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– Abstract –

This paper examines two key features of time-dependent confor-
mal mappings in doubly-connected regions, the evolution of the
conformal modulus Q(t) and the boundary transformation gen-
eralizing the Hilbert transform. It also applies the theory to an
unsteady free surface flow. Focusing on inviscid, incompressible,
irrotational fluid sloshing in a rectangular vessel, it is shown that
the explicit calculation of the conformal modulus is essential to cor-
rectly predict features of the flow. Results are also presented for
fully dynamic simulations which use a time-dependent conformal
mapping and the Garrick generalization of the Hilbert transform
to map the physical domain to a time-dependent rectangle in the
computational domain. The results of this new approach are com-
pared to the complementary numerical scheme of Frandsen (2004)
(J. Comp. Phys. 196, 53-87) and it is shown that correct cal-
culation of the conformal modulus is essential in order to obtain
agreement between the two methods.

1 Introduction
Conformal mapping of a simply connected region, with a suitably smooth boundary, to
a fixed disc, in the steady or time-dependent case, is assured by the Riemann mapping
theorem. The Riemann map becomes unique when three points of the map are fixed. The
interior of the region can be either mapped to the interior of the disc or to the periodic
half space as shown in Figure 1. Since the application of interest in this paper is water
wave problems it is the mapping to the periodic half space that is of interest. One of
the great advantages from a numerical point of view is that the real and imaginary parts
of a complex analytic function restricted to the boundary can be related by the Hilbert
transform, which is amenable to fast numerical evaluation.

When the region is doubly connected, it can be mapped to an annulus or to the infinite
periodic strip, as shown in Figure 2. Two new significant problems arise in the doubly
connected case. The first problem is that doubly-connected regions have a conformal in-
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Figure 1: Conformal map of a simply connected region to the periodic half space.
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Figure 2: Conformal map of a doubly-connected region to the periodic strip.

variant called the conformal modulus. The mapping is conformal only for certain values of
the conformal modulus (e.g. Chapter 17 of Henrici, 1993; Papamichael and Stylianopou-
los, 2010). If the mapping is time-dependent then in general the conformal modulus will
also be time dependent.

The second problem that arises is that the boundary values of the real and imagi-
nary parts of a complex analytic function are no longer simply related by the Hilbert
transform. Indeed, the boundary values on the inner radius are intrinsically connected
to the boundary values on the outer radius. The modified boundary transform was first
worked out by Garrick (1937) for the annulus, and a detailed derivation is given in §17.4
of Henrici (1993) and §1.8 of Papamichael and Stylianopoulos (2010). The modification
of the Hilbert-Garrick transform to the periodic strip is straightforward in principle, but
we will sketch the derivation here as there are some subtle sign changes.

In this paper we study numerically the dynamics of the conformal modulus associated
with a time-dependent conformal mapping, derive the Hilbert-Garrick transform, and
apply them to fluid sloshing of a finite-depth fluid. A typical configuration of interest is
shown in Figure 3. The walls x = 0, x = 1 and y = 0 are fixed and the upper boundary,
defined parametrically by x = X(µ, t) , y = Y (µ, t) , for 0 ≤ µ ≤ 1, is a time-dependent
curve. The image of this domain under a conformal map is the time-dependent region

V (t) :=
{

(µ, ν) ∈ R2 : 0 ≤ µ ≤ 1 and −Q(t) ≤ ν ≤ 0
}
, (1.1)

where Q(t) is the time-dependent conformal modulus.
The motivation is the two-dimensional space and time periodic water wave problem in

a bounded domain, otherwise known as the “sloshing” problem (Faltinsen and Timokha,
2009). The shape of the fluid domain changes with time as the free-surface evolves,
and the position of the free-surface is not known a priori. There is a vast array of
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Figure 3: Schematic of the conformal mapping of the time-dependent region to a time-
dependent rectangle.

numerical methods for time-dependent free-surface problems (cf. Dias and Bridges (2006)).
One approach is to transform the moving domain to a fixed domain, in particular to a
rectangular or annular domain, where analytic and computational approaches can be
more readily applied. Of interest here are mappings that are conformal. Time dependent
conformal mappings have been widely used in the simulation of water waves in the case of
infinite depth where a conformal modulus is not needed (e.g. Byatt-Smith (1971); Whitney
(1971); Ovsjannikov (1971); Grant (1975); Voinov and Voinov (1975); Tanveer (1991);
Dyachenko et al. (1996); Chalikov and Sheinin (1996, 2005); Chalikov (2007); Shamin
(2009); Milewski et al. (2010) and references therein). An additional simplification in
infinite depth is the use of the Hilbert transform to connect the real and imaginary parts
of the mapping at the boundary.

Conformal mapping is most effective for small to moderate amplitude waves, and this
is the regime that we will concentrate on in this paper. For large amplitude waves and
sharp interfaces conformal mapping is less effective (grid points at the surface are badly
distributed near sharp crests) and methods such as the boundary element method are
more effective (e.g. Wilkening and Yu (2012)).

In finite depth, conformal mapping for water wave dynamics brings in two difficulties:
the appearance of the conformal modulus and the need to extend the Hilbert transform to
the Hilbert-Garrick transform. Whereas the Hilbert transform is amenable to fast trans-
form methods (e.g. Gutknecht, 1979), the Hilbert-Garrick transform depends explicitly
on the conformal modulus and so has to be recalculated at every update of the conformal
modulus. Finite depth simulations using conformal mappings have been reported in a
number of papers (e.g. Chalikov and Sheinin (1996); Dyachenko et al. (1999); Choi and
Camassa (1999); Li et al. (2004); Viotti et al. (2013)). However, there does not appear to
be a systematic study of the implications of a time-dependent conformal modulus.

Unfortunately, the conformal modulus gives an additional unknown that has to be
computed. It is a purely geometric requirement of the mapping and does not appear to
have any physical significance. Hence there is a temptation to find a strategy that allows
fixing the conformal modulus at a chosen value. When the flow is steady the mapping is
fixed and the conformal modulus is fixed. In this case, if the specific value of the mean
depth is not important, the value of the conformal modulus can be fixed, and then the
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value of the depth determined as part of the solution. This strategy is used in Vanden-
Broeck and Schwartz (1979) and Constantin et al. (2014). However, this strategy fails in
the time-dependent case since fixing the conformal modulus will lead to a time-dependent
value of the depth!

In this paper time-dependent conformal mappings are considered such that the phys-
ical Cartesian coordinates (x, y) transform as

(µ, ν, t) 7→ (x(µ, ν, t), y(µ, ν, t)) , (1.2)

where (µ, ν) are coordinates for V (t) in (1.1) and t is time. These coordinates satisfy
the Cauchy-Riemann equations

xµ = yν and xν = −yµ, (1.3)

in the mapped domain, and thus both satisfy Laplace’s equation

xµµ + xνν = 0, yµµ + yνν = 0. (1.4)

A kinematic approach to studying the time-dependence of the conformal modulus is
given in §2, where a time-dependent free surface evolution is explicitly specified, as a
model of linear free sloshing in a rectangular vessel. It is shown analytically by applying
small time asymptotics that the conformal modulus is indeed time-dependent, and it is
concluded that if it is not calculated correctly, or chosen to be a fixed constant, then O(1)
errors may occur in the solution.

In §3 the generalization of the Hilbert transform to the Hilbert-Garrick transform is
sketched for the periodic infinite strip. In §4, the time-dependent conformal mapping
of the sloshing problem with an unknown free surface is computed with time-dependent
modulus. This numerical approach is appealing over schemes such as Frandsen (2004)
because the variables are constructed to automatically satisfy Laplace’s equation, and
hence the computation is reduced to the solution of two explicit PDEs for the free-surface
evolution, making the scheme computationally fast. An essential part of this scheme is
the use of the Hilbert-Garrick transform which provides a mapping between the real and
imaginary parts of the boundary values of both the mapping and the complex potential
for the fluid. Numerical results obtained with this approach are compared to those of
Frandsen (2004) and they show excellent agreement – when the conformal modulus is
properly included in the calculation. This time-dependent conformal mapping strategy
is extended to simulate sloshing in a vessel undergoing pendular rotation in Turner et al.
(2015).

2 The time-dependent conformal modulus problem
In this section the time-dependence of the conformal modulus is studied for the case where
the free surface is specified. First general aspects of time-dependent conformal mapping
for domains of the form shown in figure 4 are presented. Then two fundamental issues are
addressed: the short time behaviour of the conformal modulus, and the implications for
error if the conformal modulus is fixed rather than computed. In order to construct the
time-dependent conformal mapping which maps the free-surface problem to a rectangle
with periodic boundary condition, first form the even extension of the physical problem
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Figure 4: Schematic of (a) the physical domain which is mapped into (b) a time-dependent
rectangular domain by the conformal mapping.

from x ∈ [0, 1] to x ∈ [0, 2] . The conformal mapping maps the domain x ∈ [0, 2] ,
y ∈ [0, η(x, t)] to µ ∈ [0, 2] and ν = [−Q(t), 0] where Q(t) is the time dependent
conformal modulus. Although it is not essential, it will be assumed that the free surface
is a graph: y = η(x, t) .

The transformation x(µ, ν, t), y(µ, ν, t) maps the corners of the domain (A,B,C,D)
to (A′, B′, C ′, D′) with

1. x = 0, 1, 2 mapping to µ = 0, 1, 2,

2. y = 0 mapping to ν = −Q(t) ,

3. y = η(x, t) mapping to ν = 0.
In the mapped domain the physical coordinates x and y are harmonic (1.4) and

satisfy the Cauchy-Riemann equations (1.3). When these coordinates are evaluated on
the free-surface, corresponding to ν = 0 in the mapped domain, they give a parametric
form of the free surface

(X(µ, t), Y (µ, t)) = (x(µ, 0, t), y(µ, 0, t)) for µ = [0, 2].

The most general solutions for x(µ, ν, t) and y(µ, ν, t) which satisfy the Cauchy-
Riemann equations and satisfy condition 1 above are

y(µ, ν, t) = B0(t) + ν +
∞∑
n=1

(Bn(t) cosh(nπν) + An(t) sinh(nπν)) cos(nπµ), (2.5)

x(µ, ν, t) = µ+
∞∑
n=1

(An(t) cosh(nπν) +Bn(t) sinh(nπν)) sin(nπµ), (2.6)

where An(t), Bn(t) are arbitrary functions of time. Further simplification is obtained by
using condition 2 that y = 0 at ν = −Q , which leads to the set of equations

B0(t)−Q(t) = 0, and Bn(t) coshnπQ(t)− An(t) sinhnπQ(t) = 0, for n ≥ 1.

Therefore the functions,

y(µ, ν, t) = Q(t) + ν +
∞∑
n=1

An(t)sinh(nπ(ν +Q(t)))
cosh(nπQ(t)) cos(nπµ), (2.7)

x(µ, ν, t) = µ+
∞∑
n=1

An(t)cosh(nπ(ν +Q(t)))
cosh(nπQ(t)) sin(nπµ), (2.8)
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satisfy conditions 1 and 2. The undetermined functions An(t) and Q(t) are found by
satisfying condition 3. Taking the limit ν → 0 in (2.7) and (2.8), the expressions for the
free-surface variables are

X(µ, t) = µ+
∞∑
n=1

An(t) sin(nπµ), Y (µ, t) = Q(t) +
∞∑
n=1

An(t) tanh (nπQ(t)) cos(nπµ).

(2.9)

2.1 Small-time asymptotic behaviour of Q(t)
An elementary example illustrating the time dependence of the conformal modulus is
obtained by taking a free-surface profile of the form

Y =

 1 + t
(
X − 1

2

)
, 0 ≤ X ≤ 1,

1 + t
(

3
2 −X

)
, 1 ≤ X ≤ 2.

(2.10)

At t = 0 the surface is horizontal, but the fluid moves towards x = 1 for t > 0, with
a straight free-surface profile. To keep it realistic, the amount of fluid in the vessel is
conserved for all time. Although this profile is a simplification to a true sloshing profile,
near straight free-surface profiles have been observed in the pendulum vessel simulations
of Turner et al. (2015).

Substituting the surface Fourier series (2.9) into (2.10) shows that the functions An(t)
and Q(t) are required to satisfy

Q(t) +
∞∑
n=1

An(t) tanh(nπQ(t)) cos(nπµ) =

1 + t

(
µ− 1

2 +
∞∑
n=1

An(t) sin(nπµ)
)
, for 0 ≤ µ ≤ 1,

Q(t) +
∞∑
n=1

An(t) tanh(nπQ(t)) cos(nπµ) =

1 + t

(
3
2 − µ−

∞∑
n=1

An(t) sin(nπµ)
)
, for 1 ≤ µ ≤ 2.

Integrating the first expression with respect to µ from 0 to 1 gives

Q(t) = 1 + t
∞∑
n=1

1− (−1)n
nπ

An(t), (2.11)

which is a relation between the conformal modulus and the odd Fourier modes (The same
expression is derived if you integrate from µ = 0 to 2). A second expression linking the
An ’s can be derived by multiplying the free surface condition by cos(nπµ) and integrating
with respect to µ from 0 to 2. This leads to the equation

Fn(t) := An(t) + 2t
tanh(nπQ(t))

1− (−1)n
n2π2 −

∞∑
m=1
m 6=n

m((−1)m+n − 1)
π(m2 − n2) Am(t)

 = 0, (2.12)

for each n , where Q(t) should be replaced by (2.11).
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The An ’s and Q can be computed numerically for an arbitrary value of t by consid-
ering N terms in the expansions in (2.9), and solving (2.12) with Q replaced by (2.11)
via Newton iterations. Finally Q is recovered via (2.11). The conformal modulus for this
numerical approach with N = 500 and t = 1 was checked against the method on page 82
of Papamichael and Stylianopoulos (2010) with l = 1/2 which utilizes elliptic integrals,
and the results were found to agree.

However, as we are interested in the early time evolution of the conformal modulus, we
consider t� 1 and calculate an asymptotic solution for the functions An and substitute
these into (2.11) to give the small time evolution for Q(t) .

Substituting the form of (2.11) into (2.12) and expanding for small t gives

An = −2t
(

1
tanh(nπ) −

nπt

tanh2(nπ)

∞∑
m=1

1− (−1)m
mπ

Am

)

×

1− (−1)n
n2π2 −

∞∑
m=1
m6=n

m((−1)m+n − 1)
π(m2 − n2) Am

+O(t3).

The form of this expansion suggests an expansion for each An(t) of the form

An(t) = An1t+O(t2),

where each Ank ∈ R for all n, k ∈ N/{0} , and therefore at O(t) the leading order term
of An is

An1 = − 2
tanh(nπ)

[
1− (−1)n
n2π2

]
.

On substituting this result into (2.11) we determine the conformal modulus

Q(t) = 1− 2t2
∞∑
n=1

(1− (−1)n)2

n3π3 tanh(nπ) +O(t3). (2.13)

The leading order correction to Q(t) is O(t2) .
Figure 5 plots numerical results with N = 500 and (a) the first order approximation

for Q(t) and (b) the leading asymptotic approximations for A1 to A4 . The results show
that there is excellent agreement between the asymptotic and numerical values of Q(t)
for 0 ≤ t ≤ 0.5.

From the asymptotic form of Q(t) in (2.13) we note that to leading order

dQ

dt
∼ −4t

∞∑
n=1

(1− (−1)n)2

n3π3 tanh(nπ) < 0,

and so Q̇ 6= 0 for all sufficiently small values of t .
With this example we can start to see the implication of fixing Q(t) to be a constant.

When Q(t) is fixed, the Fourier coefficients become constrained via (2.13). In this case,
because we have constructed x and y so that they satisfy Laplace’s equation, the values of
the An ’s cannot be found to satisfy both (2.11) and (2.12) unless Q is correctly computed.
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Figure 5: Plot of (a) Q(t) and (b) An(t) for n = 1, 2, 3 and 4. In both panels the
numerical results are given by the solid lines, and the leading order small t asymptotic
results for An and first order correction for Q are the dashed lines. In panel (b) note
that the asymptotic results for A2 = A4 = 0.

2.2 Induced error due to fixing the modulus
In this subsection additional implications of fixing Q(t) = constant are considered with
the more general free surface profile,

Y = δ + ε cos t cos(πX), 0 ≤ X ≤ 1 . (2.14)

This free surface is the profile associated with the linear solution for the fundamental
anti-symmetric free sloshing mode with unit frequency in a fluid of average depth δ . The
parameter ε is a measure of the height of the disturbance to the still fluid depth. At t = 0
the fluid is released from rest and the fluid sloshes back and forth along the vessel.

We can again use the forms of the conformal mapping on ν = 0 given by (2.9), and
we need to calculate values of An and Q such that (2.14) is satisfied. This is achieved
via a similar approach to that from §2.1. Firstly (2.9) is substituted into (2.14) giving

Q(t) +
∞∑
n=1

An(t) tanh(nπQ(t)) cos(nπµ) = δ + ε cos t cos
[
π

(
µ+

∞∑
n=1

An(t) sin(nπµ)
)]

,

(2.15)
but unlike for the straight free-surface in §2.1 it is not possible to derive a simple system
of equations for Q(t) and An(t) by integrating (2.15). Instead we solve for these functions
by choosing (2.15) to be correct at the N + 1 points, µ = µk , where

µk = k

N
, for k = 0, ..., N.

Discretizing in this way (2.15) leads to the N + 1 nonlinear algebraic equations

Fk = F (µk, t) := Q(t) +
N∑
n=1

An(t) tanh(nπQ(t)) cos(nπµk)

−δ − ε cos t cos
[
π

(
µ+

N∑
n=1

An(t) sin(nπµk)
)]

= 0,
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which can be solved via Newton iterations. Before presenting results for general values
of ε , we first consider small amplitude disturbances, ε � 1 and look at the asymptotic
structure of the solution, as this will give us an insight into the properties of Q(t) .

For small amplitude disturbances we consider the free-surface expression (2.15) with
ε� 1. The form of (2.15) suggests expansions of the form

Q(t) = Q0(t) + εQ1(t) + ε2Q2(t) + ε3Q3(t) +O(ε4),
An(t) = εÃn1(t) + ε2Ãn2(t) + ε3Ãn3(t) +O(ε4).

Substituting these into (2.15) and equating powers of ε we find that

Q0(t) = δ , Q1(t) = 0 , Q2(t) = − π cos2 t

2 tanh(πδ) , (2.16)

and so
Q(t) = δ − ε2π

4 tanh(πδ) (1 + cos 2t) +O(ε4) . (2.17)

Expressions for the coefficients Aij(t) can also be computed to leading order, but are not
needed for the discussion here (see below in Figure 7 for plots of A1(t) to leading order).
The principal observation is that Q(t) oscillates about some mean value with twice the
frequency of the sloshing fluid, and because the correction is O(ε2) , fixing Q = constant
in a dynamic calculation means that the errors in the solution will grow more rapidly for
larger disturbance amplitudes. The above result suggests that as the simulations become
more nonlinear, fixing the conformal modulus may increase the proliferation of numerical
errors. This observation is confirmed in the calculations of the sloshing problem for the
full irrotational Euler equations in the next section.

t

Q-

ε2
δ

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  5  10  15  20  25  30

Figure 6: Plot of (Q(t) − δ)/ε2 for ε = 0.01 (solid line), ε = 0.1 (long dashed line),
ε = 0.3 (short dashed line) and ε = 0.5 (dotted line). The circles indicate the function
Q2(t) given by (2.16).

Figure 6 shows that the O(ε2) correction to Q(t) , with δ = 1, is in good agreement
with the numerical result calculated with N = 500 up to ε = 0.1, while figure 7 shows
that at ε = 0.2 the first two terms in the expansion for A1 gives good agreement with
the numerical result.
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Figure 7: Plot of A1 for ε = 0.2 where the solid line gives the numerical result, the long
dashed line is the asymptotic result up to O(ε) (i.e. A1 = εA11 ) and the short dashed
line is the asymptotic result up to O(ε3) (i.e. A1 = εA11 + ε3A13 ).

3 Conjugate harmonic functions in finite depth
One of the principal advantages of conformal mappings is that the real and imaginary
parts of boundary values of holomorphic functions like x+ iy and φ+ iψ can be related
by Hilbert transforms or their generalization.

In the infinite depth case, the conjugate boundary values are related by the Hilbert
transform. If u(µ, ν)+iv(µ, ν) is an analytic function in the periodic half space, 0 ≤ µ < 2
and ν < 0, then the boundary values at ν = 0, denoted by U(µ) + iV (µ) are related by
the Hilbert transform

V = V −K(U) and U = U + K(V ) ,

where the overline denotes average over 0 ≤ µ ≤ 2. The Hilbert transform for functions
on 0 ≤ µ ≤ 2 is defined by

K(U)(µ) := 1
2

∫ 2

0
U(s) cot

(
π

2 (µ− s)
)

ds , (3.18)

where the notation used is consistent with that in Papamichael and Stylianopoulos (2010).
By combining real and imaginary parts, these two formulas condense into

(I + iK)(U + iV ) = U + iV . (3.19)

The Hilbert transform has been widely used to develop fast transforms of boundary values
for simulations of water waves in infinite depth (e.g. Whitney (1971); Dyachenko et al.
(1996); Chalikov and Sheinin (1996, 2005); Shamin (2009); Milewski et al. (2010)).

However, when the depth is finite the boundary values at the free surface are coupled to
the boundary values at the bottom. This problem of connecting the conjugate boundary
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values in this case was first solved by Garrick (1937) and a detailed derivation is given
in §1.8 of Papamichael and Stylianopoulos (2010) (see also §17.4 of Henrici (1993) and
the paper of Gaier and Papamichael (1987)). The theory there is for an annulus, but it
carries over with a few modifications to the periodic strip. A sketch of the theory is given
here.

Let u(µ, ν) + iv(µ, ν) be an analytic function in the periodic domain

0 ≤ µ < 2 and −Q < ν < 0 ,

and introduce boundary values

U0(µ) + iV0(µ) := u(µ, 0) + iv(µ, 0) and Ub(µ) + iVb(µ) := u(µ,−Q) + iv(µ,−Q) ,

where U0(µ) and Ub(µ) are considered given.
The strategy for determining the conjugate functions starts with a solution of the

Dirichlet problem for u(µ, ν) with periodicity in µ and the above prescribed boundary
values at ν = 0 and ν = −Q . This solution gives u(µ, ν) in terms of the Fourier
coefficients of U0 and Ub . The conjugate function is then obtained using the Cauchy-
Riemann equations, up to an additive constant. However, in a doubly connected region,
a conjugate function exists only if a solvability condition is satisfied (e.g. Theorem 15.1d
in §15.1 of Henrici (1993)). This solvability condition states that a conjugate harmonic
function exists if the conjugate period

η =
∫

Γ
(−uν dµ+ uµ dν) = 0,

where Γ is a contour which runs from some ν = ν0 at µ = 0 to ν = ν0 at µ = 2 in the
conformal mapping domain. This essentially means that, if the conjugate function exists,
then it is uniquely determined up to an additive constant, which in this case amounts to

U0 = U b and V 0 = V b .

(Note, the conjugate functions x(µ, ν, t) and y(µ, ν, t) in (2.7) and (2.8) do not satisfy
this condition, but the conjugate functions x(µ, ν, t) − µ and y(µ, ν, t) − ν do, with
U0 = U b = 0 and V 0 = V b = Q(t) . This is utilized in (5.48)). With these two conditions,
the conjugate functions u(µ, ν) and v(µ, ν) are completely determined and restriction to
the boundaries gives the Hilbert-Garrick transform

V0 = V0 −
(
K + Rq

)
U0 + SqUb ,

Vb = Vb +
(
K + Rq

)
Ub − SqU0 ,

(3.20)

where q = e−πQ , and the new operators are defined by

Rq

(
φ(µ)

)
= 1

2

∫ 2

0
φ(s)ρq(µ− s) ds ,

Sq
(
φ(µ)

)
= 1

2

∫ 2

0
φ(s)σq(µ− s) ds ,

with
ρq(µ) = 4

∞∑
k=1

q2k

1− q2k sin(kπµ) and σq(µ) = −4
∞∑
k=1

qk

1− q2k sin(kπµ) .
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Given a Fourier series representation of a boundary value φ ,

φ(µ) = a0

2 +
∞∑
k=1

(
ak cos(kπµ) + bk sin(kπµ)

)
,

the action of the above operators is

Kφ(µ) =
∞∑
k=1

(
− bk cos(kπµ) + ak sin(kπµ)

)
,

Rqφ(µ) =
∞∑
k=1

(coth(kπQ)− 1)
(
− bk cos(kπµ) + ak sin(kπµ)

)
,

Sqφ(µ) =
∞∑
k=1

(cosech(kπQ))
(
− bk cos(kπµ) + ak sin(kπµ)

)
,

(K + Rq)φ(µ) =
∞∑
k=1

(coth(kπQ))
(
− bk cos(kπµ) + ak sin(kπµ)

)
,

(K + Rq)−1φ(µ) =
∞∑
k=1

(tanh(kπQ))
(
− bk cos(kπµ) + ak sin(kπµ)

)
.

Properties of these operators are summarized in §1.8 of Papamichael and Stylianopoulos
(2010). An important property is that they are all zero when acting on the constant
function.

The above operators satisfy the identities

(K + Rq)Sq = Sq(K + Rq) and (K + Rq) + (K + Rq)−1 = Sq(K + Rq)−1Sq ,

which can be verified by direct calculation. These identities can be used to prove that the
inverse map associated with (3.20) is

U0 = U0 +
(
K + Rq

)
V0 − SqVb ,

Ub = Ub + SqV0 −
(
K + Rq

)
Vb .

(3.21)

The generalization of the formula (3.19) isI + i
(
K + Rq

)
−iSq

+iSq I− i
(
K + Rq

)(U0 + iV0
Ub + iVb

)
=
(
U0 + iV 0
U b + iV b

)
.

In general the boundary values at ν = 0 and ν = −Q are intrinsically linked.
The result (3.21) can be used to solve the following problem. Suppose the analytic

function z(µ, ν) = u(µ, ν)+iv(µ, ν) is given in the interior with its imaginary part specified
on the boundary

Im(z)
∣∣∣∣∣
ν=0

= V0(µ) and Im(z)
∣∣∣∣∣
ν=−Q

= Vb(µ) , (3.22)

with V0 and Vb given. Note, we can neglect the µ -independent contribution from V 0 = V b

in (3.22) as they are not required in (3.21). Then the real part on each of the boundaries
is given by the formula (3.21). Similarly, if the real part is specified on the boundary then
the imaginary part is given by the formula (3.20).
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3.1 The flat bottom case
In general, the real and imaginary parts on the two boundaries are essentially linked.
However, in special cases the formulas simplify. For the application in this paper, where
the bottom is flat, the imaginary part of the bottom boundary function is constant or
zero. Hence the second formula in (3.20) simplifies to

Ub =
(
Kq + Rq

)−1
SqU0 .

Substitution into the first formula of (3.20) then gives

V0 = V0 −TqU0 ,

with
Tq =

(
Kq + Rq

)
− Sq

(
Kq + Rq

)−1
Sq = (K + Rq)−1 . (3.23)

Hence the action of Tq on the Fourier series φ is

Tqφ =
∞∑
k=1

tanh(nπQ)
(
− bk cos(kπµ) + ak sin(kπµ)

)
. (3.24)

The formula (3.24) and its inverse are the key formulas needed for the numerics in the
flat bottom case. The reduced operator Tq agrees with the operator used in Dyachenko
et al. (1999); Choi and Camassa (1999); Li et al. (2004); Shamin (2009). However, for
any more general bottom boundary variation, the full Hilbert-Garrick mappings (3.20)
and (3.21) needs to be used.

4 Dynamic sloshing and conformal mapping
Consider dynamic free sloshing in a rectangular vessel for an inviscid, incompressible,
irrotational fluid, governed by the Euler equations in the velocity potential formulation.
The governing equations for the fluid motion in the interior of the vessel in figure 4(a)
can be given in terms of a velocity potential φ and the parametric representation of the
free surface X(µ, t) + iY (µ, t) . The velocity potential is harmonic

φxx + φyy = 0 in 0 ≤ x ≤ 2, y ∈ D(t), (4.25)

where the fluid domain D(t) is bounded by x = 0, x = 1, y = 0 and above by the
unknown surface represented by X(µ, t) + iY (µ, t) . The free surface boundary conditions
are the dynamic condition

φt + 1
2
(
φ2
x + φ2

y

)
+ g(Y − δ) = Be(t), on x = X, y = Y, (4.26)

where Be(t) is the Bernoulli function, δ is the average fluid depth and we have made the
even extension of φ(x, y, t) to x ∈ [1, 2] as in §2. The kinematic condition is

∇φ · n = Xt · n, on x = X, y = Y, (4.27)

where X = (X, Y ) and n is the unit normal at the free surface directed out of the fluid

n = 1√
J

(
−Yµ
Xµ

)
, J = X2

µ + Y 2
µ . (4.28)
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The parametric representation is assumed to be regular: J 6= 0. The wall boundary
conditions are

φy = 0, on y = 0, (4.29)
φx = 0, on x = 0, 1, 2 . (4.30)

The moving domain is transformed to a time-dependent rectangle using a conformal
mapping, as in figure 4(b). The mapping x(µ, ν, t) + iy(µ, ν, t) and the complex potential
φ(µ, ν, t) + iψ(µ, ν, t) are assumed to be time-dependent holomorphic functions.

We represent the surface variables for φ and ψ with upper case letters

Φ(µ, t) + iΨ(µ, t) := φ(µ, 0, t) + iψ(µ, 0, t) .

Noting that
√
J∇φ · n = −Ψµ in transformed coordinates (cf. equation (A-7) of Bridges

and Donaldson (2011)), the kinematic boundary condition can be expressed in parametric
form as

XµYt − YµXt = −Ψµ , at ν = 0 . (4.31)
In the transformed domain, the dynamic boundary condition for 0 ≤ µ ≤ 2 is given by

JΦt − (YµYt +XµXt)Φµ + 1
2
(
Φ2
µ −Ψ2

µ

)
+ gJ(Y − δ) = 0 , at ν = 0 , (4.32)

after absorbing the Bernoulli function into the potential (cf. equation (3.8) of Bridges and
Donaldson (2011) using (4.31) above).

The bottom boundary condition in transformed coordinates is
1
J

(−xνφµ + xµφν) = 0 , on ν = −Q(t) ,

which has the equivalent representation

ψµ = 0 , on ν = −Q(t) . (4.33)

The free-surface boundary conditions (4.31) and (4.32) are implicit equations for the
dependent variables X, Y, Φ and Ψ, which makes them unsuitable for standard numerical
methods. However, it is possible to reformulate these two equations into three explicit
partial differential equations.

4.1 Explicit form of the governing equations
For each fixed t , (X(µ, t), Y (µ, t)) is a regular parameterised curve in the plane. Hence
any vector in R2 can be uniquely expressed in terms of the vector (Xµ, Yµ) and its
orthogonal vector (−Yµ, Xµ) . Express Xt in terms of these vectors(

Xt

Yt

)
= α(µ, t)

J

(
Xµ

Yµ

)
+ β(µ, t)

J

(
−Yµ
Xµ

)
,

where α(µ, t) and β(µ, t) are functions to be determined. Substitution of this expression
into (4.31) shows that β = −Ψµ but α , representing the tangential fluid velocity, can be
arbitrary. Hence a natural explicit form for the kinematic condition is

Xt = Ψµ

J
Yµ + α

J
Xµ

Yt = −Ψµ

J
Xµ + α

J
Yµ .

(4.34)
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Taking the dot product of (4.34) with (Xµ, Yµ) gives

α = XµXt + YµYt ,

which can be substituted into (4.32) to get

JΦt − αΦµ + 1
2
(
Φ2
µ −Ψ2

µ

)
+ gJ(Y − δ) = 0 . (4.35)

Dividing by J reduces this equation to an explicit equation for Φt . Summarizing, the
three explicit equations are

Xt = Ψµ

J
Yµ + α

J
Xµ , (4.36)

Yt = −Ψµ

J
Xµ + α

J
Yµ , (4.37)

Φt = −g(Y − δ)− 1
2JΦ2

µ + 1
2JΨ2

µ + α

J
Φµ . (4.38)

There are several interesting features to this system. First it is Hamiltonian with the
total energy as Hamiltonian function. The Hamiltonian structure of equations like (4.36)-
(4.38) is proved in Benjamin and Bridges (1997) for a more general class of two layer
flows with differing density. However, the symplectic form is non-constant and nonlinear
and so there is no obvious way to devise an effective symplectic numerical integrator (the
theory of symplectic integrators relies predominantly on a constant symplectic structure
(Leimkuhler and Reich, 2004)). The second feature of interest is that the α terms are
proportional to the tangent vector. Define Z = (X, Y,Φ), then the explicit equations
(4.36)-(4.38) can be written in the compact form

Zt = α

J
Zµ + F (Z) , F (Z) = 1

J

 ΨµYµ
−ΨµXµ

−gJ(Y − δ)− 1
2Φ2

µ + 1
2Ψ2

µ

 .
The third issue of interest with the form (4.36)-(4.38) is that α provides an automatic
time-dependent reparameterization. Introduce an explicit reparameterization

µ = γ(s, t) , with 0 ≤ s ≤ 2 ,

then
∂

∂t

X(γ(s, t), t)
Y (γ(s, t), t)
Φ(γ(s, t), t)

 =

Xt

Yt
Φt

+ γt

Xµ

Yµ
Φµ

 .

Hence taking γt = α/J eliminates the α term through reparameterization. This implicit
reparameterization can be a help or a hindrance. For example this type of reparameteri-
zation has been used to enhance the numerical simulation of time-dependent free surfaces
in Hou et al. (1994) and it has been used to enhance the rigorous analysis of the initial
value problem for vortex sheets (Ambrose and Masmoudi, 2005).
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4.2 Using α to enforce analyticity
There is an additional subtlety that arises when Z(µ, t) = X(µ, t) + iY (µ, t) is required
to be the boundary value of an analytic function. Let z(ζ, t) , ζ = µ+ iν , be the mapping
function in the interior. Then the boundary values of zt/zζ are

Im
(
zt
zµ

) ∣∣∣∣∣
ν=0

= − 1
J

Ψµ and Im
(
zt
zµ

) ∣∣∣∣∣
ν=−Q

= 0 .

(Note, the right-hand side of the second condition actually yields dQ
dt

, but this µ-independent
term term can be neglected as it amounts to the neglected V b term, as discussed after
(3.22).) Hence the real part of zt/zµ on each boundary is determined by the Hilbert-
Garrick transformation (3.21). Writing (4.34) in complex notation,

Zt = (α̂ + iβ̂)Zµ , β̂ = −Ψµ/J , α̂ = α/J ,

and using (3.21), gives
α̂ = α +

(
K + Rq

)
β̂ ,

Ub = Ub + Sqβ̂ ,
(4.39)

where we write α to mean the mean value of α̂ . Using the definition of Tq in (3.23) the
first equation is

α̂ = α + T−1
q β̂ ,

and so the evolution equation for Z is

Zt =
(
T−1
q (β̂) + iβ̂

)
Zµ + α(t)Zµ . (4.40)

The second equation in (4.39) is not needed, but provides an interesting identity between
the real part at the bottom and the imaginary part at the top.

The function α is not in general arbitrary, it is related to the time-dependent mean
part of X(µ, t) , as shown by Choi and Camassa (1999). This time-dependent part of
X(µ, t) would consist of a function x0(t) added to (2.8). Choi and Camassa (1999) then
note that x0 and α , in our notation, are related to one another by taking the mean of
the first equation of (4.40), and that either of these functions can be considered arbitrary,
hence implying the other. Taking the mean of the first equation of (4.40) leads to

ẋ0(t) = α(t) , (4.41)

for a flat bottomed vessel, see Appendix A for workings. Thus, as we have set x0 = 0 in
(2.8) this implies α = 0. Therefore, the forms of (4.36)-(4.38) we solve are

Xt = Ψµ

J
Yµ −T−1

q

(
Ψµ

J

)
Xµ , (4.42)

Yt = −Ψµ

J
Xµ −T−1

q

(
Ψµ

J

)
Yµ , (4.43)

Φt = −g(Y − δ)− 1
2JΦ2

µ + 1
2JΨ2

µ −T−1
q

(
Ψµ

J

)
Φµ . (4.44)
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4.3 Fourier representation of φ+ iψ
In §2 we showed that on the free-surface the two conjugate functions X(µ, t) and Y (µ, t)
are related via (2.9). Below we derive a similar relation connecting Φ(µ, t) and Ψ(µ, t) .
The general forms of φ and ψ which satisfy the side wall boundary conditions (4.30) and
the Cauchy-Riemann equations are

φ(µ, ν, t) = β0(t) + β01(t)ν +
∞∑
n=1

(βn(t) cosh(nπν) + γn(t) sinh(nπν)) cos(nπµ),

ψ(µ, ν, t) = γ0(t)− β01(t)µ−
∞∑
n=1

(γn(t) cosh(nπν) + βn(t) sinh(nπν)) sin(nπµ),

where βi(t), γi(t), i ∈ N0 and β01(t) are functions of time to be determined. Applying
the bottom boundary condition (4.33) gives

ψµ |ν=−Q(t) = −β01(t) +
∞∑
n=1

nπ (βn(t) sinh(nπQ(t))− γn(t) cosh(nπQ(t))) cos(nπµ) = 0,

which to be true for all n leads to

β01(t) = 0 and γn(t) = βn(t) tanh(nπQ(t)). (4.45)

Therefore, both φ and ψ can be written as

φ(µ, ν, t) = β0(t) +
∞∑
n=1

βn(t)cosh(nπ(ν +Q(t)))
cosh(nπQ(t)) cos(nπµ),

ψ(µ, ν, t) = γ0(t)−
∞∑
n=1

βn(t)sinh(nπ(ν +Q(t)))
cosh(nπQ(t)) sin(nπµ),

which on the free-surface are given by

Φ(µ, t) = β0(t)+
∞∑
n=1

βn(t) cos(nπµ) and Ψ(µ, t) = γ0(t)−
∞∑
n=1

βn(t) tanh(nπQ(t)) sin(nπµ).

(4.46)
Note that in (4.42)-(4.44) ψ only appears as Ψµ , so without loss of generality we can set
the function γ0(t) to zero.

5 Numerical scheme
There are several steps in the construction of an algorithm to integrate the initial-value
problem (4.42)-(4.44). Collocation is used to discretize the interval µ ∈ [0, 2] using the
2N points

µk = (k − 1) L
N

k = 1, ..., 2N.

By discretizing using 2N collocation points N terms are retained in each of the infinite
summations in (2.9) and (4.46). The first derivative terms for the variables in (4.42)-
(4.44) are evaluated using second-order, central finite differences. The nonlinearities are
treated using pseudo-spectral discretization. The free surface is updated by integrating
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(4.43) and (4.44) using a fourth order Runge-Kutta scheme with a time step ∆t , with
specified initial conditions

X(µ, 0) = X0(µ), Y (µ, 0) = Y0(µ), Φ(µ, 0) = Φ0(µ), Ψ(µ, 0) = Ψ0(µ).

The initial values of X0(µ) and Y0(µ) at the collocation points along with the initial
value of Q come from solving the expression

Y = η(x, 0) = H(X), on ν = 0, (5.47)

where H(x) is a given free surface elevation, via the numerical scheme described in §4.
We take advantage of the fact that X(µ, t) and Y (µ, t) are conjugate functions and

evolve only the Yt and Φt equations in (4.43) and (4.44) and then X(µ, t) is determined
by

X = µ+ T−1
q (Y ) . (5.48)

Similarly Ψ does not need to be computed and is determined by

Ψ = Tq(Φ) , (5.49)

where Ψ is set to zero via the note at the end of §4.3.

5.1 Time integration
Time integration of (4.43) and (4.44) from t = tm to t = tm+1 proceeds as follows for
each time step. Firstly the function T−1

q (Ψµ/J) is calculated at the previous time-step,
t = tm . Then equations (4.43) and (4.44) are integrated via the Runge-Kutta method to
the next time step t = tm+1 . At each internal Runge-Kutta step Y and Φ are calculated
via (4.43) and (4.44) and an initial form for X = µ + T−1

q (Y ) and Ψ = Tq (Φ) are
determined using (2.9) and (4.46) with an initial value of Q given by Q at the previous
internal Runge-Kutta step. One could determine X directly by integrating (4.42), but the
numerical scheme is sensitive to numerical errors which occur via this approach. For small
∆t both approaches are equivalent, but for moderate values of ∆t we find integrating
(4.43) and (4.44) and then finding X via X = µ + T−1

q (Y ) to be more stable, without
loss of accuracy.

After updating all four free-surface variables at each internal Runge-Kutta step, we
finally update the conformal modulus Q(t) . This needs to be done iteratively as the
procedure to determine the forms of X(µ, t) and Ψ(µ, t) via Tq (·) depends upon Q(t) .
The conformal modulus Q(t) is updated via

Q(n)(t) = B
(n)
0 (t), (5.50)

where B0(t) is the non-periodic coefficient of the Fourier transform of Y (µ, t) (see (2.5))
and (n) is the number of iterations. The reason iterations are required is because the
correct function X(µ, t) needs to be determined (i.e. the correct value of Q(t)) such that
mass conservation in the vessel is achieved. Once Q(n)(t) is updated, X(µ, t) and Ψ(µ, t)
are updated and this process continues until the relative error in Q(n)(t) is less than some
threshold value, which we take to be 10−10 in §6. Once Q(t) is correctly determined at
this internal Runge-Kutta step then the process repeats at the next step. On completion
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of the composite step of the Runge-Kutta algorithm, Q(tm+1) is found via (5.50), however
this final step is not iterative. In order to obtain Q(n)(t) to within a relative error of 10−10

at each Runge-Kutta step, takes between 3 to 6 iterations on average.
The results in §6 are presented with N = 400 and ∆t = 1×10−4 . The nonlinear terms

are de-aliased, and we apply a filter to X, Y, Φ and Ψ after each complete time step
to suppress growing higher order Fourier modes not removed by the de-aliasing. These
additional higher order modes occur due to the highly nonlinear form of (4.43) and (4.44).
The reason we are not able to fully de-alias the nonlinear terms, is because the equations
contain multiplications by the inverse of a finite Fourier expansion, which itself has an
infinite Fourier expansion, and so de-aliasing cannot occur completely. However, testing
the numerical scheme for various values of N and different de-aliasing values we found
that de-aliasing each quadratic nonlinearity using the 2N/3 approach, and applying the
additional filtering, to be sufficient to produce converged results.

All results are found to be independent of larger N and smaller ∆t . This can be seen
in figure 8 which shows values of

I(∆t, N) =
∫ 45

0
Y (t) dt,

for the nonlinear result presented in figure 10(a), where Y (t) = ε−1(Y (0, t) − δ) . These

∆ t

I

 3.8895

 3.89

 3.8905

 3.891

 3.8915

 3.892

 0.0001  0.001

Figure 8: Plot of I(∆t, N) for the nonlinear result in figure 10(a) δ = 0.5 and ε = 0.1.
The symbols represent +: N = 200, × : N = 300, � : N = 400, � : N = 500.

results show that as ∆t is reduced and N is increased, the results converge and the
resulting free-surface plots for N = 300, 400 and 500 are indistinguishable to graphical
accuracy (not shown) for 5 × 10−5 ≤ ∆t ≤ 10−4 . The slight drop in the value of I for
small ∆t values is due to the filtering applied in the numerical scheme to de-alias the
nonlinear terms. This drop is tolerable for the results presented in this paper, and as
stated above, the results are indistinguishable to graphical accuracy.
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6 Numerical results
Here we present linear and nonlinear results from the numerical scheme and compare the
linear result with the asymptotics of §2.2 and the nonlinear results with the numerical
simulations of Frandsen (2004).

Frandsen’s numerical scheme uses a transformation to map the physical domain to a
rectangle for computational ease. The solution for φ is found in the whole domain via
an iterative technique, not solely along the free-surface as in our approach. This makes
the approach of Frandsen (2004) less appealing due to its higher computational cost,
but it may be effective in 3D where conformal mapping is no longer viable. As Laplace’s
equation is solved in the whole domain the resolution of Frandsen’s scheme (MM×NN =
streamwise points × normal points) cannot be increased to the same resolution as our
code without a significant increase in computational time. Hence when using the results
of these simulations we shall consider the resolutions 40 × 80 and 80 × 80, both with a
time step of 10−3 , to show that the results have the same qualitative trend for different
resolutions. The numerical approach of Frandsen is clearly presented in Frandsen (2004)
and the reader is directed there for more information. In Frandsen (2004), the results of
the scheme are compared with third-order asymptotic expansions (in the initial amplitude
value) in order to justify the accuracy of the simulations. Thus we have high confidence
in the accuracy of this scheme.

The initial conditions for the simulation are taken to be

η(x, 0) = δ + ε cos(πx), and φ(x, y, 0) = 0,

with δ = 0.5 and ε = 0.1 and 0.01.

(a) t

Y(t)
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Q- δ
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0.0x100
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Figure 9: Plot of (a) Y (t) and (b) Q(t) − δ for ε = 0.01. The circles in (a) denote the
linear solution while in (b) they give the Q2(t) result from §2.2.

In figure 9 we plot the free-surface elevation Y (t) = (Y (0, t)− δ)/ε and Q(t)− δ for
the case when ε = 0.01. The circles denote the asymptotic results of §2.2 up to O(ε3) ,
and are found to be in excellent agreement with the numerics. In this linear result the
deviation of Q(t) from δ is small, so fixing Q(t) = δ would produce identical results to
visual accuracy. However, for larger values of ε this is not the case.

In figure 10(a) we plot Y (t) for ε = 0.1 for the case when Q is time dependent and
the case when we fix Q = 0.4983 which is its initial value. The evolution of Q(t) is given
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in 10(b). It is clear from figure 10(a) that fixing Q rather than allowing it to be time
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Figure 10: Plot of (a) Y (t) and (b) Q(t) − δ for ε = 0.1 and the case when Q is a
function of time (solid line) and Q = Qfix = 0.483 (dashed line).

dependent leads to a different free-surface elevation. This is because the numerical scheme
forces the conjugate functions to satisfy Laplace’s equation, hence if Q is not correct then
an incorrect free-surface is given. For t < 20 the two results are in reasonable agreement,
but for larger times the effect of fixing the conformal modulus becomes clearer and more
pronounced with a slow drift in the phase of Y (t) and differences in the height of the
peaks. However, how can we determine that the result with a time dependent Q is in fact
the correct solution? To answer this question we make a comparison with the independent
numerical scheme of Frandsen (2004) in the next section.

6.1 Comparison with Frandsen (2004)
To compare with Frandsen (2004), we define the error between the two simulations as the
area between the two curves up to t = T , which is given by

E(T ) =
∫ T

0

∣∣∣∣∣Y (0, t)
ε
− ηF (0, t)

ε

∣∣∣∣∣ dt,
where ηF (x, t) is the free-surface elevation given by Frandsen’s numerical scheme. The
motivation behind the simulations in this section are two-fold. Firstly the comparison with
an independent numerical scheme will confirm that a time-dependent conformal modulus
is necessary in the conformal mapping scheme presented, and secondly it will show the
magnitude of the error encountered by fixing Q(t) at the outset of the simulations.
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In figures 11(a) and (b) we plot E(45) for various fixed values of the conformal modulus
Qfix . We see that E(45) varies as Qfix varies, and has a minimum value at Qfix − δ ≈
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Figure 11: Plot of E(45) for various simulations with fixed values of Qfix − δ given by
the circles. The panels (a) and (b) use the resolution 40× 80 in Frandsen’s code while in
(c) and (d) the resolution is 80 × 80. In both cases the dashed line represents the value
of E(45) for the case when Q = Q(t) .

−0.005. However, as can be seen in figure 11(b) this minimum value of E(45) is still
larger than the error found when Q is time dependent, which is given by the horizontal
dashed line. In panels (c) and (d) we plot the same result for the higher resolution run
for Frandsen’s simulation of 80 × 80 to show that the conclusion is independent of the
resolution.

The results in figures 10 and 11 suggest that fixing the conformal modulus in dynamic
simulations can be an acceptable approximation to the true result, but it depends upon
the length of time the simulation is run for, and the level of nonlinearity in the simulation.
However, picking the value of Q to minimise this error is not obvious, see figure 11, as
the obvious choice Qfix = δ does not give the minimum error in this case. In fact,
without computing the result with Q = Q(t) it is impossible to know just how good the
approximation with Q = Qfix is.

22



7 Conclusions
This paper examines the time evolution of the conformal modulus, Q(t) , for both a
kinematic and dynamic unsteady sloshing problem. By considering the small time evolu-
tion of a simplified free-surface between x = 0 and x = 1 modelled as the straight line
y = 1+t(x−1/2), it was shown that as the profile moves away from a horizontal profile at
y = 1, the conformal modulus evolved on an O(t2) timescale. Thus Q̇ 6= 0 for all times,
and therefore it is concluded that performing time-dependent dynamic simulations for
an inviscid, incompressible, irrotational flow with a fixed conformal modulus will either,
lead to results with an incorrect free-surface profile, or lead to a flow which is no longer
incompressible and irrotational.

We also presented results of dynamic free sloshing in a rectangular vessel via a nu-
merical scheme which uses time-dependent conformal mappings, and in particular the
Hilbert-Garrick transformation. The results of these simulations were compared with
simulations using the numerical scheme given in Frandsen (2004), and it was found that
the minimum error between the two methods occurred when Q was time dependent.
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A Calculation of α
In order to derive (4.41) from the first equation of (4.40) we take the mean of this equation
to give

ẋ0 = −β̂Yµ + T−1
q (β̂)Xµ + α,

where we have added x0(t) to (2.8). Taking the Fourier representations of X and β̂ , as
in §2 and §4, we have

X = µ+ x0 +
∞∑
k=1

ak sin(kπµ) ,

β̂ = β +
∞∑
k=1

bk cos(kπµ) ,
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where the coefficients are functions of time. Using the formulas given in §3 we have the
corresponding conjugate functions

Y = Y −Tq(X − µ) = Y −
∞∑
k=1

tanh(kπQ)(−ak cos(kπµ)) ,

T−1
q (β̂) =

∞∑
k=1

coth(kπQ)(bk sin(kπµ)) .

Thus using a symbolic algebra package such as MAPLE, it is now easy to show that

−β̂Yµ + T−1
q (β̂)Xµ = 0 ,

hence (4.41).
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