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Abstract

The coupled interaction between a sloshing fluid in a partially-filled container suspended as a
bifilar pendulum is investigated. The sloshing fluid has a free-surface upon which waves are
generated this fluid contributes a restoring force to the container motion by its weight through
the wire suspensions and the free-surface waves may either enhance or diminish the restoring
force through hydrodynamic interaction with the container walls. Results are presented for
inviscid, irrotational sloshing in both a two-dimensional hyperbolic container and a three-
dimensional hyperboloid container. Frequency results for the coupled system are presented
for various pendulum lengths and fluid fill heights. It is found that for long pendulum lengths
the container and the fluid oscillate in a synchronous motion when the vessel is released with
typical experimental initial conditions, but for pendulum lengths below a given threshold
the container and fluid oscillate asynchronously from the same initial condition.



1 Introduction

The study of the coupled sloshing dynamics of containers partially-filled with a fluid is of

practical importance in many physical applications. Unlike situations where the sloshing

motion is bought on by the prescribed motion of the vessel, the coupled problem, where the

vessel motion depends on the fluid motion within, brings a new dimension which can increase

or decrease the amplitude of the sloshing motion. This problem is of practical interest in

situations such as the transport of liquids along roads, maritime fluid transport and the

dynamics of the sloshing fuel in rockets and aircraft. A theory for the horizontal oscillations

of a beam with a liquid-containing cavity was reported by [1] and other problems of this type

related to space vehicle technology may be found in a NASA publication edited by [2]. The

works of [3], [4] and [5], and the references herein, highlight many other related problems to

coupled sloshing.

Of interest in this paper is Cooker’s sloshing experiment [6]. In this experiment a rect-

angular container partially-filled with fluid is suspended as a bifilar pendulum by suspension

cables of equal length l. The container is set into a swinging motion in which the base of

the tank remains horizontal throughout its motion so that the fluid motion can be consid-

ered as irrotational. This experiment is in the spirit of those conducted by [7], i.e. it is

simple and easy to construct and yet highlights a fundamental question in fluid mechanics,

here being the question of fluid-container interaction. For small initial displacements of the

container, such that the container motion is approximately horizontal, Cooker found that

after some initial transient sloshing motion, the system settled down to periodic oscillations

with frequency ωS < ω0 where ω0 =
√
g/l is the frequency of the dry container, and g is

the gravitational constant. In these oscillations the system was synchronous and the fluid

in-phase with the pendulum while for other initial conditions the system was asynchronous,

with the fluid motion out-of-phase with the container. In this case the frequency of the

container was ωA, such that ωS < ωA.

Cooker developed a linear theory to explain the above observations using an inviscid

shallow-water model which assumes that the pressure on the container walls used to calcu-

late the restoring force of the fluid is hydrostatic. The resulting transcendental characteristic

equation for the system frequencies was solved numerically and the resulting frequency spec-

tra was in very good agreement with the experiments. Cooker also formulated the theory for

a more general two-dimensional hyperbolic geometry by considering linear potential theory

for the fluid, but with the hydrostatic pressure assumption. Both synchronous and asyn-
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chronous frequencies of a planar free-surface oscillating about its central nodal line were

reported, again showing that ωS < ωA. The limiting form of the container, a wedge with 90◦

vertex angle, was also considered.

Weidman & Turner [8] presented, inter alia, experimental results on the motion of the

90◦ wedge suspended as a bifilar pendulum, and found that the hydrostatic pressure as-

sumption of Cooker [6] underestimated the synchronous frequencies measured. Using full

potential theory for which the hydrostatic pressure assumption is removed, they obtained

excellent agreement between theory and experiments. Although Cooker derived the charac-

teristic equation for the frequencies of motion of the hyperbolic container, albeit using the

hydrostatic assumption, he did not investigate the interesting behaviours inherent in the sys-

tem. Roberts [9] partially formulated the potential theory for the hyperbolic container, but

focussed on an analysis for the limiting case of a 90◦ wedge. In the current paper we present

the corresponding characteristic equation for the non-hydrostatic pressure assumption, and

investigate features of its solution for both the two-dimensional hyperbolic container and the

equivalent three-dimensional hyperboloid container.

The theory for oscillations of a container suspended as a bifilar pendulum executing small

sideways oscillations reveals two fundamental parameters. One is the ratio of fluid mass m

to container mass m0 given by M = m/m0 and the other is the pendulum length l. Indeed,

the suspended bifilar sloshing problem has received much attention since the publication of

[6]. Yu [10] extended the shallow-water theory for the rectangular and cylindrical container

to the non-shallow-water scenario and found the eigenmodes for these problems consist of

the shallow-water eigenmode plus a sum of vertical eigenmodes [11]. Results were presented

showing the dramatic effect of non-shallow fluid depths. Alemi Ardakani et al. [12] demon-

strated a ‘resonance’ effect in the rectangular container system, where anti-symmetric fluid

eigenmodes, which couple to the container motion, can have the same oscillation frequency

as the symmetric fluid eigenmodes, which exhibit zero force on the container. Weidman

& Turner [8] also conducted experiments on multi-compartment rectangular containers and

showed that measured frequencies were in good agreement with those obtained from the

baffled container theory of [13]. Herczynski & Weidman [14] produced potential flow the-

ory and experiments for the free-sloshing motion (l → ∞) of fluid-filled boxes, cylinders,

wedges, cones, and cylindrical annuli containers. In this case the sole driving force is the

fluid sloshing against the container walls.

Weidman & Turner [8] also investigated the initial value problem for both rectangular

and cylindrical containers suspended as bifilar pendulums. That study was motivated by
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experimental results showing that the frequency of container oscillations switch to higher

frequency modes as M → 0. The investigation highlighted the importance of considering

the initial-value problem in order to fully understand experimental results. The initial-value

problems for the hyperbolic and hyperboloid containers are also considered here. We find

that using initial conditions readily obtained in laboratory experiments, i.e. simply pulling

back the container from equilibrium and releasing it gently with the fluid quiescent, both

synchronous and asynchronous motions are possible depending upon the pendulum length l.

The presentation is laid out as follows. In §2 we present the potential theory for a vessel

suspended as a bifilar pendulum, with the characteristic frequency equation derived for the

2D hyperbolic container in §3 and the 3D hyperboloid container in §4. Numerical results are

presented in §5.1 for a fixed vessel geometry which is partially filled to different fluid levels.

Section 5.2 presents the corresponding initial value problem and investigates the transition

from synchronous to asynchronous sloshing. A summary, discussion and concluding remarks

are given in §6.

2 Potential flow theory

We take a coordinate system attached to the container suspended as a bifilar pendulum, as

shown in the schematic diagram in figure 1, with the origin O placed at the centreline of

the vessel on the quiescent free-surface. The container is moving horizontally with periodic

motion X(t) = X0 cosωt of frequency ω in the inertial system with respect to the origin O∗.

The free-surface of the container is located at z = 0 symmetrically placed with respect to

the sidewalls S. In what follows, we use the notation and formulation of [5] (§2.4.2). The

potential function Φ(x, y, z, t) for linear motion of an inviscid, incompressible, irrotational

fluid in container V must satisfy Laplace’s equation

∇2Φ = 0 (in V ). (2.1a)

This equation is solved with the kinematic free-surface condition

ηt = Φz, (on z = 0) (2.1b)

and the dynamic free-surface condition

Φt + gη + xẌ = 0, (on z = 0) (2.1c)
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where η(x, y, t) is the free-surface displacement and g is the gravitational constant, along

with the impermeability condition on the container walls

n ·∇Φ = 0, (on S) (2.1d)

where n is the direction of the outward unit normal. Note here that the subscripts t and z

denote partial derivatives with respect to these variables, and the over-dot represents a full

derivative with respect to t.

The motion of the container is governed by Newton’s second law of motion

m0ax = FR + FH (2.2)

where m0 is the mass of the container, ax = Ẍ(t) is its horizontal acceleration, FR is the

restoring force caused by the pendulum displacement, and FH is the hydrodynamic force of

the fluid acting on the container side-wall in the direction of the positive x-axis. For small

displacements

FR = −(m+m0)
gX(t)

l
= −(m+m0)ω

2
0X(t) (2.3)

where m is the mass of liquid in the container, l is the length of the pendulum supports, and

ω0 =
√
g/l is the frequency of oscillation of a dry container. Also

FH =

∫

S

p(S)(n · i)dS (2.4a)

where i is the unit vector in the direction of the positive x-axis and p(S) is the potential

pressure in the moving coordinate system on the container wall given as

p(S) = −ρ(Φt + gz + xẌ), (2.4b)

where S is the quiescent wetted surface, i.e. the still-water wetted boundary below z = 0.

For both containers we assume the free-surface profile

η(x, t) =
η0
H
x cosωt (2.5)

where x is used for the two-dimensional hyperbolic container and x = r cos θ is used for the

hyperboloid container, η0 is the amplitude of wave displacement, and H is the maximum

depth of the containers. Then Eq. (2.1b) becomes

Φz = −η0ω
H

x sinωt (2.6)
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and suggests a solution of Laplace’s equation given by

Φ(x, y, z, t) = −η0ω
H

x z sinωt+ F (x, y, t) (2.7)

which requires Fxx = 0 giving F (x, y, t) = xF1(y, t) + F2(y, t).

Combining the dynamic and kinematic free-surface conditions (2.1b,c) gives

Φtt + gΦz + x
...
X = 0 (on z = 0) (2.8)

and inserting the posited solution (2.7) yields

x
[
F1tt −

gη0ω

H
sinωt+

...
X
]

+ F2tt = 0 (on z = 0). (2.9)

This provides two condition equations, one yielding F2(y, t) = a(y) + b(y)t. Finite solutions

are obtained for b = 0 and since we expect Φ to be independent of y, a just gives a constant

shift in Φ so it is also set equal to zero. Integration of the term in brackets gives

F1(y, t) = − gη0
Hω

sinωt− Ẋ + c(y)t+ d(y) (2.10)

and for the same reason as for F2(y, t) we take c = d = 0. For the assumed periodic container

motions X(t) = X0 cosωt this furnishes the potential function

Φ(x, z, t) = x
[
X0ω −

gη0
Hω
− η0ω

H
z
]

sinωt (2.11)

where the reader is reminded that the pre-multiplier is taken as the Cartesian coordinate x for

the hyperbolic container and as cylindrical coordinates r cos θ for the hyperboloid container.

At this point in the development we pursue the analysis separately for the two containers.

3 The hyperbolic container

For the quasi-two-dimensional container we take the container wall profile as z = −h(x)

and assume the cross-section is uniform in the y-direction, between plane vertical walls of

separation width W . Inserting this into the impermeability condition (2.1d) gives

dh

dx
= −

[
Φz

Φx

]

z=−h(x)
. (3.1)

Using (2.11), simplifying, and separating variables provides the equation for the container

shape (
h(x)− g

ω2
+
X0H

η0

)
dh = x dx. (3.2)
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Upon integration we follow [9] and set the quiescent free-surface h = 0 at x = ±c to obtain

h2 + 2

(
X0H

η0
− g

ω2

)
h = x2 − c2. (3.3)

This gives the container profile z = −h(x) as the hyperbola

z(x) = −Q+
√
x2 +Q2 − c2 (3.4a)

where

Q =

(
g

ω2
− X0H

η0

)
(3.4b)

in which |c| ≤ Q. We find Q in terms of the geometry of the hyperbola by setting z = −H
(the maximum fluid depth) at x = 0 giving

Q =
H2 + c2

2H
. (3.5)

The sidewalls of the hyperbolic container have slope ±1 as x→ ±∞ showing the asymptotes

tend to a 90◦ wedge with apex at z = −c on the centreline.

The volume of the liquid in a hyperbolic container of width W , length 2c and depth H

is given as

V = W

∫ c

−c

∫ 0

−h(x)
dx dz. (3.6)

In the sequel we define K2 = Q2 − c2 to find h(x) and its derivative, viz.

h(x) = Q−
√
K2 + x2,

dh

dx
= − x√

K2 + x2
(3.7)

and thus the volume is given as

V (c,Q) = W

[
cQ− K2

2
ln

(
Q+ c

Q− c

)]
. (3.8)

We write V = V (c,Q) rather than V = V (c,H) as it is more convenient for subsequent

analysis. The value of Q is related to H and c via (3.5).

We are now in a position to calculate the horizontal hydrodynamic force FH of the liquid

acting on the container using (2.4a). Evaluating the potential pressure in (2.4b) at the

container wall, given by (3.4), provides the expression

FH = ρW

∫ c

−c

[(
η0g

H
− η0ω

2

H
h(x)

)
x cosωt+ gh(x)

](
−dh
dx

)
dx (3.9)
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wherein the last term integrates to zero. Writing the remaining terms as

FH = −ρ
(
η0g

H
I1(c,Q)− η0ω

2

H
I2(c,Q)

)
cosωt, (3.10a)

where

I1(c,Q) = W

∫ c

−c
x
dh

dx
dx, I2(c,Q) = W

∫ c

−c
xh
dh

dx
dx (3.10b)

and integrating provides the simple relations

I1(c,Q) = −V (c,Q), I2(c,Q) = −QV (c,Q) +
2

3
Wc3. (3.10c)

Thus the periodic horizontal force is

FH =
η0
H

[
g m+ (χm0 −Qm)ω2

]
cosωt (3.11)

where m = ρV (c,Q) is the mass of liquid in the container and χ = 2ρWc3/(3m0). Inserting

this into Newton’s second law (2.2) yields

m0X0ω
2 = (m+m0)ω

2
0X0 −

η0
H

[
g m+ (χm0 −Qm)ω2

]
. (3.12)

Dividing by m0 and introducing the dimensionless liquid mass

M =
m

m0

(3.13)

and subsequent rearrangement gives the amplification ratio

η0
X0

=
H[(M + 1)ω2

0 − ω2]

[Mg + (χ−QM)ω2]
. (3.14)

Another relation for the amplification ratio obtained from Eq. (3.4b) is

η0
X0

=
Hω2

g −Qω2
. (3.15)

Equating these expressions furnishes the quartic equation for the frequency of pendulum

motion

(Q(1 +M)− χ)ω4 − (1 +M)(Qω2
0 + g)ω2 + (1 +M)gω2

0 = 0. (3.16)

One check on the derivation of this equation is to consider the 90◦ wedge limit in which

H = c, for which Q = H and K2 = 0. This provides the eigenvalue equation for periodic

motion of a bifilar suspended wedge, viz.
(

1 +
M

3

)
ω4 − (1 +M)

(
ω2
0 +

g

H

)
ω2 + (1 +M)

g

H
ω2
0 = 0 (3.17)
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in agreement with the result reported in [8].

Note that varying either c or Q alters the shape of the container, but in an experiment

one would likely have a fixed container with different levels of fill. Considering now a fixed

container shape given by c = c∗, H = H∗ and Q = Q∗, partial fillings in the fixed container

are found by varying c in (3.16) with Q ≡ Q(c) given by

Q(c) =
(H∗ −Q∗)2 + 2c2 + (Q∗2 − c∗2) + 2(H∗ −Q∗)

√
Q∗2 − c∗2 + c2

2(H∗ −Q∗ +
√
Q∗2 − c∗2 + c2)

(3.18)

and with M ≡M(c) defined as

M(c) =
ρW

m0

[
cQ(c)− K(c)2

2
ln

(
Q(c) + c

Q(c)− c

)]
(3.19a)

where

K(c)2 = Q(c)2 − c2. (3.19b)

This approach implies that for each value of c the geometry of the container remains un-

changed, and the depth of the fluid, whose free-surface lies between x = ±c, is given by

H = H∗ − h(c) = H∗ −Q∗ +
√
K∗2 + c2. (3.20)

Note that Q(c) in (3.18) is determined from the form of Q in (3.5) with H given by (3.20).

Sample profiles showing the depth variation at c = {0.25, 0.5, 0.75, 1.0} m for a fixed

container defined by c∗ = 1.0 m and H∗ = 0.5 m are displayed in figure 2. The respective

fluid depths in these containers are H = {0.040569, 0.151388, 0.310600, 0.500000} m.

4 The hyperboloid container

We now turn attention to the axisymmetric hyperboloid container suspended as a bifilar

pendulum in which case we take the container wall at z = −h(r) and the free-surface lies

between r ∈ [0, R]. The solution for the container shape follows exactly that in the preceding

section: one simply replaces x by r and c by R in Eq. (3.4a) to obtain

z(r) = −Q+
√
r2 +K2 (4.1)

with Q again given by Eq. (3.4b) but now K2 = Q2−R2. Setting the deepest point z = −H
at r = 0 gives Q as

Q =
H2 +R2

2H
. (4.2)

9



The sidewalls of the hyperboloid has slopes ±1 for r → ±∞ showing the asymptotes tend to

a 90◦ cone with apex at z = −R on the centreline. The volume of the hyperboloid is given

as

V (R,Q) =

∫ R

0

∫ 0

−h(r)
r drdθdz = πH

(
R2

2
− H2

6

)
=
π

3

(
3QR2 − 2Q3 + 2

(
Q2 −R2

)3/2)

(4.3)

the second form of which, although more complicated, is convenient for examining results

when considering a partially filled hyperboloid container with a fixed geometry.

The horizontal hydrodynamic force FH of the liquid acting on the hyperboloid is now

calculated. Evaluating the potential pressure in (2.4b) at the container wall given by (4.1)

provides the result

FH = ρ

∫ R

0

∫ 2π

0

[(
η0g

H
− η0ω

2

H
h(r)

)
r cos θ cosωt+ gh(r)

](
−dh
dr

)
r cos θdθdr (4.4)

the last term of which integrates to zero. Writing the remaining terms as

FH = −ρπ
(
η0g

H
J1 −

η0ω
2

H
J2

)
cosωt (4.5a)

subsequent integration gives

J1(R,Q) = −V (R,Q)

π
, J2(R,Q) = −QV (R,Q)

π
+
R4

4
(4.5b)

with V (R,Q) as defined in (4.3). The equation for the hydrodynamic force is thus given

exactly by (3.11) but here χ = ρπR4/(4m0). Therefore the analysis of §3 can be copied here

giving the same quartic equation (3.16) for the frequency of the vessel.

In the limiting case of a 90◦ cone for which R = Q = H one finds the quartic equation

for the frequency given as

(
1 +

M

4

)
ω4 − (1 +M)

(g
l

+
g

H

)
ω2 + (1 +M)

g2

lH
= 0 (4.6)

where the substitution ω2
0 = g/l has been used. In the limit of infinite pendulum length

l → ∞ we recover the frequency for a container driven by liquid sloshing reported by [14],

viz.

ω

ωR
=

1

M1/6

√√√√
(

1 +M

1 + M
4

)
(4.7a)
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where the reference frequency for free container motion is

ωR =

(
ρπg3

3m0

)1/6

. (4.7b)

As for the hyperbolic container, varying Q or R modifies the container shape, but we can

consider a partially filled hyperboloid by choosing Q(R) accordingly. For a fixed hyperboloid

container given by R = R∗, H = H∗ and Q = Q∗, we again consider the frequency of partial

fillings in this container by varying R in (4.9) with Q ≡ Q(R) given by

Q(R) =
(H∗ −Q∗)2 + 2R2 + (Q∗2 −R∗2) + 2(H∗ −Q∗)

√
Q∗2 −R∗2 +R2

2(H∗ −Q∗ +
√
Q∗2 −R∗2 +R2)

(4.8)

and with M ≡M(R) given as

M(R) =
ρπ

3m0

[
Q(R)(3R2 − 2Q(R)2) + 2(Q(R)2 −R2)3/2

]
. (4.9)

In this case the depth of the fluid which lies between r = [0, R] for θ = [0, 2π] is

H = H∗ − h(r) = H∗ −Q∗ +
√
K∗2 +R2. (4.10)

5 Results for a fixed container geometry

For all results presented in this section we take the width of the two-dimensional hyperbolic

tank W = 0.5 m and both tank masses m0 = 10 kg.

5.1 Frequency behaviour

The quartic equation (3.16) has two positive solutions given by

ωS = ω0

√√√√(1 +M) (Q+ l)−
√

(1 +M)2 (Q− l)2 + 4l(1 +M)χ

2 (Q (1 +M)− χ)
, (5.1a)

ωA = ω0

√√√√(1 +M) (Q+ l) +
√

(1 +M)2 (Q− l)2 + 4l(1 +M)χ

2 (Q (1 +M)− χ)
, (5.1b)

where χ = 2ρWc3/(3m0) for the 2D hyperbolic container and χ = ρπR4/(4m0) for the 3D

hyperboloid container. From (2.5) we know that the free-surface amplitude is given by η0/H

which from (3.15) gives
η0
H

=
ω2X0

g −Qω2
. (5.2)
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Thus when the product of η0/H with X0 is positive the free-surface and the container motion

are said to be synchronous or in-phase (denoted by S in (5.1)), and when negative they are

said to be asynchronous or out-of-phase (denoted by A in (5.1)). The correct labelling of

the frequencies above for the ± square root cases can easily be seen, by considering the

denominator g −Qω2 which ultimately determines the sign of X0η0 according to

g −Qω2 = − ω2
0

2 (Q (1 +M)− χ)

[
Q(1 +M)(Q− l) + 2lχ

±Q
√

(1 +M)2 (Q− l)2 + 4l(1 +M)χ

]
. (5.3)

One can show that

Q

√
(1 +M)2 (Q− l)2 + 4l(1 +M)χ ≥ Q(1 +M)(Q− l) + 2lχ, (5.4)

for all c or R where one needs to know that Q (1 +M)−χ ≥ 0 for all c or R. This can easily

be deduced by noting that the hyperbolic container is bounded above by the 90◦ wedge

container with depth c∗ and below by the 90◦ wedge container with depth H (a similar

argument holds for the hyperboloid being bounded by two 90◦ cones); consequently we find

0 ≤ H

(
1 +

M

3

)
≤ Q (1 +M)− 2

3

ρWc3

m0

≤ c∗
(

1 +
M

3

)
. (5.5)

Thus from (5.3) the positive square root leads to X0η0 < 0 and vice-versa for the negative

root. One should also note that (5.2) suggests that resonance occurs in the system when

ω2 = g/Q = lω2
0/Q, but substitution into (3.16) leads to the conclusion that this frequency

occurs only when χ = 0, i.e., it does not occur for a finite liquid mass.

Frequencies for the fixed containers c∗ = R∗ = 1 m, H∗ = 0.5 m, and l = 0.5 m and

l = 2.0 m are plotted as a function of M in figure 3a for the hyperbolic container and in

figure 3b for the hyperboloid container. These show that the synchronous frequency always

decreases from its initial value at M = 0, while the asynchronous frequency increases from its

M = 0 value to some maximum value before decreasing again, but always satisfies ωS ≤ ωA.

Cooker [6] derived the quartic equation for the frequencies of the hyperbolic container,

but with the caveat that the pressure was hydrostatic. From his equation we find the

synchronous and asynchronous frequencies to be

ωCS =
ω0√
2Q

√
(1 +M) (Q+ l)−

√
(1 +M)2 (Q+ l)2 − 4Ql(1 +M) (5.6a)
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ωCA =
ω0√
2Q

√
(1 +M) (Q+ l) +

√
(1 +M)2 (Q+ l)2 − 4Ql(1 +M). (5.6b)

These results are compared with our potential theory results (5.1) in figure 4 for c∗ = 1 m,

H∗ = 0.5 m, and l = 2 m. It is clear that the hydrostatic assumption underestimates

the synchronous frequency ωS as M increases, while the asynchronous frequency is greatly

overestimated by the hydrostatic assumption, the same conclusion as for 90◦ wedge reported

by [8].

One interesting feature to note in figure 3 for both the hyperbola and hyperboloid con-

tainers is that, when the inequality l > Q(0) = (c∗2 −H∗2)/(2H∗) is satisfied, then ωS = ω0

at M = 0, while when l < Q(0) we have ωA = ω0 at M = 0. For a physical experiment we

expect ω → ω0 as M → 0, suggesting that as the fluid mass tends to zero, the motion of the

container should be interesting; in particular asynchronous sloshing could be observed with

a simple initial condition. This is explored further in the next section. In contradistinction

to this behaviour, the switching of modes as M → 0 does not occur in either the wedge or

the cone; indeed in these containers it is always ωS → ω0 as M → 0, whilst for both the

wedge and cone geometries ωA →∞ as M → 0.

5.2 The initial value problem

In a physical experiment, the time evolution of the container and the free-surface will be a

linear combination of the synchronous and asynchronous modes with frequencies given in

(5.1), namely

X(t) = XS cosωSt+XA cosωAt (5.7a)

η(x, t) =
XSω

2
S

g −Qω2
S

x cosωSt+
XAω

2
A

g −Qω2
A

x cosωAt (5.7b)

where the coefficients XS and XA are fixed by the initial conditions. The simplest, repro-

ducible, initial condition to consider is

X(0) = X̂, η(x, 0) = 0 (5.8)

i.e. releasing the container from a small horizontal displacement with the fluid quiescent.

Solving the resulting system of equations leads to

XS =
X̂ω2

A(g −Qω2
S)

g(ω2
A − ω2

S)
, XA = −X̂ω

2
S(g −Qω2

A)

g(ω2
A − ω2

S)
. (5.9)

Therefore, in order to predict the time evolution of container motion, we need to consider

the respective magnitudes of each mode XS and XA to determine which mode (if any)
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dominates the solution. The analysis above also holds for the hyperboloid container, and as

the two containers have similar frequency results (see figure 3) we just consider the hyperbolic

container here. Plotting |XS/X̂| and |XA/X̂| for the results in figure 3a shows that, for the

case l = 2.0 m in figure 5a, it is the synchronous mode which dominates the solution, and

ω → ω0 as M → 0 as expected. On the other hand, for l = 0.5 m in figure 5b it is the

asynchronous mode which dominates, and again ω → ω0 when M → 0. The interesting

result here is that from the experimental initial condition (5.8) it is possible to observe

asynchronous sloshing motions in the tank by varying the pendulum length l. For the

results in figures 3a and 5b, when M = 10.10, figure 6 exhibits the evolution of X(t) given

by (5.7a). This shows that the higher-frequency asynchronous mode is detectable, but with

its amplitude modulated by the lower-frequency synchronous mode.

Finally, it should be noted that it is possible to have an experimental setup for which the

synchronous mode is the dominant mode at small mass ratios M whilst the asynchronous

mode dominates at large values of M . This is achieved by choosing a pendulum length l for

which l > Q initially, but at some larger value of M , l becomes less than Q. An example

of this for the hyperbolic container in figure 3a is when l = 1 m, and plots of |XS/X̂| and

|XA/X̂| are given in figure 7. However, when this behaviour occurs the magnitudes XS and

XA of the modes are similar. This is because as l decreases, the magnitudes of XS and XA

become comparable until they become equal for some large value of M , when l = Q(M), and

then once l < Q(0) the relative magnitude of the modes diverge again (see figures 5a, 7, and

5b respectively). When the mode magnitudes are comparable the container evolution X(t)

becomes more complex, such as in figure 8 which shows the M = 5.02 result from figure 7.

In this case it is expected that experimental measurement of the vessel frequency might be

difficult.

While the mode switching behaviour as M → 0 is not observed for the wedge, it is true

that the magnitudes of XS and XA become comparable as l decreases until, for l < H, there

exists a value of M at which XS = XA. This may thus explain why the theoretical wedge

frequencies presented in [8] underestimated the experimentally measured frequencies for short

pendulum lengths, because the vessel motion also contained a moderate contribution from

the asynchronous mode, thus rendering measurement of the frequencies more difficult.
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6 Summary, discussion and conclusions

We examined the coupled sloshing of an inviscid, irrotational fluid in two-dimensional and

three-dimensional hyperbolic containers, suspended as bifilar pendula. The two control pa-

rameters for the problem are the fluid-to-container mass ratio M = m/m0 and the pendulum

length l. It was found that both containers could exhibit synchronous and asynchronous mo-

tions with frequencies related by ωS < ωA. Upon increasing M , the synchronous frequency

decreases monotonically from its dry container value, while the asynchronous frequency in-

creases from its dry container value, reaches a maximum, and then decreases for larger M .

For long pendulum lengths, l > Q(0) = (c∗2 − H∗2)/(2H∗), we find ωS → ω0 as M → 0,

while for short pendulum lengths, l < Q(0), it is ωA → ω0 as M → 0. Therefore, the

interesting asynchronous system behaviour should be observable in experiments for pendu-

lum lengths shorter than (c∗2 − H∗2)/(2H∗) for the hyperbolic container and shorter than

(R∗2−H∗2)/(2H∗) for the hyperboloid container. While both synchronous and asynchronous

motions are possible in experiments, intuition suggests that only synchronous modes will be

evident with a typical initial condition such as a container released from rest with the fluid

stationary.

By considering the initial-value problem for the above setup, it was shown that both types

of sloshing motion can be observed via the same initial condition for different pendulum

lengths. In this case the container displacement (5.7a) is a superposition of the synchronous

and asynchronous modes. By calculating the relative magnitudes of the mode amplitudes XS

and XA it was shown that for l > Q(0), |XS| > |XA| and synchronous sloshing is observed,

whilst for l < Q(0), |XS| < |XA| and asynchronous sloshing is observed. It was also shown

that there exist pendulum lengths for which |XS| > |XA| at small M and |XS| < |XA| at

large M , suggesting a change from synchronous to asynchronous sloshing as the container is

filled with fluid. However, in such cases the magnitudes of the modes are comparable and

thus the container motion is complex. Hence measurement of the container frequencies for

this case may be rendered difficult, especially with the inevitable viscous damping.

Future directions of interest would be to conduct the physical experiments on these

containers to observe the synchronous/asynchronous modes for varying pendulum lengths,

and also to investigate how these two modes interact in a nonlinear setting. Both these

scenarios are left to future studies.

15



Acknowledgement

MRT is grateful to the London Mathematical Society who funded his visit to the Uni-

versity of Colorado, Boulder under their Research in Pairs scheme (Ref 41504).

16



References

[1] Moiseyev, N. N. 1964 Introduction to the theory of oscillations of liquid-containing bodies.

Adv. Appl. Mech., 8, 233-289.

[2] Abramson, H. N. 1966 The dynamical behavior of liquids in a moving container. Tech.

Rep. SP-106, NASA, Washington, DC.

[3] Moiseyev, N. N. and Rumyantsev, V. V. 1968 Dynamic Stability of Bodies Containing

Fluid. Springer-Verlag (New York).

[4] Ibrahim, R. A. 2005 Liquid Sloshing Dynamics. Cambridge University Press (Cambridge).

[5] Faltinsen, O. M. and Timokha, A. N. 2009 Sloshing. Cambridge University Press (Cam-

bridge).

[6] Cooker, M. J. 1994 Water waves in a suspended container. Wave Motion, 20, 385-395.

[7] Taylor, G. I. 1974 The interaction between experiment and theory in fluid mechanics,

Ann. Rev. Fluid Mech. 6 1-17.

[8] Weidman, P. D. and Turner, M. R. 2016 Experiments on the synchronous sloshing in

suspended containers described by shallow-water theory, J. Fluids Struct. (in press).

[9] Roberts, C. 2005 The Coupled Motion of Containers and their Sloshing Liquid Loads.

MMath project, University of East Anglia. https://ueaeprints.uea.ac.uk/19896/

[10] Yu, J. 2010 Effects of finite water depth on natural frequencies of suspended water tanks,

Stud. Appl. Math., 125, 337-391.

[11] Linton, C. M. and McIver, P. 2001 Handbook of Mathematical Techniques for Wave-

Structure Interaction, Chapman & Hall/CRC, Boca Raton.

[12] Alemi Ardakani, H., Bridges, T. J. and Turner, M. R. 2012 Resonance in a model for

Cooker’s sloshing experiment, Euro. J. Mech. B/Fluids, 36, 25-38.

[13] Turner, M. R., Bridges, T. J. and Alemi Ardakani, H. 2013 Dynamic coupling in Cooker’s

sloshing experiment with baffles, Phys. Fluids, 25(10), 112102.

[14] Herczynski, A. and Weidman, P. 2012 Experiments on the periodic oscillations of free

17



containers driven by liquid sloshing, J. Fluid Mech., 693, 216-242.

18



l

X(t)
S

V

O

z

x

O∗

Figure 1. Schematic diagram of hyperbolic container suspended as a bifilar pen-
dulum. In all calculations the mass of each container is take as m0 = 10.0 kg.
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Figure 2. Hyperbolic container profiles for a fixed container defined by c∗ = 1.0 m
and H∗ = 0.5 m plotted for c = {0.25, 0.5, 0.75, 1.0} m. The associated depths
H are cited in the text.
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Figure 3a. Plot of ωS(M) (solid line) and ωA(M) (dashed line) for the hyperbolic
container with c∗ = 1.0 m, H∗ = 0.5 m with l = 2.0 m and l = 0.5 m. The dotted
line signifies ω/ω0 = 1.
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Figure 3b. Plot of ωS(M) (solid line) and ωA(M) (dashed line) for the hyperboloid
container with R∗ = 1.0 m, H∗ = 0.5 m, with l = 2.0 m and l = 0.5 m. The
dotted line signifies ω/ω0 = 1.

21



 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  5  10  15  20
M

ω
ω0

Figure 4a. Plot of ωS(M) for the hyperbolic container with c∗ = 1 m, H∗ = 0.5 m
and l = 2.0 m for our non-hydrostatic pressure assumption (5.1) (solid line) and
Cooker’s [6] hydrostatic pressure assumption (5.6) (dashed line).
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Figure 4b. Plot of ωA(M) for the hyperbolic container with c∗ = 1 m, H∗ = 0.5 m
and l = 2.0 m for our non-hydrostatic pressure assumption (5.1) (solid line) and
Cooker’s [6] hydrostatic pressure assumption (5.6) (dashed line).
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Figure 5a. Plot of XS(M) (solid line) and XA(M) (dashed line) for the hyperbolic
container with c∗ = 1.0 m, H∗ = 0.5 m and l = 2.0 m from figure 3a.
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Figure 5b. Plot of XS(M) (solid line) and XA(M) (dashed line) for the hyperbolic
container with c∗ = 1.0 m, H∗ = 0.5 m and l = 0.5 m from figure 3a.
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Figure 6. Plot ofX(t)/X̂ (solid line) and cos(ωAt) (dashed line) for the hyperbolic
container with c∗ = 1.0 m, H∗ = 0.5 m, M = 10.10 and l = 0.5 m.
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Figure 7. Plot of XS(M) (solid line) and XA(M) (dashed line) for the hyperbolic
container with c∗ = 1.0 m, H∗ = 0.5 m and l = 1.0 m.
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Figure 8. Plot of X(t)/X̂ for the hyperbolic container with c∗ = 1.0 m, H∗ =
0.5 m and l = 1.0 m.
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