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— Abstract —

The sloshing motion of two inviscid, incompressible, immiscible, shallow-
water fluid layers in a rectangular vessel with a rigid lid is considered. The
vessel is forced to oscillate in a horizontal rectilinear motion, at the lowest
resonant frequency of the system, such that the lower fluid hits the rigid
lid causing a wetting-drying scenario. The two-layer shallow-water equa-
tions are solved using a conservative quasi-monotone semi-Lagrangian
scheme which conserves the mass of the system. Two examples are con-
sidered: a low-fill example where the lower fluid does not interact with
the upper-rigid lid, in order to validate the code against an existing La-
grangian particle path scheme, and a high-fill example where there is
wetting and drying of the upper rigid lid. In both examples, results of
the semi-Lagrangian simulations are compared to existing experimental
data and good agreement is obtained.

— February 22, 2019—

1 Introduction

The challenge addressed in this paper is how to model the flow of a two-layer fluid inside
a vessel allowing for wetting and drying of the upper lid. A schematic of the configuration
of interest is shown in Figure [l below. The most obvious and comprehensive approach to
this problem is to use a full 2D or 3D simulation of the Euler equations with an accurate
surface tracking model such as the Volume of Fluid method. This approach has been
tested by the OWEL team in the context of ocean wave energy harvesters ], but was
found to be too computationally intensive and unsatisfactory for parametric studies. In
this paper we propose a simplified model for two-layer flow including wetting and drying
by using a shallow water model, thereby eliminating one flow direction.

Wetting and drying in the context of the shallow-water equations has been used before
(e.g. the review of Balzano [E]) However these methods are predominantly Eulerian, and a
second feature of interest in this study, after computational speed, is tracking of individual
parcels of fluid, suggesting a Lagrangian Particle Path (LPP) viewpoint. The authors
have had some success with LPP simulation of two-layer shallow water hydrodynamics
B] The LPP scheme has excellent energy conservation properties, but the weaknesses
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Figure 1: Schematic diagram of the two-layer system considered in this paper.

are complexity, due to layer matching, time-step restrictions, and the inability to simulate
wetting/drying.

This impasse led the authors in the direction of semi-Lagrangian methods. The most
successful semi-Lagrangian method is the Hamiltonian Particle Mesh (HPM) method of
Frank and Reich [4]. Indeed there is a variant of HPM for two-layer shallow water hydro-
dynamics ﬂa] We tested this algorithm, but the two layers double the number of particles
and computational times became prohibitive. Hence we were led in the direction of a class
of semi-Lagrangian schemes without particles. That is, even though the advective terms
are computed in a Lagrangian setting, only a mesh and not particles are used. This form
of semi-Lagrangian scheme is widely used in numerical weather prediction and climate
models [d, 7, §].

This semi-Lagrangian method permits large time-steps, which can cause many Eule-
rian numerical schemes to be unstable, while retaining a fixed Eulerian grid throughout
the simulation which aids the spatial discretization of the governing equations and en-
forcement of Eulerian constraints. Reviews of this scheme used here are given in ﬂﬁ] and
@] A prototype of surface wetting by an advancing fluid is the dam break problem and
it is known that semi-Lagrangian time-stepping is highly successful when applied to this
problem ﬂﬂ]

There are drawbacks to the semi-Lagrangian scheme. Firstly, it is not mass conserving
in its original form @], and secondly, interpolation is required which can introduce spu-
rious oscillations into the solution. A variety of methods have been proposed to make the
semi-Lagrangian scheme conservative ﬂﬂ, Eé, @, @, @, @] In this paper we adopt the
Conservative Quasi-Monotone semi-Lagrangian (CQMSL) scheme of [18]. This scheme is
chosen as it is straightforward to implement, it does not itself introduce spurious oscil-
lations, and it adds mass back into the system at points where the free-surface gradient
is largest, which are the places where the error from applying interpolation schemes is
largest.

Our motivation for studying wetting and drying of two-layer shallow-water flow is
the deep ocean wave energy converter (WEC) patented by Offshore Wave Energy Ltd
(OWEL). The OWEL WEC is essentially a rectangular box which has an opening at
one end allowing waves to enter the device. The waves are then focused by the sloping
walls of the device, which along with internal sloshing of the waves, causes the wave
amplitudes to gradually grow and touch the rigid lid, pushing air through the power-take-



off system, activating a turbine and generating electricity. The internal flow in the WEC
is a two-layer flow of air over water, confined between an upper and lower surface, and
experiments and CFD simulations of the OWEL device show the internal motion can be
considered as predominantly two dimensional in most working environments ﬂ] As the
inner dimensions of the OWEL WEC are 42m x 9m (length x height) it is reasonable to
assume the flow to be governed by two shallow-water layers of fluid of different densities.
The purpose of this paper is to identify a numerical scheme which can simulate the
wetting/drying of the upper rigid-lid, which can then be modified to more accurately
simulate wave motion within the OWEL WEC. Hence we consider the simplified problem
of a rectangular vessel with closed side walls, which is forced to horizontally translate
periodically with a prescribed frequency and amplitude. Previous works investigating this
simplified system (or similar systems), discussed below, were unable to adequately model
the wetting and drying of the upper rigid lid, however the numerical scheme presented
in this article does capture this feature of the flow. This wetting and drying is a critical
feature required to model the power-take-off in the OWEL WEC.

The study of two-layer flows in open systems is a vast topic with a substantial litera-
ture, including works by ﬂﬁ, @, Iﬂ,plﬂ, Eé, @] to name a few. However of interest here
are two-layer closed systems, where the literature is more limited. The most relevant nu-
merical studies to the present work are those of [@] and @] who studied similar systems
to that in figure [l using a numerical scheme based upon a class of high resolution wave-
propagating finite volume methods, known as f-wave methods. These methods are quite
versatile and can easily be extended to incorporate bottom topography [@] or multiple
stratified layers @] Another relevant study by [B] developed a numerical scheme based
upon the Lagrangian Particle Path (LPP) approach, in which a mapping, determined as
part of the solution, coupled the label spaces in each layer, allowing the Eulerian rigid lid
constraint

ha(w,t) + ha(z,t) = d, (1.1)

to be satisfied at each streamwise position. Here h; and hy are the layer thicknesses in
the lower and upper layers respectively, and d is the fixed height of the vessel. However,
neither the f-wave nor the LPP schemes could be modified to model a scenario where the
lower layer touches the upper rigid lid, a crucial element to modelling the OWEL WEC.

Wetting and drying of one-layer shallow water hydrodynamics has been extensively
studied, particularly for capturing the effect of flows up precluding topographies (e.g.
@, @]) These studies are predominantly based on the Eulerian form of the govern-
ing equations. Using the full governing equations, there have been numerical studies
which incorporate wetting/drying of the upper rigid lid, and these are usually based upon
Computational Fluid Dynamics (CFD) models which solve the Navier-Stokes equations
directly (incompressible and compressible), or the Reynolds averaged form of these equa-
tions. Such studies include @, é, 33, | and ﬂ@} These CFD approaches are useful
for understanding the characteristics of the flows, but the nature of the numerical scheme
means they tend to be computationally expensive, hence resolutions tend to be limited
in order to reduce run time. Also these schemes tend not to conserve the mass of the
system, as seen in @]

On the other hand, the CQMSL scheme applied to the two-layer shallow water equa-
tions allows for faster numerical evaluation whilst retaining good spatial resolution and
mass conservation. Therefore faster parametric studies, targeted at optimizing features
of the OWEL WEC such as its internal geometry, become feasible with this scheme.



The current paper is laid out as follows. In §2] we derive the governing shallow-water
equations for the time evolution of the free-surface, while in g3l we discretize the equations
and formulate the numerical scheme using the CQMSL approach. Results of this scheme
are presented in §l in particular for a low-fill example with no wetting/drying in §4.1]
while a high-fill example including wetting/drying is found in §£2l Concluding remarks
and discussion are given in §5l

2 Governing equations

This article is concerned with two-layer, shallow-water sloshing in a closed vessel with
rectangular cross-section, subject to a specified rectilinear forcing. A schematic diagram
of the setup is depicted in figure [l The vessel is a rigid body of length L and height
d and is assumed to be filled will two immiscible, inviscid fluids of constant density p;
and ps with p; > py. Here, and in what follows, the subscripts 1 and 2 on the variables
denote the lower and upper fluid layers respectively. The effect of the front and back
faces of the vessel (found at Z = j:%) are assumed to be negligible on the fluid motion,
so that a quasi-two-dimensional analysis can be considered. As depicted in figure [ we
have an inertial frame of reference with Cartesian coordinates X = (X,Y) and a body
frame system x = (z,y) which is fixed to the moving vessel. The two coordinate systems
are linked via

X=x+F({t), Y=y, (2.2)

where F(t) = esin(wt) or ecos(wt) is a stipulated, harmonic forcing with frequency w
and amplitude €.

The thickness of the fluid in each layer, denoted by h;(x,t) for ¢ = 1,2, is assumed to
be small compared to length of the vessel, so that the flow in each layer, with corresponding
horizontal velocity wu;(x,t), can be modelled using the shallow-water equations. The
Eulerian form of the mass conservation and momentum equations in each layer in the
body frame is

(p1hi)e + (prhaur)s = 0, (2.3)
1 ..
(prhiuy)e + (Plhluf + 5/319}1%) = —paghihoy — hip, — p1ha F, (2.4)
(p2ha)r + (p2hous), = 0, (2.5)
1 .
(p2hous): + (chzug + 5029@) = —paghohiy — hopy — pahoF, (2.6)

where g > 0 is the gravitational constant, p is the unknown pressure at the rigid lid
y = d, the subscripts denote partial derivatives, and the over dots signify total derivatives
with respect to ¢. Derivations of these equations can be found in ] and [@] Note that
the mass of the fluid in each layer is denoted by my; = fOL pihidx for i =1,2.
As the two fluid system is confined between the impermeable surfaces at y = 0 and
y = d the layer thicknesses must satisfy what we term the rigid lid constraint (L)) at
each x position, while the boundary conditions at the side walls are the no penetration
conditions
u;i(0,t) = u;(L,t) =0 for ¢=1,2. (2.7)



We impose boundary conditions on h; at © = 0, L, by satisfying the momentum equations,
and as our fluids are inviscid we require the contact angle of the free-surface with the
side walls to be 90° when there is no wetting/drying, or h; = 0 or hy = 0 when the
lower /upper surface is dry/wet. Therefore we impose the boundary conditions

hla: = h2a: = 07
hl = d, hg = O, at * = O, L. (28)
hl - 0, hg = d,

Antuono et al. ﬂﬁ] noted, for the forced one-layer sloshing problem, that a consequence
of requiring a 90° contact angle at the side walls is that the forcing term F' in (2.4 and
([26) needs to be modified such that
- F for0<z<L,
F(t) = { 0 forz=0, L (2.9)

which we adopt in this work, along with the condition that p, = 0 at x = 0, L. Note
that ﬂﬁ] also show that this modulation of the forcing term conserves the momentum and
energy in the final system and as such does not modify the original problem. A derivation
of (2.8) along with the restriction (2.9) are derived in Appendix [Al In this work we are
specifically interested in the first two conditions of (Z8)), i.e. we do not consider situations
where h; = 0 and the bottom of the vessel becomes dry.

Another constraint on the system can be derived by adding (2.3 to (23] and noting
that hyy + hey = 0 from ([II), leading to (hju; + hous), = 0. This can be integrated
with respect to x and the boundary conditions (27) applied leading to the mass flux
conservation condition

Uy + Uy =0, (2.10)

where we introduce the flux notation U; = h;u; for ¢ = 1,2. The introduction of the flux
notation helps with simplifying future analysis.

The two-layer system (Z3))- (28] can be reduced to solving two equations only, by using
the two constraints (ILI]) and (ZI0) to eliminate two of the variables, and by eliminating
p.. In this paper we choose to eliminate the lower layer variables h; = d — hy and
uy = hous/hy and work solely with the upper layer variables. Therefore we need to solve
the conservation of mass equation (23] along with the two momentum equations, which
combine eliminating the pressure (hy (2.4])-hq [26]) to give

201d hohao, hoy
Ust + uaUsy + ug,Us —(d /)2 )aUQsz — (;1 2 ;204[]22 + P usUs
— Ny — No

where oo = p1hg + pa(d — hs). Therefore we need an effective numerical scheme to solve
@3) and ([2II) along with the two boundary conditions on uy and hy from (27) and
(Z8). The goal of this article is to not only devise a numerical scheme which solves
these equations accurately, but which can also produce solutions where the upper rigid
lid periodically wets and drys, i.e. when hy — 0 and then becomes non-zero again.



3 The semi-Lagrangian method

The approach taken in this article is to solve the system of equations from §2] using the
semi-Lagrangian time-stepping scheme. This scheme combines a Lagrangian formulation
to discretize the convective derivative, but discretizes the forces and constraints on a fixed
Eulerian spatial grid.

By writing the convective derivative in the upper layer as

a0 0
at ot "ox’
equations (Z3]) and (2.I1]) become
dh
d_t2+h2u2x = 0, (312)
dUs 2p1d pihohog 5 prhog
—— tuly — Uy — —————U. U.
1 + U2z Us (d— ha)a 2U2 (d—hy)2a 9 T ugUs
— p)hald — I .
Lo pQ)Of( 2) (ghgw . F) —0, (3.13)
with
U9 = 0 —
{ hos = 0, o hy =0, or hy—d at =0, L. (3.14)

3.1 Spatial and temporal discretization

To solve the above system of equations, we discretize space using the M +1 evenly-spaced
grid points
L
r; = Ax(j — 1), AQ:ZM, j=1,...,M+1, (3.15)

and a time step At such that ¢, = nA¢. From this we can define the notation uj =
Uus(wj,t,) and similarly A7 = ho(z;,t,).

To construct the Lagrangian time-stepping part of the scheme, we assume a calculated
solution at ¢t = ¢,, and step forward in time to ¢ = ¢, via the characteristics

% = uy(z,1). (3.16)
That is, we wish to find u?“ and hj™! for each grid point j = 1,..., M +1. The difficulty
with this approach is that the x values at ¢, for the characteristic which passes through
xj at t = t,41 might not lie exactly at a grid point, as shown in figure 2 The z value
at time t,, for the characteristic which passes through z; at ¢, is termed the departure
point for x; and is denoted by xy;. The departure point is found by solving (BI6]) subject
to z(tns+1) = x;. We discretize ([B.I6]) using an approach based upon the implicit mid-
point rule with the Adams-Bashforth method to make the resulting difference equation
second order in At such that
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Figure 2: Semi-Lagrangian method of characteristics.

By writing 3; = x; — 2 ([BI1) can be written as the fixed point iterative formula

BJ[TH} = % [3u2 (x] - —B[T] t ) (x] - —B[T] tn — At)}

for fB;, where [r] denotes the iteration number. We iterate the above formula, for each
j=1,...,M+1, using linear interpolation to evaluate the RHS, until the absolute relative
error between successive iterations is less than 1071°. For the first time step a first order
backward Euler discretization is used.
Once the position of the departure points zy; for j = 1,..., M +1 are known, equations
BI2)-BI4) can be discretized in time using the implicit mid-point rule giving the system
At

n+1 ~n n+1 n n+1 ~n, o
pr w4 S (R R (gt ) =0,

Atpyd
G ) (U 4 U) - =
2 = 5 (5 4+ ))a
Atpl n+l | 7n n+l | In il | Fane
: 16(d — L(hIT 4 h))%a <hj * hj) (hxa’ + hmj> Uptt 4+ Uy

+8—j (it =+ By ) () (U o+ )

n+1 rrn

+<Pl4; p2) (h;wrl +%;z> (d — %(hyﬂ +E;¢)) < (hn+1 s ) Fn+1/2> _0,

J

(3.18)

U+ UM U+ U

(3.19)



for j = 2,..., M, where

>

3
|

>

j — Z(x:il; n)7
j 2(333]7 )7
uptt = U2(l’g> tnt1),

S
|
S
<%

1 o~
aj = pod+ 5(/)1 — p2) (h?H + h?> ’
0
Xxj _ a_); fOI' Y c {hn+1’un+1’ Un+1}’
_ 0
Xil?,] —= a—)x( fOI“ X E {hn7 un7 Un}7

dj

i.e. the variables evaluated at the departure points are denoted by the tilded variables.
The spatial derivatives have been discretized using second-order finite differences and the
boundary conditions become

n+l _  n+l __
uy =uy g, =0,
3hit — 4h”+1 + h”“ = 3nFL — ARy + Ry =0, (3.20)

or h"+1—0 or h"“—d for k—l,M—i—l,

using one-sided second-order spatial derivatives. Thus once the values of h u} (and

hence U ') and their derivatives are known, the 2M + 2 nonlinear equations (B:IEI)—(BEDI)
can be solved via Newton iterations until the maximum absolute relative error is less
than 107!°. In general the departure points do not fall at the Eulerian grid points, and
hence the values of the tilded variables are estimated using interpolation. In this paper
we use two interpolation methods for estimating these values, reasons for which will
become apparent in §3.2, a low resolution interpolate using linear interpolation, and a
high resolution interpolate using Piecewise Cubic Hermite Interpolation ﬂ&%] This second
interpolation scheme is exactly that implemented via the MATLAB® subroutine pchip.

In order to stop the computed result at ¢ = ¢,,,; becoming unphysical (h}1+1 < 0 for
any j =1,.... M + 1) we apply a threshold criteria where we set

ROt f Rt >
n+l __ J J =
i —{ H* if B < H (3.21)
and +1 +1
ST (Ve N e o
Uy = { 0 it h"“ < H* (3.22)

Here H* > 0 is a numerical threshold value at which we assume the flow has become
a single lower layer, hence its value identifies the thickness of the upper layer at which
we assume this layer has vanished. Ideally we want this value to be close to zero, and
in the results section we show that our model is actually insensitive to values of H* €
[1075,10719].

To aid with the stability of the numerical scheme, we adopt a variation on the weakly
compressible form of the mass conservation equation used in the works of @, @, @, @]



We incorporate terms on the RHS of (23) and (2.5]) of the form p;éh;,, for i = 1,2 where
0 > 0 is a constant diffusive parameter. Consequently this leads to the additional terms

) )
— 2224 — hy)ushage + —L°

———hoUshay,,
a a(d—hy) = 27

being added to the LHS of (B.I3]), which are then discretized using central differences.
The parameter ¢ is included to smooth over the dispersive oscillations which occur on
the hydraulic jumps during the solution procedure |39, }

The weakly compressible form of the mass conservation equations has been imple-
mented and validated in the Smoothed Particle Hydrodynamics works of @, @, @, |.
In these papers ¢ represents a numerical diffusion with 6 = cAz€ where Az is the grid
step size in the z direction, ¢ is the flow speed and ¢ is a non-dimensional constant.
There, typical values of § are of the order 1072 to 107! for the problems considered. In
this work our 0 represents a continuum diffusion and we expect § h§0)|u1max| where
|timax| > 0 is the maximum flow velocity, therefore for each example considered in 4]
(fixed hgo) and € etc.) 4 is a constant. In this study we examine the dependence of
our results on both 6 and H* in order to identify their sensitivity. Ideally both these
parameters should be as close to zero as possible, which turns out to be the case. When
0 # 0 the scheme is weakly non-mass conserving, but generally the semi-Lagrangian ap-
proach is not mass conserving, even when ¢ = 0. This can be resolved by considering the
conservative quasi-monotone semi-Lagrangian formulation.

3.2 The CQMSL scheme

As discussed in the introduction, the semi-Lagrangian approach has two failings, firstly the
interpolation scheme can introduce non-monotonic oscillations in the solution where none
are expected to be present, and secondly the scheme does not conserve mass, again due to
the interpolation scheme (see [10] for an excellent summary of the failings and resolution
approaches for the semi-Lagrangian method). In this article we resolve both these issues
by implementing the Conservative Quasi-Monotone Semi-Lagrangian (CQMSL) scheme
of [43], in particular the mass conserving version of this algorithm presented in [18]. For
full details of the algorithm the reader is directed to these two articles, and the references
therein. Here we give a brief outline the algorithm for completeness.

The algorithm works on the basis that two solutions of ([BIR)-(B.20) exist, a low
resolution and a high resolution interpolate from §3.1I] which we term the low order and
high order solution respectively. We denote these solutions with subscripts L and H
respectively on the variables h?*' and ™. The solution at the next time step is then
a linear combination of these two solutions

Wy = R+ (L= )Rt

where 0 < v;, 7 =1,...,M + 1 are constants to be determined. Note, the same combina-
tion also occurs for u;‘“ but we focus on A" as this is the quantity which needs to be
adjusted in order to conserve mass. The CQMSL algorithm aims to make the coefficients
7; as close to one as possible (i.e. to form a solution as close to the high order solution as

possible) without creating any new extrema and by conserving the mass of the system.



The values for «; are not usually written down explicitly, but are implicitly found by
the following approach: evaluate the two functions

+ n n n+1 . n

H = max{h’, T h s ray <ag <Zy},
- . n n n+1 . n

H; = min{h], b, oy <ag < x5},

for j=1,....,M + 1, and then set

B HY if bttt > HY
H;j=<{ H; ifhyt<H-,
h’};;.l otherwise.

Mass conservation then follows by defining the change in mass from the previous time-step
to the new time-step as

1M

Amfg = 5 Z [pQ (ﬁj + Hj-H) AJZ} — My,
j=1

where the trapezoidal rule has been used to evaluate the integral m po+Am sy = fOL poho dex.

If Amyy = 0 then mass is conserved and h;-“rl = H;. Otherwise define the set of weighting

functions w; and normalization factor A as

_ Amy
— — ’
% Zj:l P2 (wj + ij) Az

w; = max{0, sgn(Amys) (R — h;)°} A

where sgn(-) is the sign function. If w; =0 for all j =1,..., M + 1 then h;,“rl = H,, else
h;»”rl :Hj —)\wj, for j = 1,,M—|—1

The calculation for u?“ at each time step is the same as above except with A = 0. Finally
we again apply the threshold criteria (B2I) and (B22) to check the physical nature of
the solution. The results obtained using this algorithm, which conserve mass exactly, are
presented in §4l

4 Results

The results in this section focus on two examples of rectangular vessels forced to hori-
zontally oscillate at the lowest resonant frequency of the system. Alemi Ardakani et al.

] showed that the lowest natural frequency for free-sloshing in a two-layer flow in the
shallow-water limit is

PR ONO)
oy = I 9o = )y Thy T (4.23)

L plhg)) + chgo)

where hgo) is the mean fluid level for 7 = 1,2. The first example in §4.1] considers a case
with no wetting/drying of the upper rigid lid, and hence provides a good test example for
the semi-Lagrangian scheme, for which the results can be compared to the experiments of
M] As there is no wetting/drying it also means that results can be directly compared to

10



those of the two-layer Lagrangian Particle Path (LPP) code presented in E] The second
example in §4.2] considers a case where there is wetting/drying of the upper rigid lid, and
results can be compared to the experimental results of ] Both sets of experimental
results can also be found in the work of [@] who use a non-shallow water numerical scheme
to compare with the experiments. In both sections the two fluids studied are water with
p1 = 1025kgm® and air with p, = 1kgm® giving a density ratio ps/p; ~ 1072,

4.1 Low-fill example

Here we consider a rectangular vessel of length L = 1.2m, height d = 0.6m, filled to a
quiescent height h§°) =0.12m (hgo) = 0.48m) which has F(t) = esin(wt), and is forced
with frequency w = 2.839s71. With the smoothing parameter § = Om?s™!, the small

amplitude result with forcing amplitude € = 6 x 10~*m is given in figure Bl Despite the
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Figure 3: Plot of (a) hy(L,t) and (b) hy(z, 15) for the low-fill example when L = 1.2m,
d = 0.6m, \” = 0.12m, w = 2.839s!, € = 6 x 10~*m with simulation parameters
§=0m?~!, 6t = 1073s and M = 200. The circles in panel (a) and the dots in panel
(b) represent the results given by the LPP code of [E] with the same spatial and temporal
discretization.

numerical scheme being formulated in terms of hs, it is more intuitive to plot results in
terms of h; = d — hy, as this indicates the position of the fluid interface as observed in
experiments. These linear results show excellent agreement between the semi-Lagrangian
code and the LPP code, which is designed to be energy conserving (using a symplectic
numerical integrator). Figure Bl(a) shows the amplitude of the fluid at the right-hand
wall increasing, but not reaching a magnitude where nonlinear terms in the governing
equations become significant.

In figure @ the amplitude of the forcing is increased to € = 6 x 10~3m. In this case,
the nonlinear effects become significant and the internal sloshing wave steepens into a
travelling hydraulic jump. Agreement between the semi-Lagrangian scheme and the LPP
scheme is excellent up to ¢t ~ 9s, where the LPP scheme, and the semi-Lagrangian scheme

11



0.18 \ 0.13

2
0.16 / 10
! |
0 |
:»':‘\\ E"‘:
0.14f 8 ey
ORI 0.12}
hl(L7t) ;/Ni :/\‘;)
oty ' [/
7 v H x\
0.12¢# D\ /‘
/1 O i

01f

0.08

0131

0121

h](.’l),8) |

0111

01pT

Figure 4: Plot of (a) hy(L,t), (b) hi(z,3) and (b) hi(x,8) for the low-fill example when
L =12m, d = 0.6m, hﬁ“) = 0.12m, w = 2.839s7!, € = 6 x 1073m with simulation
parameters 0t = 107%s, M = 200 and 6 = 0,1072,1072, 107! m?s~! numbered 1-4 re-
spectively. The circles in panel (a) and the dots in panel (b) represent the results given
by the LPP code of B] with the same spatial and temporal discretization.

with 6 = Om?s™!, begin to form fine scale oscillations, which in fact cause the semi-
Lagrangian scheme to fail to converge around ¢ =~ 10s. These oscillations are numerical
artifacts due to dispersive shock waves forming on the fluid interface as the steep wave
front hits the side wall of the vessel and the free-surface ‘flips through’ [@] At this point
our shallow-water assumption breaks down due to the neglected vertical accelerations
becoming significant, and this manifests itself in the solution via these oscillations. The
dispersive shock waves can be clearly seen on result 1 of figure[d|(c). The introduction of the
smoothing term ¢ to the scheme smooths out these dispersive waves without significantly
affecting the overall system behaviour for ‘small enough’ 6. We see in figure dl(a) and [l(c)
that § = 1073 m?2s~! is almost sufficient to completely remove the dispersive oscillations
while leaving the side-wall elevation almost indistinguishable from the § = 0m?s™! result.
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Increasing the value to § = 1072 m?s™! has the small effect of reducing the side-wall

elevation, but gives a fluid interface which is much smoother and more like a steep wave
rather than a hydraulic jump. Clearly § = 107*m?s™! is too large to be considered
as a suitable smoothing value and damps the waves too much. These results suggest a
value of § € [1073,1072)m?s™! for this example, however this is explored further in the
convergence results which follow.

M At [ I(AL M, L) | hi(0,10) | M At [ I(At, M, L) | (0, 10)
100 1073 | 0.13236 0.06729 300 | 2 x 107* | 0.14142 0.06569
100 | 2 x 1074 | 0.13261 0.06911 300 1074 | 0.13398 0.06589
100 10~ | 0.13205 0.07058 300 | 2 x 107° | 0.13271 0.06589
100 | 2 x 107° | 0.13220 0.07075 300 107° | 0.13171 0.06589
100 1075 | 0.13239 0.07084 || 400 10~ | 0.13086 0.06562
200 1073 | 0.14541 0.06590 400 | 2 x 107° | 0.12983 0.06563
200 | 2 x 1074 | 0.14988 0.06618 || 400 1075 | 0.12895 0.06564
200 10~ | 0.14869 0.06698 500 10~% | 0.12894 0.06550
200 | 2 x 1075 | 0.14747 0.06706 | 500 | 2 x 1075 | 0.12797 0.06551
200 10~° | 0.14602 0.06707 500 107° | 0.12713 0.06552

Table 1: Table of convergence data to accompany figure [Bl

The convergence properties of the numerical scheme for the low-fill example with
¢ = 6 x 107?m are considered in figure Bla), and table[ll Here we plot and give values of

15
[(At,M,x):/ hy(x,t)dt, (4.24)
0

at © = L for various values of At and M and the table also gives values of h4(0,10).
The results show that in this case the scheme converges in the limit of large M and small
At, but does so slowly. However, this slow convergence is due mainly to the nature of
the integrand in (£24)), and the mass conservation part of the CQMSL scheme. When
we plot hy(L,t) in figure Bl(b) for At = 5 x 107°s and M = 100,200, 300, 400, 500
we see that all 5 results are very similar, with the M = 200, 300,400 and 500 results
almost indistinguishable on this plot. If we consider the spatial form of the interfaces
at t = 10s in figure Bl(c), we see the convergence more clearly, in fact for M = 300,400
and 500 the interface profiles are almost identical. In figure Bld) we plot hy(z, 10) for
M = 400 and At = 107%,5 x 107® and 10~°s and we again note that all profiles are
almost indistinguishable.

In figure [6] and table 2] we consider the convergence properties of the model for € =
6x 1072 m as a function of the diffusion parameter §. Table@along with the corresponding
results in table [[lshow that for each value of § the model converges for large M and small
At , but does so more slowly for smaller ¢ values. The reason for this is again due to the
flip through of the free-surface at the wall producing dispersive shock waves which are still
present in the solution as seen in figure [ for § = 1073 and 2 x 1072. These results show
that there exists a range of § values for which the dispersive waves are removed from the
solution, but where the shock solution is not over damped. This range of § needs to be
calculated via numerical experiment. For low-fill examples with no rigid lid interaction,
the free-surface flip through at the wall means that we require 6 = O(1072) to remove
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Figure 5: Plot of the convergence properties of the low-fill example with L = 1.2m,
d=06m, K'Y =0.12m, w=2839s"!, ¢ =6 x 102m and § = 10-2m?s~!. Panel (a)
plots I(At, M, L) with (+) M =100, (x) M =200, (x) M =300, () M =400 and
(W) M = 500. Panel (b) plots hi(L,t) and panel (c) plots hy(z,10) with At = 107s
and M = 100,200, 300,400, 500 numbered 1-5 respectively. Panel (d) plots h;(z, 10) with
M =400 and At =107%,5x 107® and 107 °s.

the dispersive shock waves, however, we will see in §4.2] that when the effect of the rigid
lid is significant, this flip through does not occur (see @]) and so we find a smaller value
of §(= 0(1073)) is sufficient, which means less numerical damping is required.

Finally, to compare our simulation results to experimental data, we need to convert
fluid layer thickness data into pressure data. For this low-fill example we compare our
results against the experimental results of ﬂﬂ], who present results at a pressure sensor
attached to the bottom of their vessel close to the right-hand wall, * = L (see @] for
a schematic diagram of the experimental setup). Thus we determine the pressure at this
point via

pr(L,t) = pighi(L,t) + pagha(L, 1),

14



M At || I(At, M, L), | I(At,M,L) | I(At,M,L) | h1(0,10) h1(0,10) h1(0,10)
5=5x103|6=2x103|6=10"73 5=5x103|6=2x103|86=10"3
300 | 5x 107" [[ 0.15795 0.13116 0.13120 0.06588 0.07020 0.07144
300 | 2 x 107° || 0.15801 0.13036 0.12788 0.06602 0.07007 0.07129
300 1075 || 0.15795 0.13066 0.12669 0.06605 0.07014 0.07128
400 | 5 x 107° || 0.15835 0.13659 0.13837 0.06554 0.06721 0.07000
400 | 2 x 1075 || 0.15791 0.13366 0.13420 0.06562 0.06860 0.07012
400 1075 || 0.15768 0.13479 0.13295 0.06564 0.06824 0.07019
500 | 5x107° || 0.15414 0.14164 0.13939 0.06533 0.06551 0.06940
500 | 2 x 107° || 0.15299 0.14420 0.13760 0.06536 0.06651 0.06847
500 1075 || 0.15244 0.14717 0.13568 0.06538 0.06632 0.06857

Table 2: Table of convergence data to accompany figure [61
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Figure 6: Plot of hy(z,t) for the low-fill example with L = 1.2m, d = 0.6 m, hgo) =0.12m,
w=2839s7!, e =6x102m, M = 400 and At = 107°s at (a) t = 3s and (b)
t = 10s. In each panel lines 1-4 represent § = § = 1072,5x 1072,2x 1072 and 1073 m?s~!
respectively.

which comes from the shallow-water assumption that the pressure is hydrostatic. In order
to compare our shallow-water results to the fully two-dimensional experiments of [@] we
set up our simulation such that the vessel has the same dimensions and with the same
fluid depth. The experiment was conducted with a forcing frequency w = 3.611s71, but
if we were to use this value in our shallow-water model we would not see a resonant
response, and hence we would not encounter the resonant waves seen in the experiment.
Therefore we force our simulation at the lowest shallow-water resonance for this problem
of w = 2.839s7!, from (£23) in order to see a resonant response, and then we stretch
the time points for the experimental data to equate the forcing frequency with that in
our simulation. The comparison of pp(L,t) is given in figure [7] with the experimental
data given by the dashed line. The results show good agreement in the magnitude of
the pressure peaks and troughs. As expected the experimental data is noisier than the
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Figure 7: Plot of pr(L,t) (in Pa) for the low-fill example with L = 1.2m, d = 0.6m,
A =0.12m, w=12.839571, e =6 x10"2m, § = 102 m?~!, At = 10~*s and M = 400.
The dashed line gives the experimental results of @] in which we have stretched their
time variable in order to equate the forcing frequencies.

simulation, but the shallow-water approximation does a good job at capturing both the
qualitative and quantitative pressure variation. The only minor difference is the shallow-
water result has a more gradual drop in pressure from its maximum value to its minimum
value, thus there is a more gradual fluid motion in the simulation, compared to the more
rapid fall of the fluid at x = L in the experiment.

4.2 High-fill example

Here we consider a rectangular vessel with length L = 0.8 m, height d = 0.5m, filled to a
quiescent height h§°) = 0.4m (hgo) = 0.1m) which has F(t) = ecos(wt), and is forced to
oscillate with frequency w = 7.760s™! from ([{23) with an amplitude € = 10~?m.

In figure [§ and table [3 we consider the convergence of the semi-Lagrangian scheme
for this high-fill example with smoothing parameter § = 1073 m?2s~! and H* = 10~ m.
In particular in figures B(a){8(c) are plots of hq(0,¢), hi(x,5) and hy(x,12) respectively
for At = 107*s and M = 200, 300,400,500 labelled 1-4 respectively. In panel (a) the
M = 200 result has a lower interface height at = = 0 in the troughs of the solution, while
the other three results are almost indistinguishable from each other suggesting the scheme
is converging in the large M limit. This can also be seen in figures[8(b) and [§l(c) where for
M =400 and M = 500 the two interface results are very similar, while for M = 200 and
M = 300 the interfaces are a similar shape, but are slightly time delayed with the speed
of the hydraulic jump not agreeing. In figure B(d) we consider I(At, M,0) and we see a

16



M At | I(At,M,0) | hi(L,12) || zw(t = 5)
100 | 2 x 107% | 5.97358 0.30462 || 0.600
100 1074 | 5.97440 0.30462 || 0.592
100 | 5% 107° | 5.98420 0.30386 || 0.616
100 | 2 x 107° | 5.99197 0.32264 || 0.744
100 1075 | 5.99487 0.30772 || 0.664
200 | 2 x 1074 | 5.97473 0.37186 || 0.616
200 1074 | 5.97387 0.30112 || 0.616
200 | 5x 107° | 5.97416 0.30167 || 0.620
200 | 2 x 107° | 5.97441 0.30192 0.596
200 107° | 5.97434 0.30207 || 0.612
300 1074 | 5.97767 0.29458 || 0.616
300 | 5x 107" | 5.97544 0.29893 || 0.616
300 | 2 x 107° | 5.97530 0.29936 || 0.611
300 1075 | 5.97534 0.29951 || 0.597
400 1074 | 5.97929 0.29317 || 0.620
400 | 5 x 107° | 5.97867 0.29375 || 0.620
400 | 2 x 107° | 5.97799 0.29438 || 0.602
400 1075 | 5.97706 0.29595 || 0.610
500 | 5 x 1075 | 5.97970 0.29306 || 0.619
500 | 2 x 107° | 5.97916 0.29346 || 0.608
500 1075 | 5.97881 0.29362 || 0.606

Table 3: Table of convergence data to accompany figure [8

similar behaviour as for the low-fill example (which is supported by the values in table ),
with the scheme converging slowly for large M and small At. In table[3 we also consider
the value x,,, which is the ‘water line’ value, at ¢ = 5s. This value corresponds to the
x value at which the free-surface intersects with the rigid lid, i.e. when hy = H*. For
the free-surface profiles in figure B(b) it is worth highlighting that when the free-surface
wets the rigid lid, the shallow-water model predicts just one waterline point, while in
experiments ﬂ@] an air bubble is pinched off in the top corner of the vessel. Theoretically
and numerically predicting the existence of this air bubble requires using a compressible
potential flow theory in which vertical flow velocities and accelerations are significant.
The existence of this bubble causes small oscillations to occur in the pressure field which
will not occur in our model [@, , @] For the remainder of the results in this section
we set M = 400 and At = 10~*s in order to compromise between computational speed
and accuracy.

The dependency of the scheme on the model parameters ¢ and H* are considered
in figure @ with the corresponding data given in table @l The results in panels (a) and
(b) show that, again with & = 107 or 107?m?s™! the results are very similar, but
d = 1071 m?s™! is again too large and too much energy is removed from the fluid motion.
Varying the model parameter H* € [107°,107'] has only a small effect on the results, as
seen in figure @(c) where we plot a close up of the interface at ¢ = 7s. This corresponds
to a time when the interface is in contact with the rigid lid. Here we see that for H* =
107%5,10719, 1078 and 10~°m, the interface difference is small and is confined to a region
close to the lid. Based upon these results we choose to use § = 1072 m?s™! and H* =
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Figure 8: Plot of the convergence properties of the high-fill example with L = 0.8m, d =
0.5m, 2\” = 0.4m, w = 7.760s7", ¢ = 10~2m and § = 10~*m2s~'. The Panels plot (a)
hi(0,t), (b) hy(x,5) and (c) hy(x,12) all with At =2x10~* and M = 200, 300, 400, 500
numbered 1-4 respectively, while panel (d) plots I(At, M,0) with (+) M = 100, (x)
M =200, (+) M =300, (0) M =400 and (W) M = 500.

B H* | I(At, M,0) | h1(0,13) || 2u(t =T7)
1071 [ 1071° | 6.02117 0.37465

1072 | 10715 | 5.99029 0.36800 || 0.208
1073 | 10715 | 5.97930 0.37086 | 0.212
1073 | 10719 | 5.97920 0.37088 || 0.218
1073 | 107® | 5.97918 0.37087 | 0.214
1073 | 107° | 5.97911 0.37090 | 0.220

Table 4: Table of convergence data to accompany figure [
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Figure 9: Plot of (a) hy(0,t) and (b) hy(z,13) for the high-fill example when L =
0.8m, d = 0.5m, A\” = 04m, w = 7.760s7!, € = 10~2m with H* = 10~®m and
§ = 1073,1072,10"  m?s~! numbered 1-3 respectively. In panel (c) we plot hy(x,7) for
d =102 and H* =107%,1071°,107® and 10~°m numbered 1-4 respectively.

10~ m for the remaining results in this section.

One concern with the semi-Lagrangian scheme is how well it copes with a flow that
periodically changes direction, as many problems for which it is used often have a preferred
direction. In figure [0 comparing two simulations, one with € = 107?m and another with
—e=10"%m (i.e. initially moving in the opposite direction), we observe that the forms of
hy(0,t) and hi(x,11) are identical (Note, we have plotted hi(L,t) and hy(L — x,11) for
the —e = 1072 m simulation for comparison). In fact for all time values for this simulation
the interface profiles are identical, thus this semi-Lagrangian approach is suitable for
simulating this type of sloshing problem.

Finally, for this high-fill wetting/drying example we make a comparison between our
simulation and experimental data of [45]. Note that their forcing magnitude was 2 x
107?m and their frequency was w = 5.938s™! (a non-shallow-water case), compared to
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Figure 11: Plot of py(0,¢) (in Pa) for the high-fill example with L = 0.8m, d = 0.5m,
hgo) = 04m, w = 7.760s7! and € = 107'm. The dashed line gives the experimental
results of @] in which we have stretched their time variable in order to equate the forcing
frequencies.

e =10"'m and w = 7.760s~! for our simulation. Therefore we again stretch the time
values for the experimental data to equate the forcing frequencies in order to make a

20



comparison. Note that as in §4.1] we do this because we need to force our vessel at a
resonant frequency in order to generate a large free-surface response. Also, we are not
comparing equivalent forcing amplitudes, but it is known that shallow-water simulations
overestimate the wave amplitudes in non-shallow-water conditions, when compared to
non-shallow-water simulations and data, hence our smaller amplitude should still give a
good qualitative comparison with the data, which is our aim. The experimental data is
taken from a pressure sensor placed at = = 0, 0.0525m from the bottom of the vessel,
hence the pressure at the sensor for our result is

pi(0,8) = prg(ha(0, 1) — 0.0525) + paghs(0,1). (4.25)

The comparison in figure [[T] shows reasonable agreement between simulation and experi-
ment. The experimental time series is taken mid-cycle, hence the poor agreement with the
simulation initially, but after this initial time period t € [0, 1], the peaks in the pressure
agree relatively well with the points where py(0,t) reaches, and leaves, the value 4500 Pa,
which corresponds to times when the upper rigid lid is initially wetted, and then dries
completely, on a forcing cycle. As our simulation is a shallow-water simulation and the
experiment is not in this limit, we also see that we over-predict the troughs in the pressure
for this high-fill case, but as our aim for this semi-Lagrangian scheme is to investigate
shallow-water sloshing in wave energy converters these results are acceptable.

5 Conclusions and discussion

This article contains a numerical scheme to investigate forced rectilinear sloshing of two
shallow-water, inviscid, incompressible, immiscible fluids in a rectangular vessel with a
horizontal rigid lid. The vessel was forced to oscillate with the lowest resonant frequency of
the system such that the amplitude of the lower, more dense, fluid increases in magnitude
until nonlinear effects become significant. The numerical scheme devised in this article
was based upon the conservative quasi-monotone semi-Lagrangian (CQMSL) algorithm
which conserves fluid mass and generates no spurious oscillations into the solution. The
main advantage of using the CQMSL-form of the semi-Lagrangian method, over other
shallow-water schemes in the literature is that wetting and drying of the upper rigid lid
(or the bottom of the vessel) can be captured.

We considered two examples based upon water/air (p2/p; &~ 1073) experimental se-
tups: a low-fill example where the upper rigid lid remains dry, and a high-fill example
where the upper lid undergoes wetting/drying over each period of the forcing. The results
of the low-fill example were compared to the Lagrangian Particle Path (LPP) code of [E]
and the experiments of @] The low and moderate amplitude simulations were found
to be in excellent agreement with the LPP simulations: while the larger amplitude sim-
ulations were in good agreement with the experiments. The peak and trough values of
the pressure variation quantitatively agree with experimental measurements, although the
semi-Lagrangian scheme does not have the high-frequency oscillations in pressure present
in the experiment (see figure ). In the high-fill example the fluid interface runs up the
side-walls of the vessel and subsequently wets the upper rigid lid. When the vessel is then
forced to move in the opposite direction the rigid lid dries and the bulk of the fluid sloshes
across the vessel and up the opposite side wall. This periodic wetting/drying of the rigid
lid could not be captured by the LPP scheme used to validate the semi-Lagrangian scheme
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in the low-fill example. Results for this example were in reasonable qualitative agreement
with the experimental results of ]

The motivation for this idealised problem is to use the proposed scheme on the wave-
energy converter (WEC) based upon the patent of Offshore Wave Energy Ltd (OWEL),
in which the power-take-off mechanism relies on pushing trapped air, via a wetted upper
surface, through the power-take-off unit. As noted in the introduction, experimental
and CFD studies of the OWEL WEC show the interior 3D motion can be modelled
as predominantly 2D, with some inner topography which is used to focus the waves.
The topography can be included in the present numerical formulation by using the two-
layer equivalent of the shallow-water equations analysed in [@] Modelling the WEC
also means incorporating influx-eflux boundary conditions at the side-walls, which would
model waves entering the converter at one end and exiting via the extraction route at the
other end. The mechanism for introducing this is to modify (2.I0]) such that the combined
flux is some given time-dependent function, as successfully implemented in ] Extending
the current semi-Lagrangian scheme to include rotation (pitch, and potentially roll and
yaw) and vertical translations together with the horizontal translations considered here
is also of great interest.

Acknowledgements

The authors would like to thank Y. G. Chen for supplying the experimental data used in
this publication ]

— Appendix —

A Derivation of (2.8)

In this appendix we highlight the derivation of (Z.8) and the consequences of this derivation
in ([Z9). Firstly, note that (ZI1]) is the momentum equation derived by combining (2.4))
and (2.6]) and eliminating h; and w;. Thus at * = 0 and L, uy = 0 for all time, hence
ug: = 0. Substituting these into (2.11]) leaves

ha(d — hs) (ghh - F) —0.

Clearly ho =0 and d — hy = h; = 0 are solutions. For the other solution, we require
the interface to have a 90° contact angle with the side wall at these points because our
problem is inviscid and does not include surface tension effects, thus hy, = 0. Then
for consistency we get condition (Z9). Differentiating (ILT]) with respect to x then gives
that hi, = 0. Finally note that substituting this information into (2.6]) gives p, = 0 at
r=0,L.
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