break—up lengths given by
xp and the position where break up first occurs. In figure 17(b) we plot x} for profile
3, and see that unlike for ¢ = 1/500 the results are qualitatively different than those of
profile 2. Here there is an increase in x; initially before leveling off for larger velocities,
therefore at this density ratio the shear layer in the lighter fluid is significant.

In this section we have shown qualitative agreement between our theoretical predictions
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and the experimental results of Hiroyasu et al. (1982), including a possible explanation
of the turning point behaviour in z,(V') that can arise at some parameter combinations.
We have demonstrated that the turning point can occur even when W = 0, so this
behaviour is not a surface tension effect. However the current results need to be extended
to axisymmetric jets to fully confirm this.

5. Conclusions and discussion

In this paper we have used a spatio—temporal stability analysis to examine the linear
stability of a steady two—dimensional planar liquid jet which has a shear layer in both
the inner and outer fluid. Using a piecewise linear velocity profile we showed that for two
fluids with a density ratio ¢ = 1/500 (which corresponds approximately to cold Diesel
fuel injecting into compressed air at 5 atmospheres) the important characteristic of the
velocity profile was the size of the shear layer in the denser fluid, as this had the largest
effect on the growth rate of disturbances. The width of the shear layer in the less dense
fluid on the other hand made no significant contribution at this value of q. However as
the density ratio of the two fluids was increased the width of the second shear layer
contributed more significantly to the stability properties of the jet, and consequently
the break—up length properties. Surface tension was found to stabilize the convective
stability properties of the jet by reducing the maximum growth rate value for a given
velocity profile.

We investigated the effect of thickening the liquid shear layer on the absolute instability
of the jet, and found that the finite shear layer produces an absolute instability in jets with
smaller values of the density parameter than was found in the work of Juniper (2006) who
considered only infinitely thin shear layers. Juniper (2006) found that absolute instability
occurs for ¢ 2 1.25, while we have shown that an absolute instability occurs for at least
q > 0.5. Therefore, the structure of the shear layer is important in these type of problems.
The work in the present paper also found that increasing the fluid velocity at the fluid
interface within the shear layer of the jet can destabilize the absolute instability but
ultimately the flow is convectively unstable for the values of 3 observed in our CFD
calculations (where § is the ratio of the fluid velocity at the interface to the maximum
velocity). In the case of absolute instabilities, surface tension was found to act as a
destabilizing effect in agreement with the work of Lin & Lian (1989).

Using the spatio-temporal analysis we have been able to demonstrate that the break—
up length of a jet reduces as the shear layer in the jet thins, while the break—up length
increases as the magnitude of the fluid velocity at the fluid interface increases. By com-
bining these two effects into a profile which describes more accurately what occurs in
a real jet, we have been able to produce qualitative agreement with the experiments of
Hiroyasu et al. (1982).

We note that in the axisymmetric jet case, surface tension has a destabilizing role at
small jet velocities because it can trigger the pinch off of drops of radius comparable
to the radius of the jet, so this may also act to reduce break—up lengths at small jet
velocities, but this may not be an important mechanism at parameters relevant to fuel
injection. When extending this work to axisymmetric jets we also have to be aware that
the wave with zero azimuthal wavenumber behaves like the varicose mode of the planar
jet case and is destabilized by surface tension, so some differences in the the results may
be observed (Juniper 2008). This however is beyond the scope of the present paper.

The authors would like to thank Cyril Crua for supplying the experimental data for the
CFD simulations. This work is supported by the EPSRC under grants EP/F069855/1,



24 M. R. Turner, J. J. Healey, S. S. Sazhin and R. Piazzesi

EP/G000034/1 and EP/F069855/1. We would also like to thank the anonymous referees
whose comments led to an improved version of this paper.

Appendix A. The dispersion relation

The dispersion relation in §2 has the form
64w4 + 63w3 + 62w2 +éiw+é=0
where

€4 = —cs,
= BaVes — ca,
= paVey —cp — T3(TE = 1)(1 4 Tp)(Ts — 1)Wa?
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for varicose modes and
€4 = —c3,
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for sinuous modes, where T} = tanh(a(L — §1)), To = tanh(a(L + d2)), T3 = tanh(aL)

and g = pa/p1.
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