Details of the proof of equivalence: the "cosine" versus "vertical eigenfunction" representations

by H. Alemi Ardakani, T.J. Bridges \& M.R. Turner
Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, England

- January 11, 2012-

1 Introduction

The boundary-value problem for the linear horizontally-forced sloshing problem can be solved using two different classes of eigenfunction expansions. The first will be referred to as the "cosine" expansion since the organizing centre is a cosine series in the x-direction (the horizontal direction), and the second is called the "vertical eigenfunction expansion" since the organizing centre is a class of y-direction (the vertical direction) eigenfunctions. These two methods lead to very different forms of solution, and their equivalence is not obvious. This technical report gives the details of a proof of equivalence. The strategy of the proof was suggested to the authors by McIver [7].

2 Governing equations

The basic boundary-value problem, for the function $\widehat{\phi}(x, y)$, under consideration is

$$
\begin{equation*}
\widehat{\phi}_{x x}+\widehat{\phi}_{y y}=0, \quad 0<y<h_{0}, \quad 0<x<L \tag{2.1}
\end{equation*}
$$

with boundary conditions

$$
\begin{align*}
& \widehat{\phi}_{y}=0 \quad \text { at } y=0, \\
& \widehat{\phi}_{y}=K \widehat{\phi} \quad \text { at } y=h_{0}, \quad K=\frac{\omega^{2}}{g}, \tag{2.2}\\
& \widehat{\phi}_{x}=1 \quad \text { at } x=0, L,
\end{align*}
$$

where K is considered here to be a given positive constant, and the boundary conditions at $x=0, L$ have been simplified for this report. The aim is to find the particular solution due to the inhomogeneous boundary condition at $x=1$. This boundary-value problem arises in the problem of horizontally-forced sloshing (cf. Graham \& Rodriquez [4] and §2.2.2 of Linton \& McIver [6]), in the linear analysis of tuned sloshing dampers (cf. Ikeda \& Nakagawa [5]) and tuned liquid dampers (TLDs) (cf. Frandsen [3]), and in the analysis of dynamic-coupling between vehicle motion and fluid sloshing in Cooker's experiment (cf. Alemi Ardakani et al. [2]).

3 The "cosine expansion"

Transform $\widehat{\phi}$ so that the inhomogeneous boundary conditions at $x=0, L$ are moved to $y=h_{0}$. Then a cosine expansion in the x-direction can be used. Let

$$
\begin{equation*}
\widehat{\phi}(x, y)=\left(x-\frac{1}{2} L\right)+\widehat{\Phi}(x, y) . \tag{3.1}
\end{equation*}
$$

The function $\widehat{\Phi}(x, y)$ then satisfies Laplace's equation and the following boundary conditions

$$
\begin{align*}
& \widehat{\Phi}_{y}=\frac{\omega^{2}}{g} \widehat{\Phi}+K\left(x-\frac{1}{2} L\right), \quad y=h_{0} \\
& \widehat{\Phi}_{y}=0, \quad y=0 \tag{3.2}\\
& \widehat{\Phi}_{x}=0, \quad x=0, L .
\end{align*}
$$

The function x has the following cosine expansion

$$
\begin{equation*}
x-\frac{L}{2}=\sum_{n=0}^{\infty} p_{n} \cos \left(\alpha_{n} x\right), \quad \text { with } \quad p_{n}=-\frac{4}{L \alpha_{n}^{2}}, \quad \alpha_{n}=(2 n+1) \frac{\pi}{L} . \tag{3.3}
\end{equation*}
$$

Considering only the solution due to the inhomogeneous term in the boundary condition at $y=h_{0}$, a proposed infinite cosine expansion is

$$
\widehat{\Phi}(x, y)=\sum_{n=0}^{\infty} A_{n}(y) \cos \left(\alpha_{n} x\right)
$$

This function satisfies the boundary conditions at $x=0$ and $x=L$. To satisfy Laplace's equation and the boundary condition at $y=0, A_{n}(y)$ are required to be proportional to $\cosh \left(\alpha_{n} y\right)$, giving

$$
\begin{equation*}
\widehat{\Phi}(x, y)=\sum_{n=0}^{\infty} a_{n} \frac{\cosh \left(\alpha_{n} y\right)}{\cosh \left(\alpha_{n} h_{0}\right)} \cos \left(\alpha_{n} x\right) . \tag{3.4}
\end{equation*}
$$

The coefficients a_{n} are then determined by substituting into the boundary condition at $y=h_{0}$ and using (3.3),

$$
\begin{equation*}
a_{n}=\frac{K}{K_{n}-K} p_{n}, \quad \text { with } \quad K_{n}:=\alpha_{n} \tanh \left(\alpha_{n} h_{0}\right) . \tag{3.5}
\end{equation*}
$$

Substituting (3.4) with (3.5) and the cosine expansion (3.3) gives the required solution for $\widehat{\phi}$,

$$
\begin{equation*}
\widehat{\phi}(x, y)=\sum_{n=0}^{\infty} p_{n} f_{n}(y) \cos \left(\alpha_{n} x\right) \tag{3.6}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{n}(y)=1+\left(\frac{K}{K_{n}-K}\right) \frac{\cosh \left(\alpha_{n} y\right)}{\cosh \left(\alpha_{n} h_{0}\right)} . \tag{3.7}
\end{equation*}
$$

This form of solution was first proposed in [4] and then later used in [3] for a linear analysis of TLDs.

3.1 A property of the functions $f_{n}(y)$

In the proof of equivalence, the functions $f_{n}(y)$ will need to be expanded in another series of functions - the vertical eigenfunctions. For this transformation, a useful property of these functions is

$$
\begin{equation*}
f_{n}^{\prime}\left(h_{0}\right)-K f_{n}\left(h_{0}\right)=0 . \tag{3.8}
\end{equation*}
$$

This follows since

$$
f_{n}^{\prime}(y)-K f_{n}(y)=\alpha_{n}\left(\frac{K}{K_{n}-K}\right) \frac{\sinh \left(\alpha_{n} y\right)}{\cosh \left(\alpha_{n} h_{0}\right)}-K-K\left(\frac{K}{K_{n}-K}\right) \frac{\cosh \left(\alpha_{n} y\right)}{\cosh \left(\alpha_{n} h_{0}\right)},
$$

and so

$$
\begin{aligned}
f_{n}^{\prime}\left(h_{0}\right)-K f_{n}\left(h_{0}\right) & =\alpha_{n}\left(\frac{K}{K_{n}-K}\right) \tanh \left(\alpha_{n} h_{0}\right)-K-K\left(\frac{K}{K_{n}-K}\right) \\
& =\left(\frac{K K_{n}}{K_{n}-K}\right)-K-K\left(\frac{K}{K_{n}-K}\right)=0 .
\end{aligned}
$$

4 The vertical eigenfunction expansion

An alternative is to use the vertical direction as an organizing centre. There is a complete set of eigenfunctions $\left\{\psi_{0}(y), \psi_{1}(y), \ldots\right\}$ satisfying a boundary value problem in y. The required details of these eigenfunctions following [6] are recorded in Appendix A.

In terms of the infinite set of vertical eigenfunctions, the general solution of the boundary value problem (2.1)-(2.2) is

$$
\begin{equation*}
\widehat{\phi}(x, y)=\sum_{n=0}^{\infty} A_{n}(x) \psi_{n}(y) \tag{4.1}
\end{equation*}
$$

where the vertical eigenfunctions $\psi_{n}(y)$ satisfy the BVP (A-1) in Appendix A.
Laplace's equation and the properties of the ψ_{n}-eigenfunctions give

$$
\begin{align*}
& A_{0}(x)=A_{0}^{(1)} \cos k_{0} x+A_{0}^{(2)} \sin k_{0} x \\
& A_{n}(x)=A_{n}^{(1)} \cosh k_{n} x+A_{n}^{(2)} \sinh k_{n} x, \quad n=1,2, \ldots \tag{4.2}
\end{align*}
$$

Impose the boundary condition at $x=0$:

$$
\sum_{n=0}^{\infty} A_{n}^{\prime}(0) \psi_{n}(y)=1
$$

Now use the fact that $1=\sum_{n=0}^{\infty} c_{n} \psi_{n}(y)$ as shown in Appendix B with c_{n} defined in (B-2), to give

$$
\begin{equation*}
A_{n}^{\prime}(0)=A_{n}^{\prime}(L)=c_{n}, \quad n=0,1, \cdots . \tag{4.3}
\end{equation*}
$$

Substitution and the assumption

$$
\sin \left(\frac{1}{2} k_{0} L\right) \neq 0
$$

(neglecting the 1:1 resonance [2] in this report) gives

$$
\begin{equation*}
A_{0}(x)=\frac{c_{0}}{k_{0}}\left(\sin \left(k_{0} x\right)-\tan \left(\frac{1}{2} k_{0} L\right) \cos \left(k_{0} x\right)\right) \tag{4.4}
\end{equation*}
$$

and for $n \geq 1$,

$$
\begin{equation*}
A_{n}(x)=\frac{c_{n}}{k_{n}}\left(\sinh \left(k_{n} x\right)-\tanh \left(\frac{1}{2} k_{n} L\right) \cosh \left(k_{n} x\right)\right) . \tag{4.5}
\end{equation*}
$$

Hence the solution in terms of the vertical eigenfunctions is

$$
\begin{aligned}
\widehat{\phi}(x, y)= & \frac{c_{0}}{k_{0}}\left(\sin \left(k_{0} x\right)-\tan \left(\frac{1}{2} k_{0} L\right) \cos \left(k_{0} x\right)\right) \psi_{0}(y) \\
& +\sum_{n=1}^{\infty} \frac{c_{n}}{k_{n}}\left(\sinh \left(k_{n} x\right)-\tanh \left(\frac{1}{2} k_{n} L\right) \cosh \left(k_{n} x\right)\right) \psi_{n}(y)
\end{aligned}
$$

This solution should equal the solution (3.6) obtained using the cosine expansion. To show this the strategy is to expand each $A_{n}(x)$ in a cosine series and expand each $f_{n}(y)$ in terms of the vertical eigenfunctions.

5 Cosine expansion of $A_{n}(x)$ for $n=0,1,2, \ldots$

The first step is to expand (4.4) and (4.5) in cosine series. For this the two key integrals are

$$
\begin{equation*}
\int_{0}^{L}\left[\sin \left(k_{0} x\right)-\tan \left(\frac{1}{2} k_{0} L\right) \cos \left(k_{0} x\right)\right] \cos \left(\alpha_{n} x\right) \mathrm{d} x=-\frac{2 k_{0}}{\alpha_{n}^{2}-k_{0}^{2}}, \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{L}\left[\sinh \left(k_{m} x\right)-\tan \left(\frac{1}{2} k_{m} L\right) \cos \left(k_{m} x\right)\right] \cos \left(\alpha_{n} x\right) \mathrm{d} x=-\frac{2 k_{m}}{k_{m}^{2}+\alpha_{n}^{2}} . \tag{5.2}
\end{equation*}
$$

These two integrals can be verified directly using elementary calculus.
Expand $A_{0}(x)$ in a cosine series and use (5.1)

$$
\begin{equation*}
A_{0}(x):=\frac{c_{0}}{k_{0}}\left(\sin \left(k_{0} x\right)-\tan \left(\frac{1}{2} k_{0} L\right) \cos \left(k_{0} x\right)\right)=\sum_{m=0}^{\infty} u_{m} \cos \left(\alpha_{m} x\right) \tag{5.3}
\end{equation*}
$$

with

$$
\begin{equation*}
u_{m}=\frac{4 c_{0}}{L} \frac{1}{k_{0}^{2}-\alpha_{m}^{2}}=c_{0} p_{m} \frac{\alpha_{m}^{2}}{\alpha_{m}^{2}-k_{0}^{2}} \tag{5.4}
\end{equation*}
$$

Similarly, using (5.2),

$$
\begin{equation*}
\frac{c_{n}}{k_{n}}\left(\sinh \left(k_{n} x\right)-\tanh \left(\frac{1}{2} k_{n} L\right) \cosh \left(k_{n} x\right)\right)=\sum_{m=0}^{\infty} U_{m}^{(n)} \cos \left(\alpha_{m} x\right) \tag{5.5}
\end{equation*}
$$

with

$$
\begin{equation*}
U_{m}^{(n)}=-\frac{4 c_{n}}{L} \frac{1}{k_{n}^{2}+\alpha_{m}^{2}}=c_{n} p_{m} \frac{\alpha_{m}^{2}}{k_{n}^{2}+\alpha_{m}^{2}} \tag{5.6}
\end{equation*}
$$

Hence the vertical eigenfunction expansion can be expressed in terms of a cosine series,

$$
\widehat{\phi}(x, y)=\sum_{m=0}^{\infty} u_{m} \cos \left(\alpha_{m} x\right) \psi_{0}(y)+\sum_{n=0}^{\infty}\left[\sum_{m=0}^{\infty} U_{m}^{(n)} \cos \left(\alpha_{m} x\right)\right] \psi_{n}(y) .
$$

or

$$
\begin{equation*}
\widehat{\phi}(x, y)=\sum_{m=0}^{\infty}\left[u_{m} \psi_{0}(y)+\sum_{n=0}^{\infty} U_{m}^{(n)} \psi_{n}(y)\right] \cos \left(\alpha_{m} x\right) \tag{5.7}
\end{equation*}
$$

Comparison of (5.7) with (3.6) suggests that the term in brackets in (5.7) should be related to the sequence of functions $f_{n}(y)$.

6 Vertical eigenfunction expansion of $f_{n}(y)$

The most difficult part of the proof of equivalence is the expansion of the functions in (3.7) in terms of vertical eigenfunctions

$$
\begin{equation*}
f_{m}(y)=1+\left(\frac{K}{K_{m}-K}\right) \frac{\cosh \left(\alpha_{m} y\right)}{\cosh \left(\alpha_{m} h_{0}\right)}=\sum_{n=0}^{\infty} F_{n}^{(m)} \psi_{n}(y) . \tag{6.1}
\end{equation*}
$$

There are two key facts needed. The functions $f_{m}(y)$ should be defined so that $f_{m}^{\prime}\left(h_{0}\right)=$ $K f_{m}\left(h_{0}\right)$ (and this is the case as shown in (3.8)). Secondly the infinite set of identities (A-5) need to be used.

6.1 Computing $F_{0}^{(m)}$

In this subsection it is proved that

$$
\begin{equation*}
F_{0}^{(m)}=c_{0} \frac{\alpha_{m}^{2}}{\alpha_{m}^{2}-k_{0}^{2}} . \tag{6.2}
\end{equation*}
$$

Start with the formula for the first coefficient in (6.1)

$$
\begin{equation*}
F_{0}^{(m)}=\frac{1}{h_{0}} \int_{0}^{h_{0}} f_{m}(y) \psi_{0}(y) \mathrm{d} y=\frac{1}{N_{0} h_{0}} \int_{0}^{h_{0}} f_{m}(y) \cosh \left(k_{0} y\right) \mathrm{d} y \tag{6.3}
\end{equation*}
$$

The key integral is

$$
\frac{\left(k_{0}^{2}-\alpha_{m}^{2}\right)}{k_{0}^{2}} \int_{0}^{h_{0}} \frac{\cosh \left(\alpha_{m} y\right)}{\cosh \left(\alpha_{m} h_{0}\right)} \cosh \left(k_{0} y\right) \mathrm{d} y=\frac{1}{k_{0}} \sinh \left(k_{0} h_{0}\right)-\frac{\alpha_{m}}{k_{0}^{2}} \tanh \left(\alpha_{m} h_{0}\right) \cosh \left(k_{0} h_{0}\right) .
$$

which can be verified using integration by parts twice. Now use (3.5) and the identity (A-3)

$$
\frac{\left(k_{0}^{2}-\alpha_{m}^{2}\right)}{k_{0}^{2}} \int_{0}^{h_{0}} \frac{\cosh \left(\alpha_{m} y\right)}{\cosh \left(\alpha_{m} h_{0}\right)} \cosh \left(k_{0} y\right) \mathrm{d} y=\frac{1}{k_{0}}\left(\frac{K-K_{m}}{K}\right) \sinh \left(k_{0} h_{0}\right)
$$

Hence

$$
\frac{1}{h_{0}} \int_{0}^{h_{0}}\left(\frac{K}{K_{m}-K}\right) \frac{\cosh \left(\alpha_{m} y\right)}{\cosh \left(\alpha_{m} h_{0}\right)} \psi_{0}(y) \mathrm{d} y=-\frac{k_{0}^{2}}{\left(k_{0}^{2}-\alpha_{m}^{2}\right)} \frac{\sinh \left(k_{0} h_{0}\right)}{N_{0} k_{0} h_{0}}=c_{0} \frac{k_{0}^{2}}{\alpha_{m}^{2}-k_{0}^{2}}
$$

using (B-2). The integrand multiplying ψ_{0} is $f_{m}(y)-1$ and so

$$
c_{0} \frac{k_{0}^{2}}{\alpha_{m}^{2}-k_{0}^{2}}=\frac{1}{h_{0}} \int_{0}^{h_{0}}\left(f_{m}(y)-1\right) \psi_{0}(y) \mathrm{d} y=\frac{1}{h_{0}} \int_{0}^{h_{0}} f_{m}(y) \psi_{0}(y) \mathrm{d} y-c_{0} .
$$

or

$$
F_{0}^{(m)}=\frac{1}{h_{0}} \int_{0}^{h_{0}} f_{m}(y) \psi_{0}(y) \mathrm{d} y=c_{0} \frac{\alpha_{m}^{2}}{\alpha_{m}^{2}-k_{0}^{2}},
$$

confirming (6.2).

6.2 Computing $F_{n}^{(m)}$

In this subsection it is proved that

$$
\begin{equation*}
F_{n}^{(m)}=c_{n} \frac{\alpha_{m}^{2}}{k_{n}^{2}+\alpha_{m}^{2}} \tag{6.4}
\end{equation*}
$$

Start with the formula for the $n-$ th coefficient

$$
\begin{equation*}
F_{n}^{(m)}=\frac{1}{h_{0}} \int_{0}^{h_{0}} f_{m}(y) \psi_{n}(y) \mathrm{d} y=\frac{1}{N_{n} h_{0}} \int_{0}^{h_{0}} f_{m}(y) \cos \left(k_{n} y\right) \mathrm{d} y . \tag{6.5}
\end{equation*}
$$

The key integral is

$$
\frac{\left(k_{n}^{2}+\alpha_{m}^{2}\right)}{\alpha_{m}^{2}} \int_{0}^{h_{0}} \frac{\cosh \left(\alpha_{m} y\right)}{\cosh \left(\alpha_{m} h_{0}\right)} \cos \left(k_{n} y\right) \mathrm{d} y=\frac{k_{n}}{\alpha_{m}^{2}} \sin \left(k_{n} h_{0}\right)+\frac{1}{\alpha_{m}} \tanh \left(\alpha_{m} h_{0}\right) \cos \left(k_{n} h_{0}\right),
$$

which can be verified directly using integration by parts twice. Now use (3.5) and the infinite set of identities (A-5)

$$
\frac{\left(k_{n}^{2}+\alpha_{m}^{2}\right)}{\alpha_{m}^{2}} \int_{0}^{h_{0}} \frac{\cosh \left(\alpha_{m} y\right)}{\cosh \left(\alpha_{m} h_{0}\right)} \cos \left(k_{n} y\right) \mathrm{d} y=\frac{k_{n}}{\alpha_{m}^{2}}\left(\frac{K-K_{m}}{K}\right) \sin \left(k_{n} h_{0}\right) .
$$

Hence

$$
\frac{1}{h_{0}} \int_{0}^{h_{0}}\left(\frac{K}{K_{m}-K}\right) \frac{\cosh \left(\alpha_{m} y\right)}{\cosh \left(\alpha_{m} h_{0}\right)} \psi_{n}(y) \mathrm{d} y=-\frac{k_{n}^{2}}{k_{n}^{2}+\alpha_{m}^{2}} \frac{\sin \left(k_{n} h_{0}\right)}{k_{n} h_{0} N_{n}}=-c_{n} \frac{k_{n}^{2}}{k_{n}^{2}+\alpha_{m}^{2}}
$$

using (B-2). The integrand multiplying ψ_{n} is then $f_{m}(y)-1$ and so

$$
-c_{n} \frac{k_{n}^{2}}{k_{n}^{2}+\alpha_{m}^{2}}=\frac{1}{h_{0}} \int_{0}^{h_{0}}\left(f_{m}(y)-1\right) \psi_{n}(y) \mathrm{d} y=\frac{1}{h_{0}} \int_{0}^{h_{0}} f_{m}(y) \psi_{n}(y) \mathrm{d} y-c_{n},
$$

or

$$
F_{n}^{(m)}=\frac{1}{h_{0}} \int_{0}^{h_{0}} f_{m}(y) \psi_{n}(y) \mathrm{d} y=c_{n} \frac{\alpha_{m}^{2}}{k_{n}^{2}+\alpha_{m}^{2}},
$$

confirming (6.5).

6.3 Summary of the expansion for $f_{n}(y)$

To summarize, the expansion in terms of vertical eigenfunctions of $f_{m}(y)$ is

$$
\begin{equation*}
f_{m}(y)=\frac{\alpha_{m}^{2}}{\alpha_{m}^{2}-k_{0}^{2}} c_{0} \psi_{0}(y)+\sum_{n=1}^{\infty} \frac{\alpha_{m}^{2}}{\alpha_{m}^{2}+k_{n}^{2}} c_{n} \psi_{n}(y) . \tag{6.6}
\end{equation*}
$$

7 Transforming: cosine to vertical eigenfunction

Start with the cosine expansion (3.4) and (3.6). Substititute the vertical eigenfunction expansion for $f_{n}(z)$, reverse the order of summation, and then substitute the cosine expansion of the sequence of functions $A_{n}(x)$. The result is the vertical eigenfunction represenatation. Carrying out these steps:

$$
\begin{aligned}
\widehat{\phi}(x, y) & =\left(x-\frac{1}{2} L\right)+\sum_{n=0}^{\infty} a_{n} \frac{\cosh \left(\alpha_{n} y\right)}{\cosh \left(\alpha_{n} h_{0}\right)} \cos \left(\alpha_{n} x\right) \\
& =\sum_{n=0}^{\infty} p_{n} \cos \left(\alpha_{n} x\right)+\sum_{n=0}^{\infty} p_{n}\left(\frac{K}{K_{n}-K}\right) \frac{\cosh \left(\alpha_{n} y\right)}{\cosh \left(\alpha_{n} h_{0}\right)} \cos \left(\alpha_{n} x\right) \\
& =\sum_{n=0}^{\infty} p_{n} f_{n}(y) \cos \left(\alpha_{n} x\right) \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} p_{n} F_{m}^{(n)} \psi_{m}(y) \cos \left(\alpha_{n} x\right) \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} p_{m} F_{n}^{(m)} \psi_{n}(y) \cos \left(\alpha_{m} x\right) \\
& =\sum_{m=0}^{\infty} p_{m} F_{0}^{(m)} \psi_{0}(y) \cos \left(\alpha_{m} x\right)+\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} p_{m} F_{n}^{(m)} \psi_{n}(y) \cos \left(\alpha_{m} x\right) \\
& =c_{0} \psi_{0}(y) \sum_{m=0}^{\infty} p_{m} \frac{\alpha_{m}^{2}}{\alpha_{m}^{2}-k_{0}^{2}} \cos \left(\alpha_{m} x\right)+\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} p_{m} c_{n} \frac{\alpha_{m}^{2}}{k_{n}^{2}+\alpha_{m}^{2}} \psi_{n}(y) \cos \left(\alpha_{m} x\right) \\
& =\psi_{0}(y) \sum_{m=0}^{\infty} u_{m} \cos \left(\alpha_{m} x\right)+\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} U_{m}^{(n)} \psi_{n}(y) \cos \left(\alpha_{m} x\right) \\
& =\left[\sum_{m=0}^{\infty} u_{m} \cos \left(\alpha_{m} x\right)\right] \psi_{0}(y)+\sum_{n=1}^{\infty}\left[\sum_{m=0}^{\infty} U_{m}^{(n)} \cos \left(\alpha_{m} x\right)\right] \psi_{n}(y) \\
& =A_{0}(x) \psi_{0}(y)+\sum_{n=1}^{\infty} A_{n}(x) \psi_{n}(y),
\end{aligned}
$$

which is the representation of $\widehat{\phi}$ in terms of vertical eigenfunction expansion. This completes the transformation from the cosine expansion to the vertical eigenfunction expansion.

8 Transforming the characteristic equation

In constructing the characteristic equation in the coupled vessel-fluid problem in [2] the integral of the horizontal momentum is important. Here, the equivalence of representations in $\S 7$ is used to give two equivalent representations of the total horizontal momentum.

Start by integrating (6.1) over the interval $\left[0, h_{0}\right]$,

$$
\frac{1}{h_{0}} \int_{0}^{h_{0}}\left[1+\left(\frac{K}{K_{m}-K}\right) \frac{\cosh \left(\alpha_{m} y\right)}{\cosh \left(\alpha_{m} h_{0}\right)}\right] \mathrm{d} y=\sum_{n=0}^{\infty} F_{n}^{(m)} \frac{1}{h_{0}} \int_{0}^{h_{0}} \psi_{n}(y) \mathrm{d} y
$$

giving

$$
1+\left(\frac{K K_{m}}{K_{m}-K}\right) \frac{1}{\alpha_{m}^{2} h_{0}}=\sum_{n=0}^{\infty} c_{n} F_{n}^{(m)}=\frac{c_{0}^{2} \alpha_{m}^{2}}{\alpha_{m}^{2}-k_{0}^{2}}+\sum_{n=1}^{\infty} \frac{c_{n}^{2} \alpha_{m}^{2}}{\alpha_{m}^{2}+k_{n}^{2}} .
$$

Multiply both sides by $2 p_{m}$ and sum over m

$$
\sum_{m=0}^{\infty} 2 p_{m}\left[1+\left(\frac{K K_{m}}{K_{m}-K}\right) \frac{1}{\alpha_{m}^{2} h_{0}}\right]=-\frac{8}{L} c_{0}^{2} \sum_{m=0}^{\infty} \frac{1}{\alpha_{m}^{2}-k_{0}^{2}}-\frac{8}{L} \sum_{n=1}^{\infty} c_{n}^{2} \sum_{m=0}^{\infty} \frac{1}{\alpha_{m}^{2}+k_{n}^{2}}
$$

To simplify further we need the following two identities

$$
\frac{\tan (z)}{z}=8 \sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{2} \pi^{2}-4 z^{2}} \quad \text { and } \quad \frac{\tanh (z)}{z}=8 \sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{2} \pi^{2}+4 z^{2}}
$$

These two identities can be proved by substituting $x=0$ in (5.3) and (5.5) respectively. Using these identities

$$
\sum_{m=0}^{\infty} 2 p_{m}\left[1+\left(\frac{K K_{m}}{K_{m}-K}\right) \frac{1}{\alpha_{m}^{2} h_{0}}\right]=-2 \frac{c_{0}^{2}}{k_{0}} \tan \left(\frac{1}{2} k_{0} L\right)-\sum_{n=1}^{\infty} 2 \frac{c_{n}^{2}}{k_{n}} \sum_{m=0}^{\infty} \tanh \left(\frac{1}{2} k_{n} L\right) .
$$

Since

$$
\begin{equation*}
\sum_{m=0}^{\infty} p_{m}=-\frac{1}{2} L \tag{8.1}
\end{equation*}
$$

which follows by setting $x=0$ in (3.3), this formula simplifies to

$$
\begin{equation*}
1-\frac{1}{h_{0} L} \sum_{m=0}^{\infty} \frac{2 p_{m}}{\alpha_{m}^{2}}\left(\frac{K K_{m}}{K_{m}-K}\right)=2 \frac{c_{0}^{2}}{k_{0} L} \tan \left(\frac{1}{2} k_{0} L\right)+\sum_{n=1}^{\infty} 2 \frac{c_{n}^{2}}{k_{n} L} \tanh \left(\frac{1}{2} k_{n} L\right) . \tag{8.2}
\end{equation*}
$$

8.1 The horizontal momentum of the fluid

The total horizonatal momentum of the fluid is

$$
\mathrm{M}^{\mathrm{horz}}:=\int_{0}^{L} \int_{0}^{h_{0}} \rho \widehat{\phi}_{x} \mathrm{~d} y \mathrm{~d} x
$$

First compute the integrals on the right-hand side using the cosine representation and $m_{f}=\rho h_{0} L$,

$$
\begin{aligned}
\mathbf{M}^{\text {horz }} & =\int_{0}^{L} \int_{0}^{h_{0}} \rho \widehat{\phi}_{x} \mathrm{~d} y \mathrm{~d} x \\
& =m_{f}-\rho \sum_{n=0}^{\infty} a_{n} \alpha_{n}\left[\int_{0}^{h_{0}} \frac{\cosh \left(\alpha_{n} y\right)}{\cosh \left(\alpha_{n} h_{0}\right)} \mathrm{d} y\right] \int_{0}^{L} \sin \left(\alpha_{n} x\right) \mathrm{d} x \\
& =m_{f}+\rho \sum_{n=0}^{\infty} \frac{a_{n}}{\alpha_{n}} \tanh \left(\alpha_{n} h_{0}\right)\left(\cos \left(\alpha_{n} L\right)-1\right) \\
& =m_{f}-2 \rho \sum_{n=0}^{\infty} \frac{a_{n}}{\alpha_{n}^{2}} K_{n} \\
& =m_{f}\left[1-\frac{1}{h_{0} L} \sum_{n=0}^{\infty} 2 \frac{p_{n}}{\alpha_{n}^{2}}\left(\frac{K K_{n}}{K_{n}-K}\right)\right]
\end{aligned}
$$

Now compute the total horizontal momentum using the vertical eigenfunctions

$$
\begin{aligned}
\mathrm{M}^{\text {horz }} & =\int_{0}^{L} \int_{0}^{h_{0}} \rho \widehat{\phi}_{x} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{L} \int_{0}^{h_{0}} \rho\left[A_{0}^{\prime}(x) \psi_{0}(y)+\sum_{n=1}^{\infty} A_{n}^{\prime}(x) \psi_{n}(y)\right] \mathrm{d} y \mathrm{~d} x \\
& =\rho\left[A_{0}(L)-A_{0}(0)\right] \int_{0}^{h_{0}} \psi_{0}(y) \mathrm{d} y+\sum_{n=1}^{\infty} \rho\left[A_{n}(L)-A_{n}(0)\right] \int_{0}^{h_{0}} \psi_{n}(y) \mathrm{d} y \\
& =\rho h_{0} c_{0}\left[A_{0}(L)-A_{0}(0)\right]+\sum_{n=1}^{\infty} \rho h_{0} c_{n}\left[A_{n}(L)-A_{n}(0)\right] \\
& =2 \rho h_{0} \frac{c_{0}^{2}}{k_{0}} \tan \left(\frac{1}{2} k_{0} L\right)+\sum_{n=1}^{\infty} 2 \rho h_{0} \frac{c_{n}^{2}}{k_{n}} \tanh \left(\frac{1}{2} k_{n} L\right) \\
& =m_{f}\left[2 \frac{c_{0}^{2}}{k_{0} L} \tan \left(\frac{1}{2} k_{0} L\right)+\sum_{n=1}^{\infty} 2 \frac{c_{n}^{2}}{k_{n} L} \tanh \left(\frac{1}{2} k_{n} L\right)\right] .
\end{aligned}
$$

It follows from (8.2) that these two representations are equal. This equivalence of the two representations of the total horizontal momentum is used in [2].

- Appendix -

A The vertical eigenfunctions

The eigenvalue problem for the vertical eigenfunctions is

$$
\begin{align*}
-\psi_{y y} & =\lambda \psi, \quad 0<y<h_{0} \\
\psi_{y} & =0 \quad \text { at } y=0 \tag{A-1}\\
\psi_{y} & =K \psi \quad \text { at } y=h_{0}
\end{align*}
$$

with λ the eigenvalue parameter, and $K=\omega^{2} / g$ is treated as a given real parameter. Here the properties of the eigenvalues and eigenfunctions are recorded following [6].

The first eigenvalue λ_{0} is negative. Therefore define

$$
\begin{equation*}
\lambda_{0}=-k_{0}^{2} \tag{A-2}
\end{equation*}
$$

where, for fixed K and h_{0}, k_{0} is the unique root of

$$
\begin{equation*}
k_{0} \tanh \left(k_{0} h_{0}\right)-K=0 \tag{A-3}
\end{equation*}
$$

In addition there is a countable number of positive eigenvalues

$$
\begin{equation*}
\lambda_{n}=k_{n}^{2}, \quad n=1,2, \ldots, \tag{A-4}
\end{equation*}
$$

with the sequence k_{n} determined by

$$
\begin{equation*}
k_{n} \tan \left(k_{n} h_{0}\right)+K=0, \quad n=1,2, \ldots \tag{A-5}
\end{equation*}
$$

The associated eigenfunctions are

$$
\begin{equation*}
\psi_{0}(y)=\frac{1}{N_{0}} \cosh \left(k_{0} y\right) \quad \text { and } \quad \psi_{n}(y)=\frac{1}{N_{n}} \cos \left(k_{n} y\right), \quad n=1,2, \ldots, \tag{A-6}
\end{equation*}
$$

with

$$
\begin{equation*}
N_{0}=\sqrt{\frac{1}{2}\left(1+\frac{\sinh 2 k_{0} h_{0}}{2 k_{0} h_{0}}\right)} \quad \text { and } \quad N_{n}=\sqrt{\frac{1}{2}\left(1+\frac{\sin 2 k_{n} h_{0}}{2 k_{n} h_{0}}\right)} .< \tag{A-7}
\end{equation*}
$$

The coefficients N_{0} and N_{n} are chosen so that the eigenfunctions have unit norm,

$$
\begin{equation*}
\frac{1}{h_{0}} \int_{0}^{h_{0}} \psi_{n}(y)^{2} \mathrm{~d} y=1, \quad n=0,1,2, \ldots \tag{A-8}
\end{equation*}
$$

The set $\left\{\psi_{0}(y), \psi_{1}(y), \ldots\right\}$ is complete on the interval $\left[0, h_{0}\right]$. Hence any squareintegrable function $g(y)$ on this interval can be expanded in a series

$$
\begin{equation*}
g(y)=\sum_{n=0}^{\infty} g_{n} \psi_{n}(y), \tag{A-9}
\end{equation*}
$$

with the coefficients determined using orthogonality of the eigenfunctions,

$$
\begin{equation*}
g_{n}=\frac{1}{h_{0}} \int_{0}^{h_{0}} g(y) \psi_{n}(y) \mathrm{d} y \tag{A-10}
\end{equation*}
$$

B Anomalies in the eigenfunction expansions

The theory of Appendix A can be used to expand the function " 1 "

$$
\begin{equation*}
1=\sum_{n=0}^{\infty} c_{n} \psi_{n}(y) \tag{B-1}
\end{equation*}
$$

with coefficients

$$
\begin{equation*}
c_{0}=\frac{1}{N_{0}} \frac{\sinh k_{0} h_{0}}{k_{0} h_{0}} \quad \text { and } \quad c_{n}=\frac{1}{N_{n}} \frac{\sin k_{n} h_{0}}{k_{n} h_{0}} . \tag{B-2}
\end{equation*}
$$

The expansion of "1" highlights a difficulty with the vertical eigenfunction expansion. Let $g(y)$ be an arbitrary function on the interval $0<y<h_{0}$ with expansion in terms of vertical eigenfunctions as in (A-9) and (A-10). Then

$$
\begin{aligned}
g^{\prime}(y)-K g(y) & =\sum_{n=0}^{\infty} g_{n} \psi_{n}^{\prime}(y)-K \sum_{n=0}^{\infty} g_{n} \psi_{n}(y) \\
& =\sum_{n=0}^{\infty} g_{n}\left(\psi_{n}^{\prime}(y)-K \psi_{n}(y)\right)
\end{aligned}
$$

Now, using the fact that the vertical eigenfunctions satisfy the identity

$$
\psi_{n}^{\prime}\left(h_{0}\right)-K \psi_{n}\left(h_{0}\right)=0
$$

it follows that

$$
\begin{equation*}
g^{\prime}\left(h_{0}\right)-K g\left(h_{0}\right)=\sum_{n=0}^{\infty} g_{n}\left(\psi_{n}^{\prime}\left(h_{0}\right)-K \psi_{n}\left(h_{0}\right)\right)=0 . \tag{B-3}
\end{equation*}
$$

Therefore if $g^{\prime}\left(h_{0}\right)-K g\left(h_{0}\right) \neq 0$ then there is a discontinuity at $y=h_{0}$ in the representation in terms of vertical eigenfunctions. This happens in the representation for " 1 " since with $g(y)=1$ the left hand side of (B-3) is $-K$ which is nonzero but the sum on the right-hand side vanishes.

References

[1] http://personal.maths.surrey.ac.uk/st/T.Bridges/SLOSH/
[2] H. Alemi Ardakani, T.J. Bridges \& M.R. Turner. Resonance in in a model for Cooker's sloshing experiment, Preprint, University of Surrey. Electronic version available at [1].
[3] J.B. Frandsen. Numerical predictions of tuned liquid tank structural systems, J. Fluids \& Structures 20 309-329 (2005).
[4] E.W. Graham \& A.M. Rodriguez. The characteristics of fuel motion which affect airplane dynamics, J. Appl. Mech. 19 381-388 (1952).
[5] T. Ikeda \& N. Nakagawa. Non-linear vibrations of a structure caused by water sloshing in a rectangular tank, J. Sound Vibr. 201 23-41 (1997).
[6] C.M. Linton \& P. McIver. Handbook of Mathematical Techniques for WaveStructure Interaction, Chapman \& Hall/CRC: Boca Raton (2001).
[7] P. McIver. Private Communication (2012).

