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Abstract

This paper investigates the dynamic coupling between fluid sloshing and the motion of the vessel
containing the fluid, for the case when the vessel is partitioned using non-porous baffles. The vessel
is modelled using Cooker’s sloshing configuration [M. J. Cooker, Wave Motion 20, 385–395 (1994)].
Cooker’s configuration is extended to include n − 1 non–porous baffles which divide the vessel into
n separate fluid compartments each with a characteristic length scale. The problem is analysed for
arbitrary fill depth in each compartment, and it is found that a multitude of resonance situations
can occur in the system, from 1 : 1 resonances to (n + 1)−fold 1 : 1 : · · · : 1 resonances, as well
as ` : m : · · · : n for natural numbers `,m, n, depending upon the system parameter values. The
conventional wisdom is that the principle role of baffles is to damp the fluid motion. Our results show
that in fact without special consideration, the baffles can lead to enhancement of the fluid motion
through resonance.
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1 Introduction

The sloshing of fluid in a moving container can lead to the destabilization of the vessel. One
of the first strategies for minimizing sloshing was to introduce baffles. The space industry was
an early example where a wide range of baffling was tested (e.g. (1), (2), (3)). Indeed careful
placement of baffles can be highly successful in reducing fluid motion and fluid loading. This
is accomplished first and foremost by simply blocking the fluid motion. A second more subtle
effect of baffles is to change the natural frequency of the fluid (e.g. see §4.7.2 of (4)). Hence the
introduction of baffles can be used to tune the principle natural frequency away from ambient
frequencies.

It is this secondary effect that we investigate in this paper. In addition to looking at the effect
of baffles on natural frequencies, we add in vessel motion. Coupling the fluid motion with the
vessel motion brings in an additional potential source of resonance. The simplest vessel motion
is to attach the vessel at a single point and allow rotary motion; that is, a pendulum model
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for the vessel. Such a model, without baffles, was first considered by Moiseyev & Rumyantsev
(5) (see §5-4 in (5)). However, it would be difficult to construct an experiment with this
configuration. Cooker (6) discovered that if two suspension points were used, a robust and
simple experiment could be constructed. This configuration is one of the simplest experiments
which demonstrates the dynamic coupling between a sloshing fluid and the motion of the vessel
holding the fluid. It is the Cooker configuration that is the model used in this paper for the
vessel motion. However, the principles used (resonance between vessel and fluid, and resonance
between compartments) are general and will be applicable to other configurations.

The first study linking dynamic coupling, baffles and resonance was the experiments of Wei-
dman (7; 8). He extended the shallow water theory of Cooker (6) to a multi-compartment
rectangular vessel and found that the frequency of the lowest frequency solution reduced as
more compartments were filled. Weidman also obtained experimental results for this config-
uration for various cable lengths. In this paper the results of Weidman are extended to the
case of arbitrary depth. The overall aim is to study the resonance structure of the dynamic
coupling between the vessel motion and the fluid motion in a baffled rectangular container,
with arbitrary fill depth in each compartment. In addition to the fundamental interest, un-
derstanding the coupling mechanism in this problem has great practical implications in areas
such as terrestrial fluid transportation, maritime and space transportation, storage tanks under
earthquake excitation and industrial applications.

The experiment devised by Cooker (6) consists of a rectangular vessel containing fluid sus-
pended by two cables which can rotate in a vertical plane. A schematic diagram of the experi-
mental set up is shown in figure 1. The vessel has length L, width W , height d and is partially
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Fig. 1. A schematic illustration of Cooker’s sloshing experiment.

filled with a fluid of mean height H0 < d and density ρ. The suspending cables are of length l
and they make an angle θ with the vertical axis. The vessel is released with initial values of θ
and dθ/dt, and the vessel swings in the vertical plane causing the fluid to slosh back and forth
along the vessel, during which time the base of the vessel remains horizontal.

Cooker (6) obtained good theoretical agreement with his experimental apparatus using a linear
harmonic equation for the vessel motion and a linear shallow water model for the fluid motion.
The theoretical results showed that the presence of the sloshing fluid changed the natural os-
cillation frequency of the vessel motion. This theory was extended to a nonlinear shallow water
model, still with a linear vessel equation, by Alemi Ardakani & Bridges (9), who developed
a numerical scheme for solving the coupled problem which conserved the total energy in the
system, as well as giving the correct energy partition between the fluid and the vessel. In his
analysis, Cooker (6) found a curious resonance where the second mode of the coupled problem
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appeared to resonate with the natural frequency of the vessel. This behaviour could not be
explained, as the resonant solution did not satisfy the dispersion relation. This non–resonant
behaviour was supported by Yu (10) who extended the linear vessel motion problem to include
a fluid of finite depth, but could not find a mechanism for continued energy input to support a
resonant behaviour. This problem was resolved by Alemi Ardakani et al. (11; 12) who carefully
derived the dispersion relation in the finite depth problem and highlighted the internal 1 : 1
resonance where the natural frequency of the dry vessel resonates with one of the fluid modes.
The key feature of the solution is that the dispersion relation is the product of two functions

∆(ω) = P (ω)D(ω), (1.1)

where ω is the frequency of the motion and D(ω) is the dispersion relation in the works of
Cooker (6) or Yu (10). The roots of D(ω) = 0 correspond to modes which couple the anti-
symmetric fluid modes to the vessel motion, while the roots of P (ω) = 0 are associated with the
symmetric fluid modes. Natural frequencies satisfy ∆(ω) = 0, but when both P (ω) = D(ω) = 0
with both P ′(ω) and D′(ω) non-zero, a 1 : 1 resonance occurs (or a 1 : 1 semisimple resonance)
where both modes couple together (13; 14).

The natural frequencies for the dynamic coupling between Cooker’s vessel configuration and an
unbaffled tank were computed in by Alemi Ardakani et al. (11). In this paper, the finite-depth
theory is extended to investigate the coupled sloshing problem when n− 1 non–porous baffles
are inserted into the vessel, creating n separate fluid compartments that can be filled with
fluids of different densities and heights. The consequence of the baffles is to create a system
where D(ω) now couples the anti-symmetric modes of all the compartments, and P (ω) is the
product of contributions from symmetric modes in each compartment. Therefore, this system
can support many different resonant behaviours, from 1 : 1 resonances, 1 : 1 : 1 resonances up
to (n + 1)−fold 1 : 1 : · · · : 1 resonances. This is because now P (ω) = 0 can be accompanied
by P ′(ω) = · · · = P (n−1)(ω) = 0. If this combination occurs when D(ω) = 0 the (n + 1)-fold
1 : 1 : · · · : 1 resonance is observable. The effect of the model parameters on the occurring
resonances as well as the lowest frequency sloshing mode are investigated numerically in this
article.

At this stage it is worth noting that the coupled problem considered here is similar to that of
tuned liquid dampers (TLDs) (15; 16). A TLD consists of a vessel partially filled with fluid,
but it is now constrained to move only in the horizontal plane with a restoring force given by a
mass-spring-damper model. Alemi Ardakani et al. (11) showed that in the linear regime the two
systems are equivalent, but their nonlinear structure is different due to vertical displacements
of the vessel occurring in Cooker’s experiment. Ikeda (17) studied two TLDs in series, the
linear regime of which is equivalent to the linear regime of the two-compartment case in this
study. Ikeda found parameter values in the nonlinear regime where out-of-phase sloshing occurs
between two compartments. Although Ikeda (17) only considered two compartments the TLD
configuration could be extended to n compartments as here, leading to a potential (n + 1)−
fold resonance in TLDs.

The 1 : 1 resonance has been observed in other physical systems, the most well known example
is probably the Faraday experiment in a vessel with a square cross section ((18); see also §9.2.3
of Faltinsen & Timokha (4)). These 1 : 1 resonances are of practical interest as the nonlinear
problem close to a 1 : 1 resonance has multiple bifurcations of periodic solutions which, can
cause chaotic dynamics which are more dramatic than forcing close to simple frequencies (13).
Turner & Bridges (19) identified a heteroclinic orbit close to the 1 : 1 resonance in Cooker’s
experiment, for one particular fluid height H0, which allowed an energy transfer between the
purely symmetric fluid modes and the purely anti-symmetric fluid modes. The energy transfer
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in this case produced erratic behaviour in the system where the oscillating vessel would come
to rest as the vessel energy was transferred to the symmetric fluid modes, before oscillating
again once the energy was transferred back to the anti-symmetric fluid modes and hence the
vessel. A similar behaviour was observed by Struble & Heinbockel (20) in their simplified
version of Cooker’s experiment where the vessel was replaced by an elastic beam. In this case
the internal resonance was a 1 : 2 resonance. Other systems with 1 : 1 resonances include
orthogonal pendulums (21) and the Hénon–Heiler system in celestial mechanics (22). The tri–
fold 1 : 1 : 1 and four–fold 1 : 1 : 1 : 1 resonances are much less common, but examples for both
have been observed in chemistry. The 1 : 1 : 1 resonance was found in vibrations of tetrahedral
molecules (23; 24) and the 1 : 1 : 1 : 1 resonance in hydrogen atoms in crossed electric and
magnetic fields (25). Resonances other than the 1 : 1, 1 : 1 : 1 and 1 : 1 : 1 : 1 resonances have
been seen in experiments and physical problems before, such as the 1 : 1 : 2 internal resonance
in an elastic conical pendulum (26) or a 2 : 1 : 1 : 1 internal resonance in a wake oscillator
model for a spherical pendulum (27) to name a couple. Such resonances are also possible in
our experimental setup. To our knowledge the system analysed in this paper indicates the first
time the (n+ 1)−fold 1 : 1 : · · · : 1 resonance has been seen in a problem with a real practical
application for n ≥ 4.

The current paper is laid out as follows. In section 2 we formulate the nonlinear, finite depth
fluid equations, and the nonlinear vessel equation, while in §3 we consider solutions to the
linear form of this problem. The dispersion relation for the n fluid problem is investigated and
its resonance properties are considered in §4 for the case n = 2 as well as the general case.
This section also contains numerical solutions of the dispersion relation for the lowest frequency
solution, which is likely to be the solution observed in experiments. A brief discussion of the
shallow water limit can be found in §5, and our concluding remarks are given in §6.

2 Governing equations
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Fig. 2. A schematic illustration of Cooker’s sloshing experiment, with the introduction of n−1 baffles
at x = xi for i = 1, ..., n− 1.

A schematic illustration of the sloshing system under investigation in this article is shown
in figure 2. The fixed coordinate system (X, Y ) has its origin at the left most fixed point of
the suspension cable, and the coordinates (x, y) are attached to the moving vessel. These two
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coordinate systems are related by

X = x+ q1, Y = y + q2 − d, (2.1)

where

q1(t) = l sin θ(t), q2(t) = −l cos θ(t), (2.2)

and the motion is constrained such that q21 +q22 = l2. The fluid compartments are labelled from
left to right, and in each of the n compartments, the fluid occupies

0 ≤ y ≤ h(i)(x, t) and xi−1 ≤ x ≤ xi, (2.3)

for i = 1, 2, ..., n, where xj < xk for j < k with x0 = 0 and xn = L. The length of each
compartment is then Li = xi − xi−1. In each compartment we assume the fluid has density
ρi, and is irrotational and incompressible so its motion can be represented by the velocity
potential φ(i)(x, y, t).

Alemi Ardakani et al. (11) derived the nonlinear equations of motion for a single compartment
vessel which can be easily extended to a vessel with n compartments. In each compartment
the velocity potential satisfies

φ(i)xx + φ(i)yy = 0, in 0 ≤ y ≤ h(i)(x, t), xi−1 ≤ x ≤ xi, (2.4)

φ
(i)
t +

1

2

[
(φ(i)x )2 + (φ(i)y )2

]
− q̇1φ(i)x − q̇2φ(i)y + gh(i) = 0, on y = h(i)(x, t), (2.5)

h
(i)
t +

(
φ(i)x − q̇1

)
h(i)x = φ(i)y − q̇2, on y = h(i)(x, t), (2.6)

φ(i)y = q̇2 on y = 0, (2.7)

φ(i)x = q̇1 on x = xi−1, xi, (2.8)

for i = 1, ..., n, where the subscripts denote partial derivatives and dots denote full derivatives
with respect to time. Equations (2.5) and (2.6) are the dynamic and kinematic free surface
conditions on y = h(i)(x, t) and (2.7) and (2.8) are the no penetration conditions on the
bottom and side walls of the vessel. The motion of the fluid is coupled to the vessel motion
via a nonlinear forced pendulum equation

mvθ̈ +
gM

l
sin θ = −1

l

n∑
i=1

(σ̇i cos θ + τ̇i sin θ) , (2.9)

where mv is the vessel mass, M = mv +
∑n
i=1m

(i)
f is the total mass and

σi = W
∫ xi

xi−1

∫ h(i)

0
ρiφ

(i)
x dydx τi = W

∫ xi

xi−1

∫ h(i)

0
ρiφ

(i)
y dydx.

This completes the derivation of the nonlinear equations.
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3 Solution to the linearized problem

Here we linearize (2.4)–(2.9) about the quiescent solution, where θ = 0, h(i) = Hi and φ(i) =
f (i)(t) for all i. Here each Hi is a constant and each f (i)(t) is arbitrary and doesn’t affect the

overall solution. To leading order, the forcing terms are q̇1 ∼ lθ̇ and q̇2 ∼ 0, so the linear form
of the governing nonlinear fluid equations in §2 reduce to

φ(i)
xx + φ(i)

yy = 0, in 0 ≤ y ≤ Hi, xi−1 ≤ x ≤ xi, (3.1)

φ
(i)
t + gh(i) = 0, and h

(i)
t = φ(i)

y =⇒ φ
(i)
tt + gφ(i)

y = 0 on y = Hi, (3.2)

φ(i)
y = 0 on y = 0, (3.3)

φ(i)
x = lθ̇ on x = xi−1, xi, (3.4)

for each fluid compartment and

mvlθ̈ +W
n∑
i=1

∫ xi

xi−1

∫ Hi

0
ρiφ

(i)
xt dydx+ gMθ = 0, (3.5)

for the vessel.

This system of linear equations is solved by searching for time periodic solutions with some
undetermined frequency ω and then expanding the spatial part of φ as an infinite sum of
vertical eigenmodes (28; 10). This approach is similar to that used in Alemi Ardakani et al.
(11) and leads to a dispersion relation of the form

∆n(ω) = Pn(ω)Dn(ω), (3.6)

where

Pn(ω) =
n∏
i=1

sin
[
α
(i)
0

]
, (3.7)

Dn(ω) =

− (Mg −mvlω
2
)

+ 2lω2W
n∑
i=1

ρiHi
(c

(i)
0 )2

k
(i)
0

tan
[
α
(i)
0

]

+2lω2W
n∑
i=1

ρiHi

∞∑
m=1

(c(i)m )2

k
(i)
m

tanh
[
α(i)
m

]) n∏
i=1

cos
[
α
(i)
0

]
. (3.8)

and the form of the c
(i)
j ’s and k

(i)
j ’s are given in (A.9) and (A.8) respectively and α

(i)
j = 1

2
k
(i)
j Li.

A full derivation of the dispersion relation is given in appendix A. A derivation of the dispersion
relation can also be obtained from the general expressions for the added mass coefficients due
to the sloshing fluid ((4), Chapter 5). However, the derivation presented in appendix A is
designed to be accessible to the general reader who might not familiar with the added mass
coefficient approach.

In (3.8) we have divided out the quantity
∏n
i=1 2nk

(i)
0 which appears in (A.15), because it is

non–zero as we assume that ω 6= 0. The dispersion relation, ∆n = 0, is an implicit equation for
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ω which depends on the parameters mv, l, L, W for the vessel and xi, ρi, Hi for i = 1, ..., n
for the fluid compartments. It also has a form similar to that of (1.1) where Pn(ω) consists
of contributions from symmetric sloshing modes and Dn(ω) consists of anti-symmetric modes
coupled to the vessel motion.

3.1 Numerical evaluation of the dispersion relation

The roots of ∆n(ω) = 0 which correspond to Pn(ω) = 0 can be determined analytically, but
the roots which correspond to Dn(ω) = 0 need to be evaluated numerically. We assume that
all the roots of Dn(ω) = 0 are real, and to determine the eigenvalues ω for which Dn(ω) = 0,
we plot Dn as a function of ω and calculate where this function crosses the ω−axis. These
roots can then be refined via Newton’s method if necessary. At each value of ω, the values of
k(i)m need to be determined for m = 0, ..,M for each i = 1, ..., n, where M is a large enough
integer such that Dn(ω) is independent of M . One approach to calculating the k(i)m values is to
directly solve (A.8) using Newton iterations or to solve the transcendental equation associated
with the exact characteristic function (see appendix B of (11)). The main problem with this
approach is the difficulty selecting the initial guess for each k(i)m so that firstly, the iterative
method converges and secondly, no values of k(i)m are missed.

These problems can be overcome by solving the vertical eigenvalue problem given in the ap-
pendix of Alemi Ardakani et al. (11) directly, using Chebyshev spectral collocation methods
(29). In this approach we transform the domain from y ∈ [0, Hi] to ȳ ∈ [−1, 1] and assume
that

ψ(ȳ) =
NC∑
j=0

ajTj(ȳ),

where Tj(ȳ) are Chebyshev polynomials, and ai are undetermined parameters. Evaluating this
expression at the NC − 1 collocation points

ȳj = cos
(
jπ

NC

)
, j = 1, ..., NC − 1,

and at the two boundaries ȳ = −1 and ȳ = 1, gives NC + 1 algebraic equations for the
eigenvalues λ, reducing the equation for the vertical eigenfunctions to the matrix eigenvalue
problem

AΨ = λΨ, Ψ ∈ RNC+1.

The main benefit of this approach is that all the eigenvalues for the chosen approximation,
and hence the values of k(i)m , are calculated in one go, without any being missed. By choosing
NC large enough, the first M modes can be calculated to the desired accuracy.

The results to be presented in §4 use M = 10 evanescent modes, and so using NC = 50 in the
spectral collocation approach above is sufficient to calculate the values of k(i)m to 12 significant
figures. These values were checked against values calculated via an iterative solution of (A.8).
Yu (10) found that 5 evanescent modes for the finite depth unbaffled problem was sufficient to
determine the lowest frequency solutions, however as the number of baffles is increased in the
vessel, the fluid depth in each compartment can become large compared to the compartment
length, so we use 10 modes to be cautious.

An example of ∆1(ω) is plotted in figure 3. Once a root of ∆1(ω) = 0 is found, the values of k(1)m
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Fig. 3. Plot of ∆1(ω) with H1 = 0.05 m, l = 0.5 m and the other parameters given in table 1.

Parameter Value or

value range

mv 0.552 kg

W 0.13 m

L 0.525 m

l 0.185 m–2.15 m

Hi 0.025 m–0.11 m

ρi 1000 kgm−3 (water)

Table 1
Values of the parameters used in Cooker (6), which are a guide to those used in this paper.

at that point can then be used to plot other features of the fluid such as the surface elevation
h(1)(x, t). In the next section we investigate numerical solutions of the dispersion relation (3.6)
and highlight the range of resonances which can occur in the system.

4 Results

In this section we examine the properties of the dispersion relation (3.6), and produce numerical
solutions investigating these properties for various parameters. The experimental configuration
of Cooker (6) is used as a guide for the parameter ranges used in the numerical results pre-
sented in this paper. In this study we assume the vessel dimensions and mass are the same as
those as given in table 1, unless stated otherwise, and the other parameters are chosen to lie
approximately in the ranges given in table 1.

4.1 The case n = 2

Before considering the general case of n − 1 baffles, we first examine the case of n = 2 fluid
compartments (1 baffle), to highlight the different type of solutions which can arise from the
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dispersion relation ∆2(ω) = 0. In this case the dispersion relation reduces to

∆2 = sin
[
α
(1)
0

]
sin

[
α
(2)
0

]
D2(ω) = 0, (4.1)

where

D2(ω) =

− (Mg −mvlω
2
)

+ 2lω2ρ1H1W
(c

(1)
0 )2

k
(1)
0

tan
[
α
(1)
0

]
+ 2lω2ρ2H2W

(c
(2)
0 )2

k
(2)
0

tan
[
α
(2)
0

]

+2lω2ρ1H1W
∞∑
m=1

(c(1)m )2

k
(1)
m

tanh
[
α(1)
m

]
+ 2lω2ρ2H2W

∞∑
m=1

(c(2)m )2

k
(2)
m

tanh
[
α(2)
m

])
cos

[
α
(1)
0

]
cos

[
α
(2)
0

]
.

Each of the three factors in ∆2 from (4.1) can be zero in their own right giving a simple root
of the dispersion relation, and this depends upon the parameters l, H1, H2, ρ1, ρ2, mv, x1,
L and W . Even for the two compartment problem, the number of parameters is already large
but their arbitrary choice allows the roots of ∆2(ω) = 0 to be chosen in different combinations.

4.1.1 The lowest frequency solution

For the 1 baffle problem, let us first consider the 3 situations

sin
[
α
(1)
0

]
= 0, sin

[
α
(2)
0

]
6= 0, D2(ω) 6= 0,

sin
[
α
(1)
0

]
6= 0, sin

[
α
(2)
0

]
= 0, D2(ω) 6= 0,

sin
[
α
(1)
0

]
6= 0, sin

[
α
(2)
0

]
6= 0, D2(ω) = 0.

All three situations lead to simple roots of ∆2(ω) = 0, i.e. cases where ∆2 = 0, but ∆′2 6= 0, and
they correspond to non–resonant solutions to the sloshing problem. Although these solutions
are non–resonant, they are still important, as the lowest frequency solution is likely to be the
most commonly observed solution in an experiment.

The lowest frequency sloshing modes, with finite l, are always solutions of D2(ω) = 0. To prove

this, we assume w. l. o. g. that the product sin
[
α
(1)
0

]
sin

[
α
(2)
0

]
= 0 first when α

(1)
0 = π which

we say occurs at ω = ω1. Noting that D2(0) = −Mg < 0, we see that at ω = ω2 < ω1, where

α
(1)
0 = π/2, then

D2(ω2) = 2lω2
2ρ1H1W

(c
(1)
0 )2

k
(1)
0

> 0, (4.2)

proving that there is always at least one root of D2(ω) between ω = 0 and ω = ω2 and thus

there is always a root for ω < ω1. The roots of the dispersion relation when sin
[
α
(i)
0

]
= 0 are

higher frequency solutions and correspond to symmetric sloshing modes which do not exert a
force on the vessel, hence θ = 0 for these solutions.

The lowest frequency sloshing mode as a function of H1 = H2 with x1 = 1
2
L is plotted in

figure 4. The results show that the frequency of the sloshing mode increases rapidly for small
fluid heights, and then increases slowly for larger fluid heights. This behaviour is in agreement
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Fig. 4. Plot of ω(H1) for the lowest frequency sloshing mode when n = 2, x1 = 1
2L, H1 = H2 and

ρ1 = ρ2 for l = 0.2 m, 0.5 m and 1.0 m labelled 1− 3 respectively.

with the results presented in Yu (10) for the unbaffled problem. The difference here is that
the baffle shortens each fluid compartment, so as H1 increases the solution diverges from the
shallow water approximation faster than for the unbaffled case.
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Fig. 5. Plot of (a) ω(x1) for the lowest frequency sloshing mode when n = 2, H1 = H2 = 0.05 m and
ρ1 = ρ2 for l = 0.2 m, 0.5 m and 1.0 m numbered 1 − 3 respectively. Panel (b) shows ω(x1) for the
l = 0.2 m case in panel (a) (line 1) along with the results when H2 = 0.01 m (line 2) and H2 = 0.1 m
(line 3).

If the height of the fluid in each compartment is now fixed such that H1 = H2 = 0.05 m and
the position of the baffle, x1, is varied, see figure 5(a), we observe that the frequency of the
lowest sloshing mode increases from x1 = 0 (effectively the unbaffled problem) to a maximum
value when the baffle is in the centre of the vessel. The percentage change in the frequency
of the lowest sloshing mode between x1 = 0 and x1 = 1

2
L, increases as the string length is

shortened, with the percentage increases in figure 5(a) being 50%, 26% and 14% for results
1–3 respectively.

Figure 5(b) shows the l = 0.2 m result from figure 5(a) (result 1) along with the corresponding
result when the fluid height in compartment 2 is H2 = 0.01 m (line 2) and H2 = 0.1 m (line 3).
This figure shows that the frequency of the lowest frequency sloshing mode is mainly dependent
on the fluid in the longer of the two compartments, and all three results begin to agree for
x1 & 0.325 where L1 & 3

2
L2. If H1 and H2 are considerably different, then the compartment
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Fig. 6. Plot of the free surface elevation h(x, t) for the lowest frequency sloshing mode when
H1 = 0.05 m, H2 = 0.1 m, ρ1 = ρ2, l = 0.2 m and (a) x1 = 0.1 m and (b) x1 = 0.4 m. The el-
evation snapshots are taken at times t = 0 (solid), t = π/(4ω) (long dashed), t = π/(2ω) (short
dashed), t = 3π/(4ω) (dotted) and t = π/ω (dot dashed). Here θ̂ = π/50.

lengths have to differ greatly for one fluid to dominate the sloshing frequency. However, in most
practical situations, it is likely that the fluid heights in each compartment will be similar and
so the vessel motion will depend upon the motion of both fluids. The free surface elevations for
the case H2 = 0.1 m and x1 = 0.1 m and x1 = 0.4 m are plotted in figure 6. Here we can see that
the motion in the shorter compartment is much smaller than that in the longer compartment
and so confirms that the vessel motion is being driven by the fluid motion in the larger of the
two compartments.

4.1.2 The 1 : 1 and 1 : 1 : 1 resonances

In the unbaffled case, an internal 1 : 1 resonance was found by Alemi Ardakani et al. (11)
when the frequency of one of the symmetric sloshing modes was equal to the frequency of the
anti-symmetric modes and the vessel. These resonances can lead to energy pathways between
modes in the nonlinear problem, and as such are very significant (19). These 1 : 1 resonances
correspond to double roots of the dispersion relation ∆2 = 0, or solutions where ∆2 = ∆′2 = 0
with ∆′′2 6= 0. The 1 : 1 resonances that occur in the two compartment problem are slightly
different from the single compartment case, as there are two different types of 1 : 1 resonance.
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There are 3 different situations where a double zero occurs in the dispersion relation

sin
[
α
(1)
0

]
= 0, sin

[
α
(2)
0

]
= 0, D2(ω) 6= 0,

sin
[
α
(1)
0

]
= 0, sin

[
α
(2)
0

]
6= 0, D2(ω) = 0,

sin
[
α
(1)
0

]
6= 0, sin

[
α
(2)
0

]
= 0, D2(ω) = 0.

The first of these situations is a 1 : 1 resonance between the two fluids, which we call a ‘non–
vessel resonance’, while the other two are resonances coupled to the vessel motion, and we
call these ‘vessel resonances’. The non–vessel resonance is just a free oscillation resonance in a
stationary vessel, because in here the final row of (A.13) becomes(

−
(
Mg −mvlω

2
)

+ 2lω2W
2∑
i=1

ρiHi

∞∑
m=1

(c(i)m )2

k
(i)
m

tanh
[
α(i)
m

])
θ̂ = 0,

which implies that θ̂ = 0 if D2(ω) 6= 0 (The expression in the brackets is D2(ω) with the two
sine terms set to zero). In §4.2 we show that this is always the case, i.e. you cannot have a
resonance between different fluid compartments unless the vessel is either stationary or unless
the vessel is also in resonance with the fluid. The 1 : 1 resonance can never be the lowest
frequency sloshing mode, due to the earlier argument (4.2), but it can occur as the second
lowest frequency solution of the dispersion relation.

Figure 7 plots the value of l(x1) and ω(x1) required to give a 1 : 1 vessel resonance in the two

compartment system with the lowest frequency symmetric sloshing mode (i.e. when α
(1)
0 or

α
(2)
0 = π). When H1 = H2 = 0.05 m (panels (a) and (b)) the string length for a 1 : 1 resonance

is around 1.2 m when compartment 1 is negligible in size (x1 ≈ 0). This is also the lowest
possible resonance frequency, see panel (b). As the baffle position is moved across the vessel,
the 1 : 1 resonance continues as a coupling with the rightmost compartment, but the string
length required for resonance decreases down to zero at x1 ≈ 0.18m. There then exists a region
where no 1 : 1 resonance occurs in the system with the lowest frequency symmetric sloshing
mode, however it is possible that one exists for an integer multiple of π. When the baffle is
placed at x1 ≈ 0.21m the 1 : 1 resonance again emerges for very small values of l, but now
the resonance occurs with the fluid in compartment 1, and the frequency of the sloshing mode
is now the third lowest frequency solution of the dispersion relation. As the baffle is moved
towards the centre of the vessel, there is a region where a 1 : 1 resonance can occur with either
fluid compartment, depending on the length of the string. Long strings give a resonance with
compartment 2 and short strings give a resonance with compartment 1. At x = 1

2
L, the zeros of

the dispersion relation combine giving a triple zero which corresponds to a 1 : 1 : 1 resonance.
This resonance is discussed in more detail later in this section.

The 1 : 1 resonance results for x1 > 1
2
L are the same as those for x1 < 1

2
L, except the

compartments roles in the resonance are reversed due to the symmetry of this case. However,
if H1 6= H2 then the symmetry of the solution is lost, but the overall structure of the 1 : 1
resonance remains, as can be seen in figures 7(c) and 7(d).

The 1 : 1 : 1 resonance in figure 7 occurs when

sin
[
α
(1)
0

]
= sin

[
α
(2)
0

]
= D2(ω) = 0,
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Fig. 7. Plot of (a,c) l(x1) and (b,d) ω(x1) values which give the 1 : 1 resonance for n = 2 with ρ1 = ρ2
and (a,b)– H1 = H2 = 0.05 m and (c,d)– H1 = 0.03 m, H2 = 0.08 m. The labels 1 and 2 signify the
compartment in which the symmetric fluid modes are resonating with the vessel, and the solid lines
are when the 1 : 1 resonance is the second lowest frequency, and the dashed lines are when it is the
third lowest frequency.

and corresponds to a solution of the dispersion relation where θ̂ 6= 0. This resonance also
corresponds to a solution where ∆2 = ∆′2 = ∆′′2 = 0 with ∆′′′2 6= 0. In this case, both fluid
motions and the vessel motion all have the same natural frequency. The 1 : 1 : 1 resonance
occurs at least as the third lowest frequency solution of the dispersion relation. This can be
proved as follows. The 1 : 1 : 1 resonance must occur for the lowest natural frequency value

where α
(1)
0 = α

(2)
0 = π in (4.1). We say this occurs at ω = ω1. At ω = ε � 1, ∆(ε) < 0. At

ω2 < ω1 such that α
(1)
0 = α

(2)
0 = π/2, ∆2(ω2) = 0 as D2(ω2)=0, but

d∆2

dω

∣∣∣∣∣
ω=ω2

= −2lω2WL2 tanh
(
πH1

L1

) ρ1H1(c
(1)
0 )2L2

L2 tanh
(
πH2

L2

)
+ πH2sech2

(
πH2

L2

)
+

ρ2H2(c
(2)
0 )2L1

L1 tanh
(
πH1

L1

)
+ πH1sech2

(
πH1

L1

)
 < 0.

Therefore, between ω = 0 and ω = ω2, ∆2 must have a zero so it can pass through zero again at
ω2 with a negative gradient. This shows that the solution at ω = ω1 is at least the third lowest

frequency solution. We observe however, that the root of ∆2 at ω = ω2 when α
(1)
0 = α

(2)
0 = π/2
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(or odd integer multiples of π/2) simplifies the matrix problem in (A.13) to
0 0 lω2c

(1)
0

0 0 lω2c
(2)
0

−Wρ1c
(1)
0 H1ω2 −Wρ2c

(2)
0 H2ω2 σ(ω2)



β
(1)
0

β
(2)
0

θ̂

 = 0,

which gives θ̂ = 0 and

Wω2

(
ρ1c

(1)
0 H1β

(1)
0 + ρ2c

(2)
0 H2β

(2)
0

)
= 0.

Thus the signs of β
(1)
0 and β

(2)
0 are different and this gives free sloshing in a stationary vessel

with both fluids out of phase with one another. This sloshing would be difficult to initiate in
an experiment with θ 6= 0 initially, unless there exists a heteroclinic orbit between the pure
sloshing modes, as is the case in the unbaffled vessel (19).
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Fig. 8. Plot of (a) l(H1) which gives the 1 : 1 : 1 resonance in the n = 2 system with x1 = 1
2L,

H2 = H1 and ρ1 = ρ2 for the finite depth case (line 1) and the shallow water approximation (line 2).
Panel (b) gives the corresponding frequency ω(H1) at the 1 : 1 : 1 resonance.

Figure 8(a) plots the value of l as a function of H1 = H2 which gives a 1 : 1 : 1 resonance in a
vessel with x1 = 1

2
L. The solid line gives the finite depth result, while the dashed line gives the

shallow water approximation for the resonance (5.3), which is derived in §5. The finite depth
result has a local maximum in l, followed by a decline in l as H1 is increased. This is compared
to the shallow water approximation where l decreases with H1 with no local maximum. Figure
8(b) shows that the frequency of the 1 : 1 : 1 resonance increases as H1 is increased but at
a much slower rate than the shallow water result. This variation in frequency is the same as
was shown between the finite depth and shallow water results for the lowest frequency sloshing
mode (10). If we assume that l ≈ 0.2 m is the minimum string length that can be achieved
with the experimental setup from table 1, then the 1 : 1 : 1 resonance should be observable
for values of H1 = H2 . 0.12 m. The resonance itself will not look unlike the lowest frequency
solutions, as shown for the unbaffled case for Alemi Ardakani & Brigdes (9). However, if a
heteroclinic orbit exists for this system for a particular value of H1 = H2 then the nonlinear
response to the 1 : 1 : 1 resonance should be observable. Note that if the vessel is set up with
the parameters in figure 8 except with a different value of l, then the solution frequency would
change and the solution would again be a non-resonant lowest frequency solution of §4.1.1 if
θ̂ 6= 0 or a non-vessel resonance if θ = 0.

In figure 9 we plot the value of l(x1) which gives the 1 : 1 : 1 resonance when 1– H1 = 0.005m
and 2– H1 = 0.5m. The corresponding value of H2 comes from (A.8) by noting that ω2 is the
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Fig. 9. Plot of l(x1) giving the 1 : 1 : 1 resonance in the n = 2 system when ρ1 = ρ2 and 1–
H1 = 0.005 m and 2– H1 = 0.05 m (solid lines). The value of H2 comes from (4.3), and the dashed
lines give the corresponding shallow water approximation.

same for both compartments, and so

H2 =
L2

2π
tanh−1

(
L2

L1

tanh
(

2πH1

L1

))
, (4.3)

if α
(1)
0 = α

(2)
0 = π. The results in figure 9 show that when x1 ≈ L, so that compartment 2 is

negligible, there exists a value of l for which the 1 : 1 : 1 resonance exists. As x1 is reduced,
so that L2 is allowed to increase in size, then H2 increases and the value of l decreases down
to a minimum value. As x1 is decreased further, there becomes a point where the value of l
begins to climb rapidly, which corresponds to H2 becoming much larger, until eventually there
is no solution to (4.3) and no 1 : 1 : 1 resonance occurs. In the experimental setup, the value
of H2 would be limited by the height of the vessel d, but unless the vessel is very shallow
d � L, then this figure accurately depicts the experimental situation. This figure also shows
that when H1 is small, the shallow water approximation is in good agreement up to the point
where the solution breaks down, but the shallow water approximation is not restricted by the
break down of (4.3), and so the result of this approximation continues to x1 = 0. However,
as H2 increases the shallow water approximation stops being valid and thus we expect results
more like the finite depth results in this case.

It is worth noting here that in this experimental setup, we could also observe other resonances
such as 1 : 1 : 2 or 1 : 2 : 3 for example, each of which is important in its own right. However,
the focus of this paper is on highlighting the (n+ 1)−fold 1 : 1 : · · · : 1 resonance so we do not
go into detail here, other than to acknowledge their existence.

The results from this section show that the inclusion of baffles into the vessel makes it more
likely that a resonance of some kind (1 : 1 or 1 : 1 : 1) will exist in experiments. If the number
of baffles is increased further, this likelihood also increases.
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4.2 General case of n− 1 baffles

For a general setup with a vessel containing n distinct fluid compartments (n− 1 baffles), the
number of possible resonances in the system increases to include 1 : 1, 1 : 1 : 1 as well as
multifold 1 : · · · : 1 resonances up to and including the (n + 1)−fold 1 : 1 : · · · : 1 resonance.
As for the n = 2 case, these resonances can be either a resonance between fluid compartments
with the vessel stationary or a resonance between fluid motion and vessel motion.

A p−fold 1 : 1 : · · · : 1 resonance can occur in the system as one of n+1Cp different resonant
combinations, either as non–vessel resonances, or as one of nCp−1 vessel resonances. Like the
n = 2 case, the case when p = n, such that all the n fluid compartments are resonating
together without coupling to the vessel, leads to a free oscillation resonance in a stationary
vessel (θ̂ = 0) from (A.13). The p−fold 1 : 1 : · · · : 1 resonance can also be considered as a
solution to the problem when the first p − 1 derivatives of the dispersion relation ∆n(ω) are
zero and the pth derivative is non–zero.
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Fig. 10. Plot of ∆3(ω) with ρ1 = ρ2 = ρ3 and H1 = H2 = H3 = 0.05 m showing (a) the 1 : 1 resonance
as the second lowest frequency solution, (b) the 1 : 1 : 1 resonance as the third lowest frequency
solution and (c) the 1 : 1 : 1 : 1 resonance as the fourth lowest frequency solution of the dispersion
relation. The compartment parameters are (a) x1 = 7

10L, x2 = 9
10L, l = 0.179 m, (b) x1 = 45

100L,
x2 = 9

10L, l = 0.176 m and (c) x1 = 1
3L, x2 = 2

3L, l = 0.182 m.

In §4.1 we showed that for n = 2 the 1 : 1 resonance occurs at least as the second lowest
frequency solution of the dispersion relation, and the 1 : 1 : 1 resonance is at least the third
lowest. This structure generalises to the n− 1 baffle problem, such that the p−fold 1 : · · · : 1
resonance occurs at least as the pth lowest order frequency. However, we note that as for the
n = 2 case in figure 7, there may be regions of parameter space where the 1 : 1 resonance
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cannot occur as the second lowest frequency etc. Figure 10 displays a set of examples for n = 3
where the 1 : 1, 1 : 1 : 1 and the 1 : 1 : 1 : 1 resonances occur as the second, third and fourth
lowest frequencies respectfully. For the 1 : 1 : 1 : 1 resonance in figure 10(c), it should be noted
that the solution at ω ≈ 10 is a double zero of the dispersion relation, and hence the quadruple
zero at ω ≈ 17 is technically the fourth lowest frequency.
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Fig. 11. Plot of (a) l(n) and (b) ω(n) which gives the (n+1)−fold 1 : · · · : 1 resonance with xi = iL/n,
ρi = 1000 kgm−3 and Hi = 0.03 m (solid lines) and Hi = 0.1 m (dashed lines). The different sets of
results are for 1− L = 0.525 m, 2− L = 1.05 m and 3− L = 2.1 m. The horizontal lines correspond to
l = 0.2 m and l = 2 m which are the extremes of string length used by Cooker (6) in his experiment.

As the number of baffles in the vessel increases, the likelihood of observing interesting nonlinear
behaviour close to a resonance in experiments increases, but the chances of observing the
(n + 1)−fold 1 : · · · : 1 resonance reduces. This is because the string length required to
achieve this resonance reduces rapidly with n, which leads to the frequency of the resonance
also increasing with n. This can be seen in figure 11 for result 1. Here, by n = 3, the string
length required to achieve the resonance reduces below l = 0.2 m, which is approximately the
minimum length used by Cooker in his experiment. However, increasing the length of the vessel
by a factor of 2 (results 2) or 4 (results 3) shows that these higher order multifold resonances
now lie in the string ranges used by Cooker. Here we have assumed that doubling the length
of the vessel would also double its mass. Although for L = 1.05m the 1 : 1 resonance with
n = 1 now lies outside the string range used by Cooker, it is now possible to observe the 7−fold
1 : · · · : 1 resonance from the n = 6 case with Hi = 0.03 m. For L = 2.1 m it might even be
possible to see the 11−fold 1 : · · · : 1 resonance in the n = 10 case, but there will be other
practical factors affecting this observation, such as finding strong enough cables to support the
weight of the vessel and the fluid, but it is theoretically possible.

For the general case of n − 1 baffles, if 2 compartments are resonating such that sin
[
α
(1)
0

]
=

sin
[
α
(2)
0

]
= 0 (we can assume the resonance is between compartments 1 and 2 w. l. o. g.) then

it can be shown that the system of equations (A.13) reduce to

n∏
i=3

sin
[
α
(i)
0

]
cos

[
α
(i)
0

]− (Mg −mvlω
2
)

+ 2lω2W
n∑
i=3

ρiHi
(c

(i)
0 )2

k
(i)
0

tan
[
α
(i)
0

]

+2lω2W
n∑
i=1

ρiHi

∞∑
m=1

(c(i)m )2

k
(i)
m

tanh
[
α(i)
m

])
θ̂ = 0,
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once the β
(i)
0 ’s have been eliminated which are given by

k
(i)
0 β

(i)
0 sin

[
2α

(i)
0

]
+ lωc

(i)
0

(
1− cos

[
2α

(i)
0

])
θ̂ = 0,

for i = 3, ..., n. Therefore, for motions with θ̂ 6= 0 this requires the term in brackets to be zero
and the vessel is then resonating with the fluid compartments giving a 1 : 1 : 1 resonance,
otherwise these equations can only be satisfied with θ̂ = 0 and the resonance occurs as a free
oscillation.

5 Shallow water approximation

The multi-fold resonances highlighted in §3 can also be found in the system when the shallow
water approximation is taken in each compartment. Mathematically the shallow water limit is
simple to determine and the governing dispersion relation for the solutions is given below. How-
ever, in practice this limit will be difficult to sustain for large values of n as the compartment
lengths will reduce for each additional baffle, unless the size of the vessel is increased.

For a given string length to vessel length ratio l/L, the shallow water approximation occurs

when k
(i)
0 Hi � 1 in each fluid compartment. In this limit the first equation of (A.8) gives

ω2Hi

g
∼ (k

(i)
0 Hi)

2 − 1

3
(k

(i)
0 Hi)

4 +O

[
(k

(i)
0 Hi)

6

]
,

and by noting that each solution of the second equation of (A.8) lies in the range (m− 1)π <
k(i)mHi < mπ we can show that

k(i)mHi ∼ mπ − (k
(i)
0 Hi)

2

mπ
−
(

1

m2π2
− 1

3

)
(k

(i)
0 Hi)

4

mπ
+O

[
(k

(i)
0 Hi)

6

]
.

Substituting these expressions into (A.9) we find that

c
(i)
0 = 1− 1

90
(k

(i)
0 Hi)

4 +O

[
(k

(i)
0 Hi)

6

]
,

c(i)m =

√
2(−1)m+1

m2π2
(k

(i)
0 Hi)

2 +

√
2(−1)m(2m2π2 − 15)

6m4π4
(k

(i)
0 Hi)

4 +O

[
(k

(i)
0 Hi)

6

]
,

and hence in this limit the evanescent modes become negligible in size compared to the wave
mode. The dispersion relation (3.6) at leading order thus reduces to

∆n(ω)SW =

−Mg +mvlω
2 + lω2

n∑
i=1

m
(i)
f

νi
tan(νi)

 n∏
i=1

sin(νi) cos(νi), (5.1)

where

νi = lim
k
(i)
0 Hi→0

α
(i)
0 =

Liω

2
√
gHi

.
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The (n + 1)-fold 1 : 1 : · · · : 1 resonance occurs at an (n + 1)-fold root of (5.1) which occurs
precisely when

sin(ν1) = ... = sin(νn) = 0 and ω2 =
Mg

mvl
, (5.2)

which is when the natural frequency of each compartment resonates with the vessel natural
frequency. Assuming the solution in each compartment is the lowest frequency solution, then

νi = π ∀i,

and the system parameters are constrained by

Li√
lHi

= 2π

√
mv

M
. (5.3)

This shallow water approximation is used in figures 8 and 9 of §4.

6 Concluding Remarks

This paper investigated the effect of non–porous baffles on the dynamic coupling between the
sloshing fluid and the motion of the vessel in Cooker’s sloshing experiment (6). It was found
that the inclusion of n−1 baffles in the vessel, giving n distinct fluid compartments, produced a
number of different resonant behaviours, when the system parameters were tuned accordingly.

For a single baffle (n = 2) it was found that the 1 : 1 resonance of the single fluid compartment
case (11) can also occur in this system. This occurs when the natural frequency of the anti-
symmetric fluid modes in one fluid compartment are tuned to the natural frequency of the
vessel (vessel–resonance) or when both compartments contain symmetric sloshing modes with
equal natural frequency (non–vessel resonance), with the vessel stationary. This system also
included a 1 : 1 : 1 resonance, when the natural frequency of the anti-symmetric sloshing
modes in both fluid compartments and the vessel were all equal. The inclusion of the baffle
increased the region of parameter space for which a resonance can be observed when compared
to the n = 1, unbaffled case.

The general case with n ≥ 3 was more interesting, because for particular system parameters,
it contained any resonance from a 1 : 1 resonance through to an (n + 1)−fold 1 : 1 : · · · : 1
resonance. The experimental set up used by Cooker (6) would contain the 1 : 1 : 1, n = 2
resonance, but by doubling the length, and mass, of the vessel, it would then contain resonances
up to the 7−fold 1 : · · · : 1 resonance in the n = 6 case.

The internal resonances highlighted in this paper are interesting, because they are precursors
to dramatic dynamics when nonlinear effects are included in both the fluid and the vessel.
Turner & Bridges (19) showed that close to a 1 : 1 resonance in the unbaffled problem, the
inclusion of nonlinear terms led to a pair of normal form equations

ia0Aτ = a1ωn,2A+ a2|A|2A+ a3|B|2A+ a4B
2A∗,

ib0Bτ = b1ωn,2B + b2|B|2B + a3|A|2B + a4A
2B∗,

(6.1)

where A(τ), B(τ) are the complex amplitudes of the linearly independent symmetric and
anti-symmetric sloshing modes respectively, and the stars denote the complex conjugate. The
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parameters aj, bj and ωn,2 are all real and τ = ε2t with ε � 1 is a slow time variable. This
normal form has been investigated before in the literature in the context of three-dimensional
rectangular vessels with almost square cross section (e.g. (18), (30)). A new analysis of this
normal form was recently presented in Turner & Bridges (19), obtained by projecting these
equations onto a sphere, where all orbits become apparent. In the unbaffled case it was discov-
ered that there are parameter values where a heteroclinic orbit exists which connects the purely
symmetric sloshing modes with the purely anti-symmetric sloshing modes which allowed for
complex motion in the system.

In the baffled system similar nonlinear normal forms would exist about each resonance, al-
though they would be more complicated for higher order resonances. Effectively, a new complex
amplitude and equation for each extra compartment would be needed. As the baffled problem
contains more parameter regimes which contain resonances this means there are likely to be
more fluid height combinations where there exist heteroclinic orbits between fluid modes and
hence more chance of observing complex energy transfer between modes.

These nonlinear resonance effects could possibly be utilized in sea wave energy extraction
devices in order to improve the efficiency with which they convert wave energy to electricity.
The authors are currently involved in an EPSRC funded project modelling the flow inside
the OWEL wave energy converter. This floating device consists of a rectangular compartment
which is open at one end to allow the waves to enter, with the energy extracted via a power
take-off system. The simplicity of the OWEL geometry makes the analysis of the current paper
enlightening to future research avenues.

The final stages of this work was supported by the EPSRC under grant EP/K008188/1.

A Derivation of the dispersion relation

The system of linear equations (3.1)-(3.5) can be solved by seeking solutions in the form of
time–periodic functions, with some undetermined frequency ω. Thus we are searching for θ,
φ(i) and hi in each fluid, of the form

φ(i)(x, y, t) = φ̂(i)(x, y) cosωt, h(i)(x, t) = ĥ(i)(x) sinωt, θ(t) = θ̂ sinωt. (A.1)

From (3.2), the equation for the free surface h(i) in each fluid can be found via

ĥ(i) =
ω

g
φ̂(i)(x,Hi),

thus θ̂ and φ̂(i) satisfy the boundary value problem

φ̂(i)
xx + φ̂(i)

yy = 0, in 0 ≤ y ≤ Hi, xi−1 ≤ x ≤ xi, (A.2)

with the boundary equations
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φ̂(i)
y = 0 on y = 0, (A.3)

φ̂(i)
y =

ω2

g
φ̂(i) on y = Hi, (A.4)

φ̂(i)
x = lωθ̂ on x = xi−1, xi. (A.5)

These solutions in each compartment are coupled to the vessel motion via

(
Mg −mvlω

2
)
θ̂ = Wω

n∑
i=1

∫ xi

xi−1

∫ Hi

0
ρiφ̂

(i)
x dydx. (A.6)

The coupled set of equations (A.2)–(A.6) form an eigenvalue problem for the frequency ω. The

dispersion relation for this problem is found by solving (A.2) in each fluid as a function of θ̂,
and then substituting these into (A.6) to derive an equation for the natural frequency ω.

A.1 The eigenmode expansion for φ̂(i)

The solution for each eigenmode φ̂(i) can be expressed in one of two ways:

(1) as an infinite sum of cosines (16; 31), or

(2) as an infinites sum of vertical eigenmodes (28; 10).

Alemi Ardakani et al. (11) showed that these two expressions are identical and so either could
be used here. Turner & Bridges (19) found that the vertical eigenmode expansion has numerical
convergence problems close to the side walls of the vessel, which were significant for the solution
of the nonlinear problem where these functions had to be integrated numerically. However, for
the linear dispersion relation, no numerical integrations are required as the integrations can
be evaluated exactly. Hence in this paper we use the vertical eigenmode expansion because it
converges faster, and it simplifies in the shallow water limit, without the need to manipulate
infinite series (12).

The eigenmode expansion used to solve the boundary value problem takes the form

φ̂(i)(x, y) =
∞∑
m=0

A(i)
m (x)ψ(i)

m (y), (A.7)

where ψ(i)
m (y) are the complete set of vertical eigenmodes related to the vertical eigenvalue

problem given in the appendix of Alemi Ardakani et al. (11) (see also (28)). The important
details of these vertical eigenmodes are given in appendix B of Alemi Ardakani et al. (11), so
we just quote the relevant results required for this paper. The vertical eigenmodes are ordered,
such that the first eigenmode (m = 0) corresponds to the wave mode, which is the solitary
vertical mode that exists in the shallow water limit, and the other modes are the evanescent
modes, where this terminology comes from the wave–maker problem (see §2.2.1 of Linton &
McIver (28)). In the vertical eigenmode expansion, the symmetric and anti-symmetric sloshing
modes are implicitly represented, however the resulting dispersion relation still has the same
product form as (1.1).
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The solution of the eigenvalue problem in each compartment is identical, hence we only show it
here for the ith compartment. By substituting (A.7) into (A.2) we determine that the functions
A(i)
m (x) take the form

A
(i)
0 = β

(i)
0 cos

[
k
(i)
0 (x− xi−1)

]
+ γ

(i)
0 sin

[
k
(i)
0 (x− xi−1)

]
,

A(i)
m = β(i)

m cosh
[
k(i)m (x− xi−1)

]
+ γ(i)m sinh

[
k(i)m (x− xi−1)

]
, m = 1, 2, ...,

where k
(i)
0 and k(i)m satisfy the relations

ω2 = gk
(i)
0 tanh(k

(i)
0 Hi), and ω2 = −gk(i)m tan(k(i)mHi), for m = 1, 2, ... . (A.8)

The boundary conditions at x = xi−1 and xi reduce to

dA(i)
m

dx
|x=xi−1

=
dA(i)

m

dx
|x=xi = lωθ̂c(i)m , m = 0, 1, ...,

where the coefficients c(i)m are given by

c
(i)
0 =

1√
1
2

(
1 +

sinh 2k
(i)
0 Hi

2k
(i)
0 Hi

) sinh k
(i)
0 Hi

k
(i)
0 Hi

, c(i)m =
1√

1
2

(
1 + sin 2k

(i)
m Hi

2k
(i)
m Hi

) sin k(i)mHi

k
(i)
mHi

, (A.9)

which come from the expansion 1 =
∑∞
m=0 c

(i)
m ψ

(i)
m (y) in each compartment.

For the case m = 0, evaluating the left wall boundary condition gives

γ
(i)
0 =

lωθ̂c
(i)
0

k
(i)
0

,

and thus the right wall boundary condition gives

k
(i)
0 sin

[
2α

(i)
0

]
β
(i)
0 + lωθ̂c

(i)
0

(
1− cos

[
2α

(i)
0

])
= 0, (A.10)

where α(i)
m = 1

2
k(i)m Li. At this stage it seems intuitive that we should divide by sin

[
α
(i)
0

]
and

write

β
(i)
0 = − lωθ̂c

(i)
0

k
(i)
0

tan
[
α
(i)
0

]
.

However, sin
[
α
(i)
0

]
could be zero, and retaining this term leads to a dispersion relation con-

taining the internal resonances (11).

Applying the same solution method to the case when m ≥ 1 leads to

A(i)
m = lωθ̂

c(i)m

k
(i)
m

(
sinh

[
k(i)m (x− xi−1)

]
− tanh

[
α(i)
m

]
cosh

[
k(i)m (x− xi−1)

])
. (A.11)
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However, this time we can divide through by sinh
[
α(i)
m

]
as it is non–zero for all m and i as we

are only considering solutions with ω > 0. These evanescent modes are proportional to θ̂, and
so clearly couple to the motion of the vessel.

A.2 The dispersion relation

The dispersion relation for the natural sloshing frequency of oscillation, ω, is found by sub-
stituting the eigenmode expansion (A.7) into (A.6) and solving for ω. In order to do this we
need to determine the RHS of (A.6). We can again concentrate on the term for the ith fluid
compartment as the result in each compartment is identical.

We note that

∫ xi

xi−1

∫ Hi

0
ρiφ̂

(i)
x dydx= ρi

∫ xi

xi−1

∫ Hi

0

∞∑
m=0

dA(i)
m

dx
(x)ψ(i)

m (y) dydx,

= ρiHi

∞∑
m=0

c(i)m
(
A(i)
m (xi)− A(i)

m (xi−1)
)
,

using
∫Hi
0 ψ(i)

m dy = Hic
(i)
m . Then by noting that

A
(i)
0 (xi)− A(i)

0 (xi−1) =
(
cos

[
2α

(i)
0

]
− 1

)
β
(i)
0 + lωθ̂

c
(i)
0

k
(i)
0

sin
[
2α

(i)
0

]
,

A(i)
m (xi)− A(i)

m (xi−1) = 2lωθ̂
c(i)m

k
(i)
m

tanh
[
α(i)
m

]
, m ≥ 1,

it also becomes clear that

∫ xi

xi−1

∫ Hi

0
ρiφ̂

(i)
x dydx = ρic

(i)
0 Hiβ

(i)
0

(
cos

[
2α

(i)
0

]
− 1

)
+ρiHilωθ̂

(c
(i)
0 )2

k
(i)
0

sin
[
2α

(i)
0

]
+ 2ρiHilωθ̂

∞∑
m=1

(c(i)m )2

k
(i)
m

tanh
[
α(i)
m

]
.

Summing over the n fluid compartments gives the RHS of (A.6) as

n∑
i=1

∫ xi

xi−1

∫ Hi

0
ρiφ̂

(i)
x dydx =

n∑
i=1

ρic
(i)
0 Hiβ

(i)
0

(
cos

[
2α

(i)
0

]
− 1

)

+lωθ̂
n∑
i=1

ρiHi
(c

(i)
0 )2

k
(i)
0

sin
[
2α

(i)
0

]
+ 2lωθ̂

n∑
i=1

ρiHi

∞∑
m=1

(c(i)m )2

k
(i)
m

tanh
[
α(i)
m

]
.

Therefore, the coupling equation with the vessel (A.6) becomes
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(
Mg −mvlω

2
)
θ̂=Wω

n∑
i=1

ρic
(i)
0 Hiβ

(i)
0

(
cos

[
2α

(i)
0

]
− 1

)
+ lω2θ̂W

n∑
i=1

ρiHi
(c

(i)
0 )2

k
(i)
0

sin
[
2α

(i)
0

]

+2lω2θ̂W
n∑
i=1

ρiHi

∞∑
m=1

(c(i)m )2

k
(i)
m

tanh
[
α(i)
m

]
. (A.12)

The system of linear equations (A.10) for i = 1, ..., n and the coupled vessel equation (A.12)
can be written in matrix form as

B(ω)a = 0, (A.13)

where a =
(
β
(1)
0 , β

(2)
0 , ..., β

(n)
0 , θ̂

)
is an (n + 1) vector. The (n + 1)× (n + 1) coefficient matrix

B has the nice form that

B(ω) =

 δ(ω) ξ(ω)

η(ω)T σ(ω)

 , (A.14)

where
δ(ω) = diag

[
k
(1)
0 sin

[
2α

(1)
0

]
, ...k

(n)
0 sin

[
2α

(n)
0

]]
,

is an n dimensional diagonal matrix, the vectors ξ(ω) and η(ω) have dimension n and are
expressed as

ξ =


lωc

(1)
0

(
1− cos

[
2α

(1)
0

])
...

lωc
(n)
0

(
1− cos

[
2α

(n)
0

])
 , η =


Wρ1c

(1)
0 H1ω

(
cos

[
2α

(1)
0

]
− 1

)
...

Wρnc
(n)
0 Hnω

(
cos

[
2α

(n)
0

]
− 1

)
 ,

and

σ(ω) = lω2W
n∑
i=1

ρiHi
(c

(i)
0 )2

k
(i)
0

sin
[
2α

(i)
0

]
−
(
Mg −mvlω

2
)

+2lω2W
n∑
i=1

ρiHi

∞∑
m=1

(c(i)m )2

k
(i)
m

tanh
[
α(i)
m

]
.

A solution to the homogeneous system (A.13) exists if and only if the determinant of the
matrix B is zero. Setting the determinant to zero gives the dispersion relation. Due to the
form of the matrix B the dispersion relation can be written as ∆n(ω) = 0 with

∆n(ω) = det(B) = det(δ)
(
σ − ηTδ−1ξ

)
, (A.15)

which, after some algebra, can be shown to give the result in (3.6)
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