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Summary

In this paper the interaction of free–stream acoustic waves with the leading edge
of an aerodynamic body is investigated and we compare two different methods for
analysing this interaction. Results are compared for a method which incorporates
Orr–Sommerfeld calculations using the parabolized stability equation (PSE) to those
of direct numerical simulations (DNS). By comparing the streamwise amplitude of
the Tollmien–Schlichting (T–S) wave it is found that non–modal components of the
boundary–layer response to an acoustic wave can persist some distance downstream
of the lower branch. The effect of nose curvature on the persisting non–modal
eigenmodes is also considered, with a larger nose radius allowing the non–modal
eigenmodes to persist farther downstream.

1. Introduction

For an aerodynamic body placed in a mean flow with a small amplitude unsteady
perturbation (either acoustic or vortical), the position of boundary–layer transition depends
on both the stability characteristics of the body and how the unsteady disturbance interacts
with the boundary layer itself. This interaction process is known as receptivity (1) and is
the first stage of the transition process. For two–dimensional, large Reynolds number flows,
the transfer of energy from the free–stream disturbance to the instability wave occurs due to
non–parallel mean flow effects. These receptivity processes occur at various positions on the
body such as at the leading edge (2, 3), or further downstream where the mean flow varies
rapidly in the streamwise direction, such as at surface roughness elements (4, 5, 6, 7, 8),
regions of marginal stability (9) or changes in surface roughness (10). For receptivity
regions upstream of the lower branch point (such as at the leading edge or at a vibrating
ribbon), the modal component of the instability wave decays exponentially in amplitude
downstream until the lower branch neutral stability point is reached. Beyond the lower
branch the disturbance grows exponentially until either nonlinear effects become important
and transition occurs or the disturbance decays after reaching the upper branch neutral
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stability point. The work of Saric et al. (11) reviews the asymptotic, numerical and
experimental approaches to receptivity and transition.

For instability waves generated at the leading edge of a semi–infinite flat plate via acoustic
free–stream disturbances, Goldstein (2) showed that the asymptotic structure of the flow
is split into two regions. In the first region, close to the nose of the body, the flow is
governed by the unsteady boundary layer equation. The far downstream asymptotic form
of the solution in this region consists of a Stokes layer plus a sum of asymptotic eigenmodes
(12, 13, 14). The Lam–Rott eigenmodes are important in receptivity analysis because
they exhibit wavelength shortening as they move downstream and hence link the long–
wavelength free–stream disturbances to the much shorter scale instability waves in the
boundary layer via a multiplicative receptivity coefficient. This receptivity coefficient has
been calculated for a flat plate (15), a parabolic body (16) and a Rankine body (17)
via a combination of numerical and asymptotic approaches. The solution in this leading
edge region can be asymptotically matched to the large–Reynolds–number, small wave–
number form of the classical Orr–Sommerfeld equation. It has also be shown that the first
of the Lam-Rott eigenmodes matches to the unstable Tollmien–Schlichting (T–S) mode of
the Orr–Sommerfeld equation, which exhibits exponential streamwise growth downstream
(2). A similar asymptotic structure in the leading edge region has been shown to exist
on both a parabolic body (16) and more general bodies where the slip velocity tends to
a constant downstream (17). An equivalent asymptotic analysis in the Orr–Sommerfeld
region for bodies other than the flat plate does not yet exist due to the complex structure in
this region. Therefore, the evolution of the T–S wave is usually determined via numerical
methods.

This paper makes direct comparisons between two different receptivity/stability methods
by investigating the spatial evolution of T–S waves in the boundary layer generated via
acoustic disturbances. One method is conducting direct numerical simulations (DNS) of the
T–S wave evolution using the approach examined in Haddad & Corke (18) and the other
method is the parabolized stability equation (PSE) scheme laid out in Turner & Hammerton
(19). The purpose of this comparison is to examine to what extent the PSE scheme describes
the streamwise evolution of disturbances in the boundary layer excited by acoustic waves.
This is of interest because the receptivity process also excites non–modal eigenmodes from
the continuous spectrum of eigenmodes in the boundary layer. these eigenmodes grow or
decay algebraically in the streamwise direction (20). The PSE method neglects these non–
modal eigenmodes and only follows the evolution of the exponentially growing discrete
eigenmodes. One of these discrete eigenmodes is the T–S wave which dominates the
boundary–layer solution far downstream. The DNS method on the other hand contains
both the modal and non–modal eigenmodes. This paper focuses on determining how far
along the body these non–modal eigenmodes persist, and investigates the value of the PSE
approach for making comparisons with experiments.

A comparison between the PSE and DNS schemes had previously been considered
by Joslin et al. (21) who found excellent agreement between the two methods for the
propagation of two–dimensional T–S waves on a semi–infinite flat plate. However, unlike
Joslin et al. (21) the PSE method of (19) considered in this paper allows the comparison
of T–S wave streamwise velocity amplitudes rather than just growth rates. This is because
the PSE method incorporates the asymptotic form of the T–S wave from the leading edge
region to give a complete T–S wave amplitude. The present study also makes comparisons
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on a parabolic body which will investigate the effect of nose curvature on the boundary
layer disturbance evolution. The non–dimensional acoustic frequency σ = νω∗/U2

∞ used
by Joslin et al. (21) was σ = 84 × 10−6 which is at the lower end of the range used in
experiments, therefore here this range is extended to σ ∈ [60× 10−6, 230× 10−6] to include
a wider range of experimental frequencies.

There have been many numerical studies which have calculated the growth rate of the
T–S wave in the Orr–Sommerfeld region for a semi–infinite flat plate. The (parallel flow)
Orr–Sommerfeld equation solution has been corrected for non–parallel mean flow effects by
expanding the mean flow in powers of Re−1/2 in the coefficients of the linearized Navier–
Stokes equations (22, 23). Here Re is the Reynolds number. However, this approach makes
the solution more difficult to interpret physically because theO(1) equation of this expansion
actually contains terms which are of O(1), O(Re−1/6), O(Re−1/3) and O(Re−1/2 lnRe), as
shown by Goldstein (2). Similarly the O(Re−1/2) equation contains separate asymptotic
terms too, such as O(Re−2/3) etc, which are combined into one equation. Bertolotti et
al. (24) utilized this non–systematic asymptotic approach by combining the non–parallel
effects into the single PSE partial differential equation. In the last two decades the PSE has
been used within industry, along with other approaches such as the eN method (7, 25), and
has been extended to take account of hypersonic flows, nonlinearity and chemical reactions
within the boundary–layer flow (26, 27). The main advantage of incorporating the non–
parallel effects into one partial differential equation is that the algebra required to eliminate
secular terms in numerical computations, such as Saric & Nayfeh (23), is removed. The
PSE has to be integrated downstream from some upstream boundary condition and it is
computationally faster than DNS schemes. The PSE had previously been solved using
an upstream boundary condition from Orr–Sommerfeld theory or using a local solution to
the PSE (24, 28). However, these approaches did not use the receptivity information at
the leading edge to link the free–stream information to the amplitude of the T–S wave.
This was overcome by (19) who linked the receptivity information to the T–S wave using a
scheme which combined the PSE in the Orr–Sommerfeld region with an upstream boundary
condition given by the Lam–Rott eigenmode from the leading edge receptivity analysis. This
method allowed the streamwise amplitude of the unstable T–S wave to be calculated. This
amplitude was shown to agree with amplitudes calculated via the asymptotic results of (2)
in the large Reynolds number limit (29). However, the PSE and asymptotic approaches
are not independent, as both methods used the same upstream amplitude condition, and
so this comparison only investigated changes in the growth rate between the two methods.
Also neither method considered the non–modal eigenmodes within the boundary layer.
The present study allows for a comparison of T–S wave amplitudes from two independent
approaches so we can investigate key differences resulting from the two approaches. The
PSE scheme was extended to more general bodies, which have a slip velocity which tends
to a constant far from the leading edge, by Turner & Hammerton (30).

Early DNS studies which investigated the evolution of T–S waves, solved the nonlinear
time dependent Navier–Stokes equations, such as in Reed et al. (31). These simulations
were conducted to model the experiments of Saric & Rasmussen (32) and Saric et al. (33)
who studied an elliptical leading edge attached to a finite thickness flat plate. The problem
with this geometry was that the join between the nose and the plate acted as another
region of receptivity due to the discontinuity of curvature at this point. This discontinuity
was removed by machining the elliptical nose onto the plate to generate a Modified Super
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Ellipse (MSE). This MSE was investigated numerically by Lin et al. (34). These initial
DNS schemes were computationally expensive because they solved the full Navier–Stokes
equations. However, experimental evidence suggested that the process of receptivity to
the unsteady disturbance was linear. Hence (18) developed a more efficient spatial code
which linearised about the base flow and solved for the steady base flow and the unsteady
perturbation flow separately. Haddad & Corke (18) developed their code for a parabolic
body so as to eliminate the discontinuous curvature issue of the elliptical body studied by
Reed et al. (31), see (10) for a more detailed discussion. This DNS method was extended
to parabolic bodies at non–zero angles of attack by Ertuck & Corke (35) and Haddad et al.
(36), and to the MSE by Wanderley & Corke (37). The results of (37) were compared to
the DNS results of Fuciarelli et al. (38) and the experiments of Saric & White (39). In the
present study we use the linearised code approach of (18) as it is computationally faster
than the nonlinear Navier–Stokes approach. This method is also preferred because it has
been constructed to investigate a parabolic body as well as the flat plate.

The structure of this paper is as follows. In §2.1 we formulate the PSE scheme including
the asymptotic form of the upstream boundary condition, while the DNS method is outlined
in §2.2. Comparative results for a semi–infinite flat plate are given in §3.1 and for a parabolic
body in §3.2. Conclusions and discussions can be found in §4.

2. Formulation

2.1 Formulation of the parabolized stability equation scheme

This section summarizes the derivation of the parabolized stability equation (PSE) scheme
which combines PSE calculations in the Orr–Sommerfeld region with an upstream T–S
wave amplitude given by the leading edge receptivity analysis. For more information the
reader is referred to (19) and (30). The PSE is valid within the boundary layer on a
two–dimensional body with a rounded leading edge. In this study we use the coordinate
system (x∗, y∗) which are dimensional coordinates measured along the body and normal to
the body respectively. The dimensionless quantities (xP , yP ) and tP are introduced based
on the velocity of the free–stream U∞ and the fixed length scale δ0 = (νx∗0/U∞)1/2. The
vorticity equation written in terms of the stream function ΨP can then be expressed as(

∂

∂tP
− 1

R0
∇2 +

∂ΨP

∂yP

∂

∂xP
− ∂ΨP

∂xP

∂

∂yP

)
∇2ΨP = 0, (2.1)

where

R0 =
U∞δ0
ν

. (2.2)

This equation holds at leading order for general bodies as long as the curvature of the
body is assumed to be small away from the vicinity of the leading edge (40, 29). In
(2.1) ν is the kinematic viscosity, x∗0 is the dimensional distance along the body at which
the PSE analysis is started and R0 is the Reynolds number based upon the length scale
δ0. The Reynolds number R0 is assumed to be large so that the flow field is inviscid and
irrotational everywhere, except in the vicinity of the surface of the body. The corresponding
non–dimensional position that the numerical analysis is started is x0 = x∗0/δ0 = R0.

The stream function, ΨP , is split into a steady base flow part ΨB(xP , yP ) and a time
dependent disturbance part ψP (xP , yP , tP ) � ΨB(xP , yP ), and Uf (xP ) is defined as the
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mean flow slip velocity at the edge of the boundary layer, parallel to the surface of the
body. In order to use the asymptotic leading edge receptivity result formulated in (30) as
the upstream boundary condition for the PSE, the coordinate system is changed to

ξP =

∫ xP

0

Uf (x′)dx′, NP = R
1/2
0 Uf (ξP )(2ξP )−1/2yP , (2.3)

which remain in the streamwise and normal directions to the body respectively (17, 29).
A solution for the disturbance stream function ψP (ξP , NP , tP ) is sought in the form of

a spatially evolving two–dimensional wave with constant frequency ωP , local streamwise
wave number α(ξP ) and a complex mode shape φP (ξP , NP ) which takes the form

ψP (ξP , NP , tP ) = φP (ξP , NP ) exp

(
i

(∫ ξP

0

α(ξ′P )dξ′P − ωP tP

))
+ complex conjugate.

(2.4)
The amplitude of the disturbance wave is assumed to be sufficiently small so that the

non–linear terms can be neglected, |ψP | � 1. This condition is valid up to the lower branch
neutral stability point, as the modal disturbance wave generated at the leading edge decays
up to this point. This condition is also valid up to the upper branch point as long as the
amplification rate of the disturbance is not too large. In this study this is assumed to be the
case and PSE calculations are continued to the upper branch. At this point comparisons
can be made with the linear DNS where the T–S wave should dominate any non–modal
eigenmodes. As direct comparisons with experiments are not made at this stage, this linear
approach is an appropriate choice. If T–S wave amplitude comparisons with experiments
are required at the upper branch, then the nonlinear form of the PSE, which is discussed in
Bertolotti et al. (24), should be considered. The main assumption in the formulation of the
PSE is that the streamwise variation of both α and φP is sufficiently small (24, 19). This
means that ∂2α/∂ξ2

P , ∂2φP /∂ξ
2
P and the product of first derivatives ∂α/∂ξP and ∂φP /∂ξP

are O(R−2
0 ), and hence negligible if only terms of O(R−1

0 ) and larger are retained in the
analysis.

Therefore, retaining only terms of O(R−1
0 ) and larger leads to the derivation of the linear

PSE, which written in operator form is

(L0 + L1 + L2)φP +M1
∂φP
∂ξP

+
dα

dξP
M2φP = 0, (2.5)

where L0, L1, L2, M1 and M2 are differential operators which depend on R0, ξP , α, ΨB

and Uf (see (30) for their full form). The operator L0 is the parallel Orr–Sommerfeld
operator, L1 accounts for the transverse velocity component of the mean flow, and L2

incorporates the coordinate transformation (2.3).
In the partition (2.4) there is ambiguity in the choice of the functions α(ξP ) and

φP (ξP , NP ), which is resolved by the introduction of the normalization condition∫ ∞
0

∂φP
∂ξP

φ†P dNP = 0, (2.6)

where † denotes the complex conjugate. This normalization condition minimizes the
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streamwise change ∂φP /∂ξP in a weighted sense over the NP−domain, which also keeps
∂φP /∂ξP small in accordance with the initial assumption. Equations (2.5) and (2.6) are
solved numerically via a spectral collocation technique using Chebyshev polynomials. This
method is equivalent to that described in (24) and (19), which the reader is directed to for
more details of the scheme.

In this study we are only interested in the propagation of the eigenmodes, generated in
the leading–edge region of the body, through the Orr–Sommerfeld region. Therefore (2.5)
is solved with homogeneous boundary conditions, and an upstream boundary condition
stipulated by

φP (ξ0, NP ) = Φ(ξ0, NP ), α(ξ0) = α0, (2.7)

where ξ0 is the dimensionless starting position for the analysis along the surface of the
body. This boundary condition depends upon the form of the boundary layer at ξ0 and the
interaction of the free–stream disturbance with the boundary layer upstream of this point.

This paper uses the boundary condition given by (30) which is the first Lam–Rott
eigenmode of the asymptotic receptivity analysis in the vicinity of the leading edge
(12, 17, 30). This mode is chosen because it is the only discrete eigenmode which exhibits
streamwise growth after the lower branch neutral stability point and hence will dominate
the solution far downstream. The advantage of this receptivity condition, as apposed to
other upstream boundary conditions, is that it contains all the information required to give
the amplitude of the unstable T–S wave as it enters the Orr–Sommerfeld region. Hence,
the complete T–S wave amplitude downstream is known. This is discussed in more detail
in (19) for the case of a flat plate. This boundary condition has the form

Φ = ψLR
1 = C1(σR0ξP )τ1g0(ξP , NP ),

where C1 is the receptivity coefficient (15, 16, 17) and τ1 = −0.6921− 7.9508γ1i (17, 29).
The quantity σ is represented by Re−1 = ε6 in (19) and (30). The mode shape g0 takes
the form

g0(ξP , NP ) =

(
(2σR0ξP )

1/2
f ′(NP ) + λ

∫M
0

(M − M̃)Ai(z̃) dM̃∫∞
0
Ai(z̃) dM̃

− λM

)

× exp

(
−σ

3/2R0
√

2(1 + i)ξPNP

λγ̂(ξP )ρ
3/2
1

)
, (2.8)

where

M = (2σR0ξP )1/2

(
1− γ1

σR0ξP

)
NP ,

z̃ = −ρ1 + ρ
−1/2
1 eiπ/4M̃,

γ̂ = 1− 1.2023γ1
ln(σR0ξP )

σR0ξP
+ (D + 3γ1)

1

σR0ξP
+O(ξ−1.887

P ). (2.9)

The function f is the usual Blasius function which satisfies

f ′′′ + ff ′′ = 0, f(0) = f ′(0) = 0, f ′ −→ 1 as NP −→∞,
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Flat Plate Parabola

Uf 1 (2σR0ξP )1/2

(2σR0ξP +S)1/2

γ1 0 −S/4
D 0 S

2

(
2.075− 0.60115 ln

(
S
2

))
Table 1 Values of the parameters used in the upstream PSE boundary condition for both
the semi–infinite flat plate and the parabolic body.

where the primes denote d/dNP . The constant λ = f ′′(0) = 0.4696..., while the constant
D is calculated numerically and depends upon the curvature of the body (16, 17). The
function E(NP ) is also calculated numerically by solving the differential equation

E′′′ + fE′′ + 2f ′E′ − f ′E = −2(f ′ − 1)− 2.4046ff ′′.

The constant ρ1 = 1.0188... is the first root of Ai′(−ρi) = 0 where Ai is the Airy function
of the first kind, and γ1 depends upon the form of the slip velocity Uf .

The initial value for the wavenumber α is given by

α(ξ0) =
iσ5/3R0e

−iπ/4√2ξ0

ρ
3/2
1 λ

(
1 + 1.2023γ1

ln(ξ0)

ξ0
− (D + 3γ1)

1

ξ0

)
, (2.10)

and the form of the base flow is

ΨB =
(2ξP )1/2

R
1/2
0

(
f − 1.2023γ1(NP fNP

− f)
ln(σR0ξP )

σR0ξP
+
D(NP fNP

− f) + γ1E(NP )

σR0ξP

)
+O(ξ−1.387

P ).

(2.11)
The current study investigates the propagation of the T–S wave on a semi–infinite flat

plate and a parabolic body. The values of Uf , γ1 and D for each body are given in table 1,
where S is the Strouhal number defined by S = rnω

∗/U∞ and rn is the dimensional nose
radius of the body, see (30) for more details.

2.2 Formulation of the DNS scheme

The DNS approach used to compare to the PSE results of §2.1 is the scheme investigated in
(18). This scheme is chosen because it is computationally faster than schemes which solve
the full unsteady Navier–Stokes equations. A summary of the formulation is presented
here, and the reader is directed to (18) for full details of the formulation and the numerical
method.

The non–dimensional Navier–Stokes equations in stream function (ψ) and vorticity (Ω)
variables, written in terms of parabolic coordinates (ξ,N), are given by

∂2ψ

∂ξ2
+
∂2ψ

∂N2
− (ξ2 +N2)Ω = 0, (2.12)(

∂

∂ξ2
+

∂

∂N2
+
∂ψ

∂ξ

∂

∂N
− ∂ψ

∂N

∂

∂ξ
− (ξ2 +N2)

∂

∂t

)
Ω = 0. (2.13)
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The parabolic coordinate system (ξ,N) is related to the Cartesian (x, y) coordinates via

x =
1

2
(ξ2 −N2), y = ξN,

where all the variables have been non–dimensionalised by the length scale ν/U∞ and the
time scale ν/U2

∞. Note that ξ ∈ [0,∞] denotes the upper surface of the body and ξ ∈ [0,−∞]
denotes the lower surface, with the leading edge of the body at ξ = 0. The non–dimensional
nose radius of the parabola is given by R = rnU∞/ν, and in the limit of an infinitely thin
flat plate (R→ 0) equations (2.12) and (2.13) are singular. This singularity is removed by
introducing the new variables f̃ and g̃, as suggested by Davis (41), which are related to ψ
and Ω by

ψ = ξf̃(ξ,N, t), Ω = − ξ

(ξ2 +N2)
g̃(ξ,N, t).

This will allow us to investigate the receptivity results on a semi–infinite flat plate as well
as a parabolic body. These new variables are substituted into (2.12) and (2.13) to give
equations (10) and (11) of (18). These equations are solved for the variables f̃ and g̃ with
the following five boundary conditions. The no–slip and no–penetration conditions give

f̃ =
∂f̃

∂N
= 0, (2.14)

along the surface of the parabola N = R1/2. The vorticity at the wall is given by

g̃(ξ,R1/2) =
∂2f̃

∂N2
, (2.15)

while at the free–stream

∂f̃

∂N
→ 1 and g̃ → 0 as N →∞. (2.16)

The receptivity response of these equations to an incoming acoustic disturbance can now
be investigated.

2.2.1 Receptivity to an acoustic disturbance

As in (2.4) for the formulation of the PSE, we look for a solution to the system of equations
(10) and (11) of (18) when the free–stream velocity is decomposed into a sum of a steady
uniform flow parallel to the surface of the body and a small perturbation of frequency
σ = νω∗/U2

∞. Here ω∗ is the dimensional frequency of the acoustic disturbance. Thus

ψ|N→∞ =
(
1 + δe−iσt

)
ξN,

where δ � 1 is the amplitude of the disturbance, which is sufficiently small for linearization.
Note here, that this form of acoustic disturbance differers from equation (16) of (18) by
the addition of a minus sign in the exponential. This is so that direct comparisons can be
made with the PSE results, otherwise the two methods would be complex conjugates of one
another.
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The variables f̃ and g̃ are decomposed into a steady basic flow and an unsteady
perturbation flow by introducing functions the form

f̃(ξ,N, t) = F (ξ,N) + δe−iσtf(ξ,N), (2.17)

g̃(ξ,N, t) = G(ξ,N) + δe−iσtg(ξ,N). (2.18)

Substituting these expressions into both the governing equations and the boundary
conditions (equations (10) and (11) of (18) and (2.14)–(2.16) here) and equating powers of
δ, gives a system of two equations at each order of δ governing both the steady base flow
and the unsteady perturbation flow.

At O(δ0) we obtain the steady flow equations

FNN −G+ Fξξ +
2

ξ
Fξ = 0, (2.19)

GNN +

(
F + ξFξ −

4N

ξ2 +N2

)
GN

+

(
ξ2 −N2

ξ2 +N2
FN −

2N

ξ2 +N2
F − 2ξN

ξ2 +N2
Fξ

)
G

−
(
ξFN +

4ξ

ξ2 +N2

)
Gξ +Gξξ +

2

ξ
Gξ = 0, (2.20)

with the boundary conditions

F = 0, FN = 0 and G = FNN on N = R1/2, (2.21)

FN → 1 and G→ 0 as N →∞. (2.22)

These base flow equations are steady, coupled and nonlinear in the variables F and G. The
downstream boundary conditions as ξ → ±∞ (+∞ for upper surface, −∞ for lower surface)
are such that the disturbances pass through this boundary without causing reflections which
significantly alter the flow upstream. This is achieved numerically by suppressing the elliptic
terms (final two terms) of each governing equation using a buffer domain (18, 42).

At O(δ) we obtain the equations for the unsteady perturbation flow

fNN − g + fξξ +
2

ξ
fξ = 0, (2.23)

gNN +

(
F + ξFξ −

4N

ξ2 +N2

)
gN −

(
ξFN +

4ξ

ξ2 +N2

)
gξ

+

(
ξ2 −N2

ξ2 +N2
FN −

2N

ξ2 +N2
F − 2ξN

ξ2 +N2
Fξ

)
g +

(
ξ2 −N2

ξ2 +N2
G− ξGξ

)
fN

+

(
ξGN −

2ξN

ξ2 +N2
G

)
fξ +

(
GN −

2N

ξ2 +N2
G

)
f

+iσ(ξ2 +N2)g + gξξ +
2

ξ
gξ = 0, (2.24)

with the boundary conditions

f = 0, fN = 0 and g = fNN on N = R1/2, (2.25)

fN → 1 and g → 0 as N →∞. (2.26)
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These perturbation flow equations are steady, coupled and linear in the variables f and g,
and their coefficients depend upon the base flow. These equations also have the downstream
boundary condition that the disturbance must pass through the boundary as ξ → ±∞
without causing reflections. This is again resolved by using a buffer domain.

The base flow equations are solved via an iterative scheme, where they are first linearized
using Newton’s linearization technique, where for example, the nth iteration of the product
FG is written as

F (n)G(n) = F (n)G(n−1) + F (n−1)G(n) − F (n−1)G(n−1).

The resulting system of linear algebraic equations are solved using an iterative scheme until
the absolute difference between successive iterations of F and G becomes less than 10−6.
These functions then enter the coefficients for f and g which are solved simultaneously using
a standard banded matrix solver. For full details of the numerical scheme to solve equations
(2.19)–(2.26) the reader is referred to (18) and (42).

2.2.2 Numerical solution of DNS method

Both the basic flow equations and the perturbation equations are solved on a rectangular
grid of size −ξmax 6 ξ 6 ξmax and 0 6 N−R1/2 6 Nmax. The grid is discretized into 2Z−1
points in the ξ−direction and Y points in the N−direction. As we are only considering a
basic flow which is perpendicular to the nose of the body, we need only consider the upper
surface of the parabola from 0 6 ξ 6 ξmax. The grid points are concentrated close to regions
of large velocity gradients, near the wall and close to the leading edge, by using Robert’s
stretching transformation (43). This transformation takes the form

ξ = ξmax
(βξ + 1)− (βξ − 1)((βξ + 1)/(βξ − 1))1−ξ̄

((βξ + 1)/(βξ − 1))1−ξ̄ + 1
,

where ξ̄ are uniform grid points in the range [0, 1] and βξ is the stretching parameter in
the ξ–direction. This study uses βξ = 1.25 and βN = 1.005, along with ξmax = 1.5 × 106

and Nmax = 35. The value of ξmax is large enough to capture the evolution of T–S waves
down to σ = 60× 10−6, and the value of Nmax is approximately 10 times thicker than the
maximum boundary layer thickness. The value of ξ, and hence ξmax, can be converted into
the streamwise Reynolds number, Rex, by

Rex =
U∞x

∗

ν
=

1

2
ξ2 −R.

The neutral stability curve for the flat plate and parabola, calculated via the PSE, showing
the computational domain is given in figure 1.

To examine the sensitivity of the numerical results to the number of computational grid
points, some particular measure of the flow has to be compared as the number of grid points
is varied. Haddad & Corke (18) chose to do this by comparing the function G(ξ,N = R1/2).
However, although two different grid sizes may give graphically identical G(ξ,N = R1/2),
they may not give the same level of agreement for the perturbation quantities. Therefore,
figure 2 plots the absolute value of the wall vorticity on a flat plate |g/ξ| for σ̂ = σ×106 = 100
as a function of ξ for various grid sizes. In panel (a) we fix the value of Z = 2000 and vary
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Fig. 2 Plot of the wall vorticity |g/ξ| on a flat plate with σ̂ = 100, showing the effect of varying
the number of grid points Z × Y .
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Y , the number of grid points in the N–direction, while in panel (b) we fix Y = 70 and vary
Z. For each of the grid sizes in this figure, the basic flow variables F and G are graphically
identical, but clearly there are subtle differences in the perturbation quantities. Therefore,
to be able to extract the correct T–S wave information, these perturbation quantities need
to be grid invariant. In panel (b) it is seen that increasing the value of Z for a fixed value
of Y does not change the magnitude of the oscillations observed, only their wavelength and
the streamwise distance over which they are observed. In panel (a) it appears that varying
Y for a fixed value of Z makes a significant difference to the wall vorticity, however once the
T–S wave information has been filtered out from these perturbation variables (see later in
this section) the results with Y = 100 and 120 are almost identical (see figure 6). Therefore,
in this paper a grid size of Z × Y = 2000× 100 is used, as this produces results which are
practically grid independent, but the simulations do not use up all the available computer
memory, which greatly increases the computation time.

 0.4

 0.6
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 0.01  0.1  1  10  100  1000

R=0

R=1000
R=100

R=1

R=10

R=10000

ξ

G(   ,R    )1/2ξ

Fig. 3 Plot of the skin friction coefficient, G(ξ,R1/2) on a parabolic body for various values of R.
The dotted line represents the result for the Blasius boundary layer.

Figure 3 plots the skin friction coefficient G(ξ,R1/2) for various values of R. These
results are in agreement with those of (18) and (35). The horizontal dotted line is the
value λ = 0.4696 which is the skin friction coefficient for the Blasius boundary layer, and
this figure shows that all the results tend to this solution far downstream, which is a good
check on the numerical scheme.

The results for the perturbation quantities f and g consist of a Stokes wave, determined
by the local boundary layer forcing at that location, a sum of discrete T–S modes, one of
which exhibits growth in the streamwise direction and is of interest to us in this study, and
non–modal eigenmodes of the continuous spectrum (20). In order to extract the growing T–
S wave the Stokes wave is subtracted off using the same method as (18). This method solves
(2.23)–(2.26) to find both f and g, and then these equations are solved again with F = G = 0
to obtain the local Stokes wave solution. This is then subtracted from the previous result
to give the T–S wave evolution. However, as suggested by (19), this calculation does not
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remove the whole contribution of the Stokes wave and a remnant is left behind that needs
to be dealt with. Hammerton (45) showed that the large–ξ asymptotic form of the Stokes
layer at the edge of the boundary layer can be written as

ψStokes ∼ ξ

(
N − 1 + i

(2σ)1/2
ξ−1 +

iβ

σ
ξ−2 +

13λ

8σ2
ξ−4 − 39λi

8σ3
ξ−6 − 4051

√
2(1− i)λ2

256σ7/2
ξ−7 + o(ξ−7)

)
,

(2.27)
where λ = f ′′(0) ≈ 0.4696 and β = limN→0(Nf ′ − f) ≈ 1.217. However, the method of
solving (2.23)–(2.26) with F = G = 0 will only give the leading order term

ψStokes ∼ ξN,

see (46). The remnant left in the DNS scheme can be seen in figure 4 which plots
(f(ξ,N)−N) |N=3.07 for (a) σ̂ = 100 and (b) σ̂ = 200. The value N = 3.07 is chosen

(a) ξ
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Re(f−N)
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 0.2

 0  100  200  300  400  500  600  700  800

Fig. 4 Plot of real and imaginary parts of (f(ξ,N)−N)|N=3.07 (solid lines) at the edge of the
boundary layer for a flat plate, R = 0, and the large–ξ asymptotic form given by (2.27)/ξ − N
(dashed lines) for (a) σ̂ = 100 and (b) σ̂ = 200.

because it is a point approximately at the edge of the boundary layer. In this figure it can
be seen that the DNS numerical result (solid lines) agrees well with the asymptotic result
from (2.27) (dashed lines) at large ξ. This solution also contains a contribution from the
non–modal eigenmodes of the continuous spectrum.

The Stokes layer remnant and the non–modal eigenmodes are removed by ‘filtering’ out
the growing T–S wave in the manner described in (18). A one–dimensional Gaussian filter
is applied to the Stokes–layer–removed perturbation results in the ξ–direction for each
value of N . The filter is designed to suppress any disturbances which have wavelengths
that are greater than or equal to twice the expected discrete T–S wave wavelength. This
wavelength is chosen so as it is assumed that the eigenmodes from the continuous spectrum
have wavelengths greater than twice the discrete T–S wave wavelength (18). An example
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Fig. 5 Plot of the real and imaginary parts of uTS(ξ,N = 0.035) on a flat plate with σ̂ = 200
where (a) the result is not filtered, and (b) where it has been filtered. In panel (a), Im(uTS) and
|uTS| are almost indistinguishable from one another.

of this filtering process can be seen in figure 5, which plots the real and imaginary parts of
the T–S wave velocity, uTS, (a) before and (b) after filtering at N = 0.035 for a flat plate
with σ̂ = 200. In panel (a) Re(uTS) is centred on the ξ–axis as expected, but Im(uTS)
clearly shows a different behaviour as it too should be centred on the ξ–axis if it were solely
comprised of the T–S wave. This remnant has to be removed because it affects the results
by dominating the |uTS| result. Once the Gaussian filter has been applied to the result,
the Im(uTS) result is bought down to the ξ−axis and now |uTS| gives the envelope of the
T–S wave as we would expect. This makes calculating quantities such as the position of
the upper branch point much easier, and comparisons with the PSE results, which have no
Stokes layer or non–modal eigenmode contributions, will also be easier and cleaner.

In figure 6 |uTS(ξ,N = 0.073)| is plotted for a flat plate with σ̂ = 100 for the different
grid sizes 2000× 36, 2000× 70, 2000× 100 and 2000× 120 numbered 1–4 respectively. This
figure confirms that the difference seen between results 3 and 4 in figure 2(a) is greatly
reduced after filtering, and so using a 2000×100 grid in this study will give consistent, grid
independent results.

One final thing to note in this section is, the T–S wave amplitude |uTS| in this paper is
found by performing |fN − fStokes

N |, as one might expect. However, in recreating the result
in the lower panel of figure 13(b) of (18) we found that the value of |uTS| in (18) can only
be reproduced by performing |fN | − |fStokes

N |, which does not actually give the T–S wave.
Therefore, the claim made by (18) that they see T–S wave velocity profiles upstream of the
lower branch point is questionable. In fact the investigation in §3.1 here shows that this
is not the case, and what is actually observed in (18) is a combination of the Stokes wave
remnant and non–modal eigenmodes not removed by the filtering process.

Now that we know that the DNS receptivity results are independent of the grid resolution
we can go on to compare these results to the receptivity results of the PSE simulations
outlined in §2.1.
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Fig. 6 Plot of |uTS(ξ,N = 0.073)| on a flat plate with σ̂ = 100 showing the variation of changing
the number of grid points in the N–direction. Here Z = 2000 and Y = 36, 70, 100 and 120 are
numbered 1–4 respectively.

3. Results

In this section receptivity results are compared for the DNS and PSE on both a semi–infinite
flat plate (R = 0) and a parabolic body (R 6= 0) for the range of dimensionless acoustic
frequencies σ̂ ∈ [60, 230]. This range is chosen because, for the frequencies σ̂ > 230 the
DNS code produces less clean results, while for σ̂ < 60 the upper branch neutral stability
point for the DNS moves outside the range ξ values that can be studied, see figure 1. This
range also covers the range of frequencies typically used in experiments (39). The small
σ̂ limit does not concern us in this study, because Turner (29) has already shown that in
the small σ̂ limit the growth rate and mode shape results of the PSE agreed well with the
asymptotic results of Goldstein (2).

In this study we wish to calculate the position of the upper and lower branch neutral
stability points for the T–S wave over all values of N . This means a growth rate must be
considered which takes into account the peak T–S wave amplitude position varying with N
as well as ξ. For the DNS scheme this growth rate is simply given by

GR(ξ) =
∂

∂ξ
ln(umax

TS ), (3.1)

where uTS(ξ,N) = umax
TS (ξ)ūTS(ξ,N) where the maximum value of ūTS is 1. Using this

same splitting of the amplitude function for the PSE gives

∂φP
∂NP

(ξP , NP ) =

(
∂φP
∂NP

)max

(ξP )

(
∂φP
∂NP

)
(ξP , NP ),
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where the maximum value of
(
∂φP /∂NP

)
is 1. Then (2.4) shows that

uTS =
R

1/2
0 Uf

(2ξP )1/2

∂ψP
∂NP

=

(
∂φP
∂NP

)
(ξP , NP ) exp

(
θ̃(ξP )− iωP tP

)
+ complex conjugate,

(3.2)
where dθ̃/dξP = GR(ξP ) is the T–S wave growth rate which now contains all the wave
amplitude information,

GR(ξ) =
ξ

R0

iα+
ξ

R0Uf

1(
∂φP

∂NP

)max
∂

∂ξP

(
R

1/2
0 Uf

(2ξP )1/2

(
∂φP
∂NP

)max
) . (3.3)

The lower and upper branch neutral stability points are now defined as the positions where
Re(GR) = 0.

In this study the amplitude of the unstable T–S wave is required. This is achieved
for the PSE method by integrating the growth rate GR(ξ) from a position within the
matching region between the leading edge and Orr–Sommerfeld region, ξLE, to positions
downstream. The value of ξLE can take any value in the region close the leading edge,
where the downstream amplitude is independent of the choice of ξLE. This region has been
shown to exist for a flat plate by (19) and a parabolic body by (30). Thus, the amplitude
of uTS at the streamwise position ξ can be written as

uTS =
Uf (ξLE)

σ1/2ξLE

∂ψLR
1

∂N

∣∣∣∣
ξLE

exp

(∫ ξ

ξLE

GR(ξ′) dξ′

)
. (3.4)

The streamwise receptivity coefficient of (3.4) is defined as Kξ = |uTS| which agrees with
the definition in (18), and this value at the lower (branch I) and upper (branch II) branch
neutral stability points is denoted by KI and KII respectively.

Turner & Hammerton (19, 30) showed that for small values of σ̂, the PSE can be
started back in the matching region, so the values of GR(ξ) are well defined over the
entire integration region in (3.4). However, for larger values of σ̂ the PSE code cannot
be initiated back in the matching region, and the growth rate has to be patched back to
ξLE using the patching method described in (19). This patching method involves fixing
the value of the growth rate and its derivative using both the leading edge solution and
the PSE solution, and then patching the region in between using a cubic polynomial with
complex coefficients. Turner (29) demonstrated that the T–S mode amplitude results using
this patching technique agreed well with the asymptotic results of Goldstein (2).

3.1 A semi–infinite flat plate

This section focuses on the semi–infinite flat plate (R = 0). Quantities such as the position
of the upper branch point, T–S wave mode shapes and Kξ are compared, for the two
numerical methods. Here the receptivity coefficient |C1| = 0.9662.

Figure 7 plots the position of the upper branch neutral stability point, ξUB as a function
of σ̂. For the DNS results this point is calculated by plotting umax

TS for each value of ξ
and looking for the downstream turning point where Kξ has a local maximum. For small
values of σ̂ this turning point is well defined, but for larger values of σ̂ this turning point
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Fig. 7 Plot of the position of the upper branch neutral stability point as a function of σ̂ for both
the DNS (solid line, circles) and PSE results (dashed line, crosses). In panel (a) the results are
plotted in the ξ variable, while in panel (b) they are plotted in the ξ̃1 = ξ2σ4/3/λ2 variable.

becomes obscured by oscillations which are superimposed on the result. In this case the
position of the upper branch point is found by eye rather than numerically. The points in
figure 7(a) show excellent agreement between the DNS (solid line, circles) and PSE (dashed
line, crosses) results which is to be expected, as the modal T–S wave dominates the DNS
solution at this point. In panel (b) these points are plotted using the streamwise variable
ξ̃1 = ξ2σ4/3/λ2 which scales with σ and is used in (30). The main advantage of this
variable is that it scales the lower branch neutral stability point to make it O(1) which
makes plotting the evolution of the T–S wave amplitude clearer, as in figure 8. In panel
(b) the agreement between these results appears to be less good than in panel (a), but
the maximum percentage error between the two methods is just 3% for σ̂ = 230 which is
acceptable.

Figure 8 plots (a) |uTS(ξ,N = 0.035)| and (b) |uTS(ξ̃1, N = 0.035)| for σ̂ =
60, 100, 150, 200 and 230. The position of the upper branch points (PSE results denoted
by the rightmost circles) agree well for both methods, but the DNS result gives a different
position for the lower branch. For larger values of σ̂ the lower branch point is less clear
due to small oscillations in |uTS|. The difference observed between the two approaches is
due to the Stokes layer remnant and the non–modal eigenmodes not being fully removed
by the filtering process. Therefore, the DNS cannot directly give the T–S wave amplitude
at the lower branch, although this value can be calculated via the eN method, such as in
(7). The results in figure 8 are plotted at N = 0.035, which is well inside the boundary
layer, because at this value of N , the Stokes layer remnant and the continuous eigenmodes
will only make a small contribution to the solution if not fully removed by the filtering
process. This is because both these elements have mode shape peaks around N ≈ 2.5 at
the edge of the boundary layer (20). Therefore, at larger values of N , such as at those
where Kξ is calculated, there is a larger contribution of the Stokes layer remnant and non–
modal eigenmodes not removed by the filtering process. This means that either some of the
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Fig. 8 Plot of (a) |uTS(ξ,N = 0.035)| and (b) |uTS(ξ̃1, N = 0.035)| for σ̂ = 60, 100, 150, 200 and
230 numbered 1− 5 respectfully. The circles represent the positions of the lower and upper branch
neutral stability points given by the PSE simulations. Here each result has been separated by the
addition of the constant 0.0001.

Stokes layer remnant still remains, or there are continuous, non–modal eigenmodes with
wavelengths comparable to those of the T–S wave. This can be seen in figure 9 and in the
mode shape plots in figure 10.
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Fig. 9 Plot of |uTS| as a function of ξ̃1 for σ̂ = 100 plotted at N = 0.035 (result 2 from figure
8(b) with the added constant removed) and at the value of N where the maximum value of uTS

occurs, this is Kξ.

The mode shapes in figure 10 are normalized by their maximum value at that streamwise
position, for both σ̂ = 100 (left panels) and σ̂ = 200 (right panels) for various streamwise
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Fig. 10 Plot of the normalized T–S wave mode shape |uTS|/|umax
TS | for σ̂ = 100 (left panels) and

σ̂ = 200 (right panels) for ξ̃1 = 5, 10, 15, 20 and 25 from top to bottom. In each panel the solid
line gives the DNS result and the dashed line gives the PSE result.
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positions. In both cases, for the profiles at ξ̃1 = 5, which is upstream of the lower branch
point, the DNS profile (solid line) is dominated by a maximum at the outer edge of the
boundary layer, and it is this peak which contaminates the Kξ result in figure 9. The fact
that the peak mode shape lies at the edge of the boundary layer suggests that it is either
the Stokes layer remnant or a non–modal eigenmode. There is a secondary local maximum
at a value of N inside the boundary layer which approximately agrees with the position
of the PSE maximum. If the mode shapes were renormalized with respect to this value,
then the agreement between the profiles for N 6 2 would be better. This confirms that
the velocity profiles plotted in (18), which are for streamwise values ξ̃1 < 1, are not those
of the T–S wave, even though their appearance suggests that they are. They are in fact a
combination of T–S modes, non–modal eigenmodes and a Stokes layer remnant. Further
downstream the maximum peak close to the wall begins to dominate the profile until at
ξ̃1 = 15 it agrees well with the maximum peak of the PSE result. Further downstream still,
close to and beyond the upper branch point, the profiles remain in good agreement, except
that the DNS profile slightly underestimates the PSE profile for N > 2. If the real and
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Fig. 11 Plot of the real and imaginary parts of the normalized T-S wave mode shape uTS/u
max
TS

at the upper branch point for σ̂ = 100. The lines represent the PSE result while the squares and
circles give the real and imaginary parts of the DNS result respectively.

imaginary parts of the mode shapes are explicitly compared in figure 11, we find that the
imaginary part is very well approximated by the DNS solution, while the real part begins
to differ for N > 2 and thus gives the difference seen in figure 10 at large ξ̃1.

To compare the values of Kξ from the two schemes, we must first examine the patching
method outlined in (19). Figure 12 shows an example of the patching method for three
different values of ξ̃LE

1 . This figure demonstrates that the calculation of the growth rate
patch changes as the value of ξ̃LE

1 varies, where ξ̃LE
1 is the point where the matching region

with the leading edge result is assumed to occur. As ξ̃LE
1 is increased (from result 1 to result

3) the minimum value of Re(GR) decreases and this means the T–S wave is damped more
for result 3 than for result 1, before it reaches the lower branch point. Therefore, as ξ̃LE

1
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Fig. 12 Plot of Re(GR) for σ̂ = 100 where the leading edge result from (2.10) and the PSE
result are patched. The different patching results numbered 1–3 are for ξ̃LE

1 = 0.11, 0.12 and 0.13
respectively.

is increased, the value of KPSE
II will decrease until a value is reached where the quantity

|KPSE
II −KDNS

II | is minimised. At this point, we assume that the correct value of ξ̃LE
1 has

been determined. This process can be used to determine ξ̃LE
1 because earlier in this section

it was demonstrated that the T–S wave does dominate the DNS at the upper branch, so
the two methods must agree at this point. The values of ξ̃LE

1 are plotted for various values
of σ̂ in figure 13. In the σ̂ → 0 asymptotic limit, where the growth rate can be completely
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Fig. 13 Plot of ξ̃LE
1 (σ̂) showing the values for which |KPSE

II − KDNS
II | is minimised. These are

represented by the circles, while the solid lines correspond to the range of ξ̃LE
1 where KPSE

II is within
10% of KDNS

II . The dashed line is the linear least squares fit of the data, ξ̃LE
1 = 0.0993 + 0.000191σ̂.
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determined back to the leading edge region, there is a range of ξ̃1 values around ξ̃LE
1 which

give a constant value of KII . This is the matching region. However, a consequence of having
to patch the growth rate is, when the value of ξ̃LE

1 is varied, the patch itself and the value of
KPSE
II also changes. Therefore, a range of ξ̃1 values giving constant KPSE

II cannot be easily

found. Therefore, error bars are plotted around the value of ξ̃LE
1 in figure 13, given by the

solid lines, where the value of KPSE
II is within 10% of the value of KDNS

II . By assuming a

linear relation, such as the linear least squares fit marked on figure 13, the value of ξ̃LE
1 for

values of σ̂ not considered in this study can also be found. This linear relation is not valid
right back to σ̂ = 0, as (19) have shown that when the growth rate is defined all the way
back to the matching region, ξ̃LE

1 ≈ 0.05 for σ̂ = 0.016. This linear relation is however,
valid for the range of frequencies considered here.

(a) ξ1
∼

K ξ

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0  5  10  15  20  25

(b) ξ1
∼

Re(u    )TS

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0  5  10  15  20  25

(c) ξ1
∼

Kξ

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0  5  10  15  20  25

(d) ξ1
∼

Re(u    )TS

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0  5  10  15  20  25

Fig. 14 Plot of Kξ = |uTS| for (a) σ̂ = 100 and (c) σ̂ = 200, where the DNS result is given by
the solid line and the PSE result by the dashed line. Panels (b) and (d) contain the corresponding
plot of Re(uTS).
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For σ̂ = 100 and 200, the function Kξ = |uTS|, along with Re(uTS), are plotted in figure

14, for the values of ξ̃LE
1 marked with circles in figure 14. Here excellent agreement is

observed for Kξ around the upper branch point as expected. In the plots of Re(uTS) it
is clear to see that the wavelength of the DNS agrees with that of the PSE simulation, in
the region where the good agreement for Kξ is achieved. The difference in phase between
the two solutions is due to the patching method, but is of little concern here. For smaller
values of ξ̃1 the wavelength of the DNS solution is longer than that of the PSE result, but
is less than two wavelengths of the T–S wave. These figures also show that the minimum
value of KDNS

ξ does not correspond to the lower branch point of the PSE method, it actually
occurs upstream of this point. The actual minimum value of Kξ for the two methods is very
similar, but it is clear that the DNS result is not dominated by the T–S wave until some
distance downstream of the lower branch. For the larger value of σ̂ the distance between
the two minimums is smaller, but there are oscillations on Kξ making the determination
of a minimum value difficult. By considering the PSE results, the value of KI(σ̂) for the
flat plate can be determined, see figure 15. This could also be calculated from the DNS
using the eN method, see (7). The results give an approximate linear relation for KI

where the values are approximately 100 times smaller than those calculated for a Modified
Super Ellipse (MSE) by Wanderley & Corke (37). This clearly shows the importance of
considering bodies with non–zero nose curvature, as is done in the next section.
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Fig. 15 Plot of KI as a function of σ̂.

3.2 A parabolic body

This section compares results of the PSE and the DNS methods on a parabolic body in
order to understand how the introduction of a non–zero nose radius affects the distance at
which the non–modal eigenmodes persist in the DNS. In this section the Strouhal number
is limited to S ∈ [0, 0.3] as this is a typical range of values found in aircraft. A plot of the
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absolute value of the receptivity coefficient, C1 as a function of S, can be seen in figure 16,
which is a reproduction of figure 4(a) of Hammerton & Kerschen (16).
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Fig. 16 Plot of |C1| for a parabolic body as a function of S. This is a reproduction of figure 4(a)
of Hammerton & Kerschen (16).
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Fig. 17 Plot of the normalized T–S wave profiles |uTS|/|umax
TS | for S = 0.2 and σ̂ = 100 for

ξ̃1 = 5, 10, 15, 20 and 25 from top left to bottom right. In each panel the solid line gives the DNS
result and the dashed line gives the PSE result.

For a parabolic body, there is again a dominant peak in the mode shapes, for small ξ̃1,
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at the edge of the boundary layer, due to either the non–modal eigenmodes or the Stokes
layer remnant not being fully removed by the filtering process. This can be seen for S = 0.2
in figure 17. When these profiles are compared to the S = 0 result in figure 10, it can be
seen in the ξ̃1 = 15 panel that the non–modal contribution persists further downstream
than for the flat plate. Beyond ξ̃1 = 15 the agreement between the two numerical methods
improves, and by ξ̃1 = 25 the agreement is similar to that of the flat plate case. Here the
T–S wave now dominates the DNS solution.
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Fig. 18 Plot of (a) ξ̃LE
1 (S) for σ̂ = 100, where the circles indicate the value where |KPSE

II −KDNS
II |

is minimised and the solid lines give the 10% error bars. Panel (b) shows Kξ for σ̂ = 100 and
S = 0, 0.05, 0.1, 0.15 and 0.2 numbered 1− 5 respectively. The solid lines are the DNS result and
the dashed lines are the PSE result with ξ̃LE

1 given by the circles in panel (a).

Figure 18(a) shows the position of ξ̃LE
1 for the case σ̂ = 100. As the Strouhal number

varies, the position of ξ̃LE
1 changes only slightly due to the patching procedure. However,

if the 10% error bars are included then it is found that ξ̃LE
1 remains relatively constant as

S is increased. If the value of Kξ is now considered in figure 18(b) for the DNS and PSE

methods, where ξ̃LE
1 is given by the circles of panel (a), then excellent agreement is found

between the two methods for ξ̃1 & 15. This agrees with the results for the flat plate in figure
14. However, for ξ̃1 < 15 the non–modal eigenmodes in the DNS dominate the solution, and
the lower branch point of the PSE result is upstream of the minimum value of Kξ form the
DNS. As the nose radius of the parabola is increased the range over which the non–modal
eigenmodes dominate the DNS also increases. Another interesting feature of these results
is that, as for the flat plate, the minimum values of Kξ are again approximately 100 times
smaller than those for the Modified Super ellipse (MSE) given in Wanderley & Corke (37).
This suggests that the MSE has particular characteristics which give much larger T–S wave
amplitudes. The study of these characteristics however, is beyond the scope of this paper.
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4. Conclusions and discussion

This paper produced a comparison of the propagation of Tollmien–Schlichting waves on
both a semi–infinite flat plate and a parabolic body using the DNS approach of (18) and
the PSE method investigated in (19) and (30). It was found that the DNS results contained
non–modal eigenmodes or remnants of the Stokes layer, not removed by a filtering process,
that dominated the solution a significant distance downstream of the lower branch. The
significance of this is that the solution of the PSE method cannot be compared with DNS
or experimental results until it is downstream of the lower branch. The exception to this
would be if the value of KI were calculated via the DNS using the eN method with a value
of Kξ upstream of the lower branch. In this case the PSE approach is likely to give good
agreement with this result because it contains only T-S wave amplitude information.

It was also shown that the DNS scheme of (18) does not show the evolution of T–S
waves upstream of the lower branch neutral stability point as claimed by the authors. The
existence of the non–modal eigenmodes of the continuous spectrum meant that the likeness
of the mode shapes of the DNS scheme to a T–S wave upstream of the lower branch was a
mere coincidence.

Therefore, the PSE scheme here could be used to calculate the growth and propagation
of the T–S wave on bodies with modest nose radii. However, if a comparison with DNS or
experiments is required, then care would have to be taken that the comparison point is far
enough downstream so that the DNS results in the boundary layer were dominated by the
T–S wave. The results in this paper showed that this point can be a significant distance
downstream of the lower branch for free–stream frequencies used in experiments.

Although the PSE method is suitable for calculating T–S wave amplitudes at the lower
branch point, care would need to be taken when continuing the calculation to the upper
branch point, as nonlinear effects would become significant. In this case the nonlinear
version of the PSE (24) should be used.
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and for his useful comments and suggestions in the production of this article. This work
was carried out while under the support of the EPSRC under grants EP/F069855/1 and
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