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Abstract

The flow of one Howarth stagnation-point flow impinging directly on another
Howarth stagnation-point flow is studied, and an exact similarity solution to
the Navier-Stokes equations is found. The upper layer fluid has density ρ1 and
kinematic viscosity ν1 while the lower layer fluid has density ρ2 and kinematic
viscosity ν2 and the two fluids are assumed to be immiscible. This problem
has potentially five independent parameters to investigate, but application of
the continuity of the normal stresses at the interface imposes restrictions which
reduces the problem to one with three independent parameters, namely a ratio σ
of strain rates and the fluid parameter ratios ρ = ρ1/ρ2 and ν = ν1/ν2. Numerical
results are presented for selected values of ρ and ν for a range of σ and show that
stable results exist for all values of σ > 0, and for a range of negative σ values.
Sample stable velocity profiles are also presented.

1 Introduction

Impinging stagnation-point flows have been a matter of interest over the years. Wang (1987)

was the first to investigate impinging Hiemenz (1911) and Homann (1936) stagnation-point

flows and subsequently found exact solutions to these problems in the form of a similarity

solution. Hiemenz flow is a planar stagnation-point flow while Homann flow is an axisym-

metric stagnation-point flow both of which imping on a fixed flat plate. Tilley and Weidman

(1998) extended the similarity solution idea to obtain solutions to the problem of imping-

ing oblique planar stagnation-point flows and Weidman (2017) reported results for normally

impinging axisymmetric rotational stagnation-point flows.

These studies led us to consider new possible impinging stagnation-point flow problems.

In the first, one Hiemenz stagnation flow impinges on another Hiemenz stagnation flow



oriented orthogonal to the other. Here one finds that no similarity solution exists unless the

strain rates of the two flows are equal. Another possibility is the impingement of a Hiemenz

stagnation flow on a Homann stagnation flow, but here again no similarity solution exists

because the different geometries of the two problems lead to equations with no solutions.

Then one could envision an axisymmetric rotational stagnation-point flow impinging on a

Homann stagnation-point flow, but again no similarity solution is available again due to the

geometries of the two problems. Consequently, it appears that the only remaining possibility

for study is the normal impingement of two Howarth (1951) stagnation-point flows which is

the subject of this investigation. The Howarth (1951) flow is one composed of two orthogonal

stagnation-point flows with different strain rates in the two directions impinging on a fixed

flat plate. Such impinging stagnation-point flows occur in transpiration cooling, and injection

cooling problems (Wang, 1964).

The presentation of the paper is as follows. In §2 we derive the similarity equations

governing the flow and show that restrictions on continuity of the normal stress at the

interface reduces the problem to three independent parameters, namely a strain rate ratio σ

and the fluid parameters ρ = ρ1/ρ2 and ν = ν1/ν2. Numerical solutions for fixed values of

the fluid parameters over a range of σ are presented in §3. The stability of the dual solutions

encountered are analyzed in §4, with sample velocity profiles along the stable branches

presented in §5. The paper ends with a discussion of results and concluding remarks in §6.

2 Problem formulation

We consider a steady Howarth stagnation-point flow with strain rates (a, b), density ρ1 and

kinematic viscosity ν1 in the upper layer impinging on another steady Howarth stagnation-

point flow of strain rates (c, d) of density ρ2 and kinematic viscosity ν2 in the lower layer along

the plane z = 0, see the schematic of this setup in figure 1. Both fluids are assumed to be

incompressible and immiscible, and the fluid interface is assumed to remain at z = 0. Using

Cartesian coordinates (x, y, z) with corresponding velocities (u, v, w), we follow Howarth

(1951) and take the upper layer velocities (z > 0) as

u1 = axf ′

1
(η), v1 = byg′

1
(η), η =

√

a

ν1
z (2.1)

where we have posited the Howarth stagnation-point flow in the far field as u1 = ax and

v1 = by, and η is a dimensionless variable. The equation of mass continuity then requires

that the velocity normal to the stagnation plane be

w1 = −√
aν1[f1(η) + σ1g1(η)] (2.2)
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where σ1 = b/a is the ratio of strain rate along the y coordinate to that along the x coordinate.

Inserting this ansatz into the Navier-Stokes equations gives

− 1

ρ1

∂p1
∂x

= a2x[f ′2

1
− (f1 + σ1g1)f

′′

1
− f ′′′

1
] (2.3a)

− 1

ρ1

∂p1
∂y

= b2y

[

g′2
1
−
(

1

σ1

f1 + g1

)

g′′
1
− 1

σ1

g′′′
1

]

(2.3b)

− 1

ρ1

∂p1
∂η

=
ν1
a
(af1 + bg1)(af

′

1
+ bg′

1
) + ν1(af

′′

1
+ bg′′

1
). (2.3c)

Observing that the latter equation depends on η only, we obtain from (2.3a) and (2.3b)

the coupled set of ODEs

f ′′′

1
+ (f1 + σ1g1)f

′′

1
− f ′2

1
+ 1 = 0 (2.4a)

g′′′
1
+ (f1 + σ1g1)g

′′

1
− σ1g

′2

1
+ σ1 = 0 (2.4b)

where the constants are found by applying the far-field conditions f ′

1
(∞) = g′

1
(∞) = 1.

Next, computation of the pressure in the upper layer gives

p1 = p10 − ρ1

(

a2x2

2
+

b2y2

2

)

− aρ1ν1

[

(f1 + σ1g1)
2

2
+ (f ′

1
+ σ1g

′

1
)

]

(2.5)

where p10 is the constant pressure at (0, 0, 0).

In the lower layer (z < 0) we take z pointing downwards and posit the Howarth stagnation-

point flow in the far field as u2 = c x and v2 = d y. Then we choose the similarity formulation

as

u2 = cxf ′

2
(ζ), v2 = dyg′

2
(ζ), ζ =

√

c

ν2
z (2.6)

which satisfies the continuity equation when

w2 = −√
cν2 [f2(ζ) + σ2g2(ζ)] (2.7)

where σ2 = d/c. Following the upper layer analysis one readily finds the governing coupled

ODEs

f ′′′

2
+ (f2 + σ2g2)f

′′

2
− f ′2

2
+ 1 = 0 (2.8a)

g′′′
2
+ (f2 + σ2g2)g

′′

2
− σ2g

′2

2
+ σ2 = 0 (2.8b)

and the lower layer pressure field is

p2 = p20 − ρ2

(

c2x2

2
+

d2y2

2

)

− cρ2ν2

[

(f2 + σ2g2)
2

2
+ (f ′

2
+ σ2g

′

2
)

]

(2.9)
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with p2 = p20 at (0, 0, 0).

We now turn to the conditions to be met at the interface z = 0. First there is no normal

velocity through the interface and hence

f1(0) = g1(0) = f2(0) = g2(0) = 0 (2.10)

and for equal velocities at the interface we have

af ′

1
(0) = cf ′

2
(0); bg′

1
(0) = dg′

2
(0). (2.11)

The normal stresses −p+ 2µwz must be equal at the interface which gives

p10 − ρ1

(

a2x2

2
+

b2y2

2

)

− aρ1ν1 (f
′

1
(0) + σ1g

′

1
(0)) + 2aµ1 (f

′

1
(0) + σ1g

′

1
(0)) =

p20 − ρ2

(

c2x2

2
+

d2y2

2

)

− cρ2ν2 (f
′

2
(0) + σ2g

′

2
(0)) + 2cµ2 (f

′

2
(0) + σ2g

′

2
(0))

(2.12)

where use has been made of Eq. (2.10). Equating on x2 and y2 requires

c = ρ1/2a, d = ρ1/2b, where ρ =
ρ1
ρ2

. (2.13)

Thus we find σ2 = d/c = b/a = σ1 ≡ σ. Note that σ > 0 indicates that both strains at

z = ∞ (similarly at z = −∞) are directed away from the line x = y = 0, while for σ < 0 the

strain at z = ∞ in the x-direction, say, is directed away from this line while the strain in

the y-direction is directed towards this line. This then affects the down-flow velocity in each

half-space, see (2.2) and (2.7). Using this definition for σ the interfacial conditions (2.11)

may be written

f ′

1
(0) = ρ1/2f ′

2
(0); g′

1
(0) = ρ1/2g′

2
(0) (2.14)

and inserting this into the remainder of (2.12) gives the relation between the constants p10

and p20, viz.

p20 = p10 + aρ1/2(µ1 − µ2)[f
′

2
(0) + σg′

2
(0)]. (2.15)

Finally we must have equal horizontal interface stresses which leads to the requirements

f ′′

2
(0) = −ρ1/4ν1/2f ′′

1
(0); g′′

2
(0) = −ρ1/4ν1/2g′′

1
(0) (2.16)

where ν = ν1/ν2.

The equations and boundary conditions are now summarized making use of the fact that

σ2 = σ1 ≡ σ. The governing equations in each layer

f ′′′

1
+ (f1 + σg1)f

′′

1
− f ′2

1
+ 1 = 0 (2.17a)
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g′′′
1
+ (f1 + σg1)g

′′

1
− σg′2

1
+ σ = 0 (2.17b)

f ′′′

2
+ (f2 + σg2)f

′′

2
− f ′2

2
+ 1 = 0 (2.17c)

g′′′
2
+ (f2 + σg2)g

′′

2
− σg′2

2
+ σ = 0 (2.17d)

are to be solved with interfacial conditions (2.10), (2.14) and (2.16) along with the far-field

conditions

f ′

1
(∞) = f ′

2
(∞) = g′

1
(∞) = g′

2
(∞) = 1. (2.18)

Potentially this problem could have been governed by five parameters, namely the three

strain rate ratios σ, c/a, d/a and the fluid parameters ρ and ν. But owing to the conditions

wrought by equality of normal stress at the interface the problem depends only on σ, ρ and

ν.

2.1 Reduction to impinging Hiemenz and Homann flows

The problems considered by Wang (1987) may be recovered from the general case as follows.

First, upon setting a = b which gives σ = 1 we note that the equations (2.17) are satisfied

by setting g1 = f1 and g2 = f2 which furnish the equations

f ′′′

1
+ 2f1f

′′

1
− f ′2

1
+ 1 = 0 (2.19a)

f ′′′

2
+ 2f2f

′′

2
− f ′2

2
+ 1 = 0 (2.19b)

to be solved with interfacial conditions

f1(0) = f2(0) = 0, f ′

1
(0) = ρ1/2f ′

2
(0), f ′′

2
(0) = −ρ1/4ν1/2f ′′

1
(0) (2.19c)

and far-field conditions

f ′

1
(∞) = f ′

2
(∞) = 1. (2.19d)

These are recognized as the impinging Homann stagnation flows of Wang (1957). Similarly,

setting b = d = 0 giving σ = 0 reduces the impinging Howarth stagnation flows to impinging

Hiemenz stagnation flows. However, we note that the pressure relation given by Eq. (7) of

Wang (1957) is valid only for equality of pressure at the interface and not equality of normal

stress. Fortunately this does not alter the governing equations. Concerning the boundary

conditions, we see that the interfacial stress relation given in Eq. (16) of Wang (1957) has a

typographical error; the subscripts on f ′′(0) should be interchanged.
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3 Numerical results

The coupled set of ODEs (2.17) along with the boundary conditions (2.18) are solved numer-

ically using a shooting technique. The ODEs are integrated from η = 0 to η = ηmax via 4th

order Runge-Kutta integration and Newton iterations are used to update the initial guesses

for the unknown interface quantities f ′

1
(0), g′

1
(0), f ′′

1
(0) and g′′

1
(0) using equations (2.18d),

see Press, et al (1989). The domain of integration η ∈ [0, ηmax] and the Runge-Kutta step

size were varied to ensure the results presented in this paper have converged. For σ & −3/4

a value of ηmax = 10 is suitable for convergence, but for smaller σ values this needs to be

increased to ηmax = 40 due to a rapid thickening of the solution boundary layer, as will be

shown in the following results.

Sample solutions are now provided at selected values of ρ and ν. We begin with ν = 1.0

varying the density ratio ρ = {0.2, 0.4, 0.6, 0.8}. The results for the interfacial velocities

f ′

1
(0) and g′

1
(0) and the interfacial shear stresses f ′′

1
(0) and g′′

1
(0) are presented in figures

2a,b,c,d. Of particular note is the appearance of a unique solution for σ > 0, dual solutions

for σ1 < σ < 0, a unique solution at σ = σ1, dual solutions for σ < σ2 and a unique solution

at σ = σ2, where the values of σ1 and σ2 are listed in Table 1. Note, these values of σ1 and

σ2 are different from those introduced in §2.
ρ σ1 σ2

0.2 -0.28315 -0.38699
0.4 -0.29913 -0.36983
0.6 -0.31255 -0.35513
0.8 -0.32383 -0.34305

Table 1. Turning points σ1 and σ2 for ν = 1.0 at the listed values of ρ.

A survey was carried out to determine the values of the turning points σ1 and σ2 for

ν = 1 as a function of ρ. These results are displayed in figure 3 and careful calculations show

that the two curves merge at ρ = 1 with the value σ1 = σ2 = 1/3.

The next set of calculations were carried out for ρ = 0.6 varying the viscosity ratio

ν = {0.1, 0.25, 4.0, 10.0}. The results for the interfacial velocities f ′

1
(0) and g′

1
(0) and the

interfacial shear stresses f ′′

1
(0) and g′′

1
(0) are presented in figures 4a,b,c,d. The same existence

of unique and dual solutions appear as for the previous study, where now the values of σ1

and σ2 are listed in Table 2.
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ν σ1 σ2

0.10 -0.31735 -0.34980
0.25 -0.31508 -0.35232
4.0 -0.31205 -0.355768
10.0 -0.31298 -0.35483

Table 2. Turning points σ1 and σ2 for ρ = 0.6 at the listed values of ν.

A survey was carried out for the variation of the turning points σ1 and σ2 for ρ = 0.6 as

a function of ν. These results are displayed in figure 5 and careful calculations show that

the two curves merge at ν = 0 with σ1 = σ2 = 1/3.

4 Stability analysis

By introducing the dimensionless time variable τ = at, we can now include the unsteady

acceleration term in the Navier-Stokes equations, which upon substitution of the similarity

solutions (2.1) and (2.6) gives rise to the coupled nonlinear system

f ′′′

1
+ (f1 + σg1)f

′′

1
− f ′2

1
+ 1− f ′

1τ = 0 (4.1a)

g′′′
1
+ (f1 + σg1)g

′′

1
− σg′2

1
+ σ − g′

1τ = 0 (4.1b)

f ′′′

2
+ (f2 + σg2)f

′′

2
− f ′2

2
+ 1− f ′

2τ = 0 (4.1c)

g′′′
2
+ (f2 + σg2)g

′′

2
− σg′2

2
+ σ − g′

2τ = 0. (4.1d)

To examine the viscous stability of these self-similar equations, we follow the approaches of

Merkin (1985) and Weidman and Turner (2017) and write

[f1, g1, f2, g2](η, t) = [f10, g10, f20, g20](η) + δe−λτ [f11, g11, f21, g21](η) (4.2)

where λ is a complex eigenvalue determining the linear stability, δ is an amplitude parameter

and [f10, g10, f20, g20] are solutions of the steady problem found in §3. Linearizing for δ ≪ 1

leads to the following coupled set of ODEs for the perturbation quantities

f ′′′

11
+ (f10 + σg10)f

′′

11
+ (f11 + σg11)f

′′

10
− 2f ′

10
f ′

11
+ λf ′

11
= 0 (4.3a)

g′′′
11
+ (f10 + σg10)g

′′

11
+ (f11 + σg11)g

′′

10
− 2σg′

10
g′
11
+ λg′

11
= 0 (4.3b)

f ′′′

21
+ (f20 + σg20)f

′′

21
+ (f21 + σg21)f

′′

20
− 2f ′

20
f ′

21
+ λf ′

21
= 0 (4.3c)

g′′′
21
+ (f20 + σg20)g

′′

21
+ (f21 + σg21)g

′′

20
− 2σg′

20
g′
21
+ λg′

21
= 0. (4.3d)
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Solutions to this system are sought with the same boundary conditions as in (2.18) except

with the far-field condition (2.18d) replaced with the homogeneous conditions

f ′

11
(∞) = f ′

12
(∞) = g′

11
(∞) = g′

12
(∞) = 0. (4.4)

The solutions result in an infinite set of eigenvalues with the property Re(λ1) < Re(λ2) <

Re(λ3) < · · · where the real part of λi determines the growth/decay rate of the perturbation.

If Re(λ1) ≥ 0 then the steady solution is stable.

The system of ODES (4.3) are solved using the same shooting approach as was used for

the steady solution, but in this case the homogeneous boundary conditions (4.4) mean we

can always multiply our solution by an arbitrary constant. Hence we normalize our result

by fixing the interface perturbation velocity in the y-direction such that

g′
11
(0) = 1 (4.5)

and then solving for the four complex unknowns f ′

11
(0), f ′′

11
(0), g′′

11
(0) and λ.

A detailed analysis was carried out for ρ = 0.8 and ν = 1, but similar calculations for

ρ = 0.2, 0.4 and 0.6 show that the eigenvalue structure is almost identical to the ρ = 0.8

case. The values of the smallest real part of λ1 on the four branches are displayed in figure 6.

Along branches 1 and 3 λ1 is purely real, however on branch 4 complex values of λ exist in the

small region −0.737 ≤ σ ≤ −0.716, and for σ < −1, as indicated by the horizontal arrows

in the plot. The real part of λ1 along branch 4 crosses zero at σ ≡ σcrit ≈ −1.15 indicating

that the impinging solutions become unstable for σ < σcrit. An interesting feature of figure

6 is the discontinuity in slope along branch 1 which exists at σ = 1.0. This is precisely the

value for impinging Homann stagnation-point flows computed by Wang (1987) and is caused

by a second stable eigenvalue λ2 becoming close to λ1.

5 Sample velocity profiles for stable solutions

Knowing the stability of our solutions we are now in a position to present examples of stable

velocity profiles which exist only along all of branch 1 and on branch 4 for σcrit < σ < σ2.

We begin with profiles f ′(η) and g′(η) computed at σ = −0.6 for the density values ρ =

{0.2, 0.4, 0.6, 0.8} presented in figures 7a and 7b, respectively. Here we see that the edge of

the boundary layer in the x-direction (f ′

1
, f ′

2
) is at η ≈ 3 while for the y-direction (g′

1
, g′

2
)

it is twice as thick at η ≈ 6. Reducing σ to σ = −1.1 in figures 8a and 8b shows that

the boundary layer thickness for the flows in the x-direction is almost unchanged from the

σ = −0.6 result, but that the boundary layer in the y-direction has expanded considerably
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(now at η ≈ 20). This is due to the reverse flow which now occurs at the interface, z = 0.

It is this rapid thickening of the boundary layer in the y-direction which eventually leads

to the flow becoming unstable. Figures 9a and 9b exhibit profiles along branch 1 computed

at σ = 3.0 for the same density values ρ = {0.2, 0.4, 0.6, 0.8}, and along this branch we

note that the boundary layers thin with increasing σ, hence the stable nature of the flow for

σ > 0.

6 Discussion and conclusion

We have investigated the problem of two impinging Howarth stagnation-point flows. By

seeking exact results to this problem in the form of similarity solutions, we find the problem

is governed by four coupled ODEs which depend upon three independent parameters: ρ the

density ratio of the two fluids; ν the kinematic viscosity ratio; and σ the ratio of the flow

strain rates at |z| = ∞, in the x- and y- directions.

Numerical results for various combinations of ρ, ν and σ were presented and in each case

the solution structure was as follows: for σ > 0 there exists one stable branch of solutions

only; for σ1 < σ < 0 there exists one stable and one unstable branch of solutions while for

σcrit < σ < σ2 there exists one stable and one unstable branch of solutions and for σ < σcrit

there exists two unstable solution branches. For σ2 < σ < σ1 there are no similarity solutions

to this problem. By examining the velocity profiles for the stable branches, it was noted

that the thickness of the boundary layer in the y-direction increases as σ decreases, and this

thickening is accompanied by reverse flow at z = 0 for σ < −1. It is this boundary layer

thickening which leads to flow instability.
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u1(x, y,∞) = ax v1(x, y,∞) = by

x

y

z

O

u2(x, y,∞) = cx v2(x, y,∞) = dy

−z

Figure 1. Schematic diagram for impinging Howarth stagnation point flows along
the plane z = 0.
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Figure 2a. Interfacial velocities f ′

1
(0), g′

1
(0), and upper layer shear stress pa-

rameters f ′′

1
(0), g′′

1
(0) for ρ = 0.2 and ν = 1.0. The gap in the solutions lies in

the region σ2 < σ < σ1, where σ1 = −0.2832 and σ2 = −0.3870.
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Figure 2b. Interfacial velocities f ′

1
(0), g′

1
(0), and upper layer shear stress pa-

rameters f ′′

1
(0), g′′

1
(0) for ρ = 0.4 and ν = 1.0. The gap in the solutions lies in

the region σ2 < σ < σ1, where σ1 = −0.2991 and σ2 = −0.3698.
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Figure 2c. Interfacial velocities f ′

1
(0), g′

1
(0), and upper layer shear stress pa-

rameters f ′′

1
(0), g′′

1
(0) for ρ = 0.6 and ν = 1.0. The gap in the solutions lies in

the region σ2 < σ < σ1, where σ1 = −0.3126 and σ2 = −0.3551.
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Figure 2d. Interfacial velocities f ′

1
(0), g′

1
(0), and upper layer shear stress pa-

rameters f ′′

1
(0), g′′

1
(0) for ρ = 0.8 and ν = 1.0. The gap in the solutions lies in

the region σ2 < σ < σ1, where σ1 = −0.3238 and σ2 = −0.3431.
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Figure 3. Gap region as a function of ρ for ν = 1.0. No similarity solutions exist
for values of (σ, ρ) between these curves.
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Figure 4a. Interfacial velocities f ′

1
(0), g′

1
(0), and upper layer shear stress pa-

rameters f ′′

1
(0), g′′

1
(0) for ρ = 0.6 and ν = 0.1. The gap in the solutions lies in

the region σ2 < σ < σ1, where σ1 = −0.3174 and σ2 = −0.3498.
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Figure 4b. Interfacial velocities f ′

1
(0), g′

1
(0), and upper layer shear stress pa-

rameters f ′′

1
(0), g′′

1
(0) for ρ = 0.6 and ν = 0.25. The gap in the solutions lies in

the region σ2 < σ < σ1, where σ1 = −0.3151 and σ2 = −0.3523.
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Figure 4c. Interfacial velocities f ′

1
(0), g′

1
(0), and upper layer shear stress pa-

rameters f ′′

1
(0), g′′

1
(0) for ρ = 0.6 and ν = 4.0. The gap in the solutions lies in

the region σ2 < σ < σ1, where σ1 = −0.3121 and σ2 = −0.3558.
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Figure 4d. Interfacial velocities f ′

1
(0), g′

1
(0), and upper layer shear stress pa-

rameters f ′′

1
(0), g′′

1
(0) for ρ = 0.6 and ν = 10.0. The gap in the solutions lies in

the region σ2 < σ < σ1, where σ1 = −0.3130 and σ2 = −0.3548.
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Figure 5. Gap region as a function of ν for ρ = 0.6. No similarity solutions exist
for values of (ν, σ) between these curves.
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Figure 6. Eigenvalues on the four branches as a function of σ for ρ = 0.8 and
ν = 1.0. The horizontal arrows show the regions on branch 4 for which the
eigenvalues are complex. The downward arrow shows the region of the gap and
the upward arrow shows the critical value of σ on branch 4 for which the flow
changes stability.
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Figure 7a. Velocity profiles f ′(η) for σ = −0.6 on branch 4 computed at ρ =
{0.2, 0.4, 0.6, 0.8} with arrows in the direction of decreasing values of ρ.
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Figure 7b. Velocity profiles g′(η) for σ = −0.6 on branch 4 computed at ρ =
{0.2, 0.4, 0.6, 0.8} with arrows in the direction of decreasing values of ρ.
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Figure 8a. Velocity profiles f ′(η) for σ = −1.1 on branch 1 computed at ρ =
{0.2, 0.4, 0.6, 0.8} with arrows in the direction of decreasing values of ρ.
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Figure 8b. Velocity profiles g′(η) for σ = −1.1 on branch 1 computed at ρ =
{0.2, 0.4, 0.6, 0.8} with arrows in the direction of decreasing values of ρ.

24



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3

η

f ′(η)

f ′
1

f ′
2

Figure 9a. Velocity profiles f ′(η) for σ = 3.0 on branch 1 computed at ρ =
{0.2, 0.4, 0.6, 0.8} with arrows in the direction of decreasing values of ρ.
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Figure 9b. Velocity profiles g′(η) for σ = 3.0 on branch 1 computed at ρ =
{0.2, 0.4, 0.6, 0.8} with arrows in the direction of decreasing values of ρ.
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