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Abstract. The problem of dynamic coupling between a rectan-
gular container undergoing planar pendular oscillations and its in-
terior potential fluid sloshing is studied. The Neumann boundary-
value problem for the fluid motion inside the container is de-
duced from the Bateman–Luke variational principle. The govern-
ing integro-differential equation for the motion of the suspended
container, from a single rigid pivoting rod, is the Euler-Lagrange
equation for a forced pendulum. The fluid and rigid-body partial
differential equations are linearised, and the characteristic equation
for the natural and resonant frequencies of the coupled dynamical
system are presented. It is found that internal 1 : 1 resonances exist
for an experimentally realistic setup, which has important physical
implications. In addition, a new instability is found in the linearised
coupled problem whereby instability occurs when the rod length is
shorter than a critical length, and an explicit formula is given.

1 Introduction

The problems of fluid sloshing in a stationary or forced container, and dynamics of a
rigid body with a liquid-filled cavity have been the subject of a great deal of research.
The works by Moiseyev and Rumyantsev (1968), Ibrahim (2005), Faltinsen and Timokha
(2009) and Lukovsky (2015), and references therein, highlight the theoretical, numerical
and experimental problems in these areas. The aim in this paper is to study instability
and internal 1 : 1 resonances in the problem of dynamic coupling between a suspended
container, undergoing planar pendular oscillations, and its interior inviscid and incom-
pressible fluid sloshing.

The mathematical problem of instability of sloshing motion in a vessel undergoing
pivoted oscillations is studied by Turner, Alemi Ardakani and Bridges (2015), hereafter
TAAB (2015). This problem is generalised in the current paper and it is proved that ex-
perimentally realistic internal 1 : 1 resonances can be observed in the coupled pendulum-
sloshing system in the finite depth, which has important physical implications. At reson-
ance, the uncoupled symmetric sloshing mode resonates exactly with an anti-symmetric
sloshing mode joined with the pendulum motion. The internal resonances are important
because at the linear level it is a mechanism for excitation of symmetric fluid mode coup-
ling to the rigid body motion, and at the nonlinear level a 1 : 1 resonance is a pathway
for energy transfer between the fluid and rigid body, and can give rise to much more
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Figure 1: Schematic showing a configuration of the coupled pendulum-slosh problem under
consideration.

dramatic fluid-body motion. Away from resonance, the anti-symmetric modes are the
principal mechanism for coupling between the fluid and pendulum motion.

Consider a vessel with a rectangular cross-section of length L and height d̂ which is
suspended by a rigid rod of length ℓ̂ attached to the top of the vessel. A schematic is shown
in Figure 1. The vessel is free to rotate in the vertical plane such that the rod makes an
angle θ with the downward vertical. The perpendicular distance between the pivot point
and the base of the vessel is ℓ = d̂ + ℓ̂. The vessel is partially filled with an inviscid and
incompressible fluid with constant density ρ. The fluid occupies the region 0 ≤ z ≤ h (x, t)
with 0 ≤ x ≤ L. The spatial (laboratory) frame has coordinates X = (X,Z) with origin
at the pivot point, and the body frame has coordinates x = (x, z), which is attached to
the moving vessel and used for the analysis of the interior fluid sloshing. The second body
frame xb = (xb, zb) is placed at the pivot point. The distance from the origin of the body
frame xb, i.e. the pivot point, to the origin of the body frame x is denoted by d = (d1, d3),
which is a constant vector. For our analysis in this paper it is d = (−L/2,−ℓ).

Using the velocity potential theory, the Neumann boundary-value problem for the
motion of the interior fluid sloshing can be obtained from the Bateman–Luke variational
principle presented in Alemi Ardakani (2020). For our problem in this paper, we need the
two-dimensional variant of the Bateman–Luke variational principle, which takes the form

δL (Φ, h) = δ

∫ t2

t1

∫ L

0

∫ h

0

−
(
Φt +

1
2
∇Φ · ∇Φ + Φxθ̇ (z + d3)− Φz θ̇ (x+ d1)

+g sin θ (x+ d1) + g cos θ (z + d3)

)
ρ dz dx dt = 0 ,


(1.1)

subject to the endpoint conditions δΦ (x, t1) = δΦ (x, t2) = 0. The variational principle
(1.1) gives the boundary-value problem for the interior potential fluid sloshing with the
velocity field

u = (u,w) =
(
Φx + θ̇ (z + d3) ,Φz − θ̇ (x+ d1)

)
, (1.2)

where Φ (x, z) is the velocity potential. The field equation for the interior fluid becomes

∆Φ = Φxx + Φzz = 0 in 0 ≤ z ≤ h (x, t) , 0 ≤ x ≤ L . (1.3)
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Relative to the body frame x, the rigid-wall boundary conditions are

Φx = −θ̇ (z + d3) at x = 0 and x = L ,

Φz = θ̇ (x+ d1) at z = 0 .

}
(1.4)

The kinematic free surface boundary condition at z = h (x, t) becomes

Φz − θ̇ (x+ d1) = ht +
(
Φx + θ̇ (h+ d3)

)
hx , (1.5)

and the dynamic free surface boundary condition at z = h (x, t) takes the form

Φt +
1
2

(
Φ2

x + Φ2
z

)
+ Φxθ̇ (h+ d3)− Φz θ̇ (x+ d1) + g sin θ (x+ d1) + g cos θ (h+ d3) = 0 .

(1.6)

The nonlinear integro-differential equation governing the motion of the suspended con-
tainer, with interior potential fluid sloshing, undergoing pendular oscillations can be ob-
tained from the equation (54) of Alemi Ardakani (2020) which takes the form

∫ L

0

∫ h(x,t)

0

(
θ̇ (x+ d1) Φx + θ̇ (z + d3) Φz + (x+ d1) Φzt − (z + d3) Φxt

+(Φxz (x+ d1)− Φxx (z + d3))
(
Φx + θ̇ (z + d3)

)
+(Φzz (x+ d1)− Φxz (z + d3))

(
Φz − θ̇ (x+ d1)

)
+g
(
(x+ d1) cos θ − (z + d3) sin θ

))
ρ dz dx

+mv

(
x2
v + z2v

)
θ̈ +mvg (xv cos θ − zv sin θ) = 0 ,

(1.7)

where mv is the mass of the dry container, xv = (xv, zv) is the centre of mass of the dry
container relative to the body frame xb placed at the pivot point.

In TAAB (2015) the centre of mass of the dry container is fixed at the centre of the base
of the container. By introducing a new dimensionless variable λ = zv/L, the analytical
results of TAAB (2015) can be extended to more general configurations. In particular,
(a) the characteristic equations for the natural frequencies of the coupled pendulum-slosh
system in finite depth and in the shallow water limit are extended; (b) exact formulae are
derived for the instability threshold in the coupled system; and (c) a quadratic equation
is found which leads to identification of the existence of internal 1 : 1 resonances for
experimentally realistic setups in the case of finite depth.

The outline of the paper is as follows. In §2 the forced nonlinear pendulum equation
(1.7) for the rigid body motion, and the Neumann boundary-value problem (1.3), (1.4),
(1.5), and (1.6) for the interior potential fluid motion are linearised about the state of
quiescent fluid. Moreover, a characteristic equation is derived for the natural frequency of
the coupled pendulum-slosh system. In §3 the instability condition of TAAB (2015) for
the coupled pendulum-slosh oscillations is generalised. It is found that instability occurs
in the linear coupled system if the rod length is shorter than a critical length, which
depends on (a) the length of the container, (b) the initial fluid height at rest, (c) the
ratio of the fluid and rigid body masses, and (d) the vertical coordinate of the centre of
mass of the dry rigid body relative to the pivot point. The shallow water limit of the
characteristic equation is presented in §4. In §5 a quadratic equation is derived, in finite
depth and in the shallow water limit, for internal 1 : 1 resonances in the coupled system.
Numerical evaluations of the characteristic equation and results at 1 : 1 resonance are
presented in §6. The paper ends with concluding remarks in §7.

3



2 The characteristic equation for the linearised coupled

pendulum-slosh system

To derive the characteristic function for the natural frequencies of the coupled (pendular
rigid body motion + interior potential fluid sloshing) system, we linearise the governing
equations about a state of quiescent fluid where Φ = −g (h0 + d3) t, h = h0, and θ = 0
where the initial fluid height h0 is a constant. Express Φ (x, z, t), h (x, t), and θ (t) as
time-periodic functions with frequency ω,

Φ (x, z, t) = −g (h0 + d3) t+Φ̂ (x, z) sinωt , h (x, t) = h0+ĥ (x) cosωt , θ (t) = θ̂ cosωt ,
(2.1)

where |Φ̂|, |ĥ|, |θ̂| ≪ 1. Substituting these expressions into the Neumann boundary-value
problem (1.3), (1.4), (1.5), and (1.6) for the fluid motion and retaining only linear terms

leads to the following boundary-value problem for Φ̂, ĥ, and θ̂:

Φ̂xx + Φ̂zz = 0 in 0 ≤ z ≤ h0 , 0 ≤ x ≤ L ,

Φ̂x = θ̂ω (z + d3) at x = 0, L and Φ̂z = −θ̂ω (x+ d1) at z = 0 ,

Φ̂z = −ĥω − θ̂ω (x+ d1) at z = h0 ,

Φ̂ω + gĥ+ gθ̂ (x+ d1) = 0 at z = h0 .


(2.2)

Substituting (2.1) into the forced pendulum equation (1.7) for the rigid-body motion,
setting d1 = −L/2, d3 = −ℓ, xv = 0, the mass of the interior fluid mf = ρh0L, and
retaining only linear terms gives

(
mvz

2
vω

2 +mvgzv +mfg
(
1
2
h0 − ℓ

))
θ̂ −

∫ L

0

ρgĥ

∣∣∣∣z=h0 (
x− 1

2
L
)
dx

+

∫ L

0

∫ h0

0

(
(z − ℓ) Φ̂x −

(
x− 1

2
L
)
Φ̂z

)
ωρ dz dx = 0 .

(2.3)

We can eliminate ĥ(x) from the dynamic and kinematic free surface boundary condi-

tions in (2.2) to get a single free surface boundary condition in terms of Φ̂ and θ̂ as

Φ̂z −
ω2

g
Φ̂ = 0 at z = h0 . (2.4)

Substituting for ĥ from the kinematic free surface boundary condition in (2.2) with d1 =
−L/2 into (2.3) modifies the rigid body equation to

−
(
mvz

2
vω

2 +mvgzv +mfg
(
1
2
h0 − ℓ

)
+

1

12
ρgL3

)
θ̂ −

∫ L

0

ρg

ω
Φ̂z

∣∣∣∣z=h0 (
x− 1

2
L
)
dx

=

∫ L

o

∫ h0

0

(
(z − ℓ) Φ̂x −

(
x− 1

2
L
)
Φ̂z

)
ωρ dz dx .

(2.5)
In TAAB (2015) the centre of mass of the dry rigid body is fixed at xv = (xv, zv) =
(0, d3) = (0,−ℓ), which is the centre of the base of the rigid body. In this paper, the
centre of mass of the dry rigid body is placed at xv = (0, zv) where zv is any point along
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the centre line. This leads to the generalisation of the analytical results of TAAB (2015)
and proves that internal 1 : 1 resonances can be observed in the coupled system in the
finite depth for experimentally realistic parameters.

Now, the strategy for solving the boundary-value problem is to transform Φ̂ (x, z) so
that the inhomogeneous boundary conditions at x = 0, L in (2.2) are moved to z = h0.
Then a cosine expansion in the x−direction can be used (Alemi Ardakani et al. 2012).
Let

Φ̂ (x, z) = θ̂ω
(
x− 1

2
L
)
(z − ℓ) + ϕ̂ (x, z) . (2.6)

The function ϕ̂ (x, z) then satisfies the Laplace equation and the following boundary con-
ditions

ϕ̂x = 0 at x = 0, L ,

ϕ̂z = −2θ̂ω
(
x− 1

2
L
)

at z = 0 ,

ϕ̂z −
ω2

g
ϕ̂ = −θ̂ω

(
x− 1

2
L
)
+

ω3

g
θ̂
(
x− 1

2
L
)
(h0 − ℓ) at z = h0 .

(2.7)

Substituting the general form for ϕ̂ (x, z) in (2.6) into the coupling equation (2.5) for θ̂
gives
−
(
mvgzv +mfg

(
1
2
h0 − ℓ

)
+

1

6
ρgL3

)
θ̂ −

(
mvz

2
v +mf

(
1

3
h2
0 + ℓ2 − ℓh0 −

1

12
L2

))
ω2θ̂

−
∫ L

0

ρg

ω

(
x− 1

2
L
)
ϕ̂z

∣∣∣∣z=h0

dx =

∫ L

0

∫ h0

0

(
(z − ℓ) ϕ̂x −

(
x− 1

2
L
)
ϕ̂z

)
ωρ dz dx .

(2.8)
The right-hand side of the free surface boundary condition in (2.7) can be written as a
cosine expansion (Alemi Ardakani et al. 2012) by noting that

x− L

2
= − 4

L

∞∑
n=0

1

α2
n

cosαnx with αn = (2n+ 1)
π

L
, (2.9)

where αn represents the wavenumbers for the anti-symmetric sloshing modes. Thus the
Laplace equation together with the boundary conditions (2.7) form a boundary value

problem for ϕ̂ and θ̂.
The general solution to Laplace’s equation which satisfies the rigid-wall boundary

conditions at x = 0, L in (2.7) is

ϕ̂ (x, z) = A+Bz +
∞∑
n=1

(bn cosh βnz + cn sinh βnz) cos βnx

+
∞∑
n=0

(an coshαnz + en sinhαnz) cosαnx ,

 (2.10)

where βn = 2nπ/L corresponds to the symmetric sloshing modes and A, B, an, bn, cn,
and en are constants to be determined. Satisfying the bottom boundary condition in (2.7)
leads to

B = 0 , cn = 0 , en =
8ωθ̂

Lα3
n

, (2.11)
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using (2.9), so ϕ̂ (x, z) takes the form

ϕ̂ (x, z) = A+
∞∑
n=1

bn cosh βnz cos βnx+
∞∑
n=0

(
an coshαnz +

8ωθ̂

Lα3
n

sinhαnz

)
cosαnx .

(2.12)
Substituting (2.12) into the free surface boundary condition in (2.7), using (2.9), and
equating coefficients of the cosine terms leads to A = 0 and

∞∑
n=1

(
βn tanh βnh0 −

ω2

g

)
bn cos βnx = 0 ,

∞∑
n=0

(
αn tanhαnh0 −

ω2

g

)
an cosαnx =

∞∑
n=0

(
8ω3

gLα3
n

tanhαnh0 −
8ω

Lα2
n

+
4ωg − 4ω3 (h0 − ℓ)

gLα2
n coshαnh0

)
θ̂ cosαnx .

(2.13)

Setting Tn = tanhαnh0, T̂n = tanh βnh0, and Cn = coshαnh0 the conditions (2.13) are
simplified to(

βnT̂n −
ω2

g

)
bn = 0 ,(

αnTn −
ω2

g

)
an =

(
8ω3

gLα3
n

Tn −
8ω

Lα2
n

+
4ωg − 4ω3 (h0 − ℓ)

gLα2
nCn

)
θ̂ .

 (2.14)

These are true for each n.

2.1 The characteristic function

The characteristic function for the coupled pendulum-slosh system is found by substituting
ϕ̂ into the forced pendulum equation (2.8). This requires the evaluation of the following
two integrals∫ L

0

∫ h0

0

(
(z − ℓ) ϕ̂x −

(
x− 1

2
L
)
ϕ̂z

)
ωρ dz dx =

∞∑
n=0

(
− 2ρω

an
αn

(h0 − ℓ)Sn

−16ρω2θ̂

Lα4
n

(
(h0 − ℓ)Cn + ℓ

)
+ 4ρω

an
α2
n

(
Cn − 1

)
+

32ρω2θ̂

Lα5
n

Sn

)
,


(2.15)

and ∫ L

0

ρg

ω

(
x− 1

2
L
)
ϕ̂z (x, h0) dx =

∞∑
n=0

−2
ρg

ω

(
an
αn

Sn +
8ωθ̂

Lα4
n

Cn

)
, (2.16)

where Sn = sinhαnh0. Now, substituting (2.15) and (2.16) into the forced pendulum
equation (2.8) gives

Θθ̂ +
∞∑
n=0

(
−2ρ

( g
ω
+ ω (h0 − ℓ)

) an
αn

Sn + 4ρω (Cn − 1)
an
α2
n

)
= 0 , (2.17)
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where

Θ = mvz
2
vω

2 +mf

(
1

3
h2
0 + ℓ2 − ℓh0 −

1

12
L2

)
ω2 +mfg

(
1
2
h0 − ℓ

)
+mvgzv

+
1

6
ρgL3 +

∞∑
n=0

(
− 16ρg

Lα4
n

Cn +
32ρω2

Lα5
n

Sn −
16ρω2

Lα4
n

((h0 − ℓ)Cn + ℓ)

)
.


(2.18)

The two equations in (2.14) and equation (2.17) provide three equations for the un-

knowns θ̂, a0, a1, · · · , and b1, b2, · · · . The first equation in (2.14) is homogeneous, diagonal
and decouples from the other equations. Its characteristic function is

P (ω) =
∞∏
n=1

(
gβnT̂n − ω2

)
= 0 . (2.19)

The full characteristic equation is

∆ (ω) = P (ω)D (ω) = 0 . (2.20)

The symmetric modes, satisfying P (ω) = 0, do not appear in the coupling equation
(2.17). As a consequence, the eigenvectors associated with the bn modes are linearly
independent from any of the eigenvectors of the other modes — a fact which is important
for the internal 1 : 1 resonance (Alemi Ardakani et al. 2012). It remains to derive
the characteristic function D (ω) for non-resonant strictly coupled dynamics. It is this
characteristic equation which was first studied by Cooker (1994) for sloshing frequencies

in a suspended container but in the shallow water limit. Assume θ̂ ̸= 0. Then the second
equation in (2.14) can be solved for an and substituted into (2.12)

ϕ̂ (x, z) =
∞∑
n=1

bn cosh βnz cos βnx+
∞∑
n=0

[
4ωθ̂

Lα2
n (gαnTn − ω2)

(
2ω2Tn

αn

− 2g +
g

Cn

−ω2 (h0 − ℓ)

Cn

)
coshαnz +

8

Lα3
n

θ̂ω sinhαnz

]
cosαnx .

 (2.21)

The second equation of (2.14) and the pendulum equation (2.17) can be expressed in
matrix form as

gα0T0 − ω2 0 0 . . . 0 0 −χ0

0 gα1T1 − ω2 0 . . . 0 0 −χ1

...
...

. . .
...

...
...

0 0 0 . . . gαn−1Tn−1 − ω2 0 −χn−1

0 0 0 . . . 0 gαnTn − ω2 −χn

Γ
S0

α0

+ Λ0 Γ
S1

α1

+ Λ1 Γ
S2

α2

+ Λ2 . . . Γ
Sn−1

αn−1

+ Λn−1 Γ
Sn

αn

+ Λn Θ





a0

a1

...

an−1

an

θ̂


= 0 ,

(2.22)
where

Γ = −2ρω (h0 − ℓ)− 2ρg

ω
, Λn = 4ρω

Cn − 1

α2
n

,

χn =
8ω3

Lα3
n

Tn −
8ωg

Lα2
n

+
4ωg − 4ω3 (h0 − ℓ)

Lα2
nCn

.
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The homogeneous equation (2.22) has a solution if and only if the determinant of the coef-
ficient matrix vanishes. Using an infinite determinant expansion, this condition provides
the characteristic function D (ω) = 0. This strategy is used by Frandsen (2005) and
TAAB (2015) to derive a product formula for the characteristic equation.

Alternatively, set bn = 0 for all n. Then, substitution of an given by

an =
4ωθ̂

CnLα2
n (gαnTn − ω2)

(
2Cn

αn

(
ω2Tn − gαn

)
+ g − ω2 (h0 − ℓ)

)
,

into (2.15) and (2.16) gives respectively∫ L

0

∫ h0

0

(
(z − ℓ) ϕ̂x −

(
x− 1

2
L
)
ϕ̂z

)
ωρ dz dx

=
∞∑
n=0

[
−8ρω2θ̂

Lα4
n (gαnTn − ω2)

(
gαnTn (h0 + ℓ)− ω2αnTn (h0 − ℓ)2

+2ω2 (h0 − ℓ)

(
1− 2

Cn

)
+ 6g

(
1

Cn

− 1

)
+

4ω2Tn

αn

− 2ω2ℓ

)]
,


and∫ L

0

ρg

ω

(
x− 1

2
L
)
ϕ̂z (x, h0) dx =

∞∑
n=0

[
−8ρgθ̂

Lα3
n (gαnTn − ω2)

(
−2ω2

αnCn

+Tn

(
g − ω2 (h0 − ℓ)

))]
.

Hence, the coupling equation (2.8) for θ̂ gives an explicit expression for D (ω) = 0 with

D (ω) = mvgzv +mfg
(
1
2
h0 − ℓ

)
+mvz

2
vω

2 +mf

(
1

3
h2
0 + ℓ2 − ℓh0 −

1

12
L2

)
ω2

+
1

6
ρgL3 −

∞∑
n=0

[
8ρg

Lα3
n (gαnTn − ω2)

(
−2ω2

αnCn

+ Tn

(
g + 2ω2ℓ

)
− ω4

g
Tn (h0 − ℓ)2

+
2ω4

gαn

(h0 − ℓ)

(
1− 2

Cn

)
+

6ω2

αn

(
1

Cn

− 1

)
+

4ω4

g

Tn

α2
n

− 2ω4ℓ

gαn

)]
.


(2.23)

Exact solutions of this equation are impossible, but this explicit form can be used for
numerical computation of the frequencies.

2.2 Non-dimensional characteristic function

The characteristic equation (2.20) can be expressed in terms of the non-dimensional para-
meters first proposed by Cooker (1994)

R =
mv

mf

and G =
L (1 +R)

4δℓ
with δ =

h0

L
, (2.24)

and an additional non-dimensional parameter associated with the vertical coordinate of
the centre of mass of the dry container defined by

λ =
zv
L

. (2.25)
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Set the dimensionless natural frequency

s =
L

2

ω√
gh0

. (2.26)

Letγn = (2n+ 1) π = αnL , γ̂n = 2nπ = βnL ,
ℓ

L
=

1 +R

4δG
, ω2 =

4

L
δgs2 ,

Tn = tanh δγn , T̂n = tanh δγ̂n , Sn = sinh δγn , Cn = cosh δγn .

(2.27)

This leads to the non-dimensional characteristic function for the dimensionless frequency
s:

∆ (s) = P (s)D (s) = 0 , (2.28)

where

D (s) =

(
Rλ2 − 1

12
+

1

3
δ2 +

(
1

4δ

1 +R

G

)2

− 1 +R

4G

)
s2 +

1

8
− 1

16δ2
1 +R

G
+

1

4δ
Rλ

+
1

24δ2
−

∞∑
n=0

[
2

γ3
n (γnTn − 4δs2)

(
16s2

δγnCn

+
Tn

δ2

(
1 +

2 (1 +R)

G
s2
)

−16s4Tn

(
δ − 1

4δ

1 +R

G

)2

+
32s4

γn

(
δ − 1

4δ

1 +R

G

)(
1− 2

Cn

)
−24s2

δγn
+

64s4

γ2
n

Tn −
8s4

δγn

1 +R

G

)]
,


(2.29)

and

P (s) =
∞∏
n=1

(
γ̂nT̂n − 4δs2

)
or P (s) =

∞∏
n=1

(
s2 − n2π2 tanh (2nπδ)

2nπδ

)
. (2.30)

The characteristic function can be solved numerically for those complex roots s which
have positive real part, for a given parameter set (G,R, δ, λ).

3 The instability condition in the coupled system

The characteristic function (2.28) exhibits both real (stable) and complex (unstable) solu-
tions for the non-dimensional frequency s. The symmetric modes which are solutions to
P (s) = 0 have solutions

s =

√
γ̂nT̂n

4δ
. (3.1)

Due to the implicit form of D (s) in (2.29) there is no analytical solution for the roots
of the anti-symmetric modes. However, we can search for the roots of D (s) numerically.
The real roots of D (s) = 0 are found by plotting D (s) for a fixed set of parameters
(G,R, δ, λ) and calculating the values where this function crosses the real axis.

To find the complex roots of the characteristic function, it is noted that D (s) in
(2.29) is an even function of s, hence (2.29) can be solved for s2, and when this quantity
is negative the purely imaginary roots are found. The unstable solutions are restricted to a

9



particular region of the parameter space (G,R, δ, λ), which can be determined by solving
(2.29) at s2 = 0, which is the point at which instability occurs in the characteristic
function. The result of this calculation gives a neutral stability contour in parameter
space which separates the stable and unstable solutions. By setting s = 0 in (2.29) it can
be shown that the neutral stability contour is analytically given by

1

8
− 1

16δ2
1 +R

G
+

1

4δ
Rλ+

1

24

1

δ2
−

∞∑
n=0

2

δ2
1

γ4
n

= 0 . (3.2)

Using the identity
∞∑
n=0

1

γ4
n

=
1

96
, (3.3)

the expression (3.2) for the neutral stability condition reduces to

G =
3 (1 +R)

6δ2 + 12δRλ+ 1
. (3.4)

In TAAB (2015) the centre of mass of the dry rigid body is fixed at the centre of the base
of the body. This means if we set zv = −ℓ, which gives λ = −ℓ/L = − (1 +R) /4δG,
then (3.2) recovers the equation (3.21) of TAAB (2015). From (3.4) one concludes that
there is an instability in the coupled pendulum-slosh system if

ℓ <
1

2
h0 +

1

12

L2

h0

+ LRλ . (3.5)

If we set zv = −ℓ, then (3.5) recovers the instability condition (1.1) of TAAB (2015).
Hence, the expression (3.5) is the extended form of the instability condition derived in
TAAB (2015) with xv = 0 and zv along the centre line passing through the pivot point
and the centre of the base of the rigid body.

If we substitute zv = −µℓ with µ a non-negative real number µ ∈ R≥0, i.e. when the
centre of mass of the dry container is placed at the pivot point (µ = 0) or below the pivot
point (µ ∈ R>0) along the centre line, then the extended neutral stability condition (3.4)
for the coupled pendulum-slosh system reduces to

G =
3 (1 +R) (1 + µR)

1 + 6δ2
, (3.6)

and the generalised instability condition (3.5) takes the form

ℓ (1 + µR) <
1

2
h0 +

1

12

L2

h0

. (3.7)

Furthermore, if we substitute zv = +µℓ with µ a positive real number µ ∈ R>0,
i.e. when the centre of mass of the dry container is placed above the pivot point along
the centre line, then the neutral stability condition (3.4) for the coupled pendulum-slosh
system reduces to

G =
3 (1 +R) (1− µR)

1 + 6δ2
, (3.8)

and the generalised instability condition (3.5) takes the form

ℓ (1− µR) <
1

2
h0 +

1

12

L2

h0

. (3.9)

The expressions (3.7) and (3.9) are the extended forms of the instability condition derived
in TAAB (2015) (see equation (1.1) in TAAB (2015)).
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4 Shallow water limit of the characteristic function

The shallow water limit ∆SW (s) = 0 of the characteristic function (2.28) can be calculated
by letting δ → 0. Setting zv = −µℓ in (2.29) with µ ∈ R≥0, i.e. when the centre of mass
of the dry container is placed at the pivot point or below the pivot point along the centre
line, and noting that Tn = tanh (γnδ) → γnδ as δ → 0 for any fixed n, using the identity
(3.3), and interchanging the sum and limit gives the following expression for the shallow
water limit of the characteristic function DSW (s):

DSW (s) =
1

16

(1 +R)2 (1 + µ2R)

G2
s2 − 1

16

(1 +R) (1 + µR)

G
+

1

24

−
∞∑
n=0

[
2

γ3
n (γ

2
n − 4s2)

(
−8s2

γn
− γn

(
1 +R

G

)2

s4 + γn

(
1 +

2 (1 +R)

G
s2
))]

.

 (4.1)

To simplify further, two key identities are needed,

∞∑
n=0

1

γ2
n

=
1

8
and tan (s) = 8s

∞∑
n=0

1

γ2
n − 4s2

. (4.2)

Now,
4

γ2
n

1

(γ2
n − 4s2)

= − 1

s2
1

γ2
n

+
1

s2
1

γ2
n − 4s2

, (4.3)

and so DSW (s) reduces to
DSW (s) =

(1 +R)2 (1 + µ2R)

G2
s2 − (1 +R) (1 + µR)

G

+

(
−1

s2
−
(
1 +R

G

)2

s2 +
2 (1 +R)

G

)(
1− tan(s)

s

)
.

(4.4)

To deduce the shallow water limit of P (s) in (2.30), note that T̂n = tanh (γ̂nδ) → γ̂nδ as
δ → 0 for any fixed n, and so

P SW (s) =
∞∏
n=1

(
γ̂2
n − 4s2

)
= 0 . (4.5)

The characteristic function (4.5) can be replaced with

P SW (s) = sin (s) , (4.6)

because the roots of (4.5) occur at s = nπ which correspond to the roots of (4.6). Therefore
the shallow water limit of the characteristic function (2.28) can be written as

∆SW (s) = P SW (s)DSW (s)

= sin (s)

[
(1 +R)2 (1 + µ2R)

G2
s2 − (1 +R) (1 + µR)

G

+

(
−1

s2
−
(
1 +R

G

)2

s2 +
2 (1 +R)

G

)(
1− tan(s)

s

)]
= 0 .


(4.7)
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Using a similar argument it can be proved that the shallow water limit of the char-
acteristic function (2.28) when zv = +µℓ in (2.29) with µ ∈ R>0, i.e. when the centre of
mass of the dry container is placed above the pivot point along the centre line, is

∆SW (s) = P SW (s)DSW (s)

= sin (s)

[
(1 +R)2 (1 + µ2R)

G2
s2 − (1 +R) (1− µR)

G

+

(
−1

s2
−
(
1 +R

G

)2

s2 +
2 (1 +R)

G

)(
1− tan(s)

s

)]
= 0 .


(4.8)

In the shallow water limit the unstable solutions are restricted to a particular region of
the parameter space (G,R, µ). By setting s = 0 in (4.1) it can be shown that the shallow
water neutral stability contour is analytically given by

G = 3 (1 +R) (1 + µR) , (4.9)

when the centre of mass of the dry container is placed at or below the pivot point, i.e.
zv = −µℓ with µ ∈ R≥0. The instability contour (4.9) can be recovered from (3.6) by
taking its limit as δ → 0. Hence, in terms of dimensional variables there is an instability
in the system, in the limit of shallow water, if

ℓ (1 + µR) <
1

12

L2

h0

. (4.10)

Similarly, if the centre of mass of the dry container is placed above the pivot point,
i.e. zv = +µℓ with µ ∈ R>0, the shallow water neutral stability contour is analytically
given by

G = 3 (1 +R) (1− µR) . (4.11)

This means there is an instability in the coupled shallow water system if

ℓ (1− µR) <
1

12

L2

h0

. (4.12)

5 Experimentally realistic internal 1:1 resonances

The aim in this section is to generalise the resonance condition derived in TAAB (2015),
and identify the existence of internal 1 : 1 resonances in the coupled pendulum-slosh
system in the finite depth for an experimentally realistic parameters G and R. The
coupled system contains an internal 1 : 1 resonance in finite depth where both symmetric
and anti-symmetric modes have the same frequency. This occurs when the two factors of
the characteristic function in (2.28) vanish simultaneously (Alemi Ardakani et al. 2012)

P (s) = 0 and D (s) = 0 . (5.1)

Setting the first factor to zero amounts to choosing a symmetric fluid mode; that is, for
some m ∈ N, bm ̸= 0 and bn = 0 for all n ̸= m, and

sm = mπ

√
tanh (2mπδ)

2mπδ
, m = 1, 2, 3, . . . . (5.2)
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At this value of s, for a 1 : 1 resonance between the pendulum motion and the symmetric
mode to exist the second term in the characteristic function must satisfyD (sm) = 0, which
from (2.29) leads to the following quadratic equation for G (R, δ, µ) with λ = ∓µℓ/L,
µ ∈ R (−µ when the centre of mass of the dry container is below the pivot point and +µ
when the centre of mass of the dry container is above the pivot point):(

− 1

12
s2m +

1

3
δ2s2m +

1

8
+

1

24δ2
− σm,n

1

)
G2

+

(
−1

4
(1 +R) s2m − 1

16δ2
(1 +R) (1± µR)− σm,n

2

)
G

+
1

16δ2
(1 +R)2

(
1 + µ2R

)
s2m + σm,n

3 = 0 ,


(5.3)

where

σm,n
1 =

∞∑
n=0

[
2

γ3
n (γnTn − 4δs2m)

(
16s2m
δγnCn

+
Tn

δ2
− 16s4mδ

2Tn +
32δs4m
γn

(
1− 2

Cn

)
−24s2m

δγn
+

64s4m
γ2
n

Tn

)]
,

σm,n
2 =

∞∑
n=0

[
2

γ3
n (γnTn − 4δs2m)

(
2

δ2
(1 +R) s2mTn + 8s4m (1 +R)Tn

+
16s4m
δγn

(1 +R)

(
1

Cn

− 1

))]
,

σm,n
3 =

∞∑
n=0

[
2Tns

4
m

δ2γ3
n (γnTn − 4δs2m)

(1 +R)2
]
.

(5.4)

Note that in order to determine whether or not a 1 : 1 resonance is possible, the roots of
the quadratic equation (5.3) should satisfy the stability condition

0 < G <
3 (1 +R) (1± µR)

1 + 6δ2
. (5.5)

The numerical experiments in §6 show that the quadratic equation (5.3), with the centre
of mass of the dry rigid body placed below or above the pivot point along the centre line,
leads to experimentally realistic values of G for 1 : 1 resonances in the finite depth.

Similarly, in the shallow water limit, setting the first factor P SW (s) in (4.7) and (4.8)
to zero leads to the position of the 1 : 1 resonance at

sm = mπ , m ∈ N . (5.6)

Therefore, from DSW (s) = 0 in (4.7) and (4.8) it can be inferred that

−G2 + (1 +R) (1∓ µR) s2mG+ (1 +R)2 µ2Rs4m = 0 , (5.7)

which has solutions

G = 1
2
(1 +R) s2m

(
1∓ µR±

√
(1∓ µR)2 + 4µ2R

)
, (5.8)

or

G =
1

2
(1 +R)m2π2

(
1∓ µR±

√
(1∓ µR)2 + 4µ2R

)
, (5.9)
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where only the solutions with G > 0 are applicable. The quadratic equation (5.7) for G,
at the internal 1 : 1 resonance in the shallow water limit, is the generalised form of the
quadratic equation derived in TAAB (2015). If we set µ = 1 with zv = −ℓ, i.e. the centre
of mass of the dry rigid body is fixed at the centre of the base of the rigid body, then the
solutions (5.8) recover the given results in TAAB (2015):

G = (1 +R)m2π2 and G = −R (1 +R)m2π2 , (5.10)

the second of which can be ignored as we consider only G > 0. In this case the internal
1 : 1 resonance positions for the pendulum-slosh system occur at larger values of G for
the same mass ratios R = mv/mf . Therefore, in TAAB (2015) it is concluded that the
1 : 1 resonance is unlikely to be observed for an experimentally realistic setup.

Remarkably, in the current paper it is discovered that by placing the centre of mass
of the dry rigid body above zv = −ℓ along the centre line, the new resonance equation
(5.3) in the finite depth leads to experimentally realistic values of G for internal 1 : 1
resonances, which has important physical implications. Details are given in §6 below.

6 Numerical evaluation of the characteristic equation

and discussion of results

Numerical evaluations of the characteristic function in the finite depth, and results at
1 : 1 resonance are presented in this section.

6.1 Results away from 1:1 resonance

First, the neutral stability contour (3.6), when the centre of mass of the dry container
is placed below the point of suspension, with µ = 0.1 and zv = −0.1ℓ relative to the
pivot point, is shown in the (R,G) parameter space on the left in Figure 2 for different
values of δ = 0.05, 0.2, 0.5 and 0.8. Above this contour the solutions are unstable, while
below the contour the solutions are stable. We only consider numerical results for G > 0,
which corresponds to ℓ > 0, which means the pivot point is above the bottom of the
container. In terms of dimensional variables this says that there is an instability in the
coupled system if (3.7) is satisfied. The consequence of (3.7) is that there is an instability
in the system as the length of the rigid rod about which the container is pivoting tends
to zero. The neutral stability contour (3.6), with µ = 0.6 and zv = −0.6ℓ relative to the
origin of the body frame placed at the pivot point, is illustrated in the (R,G)-plane on
the right in Figure 2 for δ = 0.05, 0.2, 0.5 and 0.8.

The neutral stability contour (3.8) in the (R,G) parameter space, when the centre
of mass of the dry container is placed above the point of suspension, with µ = 0.2, i.e.
zv = +0.2ℓ relative to the origin of the body frame placed at the pivot point, and µ = 0.4,
i.e. zv = +0.4ℓ relative to the pivot point, are shown respectively on the left and on the
right in Figure 3 for different values of δ = 0.05, 0.2, 0.5 and 0.8. Above this contour the
solutions are unstable, while below the contour the solutions are stable.

The roots of the characteristic equation D (s) = 0 give the dimensionless natural
frequencies of the coupled motion. The simplest approach to finding the real roots is to
plot D (s) in (2.29) as a function of s. The approximate values can then be refined if
necessary using Newton’s method. First, substitute λ = ∓µℓ/L with µ ∈ R≥0, i.e. when
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Figure 2: On the left, plot of the neutral stability contour (3.6) in the (R,G)-plane with
µ = 0.1 and zv = −0.1ℓ for δ = 0.05, 0.2, 0.5 and 0.8. On the right, plot of the neutral sta-
bility contour (3.6) in the (R,G)-plane with µ = 0.6 and zv = −0.6ℓ for δ = 0.05, 0.2, 0.5
and 0.8. Above the contour the solutions are unstable, while below the contour the solu-
tions are stable.

Figure 3: On the left, plot of the neutral stability contour (3.8) in the (R,G)-plane with
µ = 0.2 and zv = +0.2ℓ for δ = 0.05, 0.2, 0.5 and 0.8. On the right, plot of the neutral sta-
bility contour (3.8) in the (R,G)-plane with µ = 0.4 and zv = +0.4ℓ for δ = 0.05, 0.2, 0.5
and 0.8. Above the contour the solutions are unstable, while below the contour the solu-
tions are stable.

xv is placed at (µ = 0) or below the pivot point with the − sign and when xv is placed
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above the pivot point with the + sign, and write D (s) = 0 in the following form:(
− 1

12
s2 +

1

3
δ2s2 +

1

8
+

1

24δ2
− σn

1

)
G2

+

(
−1

4
(1 +R) s2 − 1

16δ2
(1 +R) (1± µR)− σn

2

)
G

+
1

16δ2
(1 +R)2

(
1 + µ2R

)
s2 + σn

3 = 0 ,


(6.1)

where

σn
1 =

∞∑
n=0

[
2

γ3
n (γnTn − 4δs2)

(
16s2

δγnCn

+
Tn

δ2
− 16s4δ2Tn +

32δs4

γn

(
1− 2

Cn

)
−24s2

δγn
+

64s4

γ2
n

Tn

)]
,

σn
2 =

∞∑
n=0

[
2

γ3
n (γnTn − 4δs2)

(
2

δ2
(1 +R) s2Tn + 8s4 (1 +R)Tn

+
16s4

δγn
(1 +R)

(
1

Cn

− 1

))]
,

σn
3 =

∞∑
n=0

[
2Tns

4

δ2γ3
n (γnTn − 4δs2)

(1 +R)2
]
.

For each fixed R, G, δ and µ, it is a straightforward numerical calculation to plot D (s)
as a function of s. The only numerical difficulty is avoiding the singularity that occurs
for each n at

s2 =
(2n+ 1) π

4δ
tanh ((2n+ 1) πδ) . (6.2)

The terms in the sum in (6.1) are evaluated and summed. The numerical results retain 200
terms in the summation. To compute the natural frequency of the coupled pendulum-slosh
system, as an example set the length, L, and width of the container to be 1m and take
µ = 0.20 and so zv = −0.2ℓ relative to the pivot point. Set R = 0.20, and the fluid depth
h0 = 0.5m, which means mf = 500 kg and δ = 0.5. The neutral stability values of G and
ℓ calculated in (3.6) and (3.7) are Gst = 1.4976 and ℓst = 0.4006m. Hence, it is required
that G < Gst and ℓ > ℓst. Now, set ℓ = ℓst + 0.05 = 0.4506m and so G = 1.3314 < Gst.
With these input parameters, and using Newton’s method to find the real roots of the
nonlinear equation (6.1), the fundamental mode is s = 1.0188. The numerical calculations
presented in Table 1 show that as the value of G increases, i.e. as the length of the
pendulum ℓ decreases, the frequency of the coupled pendulum-slosh system increases and
reaches a maximum value before decreasing towards the instability contour. The angular
frequency of the dry container modelled as a point mass is ω =

√
g/(µℓ) with 0 < µ ≤ 1,

and therefore the non-dimensional frequency is

sp =

√
G

µ (1 +R)
, (6.3)

which is reported in Table 1 for this numerical experiment.

The numerical evaluation of the characteristic equation (2.29) with the same input
parameters reported in Table 1, and so the same values of δ and R, but with µ = 1 and
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ℓ (m) ℓst + 0.02 ℓst + 0.05 ℓst + 0.1 ℓst + 0.3 ℓst + 0.5 ℓst + 1.0 ℓst + 1.5
= 0.4206 = 0.4506 = 0.5006 = 0.7006 = 0.9006 = 1.4006 = 1.9006

G 1.4264 1.3314 1.1985 0.8564 0.6662 0.4284 0.3157
s 0.6701 1.0188 1.0981 0.9611 0.8432 0.6583 0.5548
sp 2.4379 2.3553 2.2346 1.8890 1.6661 1.3360 1.1469

Table 1: Numerical evaluation of the characteristic equation (2.29) for the fundamental
mode s = s1. The fluid density is ρ = 1000 kg/m3, and the tank length is L = 1.0m with
h0 = 0.5m, µ = 0.20, zv = −0.2ℓ, R = 0.20, mf = 500 kg, δ = 0.5, Gst = 1.4976, and
ℓst = 0.4006m.

zv = −ℓ relative to the pivot point, i.e. when the centre of mass of the dry container is
fixed at the centre of the base of the container, is presented in Table 2. The computed
results in Table 2 show that, when zv is placed at the base of the container, for small
values of G the coupled fluid-body frequency s is very close to the dry pendulum frequency
sp and hence the tank motion is independent of the fluid motion. However, beyond some
critical value of G or ℓ where the fundamental mode s = s1 reaches its maximum value,
the fluid motion becomes significant in determining the coupled fluid-body frequency and
the coupled frequency decreases.

ℓ (m) ℓst + 0.02 ℓst + 0.05 ℓst + 0.1 ℓst + 0.3 ℓst + 0.5 ℓst + 1.0 ℓst + 1.5
= 0.3672 = 0.3972 = 0.4472 = 0.6472 = 0.8472 = 1.3472 = 1.8472

G 1.6339 1.5105 1.3416 0.9270 0.7082 0.4454 0.3248
s 0.4828 0.7456 0.9763 0.9546 0.8360 0.6504 0.5474
sp 1.1669 1.1219 1.0574 0.8789 0.7682 0.6092 0.5203

Table 2: Numerical evaluation of the characteristic equation (2.29) for the fundamental
mode s = s1. The fluid density is ρ = 1000 kg/m3, and the tank length is L = 1.0m
with h0 = 0.5m, µ = 1.0, zv = −ℓ, R = 0.20, mf = 500 kg, δ = 0.5, Gst = 1.7280, and
ℓst = 0.3472m.

In comparison with Table 2, the computed results in Table 1 show that when zv is
placed closer to the pivot point, i.e. for smaller values of µ, the fluid motion is significant
in determining the coupled fluid-body frequency even for small values of G.

The free surface profile can be calculated from the kinematic free surface boundary
condition in (2.2). Differentiating Φ̂ (x, y) in (2.6) with respect to z and substituting into
the kinematic boundary condition gives

ĥ (x) = −2θ̂

(
x− L

2

)
+

∞∑
n=0

[
4θ̂

Lαn (gαnTn − ω2)

(
2ω2

Cnαn

− Tn

(
g − ω2 (h0 − ℓ)

))
cosαnx

]
,

(6.4)
and therefore the free surface profile can be obtained from

h (x, t) = h0 + ĥ (x) cosωt . (6.5)

Take the initial conditions θ (0) = θ̂ and h (x, 0) = h0 + ĥ (x), set zv = −0.1ℓ relative to
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the body frame xv at the pivot point, and set the input parameters
θ̂ = 0.1745 rad , L = 1m, h0 = 0.4m, ρ = 1000 kg/m3 ,

g = 9.81m/s2 , mf = 400 kg , δ = 0.4 , R = 0.4 , µ = 0.1 ,

ℓst = 0.3926m, ℓ = 0.6426m, Gst = 2.2286 , G = 1.3616 .

(6.6)

The panel on the left in Figure 4 shows the plot of the wave profile h (x, t) in (6.5)
at three different times t = 0.0 s, t = 0.5T = 0.74 s and t = 0.2T = 0.29 s, where
T = 2π/ω = 1.48 s, for the fundamental mode s = s1 = 1.0669. The numerical results
retain 200 terms in the summation in (6.4). Snapshots of the free surface profile show
that the tank and water motions are in phase: as the tank swings to the left, the waterline
at the left-hand end of the tank rises until maximum run-up coincides with the time of
extreme displacement of the tank to the left. The wave profile resembles a standing wave
with one node for the first root of the characteristic function.

Figure 4: On the left, plot of h (x, t) with δ = 0.4, R = 0.4, G = 1.3616, µ = 0.1,

zv = −0.1ℓ relative to the pivot point, and s = s1 = 1.0669 < s
(a)
0 = 1.2919. The surface

oscillates in phase with the pendulum. On the right, plot of h (x, t) with the same input

parameters, but with s
(a)
0 < s = s2 = 1.9719 < s

(a)
1 . The surface oscillates in antiphase

with the pendulum.

One interesting feature of this experimental system occurs close to the frequencies of
the free anti-symmetric sloshing modes, which occur with the non-dimensional frequencies:

s(a)n =
1

2
(2n+ 1) π

√
tanh ((2n+ 1) πδ)

(2n+ 1) πδ
, n = 0, 1, 2, . . . ,

which is the singular frequency (6.2) for each n in the characteristic function (2.29).
Using the same input parameters (6.6) of the previous numerical experiment, we have

s
(a)
0 = 1.2919 > s1 = 1.0669, and the second root of the characteristic function D(s) = 0

is s
(a)
0 < s = s2 = 1.9719 < s

(a)
1 = 2.4257. Now, using the initial conditions θ (0) = θ̂ and

h (x, 0) = h0 + ĥ (x), the plot of the wave profile h (x, t) at three different times t = 0.0 s,
t = 0.5T = 0.4 s and t = 0.2T = 0.16 s, where T = 0.8 s, is illustrated on the right in
Figure 4. Snapshots of the free surface profile show that the tank and water motions are
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in antiphase: as the tank swings to the left, the waterline at the right-hand end of the
tank rises until maximum run-up coincides with the time of extreme displacement of the
tank to the left.

6.2 Results at 1:1 resonance

The next simulation is devoted to the coupled pendulum-slosh oscillations at 1 : 1 reson-
ance in the finite depth. In TAAB (2015) the centre of mass of the dry container is fixed
at the base of the container along the centre line, and so the 1 : 1 resonance in the finite
depth was unlikely to be observed for an experimentally realistic setup and in particular
for 0 < R < 1. However, in our analysis in the current paper, with the new quadratic
equation (5.3) for G including the parameter µ, the 1 : 1 resonance in the finite depth can
be observed for an experimentally realistic setup and even for 0 < R < 1. This is because
the condition in TAAB (2015) on the centre of mass of the dry container is relaxed and
so zv is placed above the base of the container along the centre line, i.e. zv = −µℓ with
0 < µ < 1 (relative to the pivot point) or zv = +µℓ with µ ∈ R>0. See §5 for more details.

For fixed m in (5.2) and fixed δ and µ the quadratic equation (5.3) gives a line in
the (R,G)-plane along which there is a resonance. Calculations for a range of physically
realisable parameter values for δ, λ, G, and R are presented in Figures 5 and 6.

Calculations for different (δ, µ) values are shown in Figure 5 for 0 < R < 1. The panel
on the left in Figure 5 shows the plot of the first (m = 1) resonance curve in the (R,G)-
plane for the first root G1 of the quadratic equation (5.3) with zv = −µℓ and 0 < µ < 1,
and the panel on the right shows the first resonance curve for the second root G2 of (5.3)
with the same values for the parameters δ and µ. Note that the illustrated roots G1 and
G2 in Figure 5 satisfy the stability condition (5.5).

Figure 5: On the left, plot of the first (m = 1) physically realisable resonance curve in the
(R,G)-plane for the first root G1 of the quadratic equation (5.3), with zv = −µℓ, for a
range of δ and µ values: (δ, µ) = (0.3, 0.15), (δ, µ) = (0.4, 0.2), (δ, µ) = (0.5, 0.25) and
(δ, µ) = (0.55, 0.05). On the right, plot of the first (m = 1) physically realisable resonance
curve in the (R,G)-plane for the second root G2 of (5.3), with zv = −µℓ, and the same
set of (δ, µ) parameter values.

As δ is increased, the 1 : 1 resonance between the symmetric sloshing modes and
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the anti-symmetric sloshing modes and the pendulum motion can be observed for larger
values of R. The first (m = 1) resonance curves, in the (R,G)-plane, for the roots G1 and
G2 of the quadratic equation (5.3) for (δ, µ) = (0.6, 0.1) and 0.6 < R < 1.2 are illustrated
on the left panel in Figure 6. Also the first resonance curves, in the (R,G)-plane, for the

Figure 6: On the left, plot of the first (m = 1) physically realisable resonance curves in the
(R,G)-plane for the first and the second roots G1 and G2 of the quadratic equation (5.3),
with zv = −µℓ, for (δ, µ) = (0.6, 0.1). On the right, plot of the first (m = 1) physically
realisable resonance curves in the (R,G)-plane for the first and the second roots G1 and
G2 of (5.3), with zv = −µℓ, for (δ, µ) = (0.7, 0.15).

roots G1 and G2 of (5.3) or (δ, µ) = (0.7, 0.15) and 1.7 < R < 2.5 are illustrated on the
right panel in Figure 6. The resonance curves in Figure 6 satisfy the stability condition
(5.5).

Next, for an experimentally realistic numerical experiment at 1 : 1 resonance, set the
container length L = 1m, R = 0.2, µ = 0.25 with zv = −0.25ℓ relative to the origin of
the body frame xv placed at the pivot point. Set the initial fluid depth h0 = 0.5m and
so δ = 0.5. For the first resonance mode set m = 1 in (5.2) and so s1 = 1.7691. With the
given input parameters, there are two positive real roots of the quadratic equation (5.3)
for G at 1 : 1 resonance, which are G1 = 0.9519 < Gst = 1.5120 and G2 = 0.6274 < Gst.
Hence, from the dimensionless variable G in (2.24), it can be concluded that the 1 : 1
resonance occurs when the length of the pendulum is ℓ1 = 0.6303m or ℓ2 = 0.9564m
which correspond to G1 and G2, respectively. Note that the resonance values for ℓ1 and
ℓ2 satisfy the stability condition ℓ1 > ℓst = 0.3968m and ℓ2 > ℓst. The free surface mode
shapes at 1 : 1 resonance take the form

ĥ (x) = −2θ̂ (x− (L/2))− 1

ωm

bmβmŜm cos βmx

+
∞∑
n=0

[
4θ̂

Lαn (gαnTn − ω2
m)

(
2ω2

m

Cnαn

− Tn

(
g − ω2

m (h0 − ℓ1,2)
))

cosαnx

]
(6.7)

where Ŝm = sinh (βmh0) and ωm =
(
2
√
gh0/L

)
sm, and the two parameters bm and θ̂ are

arbitrary. For this simulation the first (m = 1) resonance frequency is ω1 = 7.8363 rad/s
and so T1 = 2π/ω1 = 0.8018. Take G = G2 and ℓ = ℓ2 which means d3 = −ℓ2 in
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Figure 7: On the left, plot of h (x, t) for the first (m = 1) 1 : 1 resonance mode with
δ = 0.5, R = 0.2, G2 = 0.6274, µ = 0.25, zv = −0.25ℓ2 relative to the pivot point, where
ℓ2 = 0.9564m = d3, and b1 = 0.005 in (6.7). The surface oscillates in antiphase with the
pendulum. On the right, plot of h (x, t) at 1 : 1 resonance with the same input parameters
δ, R, G2, µ, ℓ2, m, but with b1 = 0.02. The wave profile resembles a standing wave with
two nodes which oscillates in antiphase with the pendulum.

(6.7), and set b1 = 0.005 and θ̂ = 0.1396 rad. Take the initial conditions θ (0) = θ̂ and

h (x, 0) = h0 + ĥ (x). Snapshots of the free surface profile at 1 : 1 resonance, with m = 1,
at t = 0 s, t = 0.2T1 = 0.16 s and t = 0.5T1 = 0.4 s are shown on the left in Figure 7.
The wave profile resembles a standing wave with one node which oscillates in antiphase
with the pendulum. The numerical results retain 200 terms in the summation in (6.7).
Snapshots of the free surface profile at 1 : 1 resonance with the same input parameters
δ, R, G2, µ, ℓ2, m, but with b1 = 0.02 are shown on the right in Figure 7. The wave
profile resembles a standing wave with two nodes which oscillates in antiphase with the
pendulum.

The internal resonances are of interest because symmetric sloshing modes are dy-
namically coupled to the anti-symmetric sloshing modes, and hence the pendulum mo-
tion. Such resonances are pathways for energy exchange within fluid modes. Turner
and Bridges (2013) showed that for Cooker’s pendulous sloshing experiment, there is a
single fluid height where there exists a heteroclinic orbit between the purely symmetric
and purely anti-symmetric modes. Solutions close to this heteroclinic orbit can manifest
themselves in an experiment by having an oscillating container slowly coming to rest as
the energy is transferred from the vessel to the symmetric modes or a stationary vessel
containing a symmetric sloshing mode starting to oscillate as the energy is transferred to
the anti-symmetric modes, and hence the vessel.

7 Concluding remarks

In this paper, we first showed the usefulness of the two-dimensional variant of the Bateman–
Luke variational principle presented in Alemi Ardakani (2020) for the problem of dynamic
coupling between a rigid body and its interior potential fluid sloshing. Then, the Euler-
Lagrange equations emerging from this variational principle are linearised about the state
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of quiescent fluid and analytical solutions are presented. We found that the coupled
pendulum-slosh system exhibits unstable solutions if the length of the rigid rod is less
than some critical value which is defined in (3.7). The instability transition is associated
with the potential emergence of homoclinic behaviour in the nonlinear coupled system.

In the case of stable solutions there is a 1 : 1 resonance between the symmetric sloshing
modes and the anti-symmetric sloshing modes, and hence the rigid body motion. The
presented numerical calculations show that internal 1 : 1 resonances can be observed, for a
range of values of the dimensionless variables δ, G, R, and λ (and so µ), for experimentally
realistic setups.

The pendulum-sloshing problem provides a simplified model for the slosh-induced
rolling of a ship. It is also useful as a model for the mathematical modelling of floating
ducted wave energy converters where the two-dimensional translational motion of the
pivot point can be added to the coupled fluid-body equations. Constructing a weakly
nonlinear analysis about the 1 : 1 resonances would show whether heteroclinic orbits
exists between the symmetric and anti-symmetric sloshing modes which are pathways for
energy exchange within fluid modes, and of prime importance for modelling the power
take off system in wave energy converters.

Acknowledgements

The work of HAA & TJB is supported by the EPSRC under grant number EP/W033062/1.
The work of MRT is supported by the EPSRC under grant number EP/W006545/1. For
the purpose of open access, the authors have applied a Creative Commons Attribution
(CC BY) licence to any Author Accepted Manuscript version arising.

References

[1] H. Alemi Ardakani, An alternative view on the Bateman–Luke variational principle,
Euro. J. Mech. B/Fluids 82 (2020) 39–46.

[2] H. Alemi Ardakani, T.J. Bridges, M.R. Turner, Resonance in a model for Cooker’s
sloshing experiment, Euro. J. Mech. B/Fluids 36 (2012) 25–38.

[3] M.J. Cooker, Water waves in a suspended container, Wave Motion 20 (1994) 385–395.

[4] O.M. Faltinsen, A.N. Timokha, Sloshing, Cambridge University Press, Cambridge,
2009.

[5] J.B. Frandsen, Numerical predictions of tuned liquid tank structural systems, J.
Fluids Struct. 20 (2005) 309–329.

[6] R.A. Ibrahim, Liquid Sloshing Dynamics, Cambridge University Press, Cambridge,
2005.

[7] I.A. Lukovsky, Nonlinear Dynamics: Mathematical Models for Rigid Bodies with a
Liquid, De Gruyter, Berlin, 2015.

[8] N.N. Moiseyev, V.V. Rumyantsev, Dynamic Stability of Bodies Containing Fluid,
Springer-Verlag, New York, 1968.

22



[9] M.R. Turner, H. Alemi Ardakani, T.J. Bridges, Instability of sloshing motion in a
vessel undergoing pivoted oscillations, J. Fluids Struct. 52 (2015) 166–180.

[10] M.R. Turner, T.J. Bridges, Nonlinear energy transfer between fluid sloshing and
vessel dynamics, J. Fluid Mech. 719 (2013) 606–636.

23


