
Stagnation-point flows with stretching surfaces:
A unified formulation and new results

Patrick Weidman
Department of Mechanical Engineering

University of Colorado
Boulder, CO 80309-0427 USA

M. R. Turner
Department of Mathematics

University of Surrey
Guildford, Surrey GU2 7XH UK

Abstract

A unified formulation for stagnation-point flows and linearly stretching plates is given
wherein the two can occur separately or in unison. Reductions to known cases are given. It is
noticed that previous work on stretching plates beneath planar and axisymmetric stagnation
point flows have respectively aligned planar stretching and axisymmetric stretching. The
general formulation reveals other combinations of stretching beneath stagnation-point flows
exist and three new cases are studied in detail. The linear stability of dual and multiple
solutions are calculated.



1 Introduction

A unified derivation of stagnation-point flows and linearly stretching plate flows is given

wherein the two can occur in unison. Reductions to cases previously studied are given. In

the previous work on stretching plates beneath planar and axisymmetric stagnation point

flows it is observed that the planar stretching and axisymmetric stretching are aligned with

the respective flow. The general formulation considered here reveals new combinations of

stretching beneath stagnation-point flows, three of which are studied in detail.

It is well-known that the solution for stagnation-point flows represent local solutions

about the stagnation point; see Schlichting (1960). Nevertheless, the flow in the neighbor-

hood of a stagnation point has great importance in that the stagnation point represents the

location of highest pressure and, in thermally active flows, the highest rate heat transfer.

Stagnation-point flows can be used to model the stagnation region between convection rolls.

Another application is to the steady and unsteady modeling of the float height of a rotating

air hockey disk; see Weidman and Sprague (2015).

The classic stagnation-point flows which may be obtained from our general formula-

tion are the two-dimensional stagnation-point flow of Hiemenz (1911), the axisymmetric

three-dimensional stagnation-point flow of Homann (1936), and the non-axisymmetric three-

dimensional stagnation-point flow of Howarth (1951). Plots of the similarity solutions for

Hiemenz and Homann stagnation-point flows may be found in Schlichting (1960). The wall

stretching problems which may be obtained are the linearly stretching surface of Crane

(1970) and the bi-axial wall stretching problem of Wang (1984) which includes radial wall

stretching as a special case. The general formulation is seen to also reduce to linear stretch-

ing beneath Hiemenz stagnation-point flow as studied by Mahapatra and Gupta (2002) and

to radial stretching beneath Homann stagnation-point flow as studied by Mahapatra and

Gupta (2003).

The three new problems studied in depth here are radial stretching of a surface beneath

two-dimensional Hiemenz stagnation-point flow, linear stretching transverse to Hiemenz

stagnation-point flow and linear stretching beneath axisymmetric Homann stagnation-point

flow. One could also consider the more general cases of Crane stretching beneath Howarth

stagnation-point flow and bi-axial Wang stretching beneath Howarth stagnation-point flow,

but these multi-parameter problems are left for future study.
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2 Problem formulation

Cartesian coordinates (x, y, z) with coordinate velocities (u, v, w) are employed to describe

stagnation-point flows, flows induced by linearly stretching surfaces, or a combination of the

two. The far field irrotational flow is given as

u(x, y, z) = a x, v(x, y, z) = b y (z → ∞) (2.1a)

where a and b are constant stagnation flow strain rates and the motion on the impermeable

surface located at z = 0 is

u(x, y, 0) = c x, v(x, y, 0) = d y, w(x, y, 0) = 0 (2.1a)

where c and d are constant stretching strain rates. A schematic diagram of the general

problem is given in figure 1. Axisymmetric stagnation-point flow is obtained for b = a and

axisymmetric plate stretching is obtained for d = c.

We posit the similarity solution in the form

u(x, η) = αxF ′(η), v(y, η) = β y G′(η), η =

√

γ

ν
z (2.2a)

which satisfies the continuity equation for plate normal velocities if

w(η) = −
√

ν

γ
[αF (η) + βG(η)] (2.2b)

where ν is the kinematic viscosity of the fluid. Inserting this similarity solution into the

steady, incompressible Navier-Stokes equations yields the coupled pair of nonlinear ordinary

differential equations

αγ F ′′′ + α2(FF ′′ − F ′2) + αβ GF ′′ + a2 = 0 (2.3a)

βγ G′′′ + β2(GG′′ −G′2) + αβ FG′′ + b2 = 0 (2.3b)

to be solved with plate and far-field conditions

F (0) = 0, F ′(0) =
c

α
, F ′(∞) =

a

α
(2.3c)

G(0) = 0, G′(0) =
d

β
, G′(∞) =

b

β
. (2.3d)

3



After solving the above boundary-value problem one can compute the pressure field to

be

p(x, η) = p0 −
ρ

2
(a2x2 + b2y2)− ρν

2γ
(αF + βG)2 − ρν(αF ′ + βG′) (2.4)

where ρ is the fluid density, the wall shear stresses as

τx = ρα
√
γν xF ′′(0), τy = ρβ

√
γν y G′′(0) (2.5)

and the velocity in the far field

w(∞) = −
√

ν

γ
[αF (∞) + βG(∞)]. (2.6)

3 Reduction to known cases

In the following we find reductions of the above formulation to specific cases reported in the

literature.

3.1 Hiemenz stagnation-point flow

Upon choosing b = c = d = 0 and setting α = γ = a and β = 0 one obtains the boundary-

value problem

F ′′′ + FF ′′ − F ′2 + 1 = 0; F (0) = 0, F ′(0) = 0, F ′(∞) = 1 (3.1)

in which the independent variable is η =
√

a/ν z. This is the planar stagnation-point flow

problem found by Hiemenz (1911).

3.2 Homann stagnation-point flow

On choosing b = a, c = d = 0 and setting α = β = γ = a one finds symmetrical equations

for F (η) and G(η) with identical boundary conditions. Thus G(η) ≡ F (η) and this gives rise

to the single boundary-value problem

F ′′′ + 2FF ′′ − F ′2 + 1 = 0; F (0) = 0, F ′(0) = 0, F ′(∞) = 1 (3.2)

where again the independent variable is η =
√

a/ν z. This is the axisymmetric stagnation-

point flow found by Homann (1936).
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3.3 Howarth stagnation-point flow

Here we choose c = d = 0 and set α = a, β = b and γ = a to obtain the coupled equations

F ′′′ + FF ′′ − F ′2 + σ GF ′′ + 1 = 0 (3.3a)

1

σ
G′′′ +GG′′ −G′2 +

1

σ
FG′′ + 1 = 0 (3.3b)

in which σ = b/a. These equations are to be solved with boundary and far-field conditions

F (0) = G(0) = 0, F ′(0) = G′(0) = 0, F ′(∞) = G′(∞) = 1 (3.3c)

where again the independent variable is η =
√

a/ν z. This is recognized as the “orthogonal

Hiemenz” stagnation-point flow problem reported by Howarth (1951). Howarth solved the

nodal-point system for selected values in the range 0 ≤ σ ≤ 1 and Davey (1961) solved the

saddle-point system for selected values in the range −1 ≤ σ ≤ 0.

3.4 Crane stretching plate flow

Here we set a = b = d = 0 and choose β = 0 with α = γ = c to obtain the boundary-value

problem

F ′′′ + FF ′′ − F ′2 = 0; F (0) = 0, F ′(0) = 1, F ′(∞) = 0 (3.4)

where now the independent variable is η =
√

c/ν z. This is recognized as the planar plate

stretching problem attributed to Crane (1970). Recently, Weidman and Ishak (2015) con-

sidered Crane’s shrinking plate problem and found a dual solution. The interesting feature

of the dual solution is that it decays algebraically in the far field.

3.5 Wang stretching plate flow

Upon choosing a = b = 0 and setting α = β = γ = c one finds the coupled system of

equations

F ′′′ + (F +G)F ′′ − F ′2 = 0; G′′′ + (F +G)G′′ −G′2 = 0 (3.5a)

to be solved with boundary and far-field conditions

F (0) = 0, F ′(0) = 1, F ′(∞) = 0; G(0) = 0, G′(0) = σ, G′(∞) = 0 (3.5b)

where σ = d/c and the plate-normal coordinate is η =
√

c/ν z. This orthogonal plate

stretching system of equations was found by Wang (1984) who recognized that for σ = 1 one

has G(η) ≡ F (η) which reduces the above system to

F ′′′ + 2FF ′′ − F ′2 = 0; F (0) = 0, F ′(0) = 1, F ′(∞) = 0 (3.6)
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corresponding to a sheet stretching radially at strain rate c. Wang only considered solutions

for σ ≥ 0. Recently, Weidman and Ishack (2015) considered shrinking plates and found dual

solutions up to a turning point σt = −0.2514.

3.6 Crane stretching aligned with Hiemenz stagnation-point flow

Here we choose b = 0, d = c and set β = 0 with α = γ = c to obtain the boundary-value

problem

F ′′′ + FF ′′ − F ′2 + σ2 = 0; F (0) = 0, F ′(0) = 1, F ′(∞) = σ (3.7)

where σ = a/c and the independent variable is η =
√

c/ν z. This system was found by

Mahapatra and Gupta (2002) and solved for selected positive values of σ. Wang (2008)

extended this work to shrinking surfaces.

3.7 Radial stretching aligned with Homann stagnation-point flow

Here we set b = a, d = c and set α = β = γ = c to obtain the boundary-value problem

F ′′′ + 2FF ′′ − F ′2 + σ2 = 0; F (0) = 0, F ′(0) = 1, F ′(∞) = σ (3.8)

where again σ = a/c and η =
√

c/ν z is the independent variable and G(η) ≡ F (η). This

system was found by Mahapatra and Gupta (2003) and solved for selected positive values of

σ. Wang (2008) extended this work to shrinking surfaces.

We now consider three problems for stretching surfaces below stagnation-point flows not

previously reported in the literature. It is noted that Mahapatra and Gupta (2002) con-

sidered planar stretching parallel to flow streamlines for the Hiemenz stagnation-point flow.

Also, Mahapatra and Gupta (2003) considered radial stretching parallel to flow streamlines

for the Homann stagnation-point flow. In the following we consider other orientations of

wall stretching beneath these two stagnation-point flows.

In the results presented in the proceeding sections the resulting ordinary differential

equations are solved using a shooting method. This method incorporates 4th order Runge-

Kutta integration to integrate out to ηmax = 20, and Newton iterations to update the initial

guesses for F ′′(0) and G′′(0); see Press, et al (1989). The integration domain [0, ηmax] and

Runge-Kutta step size are varied to ensure that the results presented here are independent

of these parameters.
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4 Radial stretching beneath Hiemenz stagnation flow

Here we take b = 0, d = c and set α = β = γ = a which gives rise to the coupled equations

F ′′′ + (F +G)F ′′ − F ′2 + 1 = 0 (4.1a)

G′′′ + (F +G)G′′ −G′2 = 0 (4.1b)

for the independent variable η =
√

a/ν z. These equations are to be solved with boundary

and far-field conditions

F (0) = 0 F ′(0) = σ, F ′(∞) = 1; G(0) = 0 G′(0) = σ, G′(∞) = 0 (4.1c)

in which σ = c/a. In this case the expression for the x (longitudinal) and y (transverse) wall

shear stresses are

τx = ρa3/2ν1/2 xF ′′(0), τy = ρa3/2ν1/2 y G′′(0). (4.2)

4.1 Local analysis near σ = 1

Numerical solutions of (4.1) given in §4.3 following the primary solution branch to negative

values of σ reveals a turning point at σt = −0.3737 and following the solutions around this

turning point gives a dual solution branch.

Here present a local analysis of these dual solutions at σ = 1 for which the plate stretches

at the same rate as the outer Hiemenz stagnation-point flow. Hence the solution for the

longitudinal flow is simply F (η) = F0(η) = η and in this case we look for local solutions in

the form

F (η) = η + ǫF1(η) + · · · , G(η) = G0(η) + ǫG1(η) + · · · (4.3)

for ǫ = σ − 1 ≪ 1 . Inserting this into boundary-value problem (4.6) gives at O(1)

G′′′

0 + (η +G0)G
′′

0 −G′2
0 = 0, G0(0) = 0, G′

0(0) = 1, G′

0(∞) = 0 (4.4)

and at O(ǫ) one finds

F ′′′

1 + (η +G1)F
′′

1 − 2F ′

1 = 0, F1(0) = 0, F ′

1(0) = 1, F ′

1(∞) = 0 (4.5a)

and

G′′′

1 + (η +G0)G
′′

1 + (F1 +G1)G
′′

0 − 2G′

0G
′

1 = 0, G1(0) = 0, G′

1(0) = 1, G′

1(∞) = 0.

(4.5b)
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Solving this system for the upper branch solution furnishes the leading order expressions for

the wall shear stress parameters

F ′′(0) = −1.720791(σ − 1), G′′(0) = −1.277071− 1.803351(σ − 1) (4.6a)

and for the lower branch solution we find

F ′′(0) = −1.652865(σ − 1), G′′(0) = −2.496922− 2.366740(σ − 1). (4.6b)

4.2 Large σ asymptotics

The goal in this section is to find a two-term large-σ asymptotic formulae for the wall shear

stresses along the upper branch solution. This is accomplished by matching inner and outer

solutions.

Inspection of Eqs. (4.1) for σ ≫ 1 suggests the boundary-layer scaling

η = σ−αξ, F (η) = σαf(ξ), G(η) = σαg(ξ) (4.7)

which yields

σ4α(f ′′′ + (f + g)f ′′ − f ′2) + 1 = 0, f(0) = 0, f ′(0) = σ1−2α, f ′(∞) = σ−2α (4.8a)

and

g′′′ + (f + g)g′′ − g′2 = 0, g(0) = 0, g′(0) = σ1−2α, g′(∞) = 0 (4.8b)

where a prime now denotes differentiation with respect to ξ. We set α = 1/2 to maintain

velocities of order unity, viz. f ′(0) = g′(0) = 1. This suggests the first expansion terms

F (η) = σ1/2f0(ξ) + · · · , G(η) = σ1/2g0(ξ) + · · · . (4.9)

To ascertain the next term in the expansion we seek an outer solution of F (η) for η =O(1)

to find

F (η) = η + C(σ) (4.10)

where C is a constant to be determined. Matching to the leading-order inner solution (4.10)

leads to

C(σ) = f0∞σ1/2 (4.11)

where f0(ξ) → f0∞ as ξ → ∞. Consequently, as η → 0 we have the development

F = f0∞σ1/2 + ξσ−1/2 (4.12)
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which therefore requires that the expansion for F (η) and G(η) be of the form

F (η) = σ1/2f0(ξ) + σ−1/2f1(ξ) + · · · (4.13a)

G(η) = σ1/2g0(ξ) + σ−1/2g1(ξ) + · · · . (4.13b)

Inserting (4.13) into boundary-value problem (4.1) gives at O(σ1/2)

f ′′′

0 + 2f0f
′′

0 − f ′

0

2
= 0, f0(0) = 0, f ′

0(0) = 1, f ′

0(∞) = 0 (4.14a)

whereby g0(ξ) ≡ f0(ξ) which furnishes the next order system at O(σ−1/2)

f ′′′

1 + 2f0f
′′

1 + (f1 + g1)f
′′

0 − 2f ′

0f
′

1 = 0, f1(0) = 0, f ′

1(0) = 0, f ′

1(∞) = 1 (4.14b)

g′′′1 + 2f0g
′′

1 + (f1 + g1)f
′′

0 − 2f ′

0g
′

1 = 0, g1(0) = 0, g′1(0) = 0, g′1(∞) = 0. (4.14c)

Solving the above equations leads to the two-term asymptotic behaviors

F ′′(0) ∼ −1.173721 σ3/2 + 0.452212 σ1/2 (4.15a)

G′′(0) ∼ −1.173721 σ3/2 − 0.076447 σ1/2. (4.15b)

4.3 Presentation of results

Numerical integrations for the longitudinal and transverse shear stress parameters F ′′(0) and

G′′(0) as a function of σ are shown in figures 2a and 2b, respectively. A turning point σt =

−0.3737 reveals that dual solutions exist for σ > σt and no solutions are found for σ < σt.

The insets in figures 2a,b show details of the shear stress parameters in the neighborhood of

the turning point. Note the focal point in F ′′(0) at σ = 1 where the primary solution and

dual solution branches cross.

In figures 2a,b the leading-order local solutions for the primary branch at σ = 1 are shown

as the dashed lines and those for the dual solution branch are shown as the dotted lines.

Figure 2c shows a comparison of large-σ asymptotic behaviors (4.15) for longitudinal and

transverse wall shear stresses for the primary branch with corresponding numerical results.

The dashed line is the one-term asymptotic behavior for both F ′′(0) and G′′(0) and the

dotted lines are the two-term asymptotic behaviors. The two-term result for F ′′(0) is seen

to approach the primary solution branch at large σ and the two-term result for G′′(0) is not

visible since it precisely overlays the primary solution branch.

Sample longitudinal and transverse velocity profiles are displayed in figure 2d. The

profiles are shown at the turning point σt = −0.3737 and at σ = {0, 1, 2, 3} with primary
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branch solutions displayed as solid lines, dual branch solutions displayed as dashed lines,

and turning point solutions shown as the dash-dot-dash lines. The profiles of G′(η) for the

dual branch solutions with σ > 0 have a region of reverse flow away from the plate, while in

the primary branch solutions G′(η) > 0 for all η ∈ [0, ηmax].

4.4 Stability of Dual Solutions

Introducing the dimensionless time τ = at we now include the unsteady acceleration in the

Navier-Stokes equations which gives rise to the coupled nonlinear system of equations

F ′′′ + (F +G)F ′′ − F ′2 − F ′

τ + 1 = 0 (4.16a)

G′′′ + (F +G)G′′ −G′2 −G′

τ = 0. (4.16b)

To study the stability of these self-similar system of equations, we follow Merkin (1985) and

write

F (η, τ) = F0(η) + δe−λτF1(η), G(η, τ) = G0(η) + δe−λτG1(η) (4.17)

where λ is an eigenvalue determining the linear stability of the flow and F0 and G0 are

solutions of the steady problem. Assuming that δ ≪ 1, insertion of (4.17) into (4.16) and

linearizing yields

F ′′′

1 + (F0 +G0)F
′′

1 + F ′′

0 (F1 +G1)− 2F ′

0F
′

1 + λF ′

1 = 0, (4.18a)

G′′′

1 + (F0 +G0)G
′′

1 +G′′

0(F1 +G1)− 2G′

0G
′

1 + λG′

1 = 0. (4.18b)

Solutions of this system with homogeneous boundary conditions

F1(0) = F ′

1(0) = F ′

1(∞) = 0, G1(0) = G′

1(0) = G′

1(∞) = 0, (4.19a)

yields a sequence of eigenvalues λ1 < λ2 < λ3 < · · · and the lowest eigenvalue, λ1, determines

the stability. Unlike Merkin (1985) we now have a coupled system of equations. In this case

we take the homogeneous boundary conditions (4.19a) along with the choice

F ′′

1 (0) = 1 (4.19b)

and solve the above system by shooting from η = 0 to η = ηmax and updating the values of λ1

and G′′

1(0) via Newton iterations, using the same numerical approach developed to solve the

steady problem. The results of the shooting method for calculating λ1 were checked against
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those using a global eigenvalue solution approach (Schmid & Henningson, 2012) which finds

all the eigenvalues at once.

Results of a comprehensive study yields the σ-variation of the smallest eigenvalue as

plotted in figure 2e and the associated values of G′′

1(0) plotted in figure 2f. It is clear from

figure 2e that the primary solutions are stable while the dual solutions are unstable. The

blow-up of G′′

1(0) at σ = 1 is associated with the solution F ′′

1 (η) = 0 with G′′(0) finite, for

that value of σ.

5 Crane stretching transverse to Hiemenz stagnation

flow

In this case we take b = c = 0 and set α = β = γ = a which gives rise to the coupled

nonlinear equations

F ′′′ + (F +G)F ′′ − F ′2 + 1 = 0 (5.1a)

G′′′ + (F +G)G′′ −G′2 = 0 (5.1b)

in which the independent variable is η =
√

a/ν z. These equations are to be solved with

boundary and far-field conditions

F (0) = 0 F ′(0) = 0, F ′(∞) = 1; G(0) = 0 G′(0) = σ, G′(∞) = 0 (5.1c)

where now σ = d/a. The wall shear stresses are those given in Eq. (4.2).

5.1 Local analysis near σ = 0

At σ = 0 one has pure Hiemenz flow with no transverse plate stretching. In this case we

look for local solutions in the form

F (η) = F0(η) + σF1(η) + · · · , G(η) = σG1(η) + · · · (5.2)

for σ small. Inserting these expansions into boundary-value problem (4.1) gives at O(1) the

Hiemenz stagnation-point flow problem

F ′′′

0 + F0F
′′

0 − F ′2
0 + 1 = 0, F0(0) = 0, F ′(0) = 0, F ′(∞) = 1 (5.3)

and at O(σ) one finds

F ′′′

1 + (F1 +G1)F
′′

0 + F0F
′′

1 − 2F ′

0F
′

1 = 0, F1(0) = 0, F ′

1(0) = 0, F ′

1(∞) = 0 (5.4a)
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and

G′′′

1 + F0G
′′

1 = 0, G1(0) = 0, G′

1(0) = 1, G′

1(∞) = 0. (5.4b)

Solving this system leads the the following leading-order expressions for the wall shear stress

parameters,

F ′′(0) = 1.232588 + 0.18533 σ, G′′(0) = −0.570465 σ. (5.5)

5.2 Large σ asymptotics

Analysis of the asymptotic behavior of problem (5.1) follows that given in §4.2 the only

difference being that the boundary-values displayed in Eqs. (4.8) for α = 1/2 are now

f(0) = 0, f ′(0) = 0, f ′(∞) = σ−1, g(0) = 0, g′(0) = 1, g′(∞) = 0. (5.6)

Matching inner boundary-layer flow with the outer flow again shows that F (η) and G(η)

have the developments given by (4.14) and inserting this into (5.1) gives at O(σ)

f ′′′

0 + (f0 + g0)f
′′

0 − f ′

0

2
= 0, f0(0) = 0, f ′

0(0) = 0, f ′

0(∞) = 0 (5.7a)

g′′′0 + (f0 + g0)g
′′

0 − g′0
2
= 0, g0(0) = 0, g′0(0) = 1, g′0(∞) = 0 (5.7b)

and at O(σ−1) one finds

f ′′′

1 + (f0 + g0)f
′′

1 + (f1 + g1)f
′′

0 − 2f ′

0f
′

1 = 0, f1(0) = 0, f ′

1(0) = 0, f ′

1(∞) = 1 (5.7c)

g′′′1 + (f0 + g0)g
′′

1 + (f1 + g1)f
′′

0 − 2g′0g
′

1 = 0, g1(0) = 0, g′1(0) = 0, g′1(∞) = 0. (5.7d)

Solution of (5.7) gives f0(ξ) ≡ 0 and solution of the full set leads to the following two-term

asymptotic behaviors

F ′′(0) ∼ 0.582019 σ1/2, (5.8a)

G′′(0) ∼ −1.0 σ3/2 − 0.1067004 σ1/2. (5.8b)

5.3 Presentation of results

Results of numerical integrations for the longitudinal and transverse shear stress parameters

F ′′(0) and G′′(0) as a function of σ are shown in figures 3a and 3b, respectively. A turning

point at σt = −0.4690 appears giving dual solutions for σ > σt and no solutions for σ < σt.

The insets in figures 3a,b show details of the shear stress parameters in the neighborhood of

the turning point. The dashed lines in each figure are the local behaviors of the shear stress

parameters at σ = 0 on the primary (upper) solution branch given in Eq. (5.5).
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Sample longitudinal and transverse velocity profiles are displayed in figure 3d. The

profiles are shown at the turning point σt = −0.4690 and at σ = {0, 1, 2, 3} with primary

branch solutions displayed as solid lines, dual branch solutions displayed as dashed lines,

and turning point solutions shown as the dash-dot-dash lines. These profiles show that

G′(η) displays similar reverse flow behavior as in §4, for σ > 0.

5.4 Stability of Dual Solutions

As in §4.4 we introduce the dimensionless time τ = at and include the unsteady acceleration

in the Navier-Stokes equations which leads to the same coupled system of equations (4.16),

which in turn leads to the eigenvalue problem governed by (4.18) with boundary conditions

(4.19). It should be noted that although the eigenvalue problem is the same as for radial

stretching beneath Hiemenz stagnation-point flow, the eigenvalues are different owing to the

different base flow solutions F0(η) and G0(η) in Eq. (4.17).

The lowest eigenvalue for this flow are plotted in figure 3e with the associated value of

G′′

1(0) plotted in figure 3f. Again it is clear from figure 3e that primary solutions are stable

while dual solutions are unstable.

6 Crane stretching beneath Homann stagnation flow

We now take b = a, d = 0 and again set α = β = γ = a which gives rise to the coupled

equations

F ′′′ + (F +G)F ′′ − F ′2 + 1 = 0, (6.1a)

G′′′ + (F +G)G′′ −G′2 + 1 = 0 (6.1b)

in which the independent variable is η =
√

a/ν z. The relevant boundary and far-field

conditions are

F (0) = 0 F ′(0) = 0, F ′(∞) = 1; G(0) = 0 G′(0) = σ, G′(∞) = 1 (6.1c)

in which σ = d/a. Again the wall shear stresses are those given in Eq. (4.2).

6.1 Local analysis near σ = 0

At σ = 0 one has identical equations and boundary conditions giving G(η) ≡ F (η). Here we

seek local solutions in the form

F (η) = F0(η) + σF1(η) + · · · , G(η) = G0(η) + σG1(η) + · · · (6.2)
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for σ small. Inserting these expansions into boundary-value problem (6.1) gives at O(1) the

Homann stagnation-point flow problem

F ′′′

0 + 2F0F
′′

0 − F ′2
0 + 1 = 0, F0(0) = 0, F ′

0(0) = 0, F ′

0(∞) = 1 (6.3)

for which G0(η) ≡ F0(η). At O(σ) one finds

F ′′′

1 + (F0 +G0)F
′′

1 + (F1 +G1)f
′′

0 − 2F ′

0F
′

1 = 0, F1(0) = 0, F ′

1(0) = 0, F ′

1(∞) = 0

(6.4a)

and

G′′′

1 + (F0 +G0)G
′′

1 + (F1 +G1)G
′′

0 − 2G′

0G
′

1 = 0, G1(0) = 0, G′

1(0) = 1, G′

1(∞) = 0.

(6.4b)

Solving this system provides the leading order expressions for the wall shear stress parameters

on Branch I as

F ′′(0) = 1.311938 + 0.156219 σ, G′′(0) = 1.311938− 0.918451 σ. (6.5)

6.2 Large σ asymptotics

Analysis of the asymptotic behavior of problem (6.1) follows that given in §4.2, the only

difference being that the boundary-values displayed in Eqs. (4.8) for α = 1/2 are now

f(0) = 0, f ′(0) = 0, f ′(∞) = σ−1, g(0) = 0, g′(0) = 1, g′(∞) = σ−1. (6.6)

The resulting asymptotics are seen to be identical to those given in Eq. (5.8), viz.

F ′′(0) ∼ 0.582019 σ1/2 (6.7a)

G′′(0) ∼ −1.0 σ3/2 − 0.1067004 σ1/2 (6.7b)

On Branch I. Hence the unity terms in Eq. (6.1a,b) do not affect the asymptotic behavior of

the system to O(σ1/2). However, they of course do affect the full numerical solution of the

problem.

6.3 Presentation of results

Numerical integrations provide the longitudinal and transverse shear stress parameters F ′′(0)

and G′′(0) as a function of σ as shown in figures 4a and 4b, respectively. As shown in the

insets, we find solutions starting on the primary branch winding down about the point

14



{σ, F ′′(0)} = {−1, 1} for figure 4a and the point {σ,G′′(0)} = {−1, 0} for figure 4b which

ultimately unwind to the dual branch solution. In between the large-σ primary and dual

solution branches one finds what appears to be an endless set of multiple-solution branches.

Indeed, Figure 4b clearly shows this winding about {-1, 0}, where we have calculated five

upper branch solutions (I-V) and four lower branch solutions (iv-i). Comparisons of the large

σ asymptotics with the numerical results for the primary branch shear stress parameters are

plotted in figure 4c in which excellent agreement is found for the two-term G′′(0) expression

(6.7b) and good agreement is found for the one-term F ′′(0) expression (6.7a). Velocity

profiles for F ′(η) and G′(η) at σ = −1 are plotted in figure 4d, and these show that as one

moves towards the centre of the spiral, the G′(η) boundary layer becomes thicker and more

oscillatory. Due to this observation, we find that in order to calculate more solution branches

beyond those shown here, one would need to numerically integrate to values of ηmax > 20;

this in turn would require more accurate values of F ′′(0) and G′′(0), which already are

required to 14 significant figures in order to accurately calculate the branch iv solutions.

This would require moving to quadruple precision. However, the results in figures 4a and

4b clearly exhibit the spiralling solution behaviors without the need to calculate additional

solution branches.

The solution branches are delimited by turning points which are tabulated as left, σl,

and right, σr, turning points in Table 1 and the existence of multiple solutions is shown in

Table 2.

Branch Transition σl σr

I - II -1.4758 —
II - III — -0.8447
III - IV -1.0498 —
IV - V — -0.9857
V - VI -1.0045 —
iv - v — -0.9930
iii - iv -1.0235 —
ii - iii — -0.9246
i - ii -1.2224 —

Table 1. Left turning points, σl, and right turning points, σr, showing the tran-

sitions between the computed solution branches.
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No. of solutions Range of σ

0 σ < −1.4758
1 σ = −1.4758
2 −1.4758 < σ < −1.2224
3 σ = −1.2224
4 −1.2224 < σ < −1.0498
5 σ = −1.0498
6 −1.0498 < σ < −1.0235
7 σ = −1.0235
8 −1.0235 < σ < −1.0045
9 σ = −1.0045

> 9 −1.0045 < σ < −0.9930
9 σ = −0.9930
8 −0.9930 < σ < −0.9857
7 σ = −0.9857
6 −0.9857 < σ < −0.9246
5 σ = −0.9246
4 −0.9246 < σ < −0.8447
3 σ = −0.8447
2 σ > −0.8447

Table 2. Existence of multiple solutions as a function of σ.

6.4 Stability of multiple solutions

As in §4.4 we introduce the dimensionless time τ = at and include the unsteady acceleration

in the Navier-Stokes equations and this leads to the coupled equations

F ′′′ + (F +G)F ′′ − F ′2 − F ′

τ + 1 = 0 (6.8a)

G′′′ + (F +G)G′′ −G′2 −G′

τ + 1 = 0 (6.8b)

which, upon substituting the ansatz given in (4.17) again leads exactly to the eigenvalue

problem (4.18) with boundary conditions (4.19).

Results for the lowest eigenvalues λ1 and those for G′′

1(0) as a function of σ are plotted

in figures 4e and 4f, respectively. The results in figure 4e show that despite the interesting

behavior of multiple-solution branches, it is in fact only the primary branch solutions which

are stable, and all other branches are all unstable. However it is interesting to note that the

dual and primary branch solutions spiral in to different eigenvalues λlower
1 and λupper

1 with

λupper
1 > λlower

1 .
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7 Discussion and Conclusion

This paper provides a unified formulation for stagnation-point flow and linearly stretching

plates wherein the two can occur separately, or in unison. After demonstrating the reduc-

tion of the unified formulation to known cases in the literature, three new problems were

investigated: (1) a radially stretching plate below Hiemenz (1911) stagnation flow, (2) Crane

(1970) stretching transverse to Hiemenz stagnation flow, and (3) Crane stretching beneath

Homann (1936) stagnation flow. In each case numerical results were presented for the wall

shear stresses as a function of the problem parameter, σ, and for problems (1) and (2),

dual solutions were found to exist for σt < σ where σt is a turning point, and no solutions

were found for σ < σt. Stability results show in both cases that the primary (upper) solution

branches are stable while the dual (lower) solution branches are unstable. Asymptotic results

are also presented for the stable solutions.

Results for problem (3) display much more interesting behavior, wherein the wall shear

stresses reveal multi-branch spiralling behaviors. Along these spirals the velocity profiles

F ′(η) and G′(η) become thicker, and more oscillatory in the case of G′(η) as the centre of

the spiral is approached. Despite this feature, it was again found that only the primary

(upper) solution branch is stable, while all other multiple-solution branches are unstable.

As such interesting behavior is evident in the single-parameter problems analyzed here,

the next stage is to consider multi-parameter problems for bi-axial stretching surfaces below

stagnation-point flows, be they of Hiemenz, Homann or Howarth type. We leave the analysis

of these more complicated flows to a future study.
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Figure 1. Schematic diagram of a stagnation point flow above a bi-axial stretching
surface.
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σ with inset showing details near the turning point σt = −0.3737; (b) Transverse
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Figure 4. Wall shear stress parameters for Crane stretching beneath Homann
stagnation-point flow. (a) Longitudinal stress parameter F ′′(0) and (b) trans-
verse stress parameter G′′(0) as a function of σ. The insets show the solution
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