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1 Introduction

The boundary-value problem for the linear horizontally-forced sloshing problem can be
solved using two different classes of eigenfunction expansions. The first will be referred to
as the ”cosine” expansion since the organizing centre is a cosine series in the x−direction
(the horizontal direction), and the second is called the “vertical eigenfunction expansion”
since the organizing centre is a class of y−direction (the vertical direction) eigenfunctions.
These two methods lead to very different forms of solution, and their equivalence is not
obvious. This technical report gives the details of a proof of equivalence. The strategy of
the proof was suggested to the authors by McIver [7].

2 Governing equations

The basic boundary-value problem, for the function φ̂(x, y) , under consideration is

φ̂xx + φ̂yy = 0 , 0 < y < h0 , 0 < x < L , (2.1)

with boundary conditions

φ̂y = 0 at y = 0 ,

φ̂y = K φ̂ at y = h0 , K = ω2

g
,

φ̂x = 1 at x = 0, L ,

(2.2)

where K is considered here to be a given positive constant, and the boundary conditions
at x = 0, L have been simplified for this report. The aim is to find the particular solution
due to the inhomogeneous boundary condition at x = 1. This boundary-value problem
arises in the problem of horizontally-forced sloshing (cf. Graham & Rodriquez [4] and
§2.2.2 of Linton & McIver [6]), in the linear analysis of tuned sloshing dampers (cf.
Ikeda & Nakagawa [5]) and tuned liquid dampers (TLDs) (cf. Frandsen [3]), and in
the analysis of dynamic-coupling between vehicle motion and fluid sloshing in Cooker’s
experiment (cf. Alemi Ardakani et al. [2]).
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3 The “cosine expansion”

Transform φ̂ so that the inhomogeneous boundary conditions at x = 0, L are moved to
y = h0 . Then a cosine expansion in the x−direction can be used. Let

φ̂(x, y) =
(
x− 1

2
L
)

+ Φ̂(x, y) . (3.1)

The function Φ̂(x, y) then satisfies Laplace’s equation and the following boundary condi-
tions

Φ̂y = ω2

g
Φ̂ +K

(
x− 1

2
L
)
, y = h0

Φ̂y = 0 , y = 0

Φ̂x = 0 , x = 0, L .

(3.2)

The function x has the following cosine expansion

x− L

2
=

∞∑
n=0

pn cos(αnx) , with pn = − 4

Lα2
n

, αn = (2n+ 1)
π

L
. (3.3)

Considering only the solution due to the inhomogeneous term in the boundary condition
at y = h0 , a proposed infinite cosine expansion is

Φ̂(x, y) =
∞∑
n=0

An(y) cos(αnx) .

This function satisfies the boundary conditions at x = 0 and x = L . To satisfy Laplace’s
equation and the boundary condition at y = 0, An(y) are required to be proportional to
cosh(αny) , giving

Φ̂(x, y) =
∞∑
n=0

an
cosh(αny)

cosh(αnh0)
cos(αnx) . (3.4)

The coefficients an are then determined by substituting into the boundary condition at
y = h0 and using (3.3),

an =
K

Kn −K
pn , with Kn := αn tanh(αnh0) . (3.5)

Substituting (3.4) with (3.5) and the cosine expansion (3.3) gives the required solution

for φ̂ ,

φ̂(x, y) =
∞∑
n=0

pn fn(y) cos(αnx) , (3.6)

with

fn(y) = 1 +

(
K

Kn −K

)
cosh(αny)

cosh(αnh0)
. (3.7)

This form of solution was first proposed in [4] and then later used in [3] for a linear
analysis of TLDs.
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3.1 A property of the functions fn(y)

In the proof of equivalence, the functions fn(y) will need to be expanded in another series
of functions – the vertical eigenfunctions. For this transformation, a useful property of
these functions is

f ′
n(h0)−Kfn(h0) = 0 . (3.8)

This follows since

f ′
n(y)−Kfn(y) = αn

(
K

Kn −K

)
sinh(αny)

cosh(αnh0)
−K −K

(
K

Kn −K

)
cosh(αny)

cosh(αnh0)
,

and so

f ′
n(h0)−Kfn(h0) = αn

(
K

Kn −K

)
tanh(αnh0)−K −K

(
K

Kn −K

)
=

(
KKn

Kn −K

)
−K −K

(
K

Kn −K

)
= 0 .

4 The vertical eigenfunction expansion

An alternative is to use the vertical direction as an organizing centre. There is a complete
set of eigenfunctions {ψ0(y), ψ1(y), . . .} satisfying a boundary value problem in y . The
required details of these eigenfunctions following [6] are recorded in Appendix A.

In terms of the infinite set of vertical eigenfunctions, the general solution of the bound-
ary value problem (2.1)-(2.2) is

φ̂(x, y) =
∞∑
n=0

An(x)ψn(y) , (4.1)

where the vertical eigenfunctions ψn(y) satisfy the BVP (A-1) in Appendix A.
Laplace’s equation and the properties of the ψn−eigenfunctions give

A0(x) = A
(1)
0 cos k0x+ A

(2)
0 sin k0x

An(x) = A
(1)
n cosh knx+ A

(2)
n sinh knx , n = 1, 2, . . . .

(4.2)

Impose the boundary condition at x = 0:

∞∑
n=0

A′
n(0)ψn(y) = 1 .

Now use the fact that 1 =
∑∞

n=0 cnψn(y) as shown in Appendix B with cn defined in
(B-2), to give

A′
n(0) = A′

n(L) = cn , n = 0, 1, · · · . (4.3)

Substitution and the assumption

sin
(
1
2
k0L
)
6= 0 ,
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(neglecting the 1 : 1 resonance [2] in this report) gives

A0(x) =
c0
k0

(
sin(k0x)− tan

(
1
2
k0L
)

cos(k0x)

)
, (4.4)

and for n ≥ 1,

An(x) =
cn
kn

(
sinh(knx)− tanh( 1

2
knL) cosh(knx)

)
. (4.5)

Hence the solution in terms of the vertical eigenfunctions is

φ̂(x, y) =
c0
k0

(
sin(k0x)− tan

(
1
2
k0L
)

cos(k0x)

)
ψ0(y)

+
∞∑
n=1

cn
kn

(
sinh(knx)− tanh(1

2
knL) cosh(knx)

)
ψn(y) .

This solution should equal the solution (3.6) obtained using the cosine expansion. To
show this the strategy is to expand each An(x) in a cosine series and expand each fn(y)
in terms of the vertical eigenfunctions.

5 Cosine expansion of An(x) for n = 0, 1, 2, . . .

The first step is to expand (4.4) and (4.5) in cosine series. For this the two key integrals
are ∫ L

0

[
sin(k0x)− tan( 1

2
k0L) cos(k0x)

]
cos(αnx) dx = − 2k0

α2
n − k20

, (5.1)

and ∫ L

0

[
sinh(kmx)− tan( 1

2
kmL) cos(kmx)

]
cos(αnx) dx = − 2km

k2m + α2
n

. (5.2)

These two integrals can be verified directly using elementary calculus.
Expand A0(x) in a cosine series and use (5.1)

A0(x) :=
c0
k0

(
sin(k0x)− tan

(
1
2
k0L
)

cos(k0x)
)

=
∞∑

m=0

um cos(αmx) , (5.3)

with

um =
4c0
L

1

k20 − α2
m

= c0pm
α2
m

α2
m − k20

. (5.4)

Similarly, using (5.2),

cn
kn

(
sinh(knx)− tanh

(
1
2
knL

)
cosh(knx)

)
=

∞∑
m=0

U (n)
m cos(αmx) , (5.5)

with

U (n)
m = −4cn

L

1

k2n + α2
m

= cnpm
α2
m

k2n + α2
m

. (5.6)
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Hence the vertical eigenfunction expansion can be expressed in terms of a cosine series,

φ̂(x, y) =
∞∑

m=0

um cos(αmx)ψ0(y) +
∞∑
n=0

[
∞∑

m=0

U (n)
m cos(αmx)

]
ψn(y) .

or

φ̂(x, y) =
∞∑

m=0

[
umψ0(y) +

∞∑
n=0

U (n)
m ψn(y)

]
cos(αmx) . (5.7)

Comparison of (5.7) with (3.6) suggests that the term in brackets in (5.7) should be related
to the sequence of functions fn(y) .

6 Vertical eigenfunction expansion of fn(y)

The most difficult part of the proof of equivalence is the expansion of the functions in
(3.7) in terms of vertical eigenfunctions

fm(y) = 1 +

(
K

Km −K

)
cosh(αmy)

cosh(αmh0)
=

∞∑
n=0

F (m)
n ψn(y) . (6.1)

There are two key facts needed. The functions fm(y) should be defined so that f ′
m(h0) =

Kfm(h0) (and this is the case as shown in (3.8)). Secondly the infinite set of identities
(A-5) need to be used.

6.1 Computing F
(m)
0

In this subsection it is proved that

F
(m)
0 = c0

α2
m

α2
m − k20

. (6.2)

Start with the formula for the first coefficient in (6.1)

F
(m)
0 =

1

h0

∫ h0

0

fm(y)ψ0(y) dy =
1

N0h0

∫ h0

0

fm(y) cosh(k0y) dy . (6.3)

The key integral is

(k20 − α2
m)

k20

∫ h0

0

cosh(αmy)

cosh(αmh0)
cosh(k0y) dy =

1

k0
sinh(k0h0)−

αm

k20
tanh(αmh0) cosh(k0h0) .

which can be verified using integration by parts twice. Now use (3.5) and the identity
(A-3)

(k20 − α2
m)

k20

∫ h0

0

cosh(αmy)

cosh(αmh0)
cosh(k0y) dy =

1

k0

(
K −Km

K

)
sinh(k0h0) .

Hence

1

h0

∫ h0

0

(
K

Km −K

)
cosh(αmy)

cosh(αmh0)
ψ0(y) dy = − k20

(k20 − α2
m)

sinh(k0h0)

N0k0h0
= c0

k20
α2
m − k20

,
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using (B-2). The integrand multiplying ψ0 is fm(y)− 1 and so

c0
k20

α2
m − k20

=
1

h0

∫ h0

0

(fm(y)− 1)ψ0(y) dy =
1

h0

∫ h0

0

fm(y)ψ0(y) dy − c0 .

or

F
(m)
0 =

1

h0

∫ h0

0

fm(y)ψ0(y) dy = c0
α2
m

α2
m − k20

,

confirming (6.2).

6.2 Computing F
(m)
n

In this subsection it is proved that

F (m)
n = cn

α2
m

k2n + α2
m

. (6.4)

Start with the formula for the n−th coefficient

F (m)
n =

1

h0

∫ h0

0

fm(y)ψn(y) dy =
1

Nnh0

∫ h0

0

fm(y) cos(kny) dy . (6.5)

The key integral is

(k2n + α2
m)

α2
m

∫ h0

0

cosh(αmy)

cosh(αmh0)
cos(kny) dy =

kn
α2
m

sin(knh0) +
1

αm

tanh(αmh0) cos(knh0) ,

which can be verified directly using integration by parts twice. Now use (3.5) and the
infinite set of identities (A-5)

(k2n + α2
m)

α2
m

∫ h0

0

cosh(αmy)

cosh(αmh0)
cos(kny) dy =

kn
α2
m

(
K −Km

K

)
sin(knh0) .

Hence

1

h0

∫ h0

0

(
K

Km −K

)
cosh(αmy)

cosh(αmh0)
ψn(y) dy = − k2n

k2n + α2
m

sin(knh0)

knh0Nn

= −cn
k2n

k2n + α2
m

,

using (B-2). The integrand multiplying ψn is then fm(y)− 1 and so

−cn
k2n

k2n + α2
m

=
1

h0

∫ h0

0

(fm(y)− 1)ψn(y) dy =
1

h0

∫ h0

0

fm(y)ψn(y) dy − cn ,

or

F (m)
n =

1

h0

∫ h0

0

fm(y)ψn(y) dy = cn
α2
m

k2n + α2
m

,

confirming (6.5).

6.3 Summary of the expansion for fn(y)

To summarize, the expansion in terms of vertical eigenfunctions of fm(y) is

fm(y) =
α2
m

α2
m − k20

c0ψ0(y) +
∞∑
n=1

α2
m

α2
m + k2n

cnψn(y) . (6.6)
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7 Transforming: cosine to vertical eigenfunction

Start with the cosine expansion (3.4) and (3.6). Substititute the vertical eigenfunction
expansion for fn(z) , reverse the order of summation, and then substitute the cosine
expansion of the sequence of functions An(x) . The result is the vertical eigenfunction
represenatation. Carrying out these steps:

φ̂(x, y) =
(
x− 1

2
L) +

∞∑
n=0

an
cosh(αny)

cosh(αnh0)
cos(αnx)

=
∞∑
n=0

pn cos(αnx) +
∞∑
n=0

pn

(
K

Kn −K

)
cosh(αny)

cosh(αnh0)
cos(αnx)

=
∞∑
n=0

pnfn(y) cos(αnx)

=
∞∑
n=0

∞∑
m=0

pnF
(n)
m ψm(y) cos(αnx)

=
∞∑

m=0

∞∑
n=0

pmF
(m)
n ψn(y) cos(αmx)

=
∞∑

m=0

pmF
(m)
0 ψ0(y) cos(αmx) +

∞∑
n=1

∞∑
m=0

pmF
(m)
n ψn(y) cos(αmx)

= c0ψ0(y)
∞∑

m=0

pm
α2
m

α2
m − k20

cos(αmx) +
∞∑
n=1

∞∑
m=0

pmcn
α2
m

k2n + α2
m

ψn(y) cos(αmx)

= ψ0(y)
∞∑

m=0

um cos(αmx) +
∞∑
n=1

∞∑
m=0

U (n)
m ψn(y) cos(αmx)

=

[ ∞∑
m=0

um cos(αmx)

]
ψ0(y) +

∞∑
n=1

[ ∞∑
m=0

U (n)
m cos(αmx)

]
ψn(y)

= A0(x)ψ0(y) +
∞∑
n=1

An(x)ψn(y) ,

which is the representation of φ̂ in terms of vertical eigenfunction expansion. This com-
pletes the transformation from the cosine expansion to the vertical eigenfunction expan-
sion.

8 Transforming the characteristic equation

In constructing the characteristic equation in the coupled vessel-fluid problem in [2] the in-
tegral of the horizontal momentum is important. Here, the equivalence of representations
in §7 is used to give two equivalent representations of the total horizontal momentum.

Start by integrating (6.1) over the interval [0, h0] ,

1

h0

∫ h0

0

[
1 +

(
K

Km −K

)
cosh(αmy)

cosh(αmh0)

]
dy =

∞∑
n=0

F (m)
n

1

h0

∫ h0

0

ψn(y) dy ,

giving

1 +

(
KKm

Km −K

)
1

α2
mh0

=
∞∑
n=0

cnF
(m)
n =

c20α
2
m

α2
m − k20

+
∞∑
n=1

c2nα
2
m

α2
m + k2n

.
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Multiply both sides by 2pm and sum over m

∞∑
m=0

2pm

[
1 +

(
KKm

Km −K

)
1

α2
mh0

]
= − 8

L
c20

∞∑
m=0

1

α2
m − k20

− 8

L

∞∑
n=1

c2n

∞∑
m=0

1

α2
m + k2n

.

To simplify further we need the following two identities

tan(z)

z
= 8

∞∑
m=0

1

(2m+ 1)2π2 − 4z2
and

tanh(z)

z
= 8

∞∑
m=0

1

(2m+ 1)2π2 + 4z2
.

These two identities can be proved by substituting x = 0 in (5.3) and (5.5) respectively.
Using these identities

∞∑
m=0

2pm

[
1 +

(
KKm

Km −K

)
1

α2
mh0

]
= −2

c20
k0

tan
(
1
2
k0L
)
−

∞∑
n=1

2
c2n
kn

∞∑
m=0

tanh
(
1
2
knL

)
.

Since
∞∑

m=0

pm = − 1
2
L , (8.1)

which follows by setting x = 0 in (3.3), this formula simplifies to

1− 1

h0L

∞∑
m=0

2pm
α2
m

(
KKm

Km −K

)
= 2

c20
k0L

tan
(
1
2
k0L
)

+
∞∑
n=1

2
c2n
knL

tanh
(
1
2
knL

)
. (8.2)

8.1 The horizontal momentum of the fluid

The total horizonatal momentum of the fluid is

Mhorz :=

∫ L

0

∫ h0

0

ρφ̂x dydx .

First compute the integrals on the right-hand side using the cosine representation and
mf = ρh0L ,

Mhorz =

∫ L

0

∫ h0

0

ρφ̂x dydx

= mf − ρ
∞∑
n=0

anαn

[ ∫ h0

0

cosh(αny)

cosh(αnh0)
dy

] ∫ L

0

sin(αnx)dx

= mf + ρ

∞∑
n=0

an
αn

tanh(αnh0)(cos(αnL)− 1)

= mf − 2ρ
∞∑
n=0

an
α2
n

Kn

= mf

[
1− 1

h0L

∞∑
n=0

2
pn
α2
n

(
KKn

Kn −K

)]
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Now compute the total horizontal momentum using the vertical eigenfunctions

Mhorz =

∫ L

0

∫ h0

0

ρφ̂x dydx

=

∫ L

0

∫ h0

0

ρ
[
A′

0(x)ψ0(y) +
∞∑
n=1

A′
n(x)ψn(y)

]
dydx

= ρ
[
A0(L)− A0(0)

] ∫ h0

0

ψ0(y) dy +
∞∑
n=1

ρ
[
An(L)− An(0)

] ∫ h0

0

ψn(y) dy

= ρh0c0
[
A0(L)− A0(0)

]
+

∞∑
n=1

ρh0cn
[
An(L)− An(0)

]
= 2ρh0

c20
k0

tan
(
1
2
k0L
)

+
∞∑
n=1

2ρh0
c2n
kn

tanh
(
1
2
knL

)
= mf

[
2
c20
k0L

tan
(
1
2
k0L
)

+
∞∑
n=1

2
c2n
knL

tanh
(
1
2
knL

)]
.

It follows from (8.2) that these two representations are equal. This equivalence of the two
representations of the total horizontal momentum is used in [2].

— Appendix —

A The vertical eigenfunctions

The eigenvalue problem for the vertical eigenfunctions is

−ψyy = λψ , 0 < y < h0 ,

ψy = 0 at y = 0 ,

ψy = Kψ at y = h0 ,

(A-1)

with λ the eigenvalue parameter, and K = ω2/g is treated as a given real parameter.
Here the properties of the eigenvalues and eigenfunctions are recorded following [6].

The first eigenvalue λ0 is negative. Therefore define

λ0 = −k20 , (A-2)

where, for fixed K and h0 , k0 is the unique root of

k0 tanh(k0h0)−K = 0 . (A-3)

In addition there is a countable number of positive eigenvalues

λn = k2n , n = 1, 2, . . . , (A-4)

with the sequence kn determined by

kn tan(knh0) +K = 0 , n = 1, 2, . . . . (A-5)
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The associated eigenfunctions are

ψ0(y) =
1

N0

cosh(k0y) and ψn(y) =
1

Nn

cos(kny) , n = 1, 2, . . . , (A-6)

with

N0 =

√
1

2

(
1 +

sinh 2k0h0
2k0h0

)
and Nn =

√
1

2

(
1 +

sin 2knh0
2knh0

)
. < (A-7)

The coefficients N0 and Nn are chosen so that the eigenfunctions have unit norm,

1

h0

∫ h0

0

ψn(y)2 dy = 1 , n = 0, 1, 2, . . . . (A-8)

The set {ψ0(y), ψ1(y), . . .} is complete on the interval [0, h0] . Hence any square-
integrable function g(y) on this interval can be expanded in a series

g(y) =
∞∑
n=0

gnψn(y) , (A-9)

with the coefficients determined using orthogonality of the eigenfunctions,

gn =
1

h0

∫ h0

0

g(y)ψn(y) dy . (A-10)

B Anomalies in the eigenfunction expansions

The theory of Appendix A can be used to expand the function “1”

1 =
∞∑
n=0

cnψn(y) , (B-1)

with coefficients

c0 =
1

N0

sinh k0h0
k0h0

and cn =
1

Nn

sin knh0
knh0

. (B-2)

The expansion of “1” highlights a difficulty with the vertical eigenfunction expansion.
Let g(y) be an arbitrary function on the interval 0 < y < h0 with expansion in terms of
vertical eigenfunctions as in (A-9) and (A-10). Then

g′(y)−Kg(y) =
∞∑
n=0

gnψ
′
n(y)−K

∞∑
n=0

gnψn(y)

=
∞∑
n=0

gn(ψ′
n(y)−Kψn(y)) .

Now, using the fact that the vertical eigenfunctions satisfy the identity

ψ′
n(h0)−Kψn(h0) = 0 ,

it follows that

g′(h0)−Kg(h0) =
∞∑
n=0

gn(ψ′
n(h0)−Kψn(h0)) = 0 . (B-3)

Therefore if g′(h0) − Kg(h0) 6= 0 then there is a discontinuity at y = h0 in the repre-
sentation in terms of vertical eigenfunctions. This happens in the representation for “1”
since with g(y) = 1 the left hand side of (B-3) is −K which is nonzero but the sum on
the right-hand side vanishes.
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