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Abstract

Jets and wakes are fundamental fluid flows that arise in a wide range of environmental
and aerospace applications. They are typically studied as open systems. Here we are in-
terested in the implications of placing the jet or wake inside of another system, as well as
the implications of compliant walls. In particular, the effect of asymmetry is considered on
the absolute instability properties for this internal flow, when it is transversely confined by
compliant walls. Two distinct cases are considered, namely the case of two compliant walls
with non-identical wall parameters and the case of identical compliant walls asymmetrically
located about the fluid centre line. The absolute instability characteristics are identified
by following special saddle points (pinch points) of the dispersion relation in the complex
wavenumber plane, and the flow’s stability properties are mapped out using parameter con-
tinuation techniques. The compliant walls introduce new modes which typically dominate
the stability properties of the flow, in comparison to the case of pure shear layers. In the
case of symmetrically located walls with non-identical wall parameters, it was found that the
absolute stability properties are dominated by the modes linked to the more flexible of the
two walls. In the case of identical walls asymmetrically confining the flow, it was found that
these flows exhibit smaller regions of absolute instability in parameter space, when compared
to the symmetric flow configuration.

1 Introduction

The stability properties of two-dimensional shear flows, such as jets and wakes, is a topic which
has achieved significant interest. Jets and wakes typically consist of a central fluid which is
sandwiched between two identical outer fluids. All the fluids extend infinitely in the streamwise
direction and can be bounded on either side by two walls, as in figure 1, or the outer flows can be
unbounded in the transverse direction. In the schematic diagram in figure 1, U1 > U2 corresponds
to a jet, while U2 > U1 corresponds to a wake. Examining the absolute instability (AI) properties
of these jet/wake flows is significant because it has been shown that the existence of an AI in these
flows can lead to absolutely unstable global modes downstream, which ultimately cause vortex
shedding and hence mixing and turbulence (Huerre and Monkewitz, 1990). Being able to identify
global modes is significant as it might be possible to construct a mechanical approach which
modifies and controls such absolutely unstable modes, ultimately leading to less downstream
turbulence. This could be important when considering sea craft for example, as turbulent wakes
from these vessels have been known to impact oceanic ecosystems (Weilgart, 2018).

Confined jets and wakes, similar to that in figure 1, which are symmetric about the flow
centreline z = 0, have been used as a model for coaxial injectors by Juniper and Candel (2003)
and it was shown that the confining walls act as a mechanism to enhance the AI, due to the
constructive interference between modes (Juniper, 2007). Poole and Turner (2023) showed that
when the rigid planar walls are replaced by identical compliant surfaces, then new instabilities
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due to the flexible nature of the walls usually dominate the AI properties and can extend the
region of AI for moderate and large confinement parameters. Confinement has also been shown
to enhance the AI in other flows, such as the rotating disk boundary layer flow (Healey, 2006),
the swirling axisymmetric jet (Healey, 2007) and mixing layers (Healey, 2009).

In the current paper, we consider how the AI properties of the jet/wake flow are affected
when the centreline symmetry is broken. In particular we consider two main mechanisms for
inducing asymmetry in this flow. Firstly we consider asymmetric confinement, i.e. bounding
walls which are placed at different distances from the z = 0 line, and secondly we consider the
case of non-identical confining walls, i.e. where the walls have different wall parameters.
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Figure 1: Schematic of the asymmetric plug flow with symmetric shear layers that will be
considered in this manuscript. Fluid interfaces are represented by thick black lines at z = h1
and z = −h1 respectively.

The effects of asymmetry on the stability of similar parallel flows to the jet/wake setup have
received previous attention. The effects of asymmetric confinement on homogeneous mixing
layers has been studied by Healey (2009), who in particular focused on long waves, i.e. α ≪ 1,
where α is the instability wavenumber. In this asymptotic analysis it was shown that the leading
order effects of asymmetry were not affected by the smooth nature of the base flow, suggesting
that a piecewise linear base flow is sufficient in capturing the main qualitative differences in
the system’s AI characteristics. Healey (2009) went on to show that asymmetry has a strong
stabilizing effect on the flow’s temporal instability, but can be destabilizing when we consider
the flow’s AI characteristics. When compared to the symmetrically confined mixing layer, the
asymmetric confined flow was able to induce AI in a region of co-flow, |Λ = U1−U2

U1+U2
| < 1 for a

small set of asymmetric confinement values, suggesting that asymmetric confinement can extend
the region of AI to lower values of shear. It was also found that for a semi-confined mixing layer
(where the flow is only confined on one side by a rigid wall), it is possible to destabilize the
flow by placing the confining wall in the faster of the two shear layers, and stabilize it when the
confining wall sits in the slower of the two streams. It was noted that when the confining wall is
placed in the faster flow that an AI appears at a much lower value of shear for this semi-confined
case, Λ ≈ 1.15, when compared to the Λ = 1.32 seen in the symmetric case. This highlights the
possibility that semi-confinement can more readily induce an AI in the flow at lower values of
shear. The results for the mixing layer can be compared to our jet/wake flows, since our flow
configuration is effectively the combination of two interacting mixing layers, but also because the
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asymmetrically confined mixing layer in Healey (2009) is equivalent (i.e. has the same dispersion
relation) to the symmetrically confined varicose jet/wake analysis of Juniper (2006).

In the existing literature two other prominent cases of broken symmetry on the stability of
parallel flows have been considered. A study carried out by Wang et al. (2019) considers a wake
with a piecewise linear base flow with non-identical shear layers of finite thickness, δ1 and δ2,
at the two fluid interfaces. An asymmetry parameter was defined to be s = δ1

δ2
, where s = 1

defines the symmetric case. It was shown that increasing the difference between δ1 and δ2 leads
to a greater difference between the maximum temporal instability growth rates of the varicose
modes, which are modes where the waves generated at the fluid interfaces are symmetric about
the centre line of the flow and sinuous modes which are interfacial waves which are asymmetric
about the centre line of the flow. It was then shown that if one of these shear layers was much
thinner than the other, then we can expect the dominant instability at the thin shear layer
interface to dominate the temporal instability characteristics of the flow.

It was shown in figure 3(a) of Wang et al. (2019) that there exists three distinct regions of
the (δ1, δ2) parameter space where three different absolute and convective instability behaviours
can be observed. The smallest regions, regions I (δ2 < δ1 < 1) and III (1 < δ2 < δ1), show that
if you increase either of δ1 or δ2 with the other held fixed, then destabilization and stabilization
of the flow are observed respectively. Region II on the other hand, where δ2 < 1 < δ1, highlights
a region where, the closer the flow becomes to being symmetric, the more absolutely unstable
it becomes. This suggests that the symmetric flow scenario is the most absolutely unstable
configuration for the flow. Understanding the properties of a mechanical system such as this is
helpful for reducing the drag off wind turbines, where the shear layer off one side of the blade
can be considerably larger then that off the other.

A further study carried out by Emerson et al. (2016) examined the effect of an asymmetric
density and/or velocity profile, i.e. when the outer two fluids have different densities, or different
fluid velocities, on the AI characteristics of a planar wake flow. The asymmetry parameters of
the density and velocity profiles were labelled χρ and χu respectively. When these parameters are
both equal to zero, we have a symmetric wake flow. It was found that increasing the asymmetry
of the system, in general, led to the distortion of the varicose and sinuous modes seen in the
system, this effect was also seen in the eigenmode plots of Wang et al. (2019). It was shown that
increasing χρ led to a destabilizing effect of the flow, while increasing χu had a stabilizing effect.
This stabilization effect is clear logically since larger χu leads to a flow that less resembles a
wake, and is more like a simple shear layer, which, for the parameters considered, is in a region
of convective instability (CI). These wake profiles with varying density can be useful to study
when considering vertically stratified flows, such as in the ocean or the atmosphere for example,
where each layer is a different density and each layer may be moving at a different velocity.

The structure of this paper is as follows: in Section 2 we derive the dispersion relations for
the two cases noted above, namely asymmetric confinement by identical walls, and symmetric
confinement by non-identical walls. Section 3 will discuss the numerical methods used to identify
and follow the AI modes as we vary system parameters. In Section 4 we consider how varying
the asymmetric characteristics of the flow alters regions of absolute instability (AI) in parameter
space. We will primarily consider the limit as the shear layer thickness δ → 0. We will consider
a selection of parameter cases, first for the symmetric confinement of two non-identical planar
compliant walls, then for asymmetric confinement by identical compliant walls, and finally for
asymmetric confinement by planar rigid walls. Discussions and conclusions can be found in
Section 5.
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2 Flow Setup and Governing Equations

We consider the two-dimensional flow schematic diagram as shown in figure 1, consisting of
five inviscid fluid regions bounded above and below by compliant surfaces. We consider a
homogeneous fluid setup with each fluid region having density ρ. The outer two fluids are able
to have different thicknesses, h2 and h3 for the upper and lower flow respectively, and have
constant horizontal velocity U2x̂, while the inner flow has thickness 2h1 and constant horizontal
velocity U1x̂. Here (x, z) are Cartesian coordinates with corresponding unit vectors x̂ and ẑ
respectively. While we assume both fluids are inviscid for the purpose of calculating the stability
of the flow, we consider the velocities of the two fluids to be continuous through linear shear
layers of constant, and equal, thickness δ in the outer fluid. The flow is bounded above and
below by two compliant surfaces, where each surface is assumed to have different properties.
We model the compliant surfaces as spring backed elastic plates as shown in figure 2. We make
the assumption at the outset that these bounding surfaces are only permitted to move in the
z-direction, so that the upper surface is located at z+s = h1 + h2 + δ + ξ+(x, t), and the lower
surface is located at z−s = −

(
h1+h3+δ+ξ−(x, t)

)
, where ξ±(x, t) are the normal displacements

from the surfaces’ equilibrium positions.

(a)

(b)

(c)

Figure 2: A diagram of the spring-backed elastic plate compliant surface model considered here.
The wall is constructed in three layers: (a) the rigid back-plate, (b) a series of identical springs,
and (c) a flexible, impermeable membrane. The dotted line represents the wall’s unperturbed
position, and the distance between this line and the wall is denoted by ξ(x, t).

We consider the base flow to be uni-directional of the form u = U(z)x̂ with U(z) given by
the piecewise linear flow

U(z) =



U (1) = U2, h1 + δ ≤ z ≤ z+s
U (2) = (U2 − U1)

(z−h1)
δ + U1, h1 ≤ z ≤ h1 + δ

U (3) = U1, − h1 ≤ z ≤ h1

U (4) = (U1 − U2)
(z+h1)

δ + U1, − h1 ≤ z ≤ −(h1 + δ)

U (5) = U2, − (h1 + δ) ≤ z ≤ z−s

(1)

where U (j) is the velocity profile in region j = 1, ..., 5. It has been shown in Poole and Turner
(2023) that the qualitative stability properties of flows of the form (1) are unaffected by the
piecewise linear form of the shear velocity profile at leading order when compared to smooth
profiles. Hence, we use a piecewise linear profile here in order to obtain qualitative information
about the stability properties of this flow. This approach is advantageous because we are able
to construct analytical dispersion relations for the instability waves, which can be solved more
readily.

In our model we have neglected viscous effects, which most significantly means we have
neglected the formation of boundary layers at the walls. In the truly inviscid limit this is a valid
assumption but we briefly consider the ramifications of our results when a small, but non-zero,
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viscosity is considered. Rienstra and Darau (2011) considered a simple piecewise linear profile
analysis which showed that the finite thickness boundary layer has a stabilizing effect on the
AI properties of the flow, with the zero thickness boundary layer configuration being the most
absolutely unstable. As the boundary layer thickness was increased the AI stabilized completely
and the flow became convectively unstable. A similar stabilizing effect was observed in the
global AI analysis of Juniper et al. (2011), and Tammisola et al. (2011). The conclusions of
Tammisola et al. (2011) found that when the confining walls are sufficiently close to the shear
layer, (i.e. when the symmetric confinement parameter is h = h2/h1 ≲ 1.5), then the boundary
layers work together with the shear layers to stabilize the flow. Strong confinement also has
the added effect of reducing the length of the recirculation zone in wake flows, decreasing the
instability in the flow further (Juniper et al., 2011). The implication for the results we present
in this paper is that at moderate Reynolds numbers our results for h ≲ 1.5 would likely be
affected by the resulting shear layers, but for large Reynolds numbers and moderate and weak
confinements (h ≳ 1.5), we expect our results to be relevant.

In each region of our flow we consider the two-dimensional velocity vector u(j)(x, z, t) =
(u(j)(x, z, t), w(j)(x, z, t)) for j = 1, ..., 5, where the layers are numbered from top to bottom (see
figure 1), which satisfy the incompressible Euler equations

∂u(j)

∂t
+ u(j) · ∇u(j) = −1

ρ
∇p(j), (2)

∇ · u(j) = 0, (3)

where p(j)(x, z, t) is the pressure and ∇ is the two-dimensional gradient operator. In (2), we
have neglected gravitational effects as we assume the flow velocities are large and hence gravity
is not the main driver for the instabilities (i.e. the Froude number will be large). At z = z±s the
flow has to satisfy the governing compliant surface boundary condition, which states that the
normal pressure force of the fluid must balance the normal acceleration at the surface, namely

p(1,5)(x, z±s , t) = ±n̂ · a, (4)

where n̂ is the unit normal to the wall and a is the acceleration. In §2.1 we are ultimately
interested in linear perturbations of the surface, therefore we only require the component of a in
the ẑ direction, which we model as a spring backed elastic plate, for which a schematic is given
in figure 2, with component

a · ẑ =

(
m± ∂2

∂t2
+ d±

∂

∂t
+B± ∂4

∂x4
− T± ∂2

∂x2
+K±

E

)
ξ±(x, t).

The parameters of the compliant surface are, m± = ρ±e b
± the mass per unit area, where ρ±e

is the density of the elastic plate, and b± is the plate thickness, d± the damping coefficient,
B± the flexural rigidity, which describes the force couple required to bend the plate, while the
longitudinal tension of the plate, T±, measures the tension per unit length. The parameter
K±

E = K± − g(ρ − ρ±s ) is the ‘adjusted’ spring stiffness, where ρ±s is the density of the wall
substrate and K± is the spring stiffness. Note that in the rest of this work, we will redefine K±

E

as K± for simplicity.
At each surface, the fluid must also satisfy the kinematic boundary condition, which due to

the assumption of wall motion only in the z-direction, takes the form

∂ξ+

∂t
+ u(1)

∂ξ+

∂x
= w(1), and

∂ξ−

∂t
+ u(5)

∂ξ−

∂x
= w(5), (5)

at z = z±s respectively.
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2.1 Linearization of Problem

To study the stability properties of this flow, we consider small velocities and surface displace-
ments with wavelike properties including a time periodic frequency ω and spatial wavenumber
α. Namely, we write

u(j)(x, z, t) = U (j)(z)x̂+ ϵ(û(j)(z), ŵ(j)(z)) exp(i(αx− ωt)) + c.c,

p(x, z, t) = P (j) + ϵp̂(j)(z) exp(i(αx− ωt)) + c.c,

ξ±(x, t) = ϵξ̂± exp(i(αx− ωt)) + c.c,

(6)

where 0 < ϵ ≪ 1 is small such that we can linearize (2)-(5), and c.c denotes the complex
conjugate. Here P (j) are constant pressures in each layer required to satisfy (2) at O(1) and ξ̂±

are constants.
By substituting (6) into (2) and (3), we find that the linear equations at order O(ϵ) for the

flow perturbation quantities are

−iωû(j) + iαU (j)û(j) + ŵ(j)DU (j) = − iα

ρ
p̂(j), (7)

−iωŵ(j) + iU (j)αŵ(j) = −1

ρ
Dp̂(j), (8)

iαû(j) +Dŵ(j) = 0, (9)

where D ≡ d/dz. Similarly, we linearize (5) about small normal perturbations by substituting
in (6), and to order O(ϵ) these become

−iωξ̂+ + U2iαξ̂
+ = ŵ(1), and − iωξ̂− + U2iαξ̂

− = ŵ(5), (10)

now evaluated at the equilibrium positions z = h1 + h2 + δ and z = −(h1 + h3 + δ) respectively,
while linearizing (4) in the same way leads to

(−m+ω2 − iωd+ +B+α4 + T+α2 +K+)ξ̂+ = p̂(1), at z = h1 + h2 + δ, (11)

(−m−ω2 − iωd− +B−α4 + T−α2 +K−)ξ̂− = −p̂(5), at z = −(h1 + h3 + δ). (12)

2.2 Dispersion Relation

Given the linearized equations (7)-(12), we can now derive the dispersion relation for this flow.
First, we eliminate p̂(j) and û(j) from (7) using (8) and (9) respectively, leading to the Rayleigh
equation for the normal velocity perturbation ŵ(j)

(αU (j) − ω)(D2 − α2)ŵ(j) − αD2U (j)ŵ(j) = 0. (13)

In Poole and Turner (2023) the flow scenario was symmetric about z = 0 and so simplifications
could be made by considering only half the flow domain. In the current problem we do not have
such symmetry, and so we have to consider both the upper and lower halves of the flow together.
Since our base flow (1) is piecewise linear, then D2U (j) = 0 in each layer, thus (13) reduces to
(D2 − α2)ŵ(j) = 0, with solutions in each layer written as

ŵ(1) = A1 exp(α(z − (h1 + δ))) +B1 exp(−α(z − (h1 + δ))), (14)

ŵ(2) = A2 cosh(α(z − h1)) +B2 sinh(α(z − h1)), (15)

ŵ(3) = A3 cosh(αz) +B3 sinh(αz), (16)

ŵ(4) = A4 cosh(α(z + h1)) +B4 sinh(α(z + h1)), (17)

ŵ(5) = A5 exp(α(z + (h1 + δ))) +B5 exp(−α(z + (h1 + δ))). (18)
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We use the explicit exponential function form in layers 1 and 5 so that comparison with the
works of Juniper (2007) and Poole and Turner (2023) can be readily made.

At the interfaces of the different base profile regions, namely at z = ±h1 and z = ±(h1 + δ),
we require that both the displacement of the fluid interface and the perturbation pressure are
continuous, which leads to the jump conditions

∆

[
ŵ(j)

αU (j) − ω

]
= 0, and ∆

[
ρ(αU (j) − ω)Dŵ(j) − αρDU (j)ŵ(j)

]
= 0, (19)

respectively, where ∆[·] = limζ→0[·]zn+ζ
zn−ζ and zn is the equilibrium interface position (Drazin,

2002). Now we require a usable form for our boundary conditions at the upper and lower
compliant surfaces. Using (10) together with (7)-(9), we can write the boundary conditions
(11)-(12) as

Q+ŵ(1) =
ρ

α2
(αU2 − ω)2Dŵ(1),

Q−ŵ(5) = − ρ

α2
(αU2 − ω)2Dŵ(5),

(20)

at z = h1 + h2 + δ and z = −(h1 + h3 + δ) respectively. We define Q±(α, ω) = (−m±ω2 −
iωd±+B±α4+T±α2+K±) to be the wall compliance at the upper and lower surfaces, and this
quantity is related to the wall impedance term used to model acoustic wall linings (Brambley,
2009). Substituting in the expressions for ŵ(1) and ŵ(5) from (14) and (18), we can write these
conditions in the compact forms

A1

B1
= −e−2αh2

[
Q+ + ρ(αU2 − ω)2

Q+ − ρ(αU2 − ω)2

]
, (21)

B5

A5
= −e−2αh3

[
Q− + ρ(αU2 − ω)2

Q− − ρ(αU2 − ω)2

]
, (22)

where in the limit as Q± → ∞, the compliant surfaces become rigid walls and we obtain the
boundary condition for a rigid wall bounded flow (Juniper, 2007). For more details on how to
derive dispersion relations for piecewise linear flow profiles the reader is referred to Drazin and
Reid (2004); Drazin (2002).

By considering the jump conditions (19) at each regional interface, together with the bound-
ary conditions (21) and (22), we arrive at a system of 10 equations for the 11 unknowns A1−5,
B1−5 and ω (assuming α is given). Hence eliminating A1−5 and B1−5 leads to a dispersion
relation (D(α, ω) = 0) for unknown ω(α). At this stage we also non-dimensionalise the system.
Hence by taking h1 as our characteristic length scale, Uref = (U1 + U2)/2 as our characteristic
velocity scale, letting the shear layer thickness δ = δ∗h1 and defining the confinement ratios
h = h2/h1, h̃ = h3/h1, along with the non-dimensional parameters

m± = ρh1m
±∗, d± = ρUrefd

±∗, B± = ρh31U
2
refB

±∗,

T± = ρh1U
2
refT

±∗, K± =
ρU2

ref

h1
K±∗, Q± =

ρU2
ref

h1
Q±∗,

α = α∗/h1, ω = ω∗Uref/h1, Λ =
U1 − U2

U1 + U2
, (23)
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we derive the dispersion relation

D(α∗, ω∗) ≡
[
α∗Q+∗(−e−2α∗hDv∗

+ +Dv∗
− ) + (α∗(1− Λ)− ω∗)2(−e−2α∗hDv∗

+ −Dv∗
− )

]
×[

α∗Q−∗(−e−2α∗h̃Ds∗
+ +Ds∗

− ) + (α∗(1− Λ)− ω∗)2(−e−2α∗h̃Ds∗
+ −Ds∗

− )
]
+[

α∗Q−∗(−e−2α∗h̃Dv∗
+ +Dv∗

− ) + (α∗(1− Λ)− ω∗)2(−e−2α∗h̃Dv∗
+ −Dv∗

− )
]
×[

α∗Q+∗(−e−2α∗hDs∗
+ +Ds∗

− ) + (α∗(1− Λ)− ω∗)2(−e−2α∗hDs∗
+ −Ds∗

− )
]
= 0. (24)

The non-dimensional quantity Λ is a measure of the shear between the inner and outer fluid
flows. When Λ > 0 we have a jet, and when Λ < 0 we have a wake.

In (24) ∗ denotes a dimensionless quantity and

Dv∗
± ≡ [δ∗(ω∗ − α∗(1 + Λ)) coth(α∗) + 2Λ] [δ∗(ω∗ − α∗(1− Λ))(cosh(α∗δ∗)∓ sinh(α∗δ∗))

−2Λ sinh(α∗δ∗)]∓(ω∗−α∗(1+Λ))δ∗ [δ∗(ω − α∗(1− Λ))(cosh(α∗δ∗)∓ sinh(α∗δ∗))± 2Λ cosh(α∗δ∗)] ,
(25)

while Ds∗
± has the same structure, except with the coth(α∗) replaced by tanh(α∗). In what

follows we drop the ∗ notation on the dimensionless quantities with the understanding that now
everything is dimensionless. We use the superscripts v and s on the terms in (25), because
in Poole and Turner (2023), when the flow was symmetrically confined, the Dv and Ds terms
related to components of the dispersion relation for varicose modes (antisymmetric ŵ about
z = 0) and sinuous modes (symmetric ŵ about z = 0) respectively, which in that case could be
examined separately. In this asymmetric case these distinctions do not exist, but it is useful to
keep this notation as the modes will have properties similar to varicose or sinuous modes from
the symmetric limit.

In the case where h = h̃ with symmetric wall parameters (Q− ≡ Q+ ≡ Q), (24) reduces to

D(α, ω) ≡
[
αQ(−e−2αhDv

+ +Dv
−) + (α(1− Λ)− ω)2(−e−2αhDv

+ −Dv
−)

]
×[

αQ(−e−2αhDs
+ +Ds

−) + (α(1− Λ)− ω)2(−e−2αhDs
+ −Ds

−)
]
= 0, (26)

i.e. here the sinuous and varicose modes decouple as expected. In the limit δ → 0, (24) simplifies
such that at O(δ)

D(α, ω) ≡
[
αQ−Xv(h̃)− (α(1− Λ)− ω)2Y v(h̃)

][
αQ+Xs(h)− (α(1− Λ)− ω)2Y s(h)

]
+
[
αQ−Xs(h̃)− (α(1− Λ)− ω)2Y s(h̃)

][
αQ+Xv(h)− (α(1− Λ)− ω)2Y v(h)

]
= 0, (27)

where
Xv(ζ) = (α(1− Λ)− ω)2 coth(αζ) + (α(1 + Λ)− ω)2 coth(α),

Y v(ζ) = (α(1− Λ)− ω)2 + (α(1 + Λ)− ω)2 coth(α) coth(αζ),
(28)

and for Xs(ζ), Y s(ζ) we replace the coth(α) terms with tanh(α). In this limit, the case h = h̃
with Q+ = Q− = Q in (27) gives the equations studied by Poole and Turner (2023), also Xs,v

are identical to the rigid wall dispersion relations derived by Juniper (2006) for h = h̃ and
Q± → ∞.

By considering (27), we can consider two different ways in which we can break the centre-line
symmetry of the flow:

1. Different confining surfaces (Q− ̸= Q+) but with symmetric confinement (h = h̃),
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2. Identical confining surfaces (Q− = Q+), including the rigid wall limit, but with asymmetric
confinement (h ̸= h̃).

There is of course the third case when Q− ̸= Q+ and the confinement is asymmetric (h ̸= h̃),
but this case isn’t explicitly examined here as it is just the combination of cases 1 and 2.

Both dispersion relations (24) and (27) are 8th order polynomials in ω with transcendental
coefficients in α. In this paper, we study the two above cases independently. Following the
study of Poole and Turner (2023), the inclusion of compliant bounding surfaces in jet/wake
flows identifies two families of modes present in the system: Shear-induced (SI) modes are
modes present in the flow when the surfaces are considered to be rigid planar walls, and are
driven by the presence of the shear layers; Wall-induced (WI) modes are modes which are present
in the flow due to the inclusion of the compliant walls. How these modes behave and interact
with one another is explored in detail for the symmetrically confined problem by Poole and
Turner (2023), and the reader is referred here for more details.

3 Identifying Absolute Instabilities

In this article our interest lies in calculating the AI properties of the asymmetric flows detailed
in §2, which due to them being parallel flows, will also constitute a global instability. In order
to identify an AI we consider the differential equation associated with our dispersion relation
D(α, ω) = 0, which is

D
(
− i

∂

∂x
, i

∂

∂t

)
w(x, z, t) = 0. (29)

We seek solutions of this differential equation which are initialized by an impulse forcing at the
origin. Thus we seek solutions to the impulsive form of (29) such that the right hand side is
equal to δ(x)δ(t)ŵ(z), where δ is the Dirac delta function. Then if the solution has the property
that

lim
t→∞

|w(x, z, t)| → ∞,

along the characteristic x/t = 0, then the flow is absolutely unstable (Schmid et al., 2002). This
is a Green’s function representation of an AI, the solution of which can also be represented as

w(x, z, t) =

∫
L

∫
F

ŵ(z)

D(α, ω)
exp [i(αx− ωt)] dαdω, (30)

after taking the inverse Fourier transform in x and inverse Laplace transform in time t. Here
F is the Fourier inversion contour that sits along the real α-axis, while the Laplace inversion
contour L sits above all singularities in the complex ω-plane for causality (Schmid et al., 2002).
If we have no stability mechanism for the short instability waves of the system, such as surface
tension, viscosity or a non-zero shear layer thickness between the flows, then we have an infinite
number of singularities in the ω-plane at large ωi = Im(ω). This leads to an ill posed problem
because essentially we cannot place L above all these points. To overcome this we consider the
existence of a small, but finite, stabilization mechanism, here we use shear layers, and let this
tend to zero.

The response (30) is essentially unaffected by the structure of the response in the z-direction
(Juniper, 2007), with the main restriction being that it is isolated in x and t at the shear layers
z = ±1. In this work we do not consider the so called full response (Healey, 2006; Juniper, 2007)
to the forcing, which considers the growth of the disturbance in the outer fluid, away from the
shear layer.

We solve the first integral of (30) by means of Cauchy’s residue theorem, which gives

w(x, z, t) =
1

2π

∑
m

∫
F

ŵ(z)

Dω(α, ωm)
exp

[
it
(
α
x

t
− ωm

)]
dα, (31)
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where the sum is over the residues of m singularities in the ω-plane. To approximate the final
inverse Fourier transform integral, we consider the large time limit, t → ∞, which by using the
method of steepest descent, amounts to calculating the value of ωi at special saddle points in
the complex α-plane. These special saddle points are known as pinch points.

To determine the values of α and ω at these special saddle points we solve the pair of
equations

D(α, ω) =
∂D(α, ω)

∂α
= 0, (32)

simultaneously using Newton’s method, starting with an initial guess (α0, ω0), which we obtain
by sight from plotting contours of constant ωi in the complex α-plane. At each step the (n+1)th

iterate is given via(
αn+1

ωn+1

)
=

(
αn

ωn

)
−
(
Dα(α

n, ωn) Dω(α
n, ωn)

Dαα(α
n, ωn) Dαω(α

n, ωn)

)−1( D(αn, ωn)
Dα(α

n, ωn)

)
, (33)

where the subscripts denote partial derivatives. Iterations are continued until ||(αn+1, ωn+1) −
(αn, ωn)||2 < 10−8.

This numerical approach identifies saddle points and the value of ωi at those points, but to
determine whether they are pinch points we use the Briggs criterion (Briggs et al., 1964). This
effectively states that the hills that make a saddle point originate from different sides of the
inversion contour F . In most cases, this can easily be determined by observation (Healey, 2006),
however sometimes the path of F is ambiguous (usually due to the existence of multiple Riemann
sheets of the α-plane, as presented in figure 4(a), where the inversion contour is plotted in red.),
and in those cases we can resort to numerically integrating along the real α-axis in (31) using the
arbitrary precision package of Smith (1991). This technique of numerically verifying whether a
saddle point is a pinch points was also carried out in Healey (2006) who evaluated the Fourier
inversion integral along a path of decaying eigenfunctions in the wall-normal direction. Using
this approach Healey was able to highlight an example of saddle points switching dominance
in figure 5 of the same paper. The arbitrary precision is required so that the rapidly varying
integrand of (31) can be handled efficiently. In this case the numerically calculated complex
frequency is given by

ωnum =
iwt(0, 1, t)

w(0, 1, t)
, (34)

where the subscript t denotes the partial derivative. In the limit t → ∞ (34) gives the same
value as ω at the dominant pinch point in the α-plane, hence Im(ωnum) = ωnum

i gives the same
growth rate as the pinch point, ωi. For these ambiguous cases, we consider results with finite
shear layer thickness δ ̸= 0, which acts as a stabilization mechanism for short-waves (large α
values)1, such that the form of (30) is well posed, and the arbitrary precision numerics can be
carried out, and then we let δ → 0 to understand what happens in the δ = 0 case.

In problems such as the one considered here, we must be careful to calculate the growth
rate of modes related to all pinch points, and to keep track of their pinch point status, because
as we vary the system parameters, and use continuation techniques to follow the saddles, the
dominant saddle point can switch between saddles, and their pinch point status can change as
they fall on and off the Fourier inversion contour.

1We note that varying wall parameters does not have the same short-wave stabilization effect on the temporal
instability of SI modes as increasing the shear layer thickness, as shown in Poole and Turner (2023), hence the
only mechanism to make (30) well-posed in our problem is increasing the shear layer thickness.
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4 Results

4.1 Non-Identical Compliant Walls with Symmetric Confinement

First we consider the effect of non-identical walls when symmetrically confining a jet/wake flow
with walls at z±s = ±(1 + h). Using equations (26)-(27) we initially consider how non-identical
compliant walls affect the velocity eigenmodes of the flow using real α and complex ω values.
We then examine how varying the parameters of the walls influence the flow’s AI characteristics.
In the results which follow we consider the infinitely thin shear layer case δ → 0, unless stated
otherwise.

4.1.1 Velocity Eigenmodes

Here we consider the effect of non-identical walls on both wall-induced (WI) and shear-induced
(SI) modes of instability. We consider the form of the eigenmodes for both vertical and horizontal
velocity components of the perturbation, ŵ(z) and û(z) respectively and we consider the most
temporally unstable mode for each case. The vertical perturbation velocity eigenmodes in the
limit δ → 0 take the form

ŵ(1) = exp(−α(z − 1))−Π+ exp(α(z − (1 + 2h))), (35)

ŵ(3) = A3 cosh(αh) +B3 sinh(αh), (36)

ŵ(5) = A5

[
exp(α(z + 1))−Π− exp(−α(z + 1 + 2h))

]
, (37)

where the û(j)(z) functions are calculated via (9) such that

û(j)(z) =
iDŵ(j)(z)

α
. (38)

The coefficients appearing in these expressions are defined to be

A3 =
Z2E− cosh(α) + E+ sinh(α)

Z
,

B3 =
ZE− −A3 cosh(α)

sinh(α)
,

A5 =
Z(B3 cosh(α)−A3 sinh(α))

Ẽ
,

where Z =
α(1 + Λ)− ω

α(1− Λ)− ω
, E± = 1±Π+ exp(−2αh) and Ẽ = 1 + Π− exp(−2αh̃), where

Π± =
αQ± + (α(1− Λ)− ω)2

αQ± − (α(1− Λ)− ω)2
.

We fix the upper wall to be compliant, with parameters

(B+, T+,K+,m+, d+) = (1, 2, 2, 1.2, 0.001), (39)

while the lower wall is identical in all parameters except the flexural rigidity B−. We use these
parameters, because both the most unstable SI and WI modes are temporally unstable in this
case. We consider 3 different values of B−, such that B− < B+, B− = B+, B− > B+, and we
also fix the shear parameter Λ = −2 and the wavenumber α = 1. The eigenmodes are plotted
in figure 3 and are normalized such that the 2-norm of each mode is equal to 1. We consider the
most temporally unstable SI (solid lines) and WI (dash-dot lines) mode at each configuration.
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Figure 3: Plots of |ŵ(z)| and |û(z)| at the wall configurations (39), with α = 1,Λ = −2, h = 2,
and (a,b) B− = 0.5, (c,d) B− = 1 and (e,f) B− = 10, with B+ = 1 fixed. Solid lines denote the
SI mode while dot-dashed lines denote the WI mode. Black dashed lines at z = ±1 indicate the
fluid interfaces. These eigenmodes have been normalised such that ||ŵ||2 = ||û||2 = 1.

In the symmetric limit, figures 3(c) and (d), we find that the WI mode reaches its maximum
velocity at the walls, while the SI modes reach a maximum velocity at the fluid interfaces at
z = ±1 as expected. When we increase the value of B− at the lower wall at z = z−s = −3
to B− = 10 in figures 3(e) and (f), we find that the values of |ŵ| and |û| are much smaller at
z = z−s = −3 for the WI modes, whereas the SI modes are relatively unaffected. This makes
sense, since as we increase B− we move closer to the rigid wall limit, i.e. B− → ∞ for example,
where we expect the rigid wall boundary conditions to hold, namely that ŵ = 0. The eigenmode
shape at the fixed compliant wall at z = z+s = 3 is still a maximum, but in fact what is striking
is that the difference between the WI mode at the upper wall compared to the lower wall is
considerably different.

Making the lower wall more flexible than the fixed wall, with B− = 0.5 in figures 3(a) and
(b), we find that the effect is reversed and now the lower wall produces a significantly larger
value of |ŵ| than at the upper wall. This shows that the instability perturbation is concentrated
at the least rigid of the two walls.
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4.1.2 AI Analysis

Now we consider the effect of symmetrically confined non-identical compliant walls on the AI
characteristics of the jet/wake flow. We set both wall parameters to be

(B±, T±,K±,m±, d±) = (2, 0, 10, 0.1, 0) (40)

for the symmetric configuration and then we consider variations of the lower wall parameters.
First we consider the effect of these non-identical walls on the complex α-plane, presented

in figure 4 with Λ = 1, h = 2, as we vary B−. We plot contours of constant ωi in the complex
α-plane via the dispersion relation, and modes of instability then take the form of special saddle
points, namely pinch points. These correspond to either an AI mode when ωi > 0 at the saddle
point, or a convectively unstable or stable mode otherwise (Juniper, 2006; Poole and Turner,
2023; Schmid et al., 2002).

(a) (b)

(c) (d)
Figure 4: Contours of constant ωi in the complex α-plane for 4 different wall configurations:
(a) symmetric walls with B− = B+ = 2, (b) B− = 3, (c) B− = 4 and (d) B− = 10. We fix
Λ = 1, h = 2. Blue markers indicate SI modes, while black and magenta markers indicate WI
modes. Branch cuts are represented by black and white dashed lines, and the red contour in
figure (a) represents a possible inversion contour.

We consider 4 values of the lower wall flexural rigidity B−; the symmetric configuration has
B− = B+, with modes SI, WI1 and WI2 visible in figure 4(a) represented by blue, black and
magenta crosses. Here WI1 and WI2 indicate that we have two wall-induced modes of interest.
The remaining three configurations have B− > B+, with B− gradually increasing in each figure.
For the symmetric case in figure 4(a) the blue cross is the saddle point which dominates in the
rigid wall limit, while Poole and Turner (2023) showed that when the walls are compliant (and
identical) additional saddles are generated in the complex α-plane. In this case it was shown
that the generated black cross saddle is also a pinch point, and because it lies in the hills of
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the SI saddle, it has a larger value of ωi and hence dominates the AI characteristics of the flow.
By increasing B− away from this symmetric state this has the effect of dividing the smaller
branch cut in figure 4(a), where in figure 4(a) the two branch cuts overlap one another. This
dividing has the effect of introducing an additional set of modes which become pinch points as
B− continues to increase. These new modes, seen in figures 4(b-d) are denoted with blue and
black dots and are referred to as SI′ and WI′1 modes. The colour of these markers correlate
with the SI and WI1 modes. We note that the blue modes are always subdominant to the black
modes for these system parameters.

-2 0 2
0

0.02

0.04

0.06

0.08

Figure 5: Comparison of |ŵ| eigenmodes for the three AI modes in figure 4(a), where the colour
of each mode corresponds to the colour cross used to indicate each mode. Vertical dashed lines
indicate fluid interfaces, and these modes have been normalized such that ||ŵ||2 = 1.

The branch cuts in figure 4 indicate that Riemann sheets of the WI and SI modes, discussed
for the temporal problem, are now connected, and as a result, we expect these modes to have
characteristics of both SI and WI modes, as shown in figure 5. These AI modes are those modes
in figure 4(a) and have peaks in magnitude at the shear layers and relatively large values at the
walls. Thus when we refer to SI modes in this context, we are referring to those modes which
persist in the complex plane when the walls are rigid, and WI modes as those modes which are
the additionally generated modes when the wall(s) are compliant.

As the difference between B− and B+ increases, the positions of modes SI and WI1 change
while the positions of the SI′, WI′1 and WI2 modes remain relatively fixed. This suggests that
these first two modes are strongly connected to the behaviour of the modified lower wall, whose
parameters are changing, while the other modes being static suggests their behaviour relates to
the upper wall, whose parameters are fixed. Hence in the case B− → ∞ when the lower wall
is rigid, the presence of the compliant upper wall is still able to induce these WI modes in the
system. Note, a similar behaviour to the one seen in figure 4 is observed when a different lower
wall parameter other than B− is varied.

By considering the effects of varying B− on the α-plane, it is clear that non-identical walls
contribute additional modes to the instability characteristics of the flow, and may allow an AI
to persist even into the semi-rigid wall limit, where one wall is taken to be rigid and the other
compliant. To explore the effects of varying the wall parameters, we consider regions of AI
in (Λ−1, h)−space for four non-identical wall configurations, shown in figure 6. These region
plots are created using the method outlined in Appendix C of Rees and Juniper (2010) where
we essentially follow the neutral ωi modes in (Λ−1, h)-space. The grey regions indicate regions
of AI, where the solid black lines indicate the AI-CI boundaries. The dashed lines and the
dot-dashed lines indicate the AI-CI boundaries of the two symmetric configurations, when both
walls have identical parameters. In these figures, we specifically focus on the AI-CI boundaries
of WI modes as these are the first modes to become absolutely unstable as we increase the shear
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value, Λ. What we are interested in here is whether the size of the AI region for asymmetrically
confined flows is larger than either of the symmetrically confined flows, and this occurs if the
solid line lies beyond both the dashed and dot-dashed lines.

(a) (b)

(c) (d)
Figure 6: Regions of AI in (Λ−1, h)-space for the parameters in (40) together with (a) T− = 10,
(b) K− = 5, (c) m− = 25 and (d) d− = 5 given by the solid lines. The dashed lines represent
the regions of AI for the flow with symmetric wall configuration with parameters (40), while
the dot-dashed lines give the symmetric wall configuration with (a) T± = 10, (b) K± = 5, (c)
m± = 25 and (d) d± = 5.

We find that when varying any of the wall parameters from the symmetric configuration, in
such a way as to make one wall more rigid, we observe a small stabilizing effect at small h, as
seen by the shrinking AI regions in figure 6(a), (c) and (d). The effect on the region at weak
confinement values is less pronounced. Figure 6(b) on the other hand shows the effect of reducing
the spring constant K− = 5, i.e. making one wall more flexible, which has a destabilizing
effect for Λ < 0. This destabilizing behaviour is more prominent when decreasing K− further.
Furthermore, for Λ > 0, we now see the AI-CI boundaries of two modes, suggesting that we
observe a new WI mode appearing in a similar way to that shown in figure 4. However, in all the
panels in figure 6, we find that the region for asymmetric confinement is always bounded by the
two symmetric configurations, suggesting that for these parameters the symmetric configuration
is the most unstable. What these results do show however, is that when the walls have different
parameters, the lighter, more flexible wall appears to govern the AI characteristics of the flow.

Since we have shown that varying B− allows for new modes to appear and become dominant
in figure 4, we now focus specifically on varying B− with the AI-CI regions shown in figure 7.
It is clear that as we vary B− we again see very little variation in the size and shape of the AI
regions compared to the two symmetric configurations, similar to figure 6. This is certainly the
case when B− is of similar magnitude to B+, as in figures 7(a) and (b). As we increase B− to
B− = 15 in figure 7(c) we do see regions in the (Λ−1, h)-plane where we now have AI which were
CI in the B± = 2 symmetric limit (dashed lines). This again can be seen for moderate values
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(a) (b)

(c) (d)
Figure 7: Regions of AI in (Λ−1, h)−space for the parameters in (40) together with (a) B− = 1,
(b) B− = 4, (c) B− = 15 and (d) B− = 100 given by the solid lines. The dashed lines represent
the regions of AI for the flow with the symmetric wall configuration with B± = 2, while the dot-
dashed lines give the symmetric wall configuration with (a) B± = 1, (b) B± = 4, (c) B± = 15
and (d) B± = 100.

of confinement (2.5 ≤ h ≤ 5) and Λ−1 > 0. These additional regions are a result of the new WI
modes shown in figure 4 becoming dominant over the dominant modes in the symmetric case as
we vary h. Further increasing B− = 100 in figure 7(d), however, now appears to have stabilized
these regions compared to the symmetric limit. However, as in figure 6, we again find that these
asymmetric region plots are confined by the two symmetric wall configurations, suggesting that
the symmetric case is the most unstable.

We now consider a vertical slice through figure 7(c) along Λ−1 = 1, to highlight the behaviour
of the two families of modes. We consider the dominant AI modes along this slice and track
how their growth rates, ωi, vary as we increase h, presented in figure 8. We compare the results
in the δ → 0 limit to those at different δ > 0 values, because for δ > 0 we can confirm what the
correct instability behaviour is, by numerically integrating the Fourier inversion integral (31)
and plotting the imaginary part of (34). These results are denoted by the green markers in
figure 8. Note, we choose δ ̸= 0 but small, as reintroducing the shear layers into the problem
introduces a new saddle, labelled S1 in Juniper (2006), which is capable of dominating the flow
at large shear layer thickness values, δ, and large shear values, Λ. At the small δ values we
choose, this S1 saddle remains sub-dominant.

The results show that the value of ωnum
i at various δ values agrees with the growth rate curves

in figure 8, suggesting that the results in the δ → 0 limit are correct and robust. We find that
increasing the shear layer thickness has the effect of stabilizing the flow, as we would expect of a
stabilizing mechanism. What is interesting in this case is that we are able to highlight when AI
modes switch dominance at moderate and weak confinements. This confirms what we observe
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Figure 8: AI growth rates ωi(h) with parameters given in figure 7(c), with Λ = 1 for 4 different
δ values: (a) δ → 0 limit, (b) δ = 0.2, (c) δ = 0.3 and (d) δ = 0.5. The solid black lines represent
the original WI1 mode, while the dashed black line represents the new WI′1 mode represented
by the black circle marker in figure 4. The magenta line represents the mode WI2 and the new
WI′2 mode is represented by the dot-dashed line. The green dots indicate the numerical results
ωnum
i from (34).

in the AI region plot in figure 7(c) at Λ = 1, i.e. the new modes (modes WI1, and WI′1) that
correspond to the modified wall are distinct and can contribute to the AI response.

4.2 Identical Compliant Walls with Asymmetric Confinement

In this section, we consider both walls to have identical parameters, but we fix h̃ and vary h
to asymmetrically confine the flow. As in the previous section, we first consider the effects of
asymmetric confinement on the perturbation velocity eigenmodes for real α and complex ω values
by solving equation (27) with Q+ = Q−. We then consider how the flow’s AI characteristics
behave at different confinement values.

4.2.1 Velocity Eigenmodes

As in §4.1.1, we will consider the most temporally unstable SI and WI modes and compare the
two at different asymmetric confinement configurations. We let (B, T,K,m, d) = (1, 2, 2, 1.2, 0.001),
Λ = −2, h̃ = 2, α = 1 and we vary h, where h̃ and h represent the relative non-dimensional posi-
tions of the lower and upper walls from the edge of their respective shear layers.. Here we have
dropped the ± notation on the wall parameters with the understanding that these are equal.
The eigenmodes are again normalised such that the 2-norm of each mode is equal to one. The
vertical perturbation velocity eigenmodes are nearly identical to (35)-(37), except Π− = Π+ = Π
and the last exponential term in ŵ(5)(z) is now Πexp(−α(z + 1 + 2h̃)).
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Plots of the eigenmodes are presented in figure 9. We find that asymmetric confinement can
significantly alter the shapes of these eigenmodes when compared to the symmetric configuration
in figures 9(c) and (d). When we strongly confine the flow on one side by setting h = 1.5 in
figures 9(a) and (b), we find that the unstable WI mode becomes more concentrated at the closer
of the two walls. This is particularly apparent when we increase h well beyond the symmetric
case in figures 9(e) and (f). In this case |ŵ| → 0 as z → 1 + h which is the correct behaviour
in the unbounded case, while now the WI mode is concentrated at the lower wall. In all cases
the shape of the SI modes around the shear layers are largely unaffected by the position of the
walls. This suggests that the AI properties of the flow are likely to be dominated by the position
of the closest wall.
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Figure 9: Plots of |ŵ(z)| and |û(z)| at various levels of asymmetric confinement for the most
unstable WI mode (dot-dash lines) and the most unstable SI mode (solid lines). We fix Λ =
−2, α = 1 and we fix the lower wall to sit at z−s = −(1+h̃) with h̃ = 2, and the other at z+s = 1+h
with (a,b) h = 1.5, (c,d) h = h̃ and (e,f) h = 8. Black dashed lines at z = ±1 indicate the fluid
interfaces. These eigenmodes have been normalised such that ||ŵ||2 = ||û||2 = 1.
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4.2.2 AI analysis

In this section, we consider the effects of asymmetric confinement of identical compliant walls
on the AI characteristics of jets and wakes, and we compare these results to those where the
walls symmetrically confine the flow. First we investigate how asymmetric confinement affects
the complex α-plane in figure 10 when we have identical compliant confining walls with wall
parameters given in (40), and Λ = 1 and h̃ = 2.

As we move away from the symmetric configuration, given in figure 10(b), we observe that
more saddle points appear close to the imaginary α-axis. For other wall configurations, such as
the rigid wall limit, these modes can become dominant, however it appears that for our current
wall configuration this does not occur, perhaps as a result of the fixed wall being a compliant
wall, and thus generating WI modes which tend to be significant generators of AI. We find that
the three main modes, the SI mode (blue cross), the WI1 mode (black cross) and the WI2 mode
(magenta cross) in figure 10, do not move significantly in the α-plane for h > h̃ in panels (c) and
(d), although there is some realignment of the position of the branch points. However, there is
more of a movement of these saddles when h < h̃ in panel (a). This suggests that the stability
characteristics of the flow are likely to be more influenced by the closer of the two walls.

(a) (b)

(c) (d)
Figure 10: Contours of constant ωi in the complex α-plane for symmetric wall parameters (40),
for Λ = 1, h̃ = 2 with (a) h = 1.5, (b) h = h̃ = 2, (c) h = 3 and (d) h = 10. Blue markers indicate
SI modes, while black and magenta markers indicate WI modes. Black and white dashed lines
represent branch cuts.

We now consider regions of AI in the (Λ−1, h)-plane for three different values of h̃ in figure 11
along with corresponding figures which specifically plot the locations of the AI region boundaries.
The panels compare the AI regions for the symmetrically confined flow with both walls at
z±s = ±(1 + h) (dashed lines) and both walls at z±s = ±(1 + h̃) (dot-dashed lines) with the AI
regions for the asymmetrically confined flow (solid lines).

In figure 11 the results show that for these parameters the asymmetric AI region is always
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Figure 11: Regions of AI in (Λ−1, h)-space for the parameters in (40) where the fixed wall is
placed at z−s = −(1 + h̃) with (a,b) h̃ = 1, (c,d) h̃ = 2, (e,f) h̃ = 4 respectively. Panels (a),
(c), (e) give the regions of AI in the (Λ−1, h)-plane while (b), (d) and (f) specifically gives the
boundaries of these regions. In all cases the solid lines are the asymmetrically confined flow, the
dashed lines are the symmetrically confined flow with walls at z±s = ±(1+h) and the dot-dashed
lines are the symmetric flow with walls at z±s = ±(1 + h̃). In (b), (d), (f) the black lines are
for jets (Λ−1 > 0) and red lines are for wakes (Λ−1 < 0) whose values have been shifted up the
vertical axis by a constant.

bounded by the two symmetric regions, suggesting that the largest region of AI (i.e. is most
absolutely unstable) is the symmetric case. However, there is one interesting feature to draw
from these figures, and that is that it is not always the most confined symmetric wall case which
leads to the largest region of AI. In figure 11(b) for 1 < h < 2, h̃ = 1 and Λ−1 > 0 the dashed
line gives the largest region of AI, which is the least confining of the two symmetrically confining
results. If the most confining symmetric case was always the most unstable case then we would
expect the dashed line to give the largest |Λ−1| values for h < h̃ and the dot-dashed line to give
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the largest |Λ−1| values for h > h̃.
We now take a vertical slice through the AI region shown in figure 11(c) along Λ−1 = 1, and

compare how the growth rates of the dominant pinch points vary with h. Again, we examine
the robustness of these results by plotting the numerical growth rates ωnum

i from (34) as green
markers, shown in figure 12 for δ = 0.2. We find that for these wall parameter values there is
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Figure 12: Plot of ωi(h) for the most unstable WI mode from figure 11(c) with h̃ = 2 and
Λ−1 = 1. Panel (a) denotes the δ → 0 case and (b) shows the case where δ = 0.2. In (a) the
3 results correspond to the growth rates for the modes seen in 11(c) with the same line styles.
The green dots in (b) indicate the numerical results ωnum

i from (34).
only a single WI mode which we need to consider to fully calculate the AI properties of the flow.
Much like in §4.1 we find that increasing the shear layer thickness results in the stabilization of
the WI modes for all h values considered. In panel (a) we also consider the corresponding AI
growth rates for the most unstable modes in the symmetrically confined case for z±s = ±(1 + h)
(dashed line) and z±s = ±(1 + h̃) (dot-dashed line). These results show that the most unstable
case (largest ωi) appears to be the strongest confined symmetric result, except for h ≈ 1, where
there is a small region where the asymmetric result is more unstable. These results show that
while typically the symmetrically confined flow is most unstable, there are small regions of
parameter space where the asymmetrically confined flow is most unstable. However, in this
case the strong confinement means this result is likely to be strongly affected by any viscous
boundary layers at the walls in a realistic flow setup.

(a) (b)
Figure 13: Regions of AI in (Λ−1, h) space for the parameters in figure 11 with h̃ = 1.5 for finite
shear layer thickness (a) δ = 0.2, (b) δ = 0.5. The vertical lines give the values of Λ = ±1 which
are the contribution from the neglected S1 saddle for comparison (Rees and Juniper, 2010).

In figure 13 we consider the effect of increasing the shear layer thickness on the regions of AI
for the (Λ−1, h)-plane plot in figure 11 with h̃ = 1.5. What we observe is that the regions of AI
decrease with increasing δ, which agrees with the observation from the symmetrically confined
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flow study in Poole (2024).

4.3 Rigid Walls with Asymmetric Confinement

Finally, in this section we consider the rigid wall limit of (27) and examine how asymmetric
confinement affects the AI properties of the jet/wake flow.

4.3.1 Velocity Eigenmodes

In this case there are no WI modes, hence we just have a single SI mode to consider, which
is equivalent to a sinuous mode in the symmetric case. The vertical perturbation velocity
eigenmodes take a similar form to (35), with Π± = 1 and the last exponential term in ŵ(5)(z)
taking the form exp(−α(z + 1+ 2h̃)). These eigenmodes are plotted for 3 different confinement
configurations in figure 14.
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Figure 14: Plots of |ŵ(z)| at various levels of asymmetric confinement for the most unstable SI
mode. We fix Λ = −2, α = 1.5 and we fix one wall to sit at z−s = −(1 + h̃) with h̃ = 2 and the
other at z+s = 1 + h with (a) h = 1, (b) h = h̃ and (c) h = 8. Black dashed lines at z = ±1
indicate the fluid interfaces. The eigenmodes are normalised such that ||ŵ||2 = 1.

What we observe is that the shape of the modes are not hugely affected by the level of
confinement, which agrees with what was seen for the SI modes when the walls were compliant
surfaces. It is not until we strongly confine the flow with h̃ = 1 in figure 14(a) that we see a
discernible difference in the shape. However, despite this seeming similarity to the results in
§4.1 and §4.2, we find that without the presence of the WI modes there appears to be more
mode interactions between SI modes and so we need to consider the effect of this.

4.3.2 AI analysis

In this section, we consider the effect of asymmetric confinement of rigid walls on the AI char-
acteristics of the flow. We again fix h̃ and let h vary. In figure 15 we consider how the α-plane
varies with h. We observe that modes which were dominant in the symmetric limit (denoted here

22



with a red cross) are able to switch dominance with new modes (represented by the red circle)
as a result of the the asymmetric confinement of the flow. For the parameters in this figure the
new mode (red circle) emerges from the vicinity of the imaginary α-axis and as h increases, the
original mode (red cross) moves off towards this axis. For the parameters considered, the saddle
in panel (d) has a smaller value of ωi to that in panel (a) which suggests that the flow which is
closer to being symmetrically confined appears to be more absolutely unstable.

(a) (b)

(c) (d)
Figure 15: Contours of constant ωi in the complex α−plane for h̃ = 1.5,Λ = 1.67, as we vary
(a) h = 2, (b) h = 2.7, (c) h = 2.9 and (d) h = 4. The red cross and circle identify two pinch
points which dominate the AI characteristics of the flow in panels (a) and (d) respectively.

In figure 16 we compare the regions of AI in (Λ−1, h)-parameter space as well as the bounding
values of |Λ−1| for the asymmetric case (solid lines) and the symmetric confined flows with
z±s = ±(1 + h) (dashed lines) and z±s = ±(1 + h̃) (dot-dashed lines). When there are no WI
modes present the boundaries of the AI regions become more complex, but as in §4.2 we find
that the AI region is largest in one of the two corresponding symmetrically confined scenarios,
i.e. the symmetric case appears again to be the most absolutely unstable. This observation
is backed up by figure 17 which shows the growth rates for a wake flow from figure 15 with
h̃ = 1.5 and Λ−1 = −1. Here we see that the asymmetric result always has a smaller growth
rate than the strongest confined symmetric case. Thus it again appears that the symmetrically
confined results are most absolutely unstable in line with the findings of Wang et al. (2019) for
the temporal stability of wakes.

5 Conclusions

We considered the asymmetric confinement of homogeneous jet/wake flows by compliant walls.
In particular we considered two approaches to generating asymmetry, symmetrically confining
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Figure 16: The AI-CI boundaries of the AI regions in (Λ−1, h)-space for rigid walls where the
fixed wall is placed at z−s = −(1 + h̃) with (a) h̃ = 1, (b) h̃ = 2, (e) h̃ = 5 respectively.
Solid lines denote the asymmetrically confined flow, the dashed lines denote the symmetrically
confined flow with walls at z±s = ±(1 + h) and the dot-dashed lines denote the symmetric flow
with walls at z±s = ±(1 + h̃). The black lines are for jets (Λ−1 > 0) and red lines are for wakes
(Λ−1 < 0) whose values have been shifted up the vertical axis by a constant.
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Figure 17: Plot of ωi(h) for the dominant saddle for a wake mode from figure 16 with h̃ = 1.5,
with Λ−1 = −1 and (a) the δ → 0 limit (solid line) and (b) δ = 0.2. In (a) the dashed line
indicates the symmetric confinement configuration, with both walls at z = ±(1 + h), while the
dash-dotted line indicates the growth rate in the symmetric limit, and (b) δ = 0.2. The green
dots indicate the numerical results ωnum

i from (34).

the flow with non-identical compliant walls, and asymmetrically confining the flow with iden-
tical compliant walls. In the first case we found that varying the wall parameters of one wall
introduced a new family of AI modes. The results presented suggest that when the walls are
of different construction, but symmetrically confining, then it is the lighter, more flexible (least
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rigid) wall which dictates the overarching AI characteristics of the flow.
In the second case we found that in most scenarios the AI characteristics of the flow were

driven by the wall-induced modes of the most confining wall. However, when the size of the AI
region in parameter space, and some typical growth rates, were compared to the symmetrically
confined flow, where both walls were at their closest to the shear layers, we found that this
symmetric flow was more absolutely unstable than the asymmetric flow. This observation was
also seen for the case of two rigid walls asymmetrically confining the flow.

This study therefore suggests that the symmetrically confined flow setup is generally the most
absolutely unstable set up, even when compliant walls are considered. However, the possibility
was observed in figure 11 that the size of parameter space for asymmetric compliant walls
could be larger than the symmetric case at small h values. In this work we downplayed this
finding as the confining parameter h < 1.5, a threshold value below which viscous effects can
have a significant stabilizing effect on ‘more realistic’ flows than our inviscid flow assumption
(Tammisola et al., 2011). However, the fact that we have not explored a large region of the
flow and wall parameter space, which is R8, means that there could be a more optimal wall
configuration that allows this destabilization to occur at weaker confinement values, with more
details discussed in Poole (2024). It might also be possible to identify other flows where compliant
walls can increase the flow’s ability to sustain an AI, and one possibility is the mixing layer flow,
as Healey (2009) showed that asymmetric confinement by rigid walls in this case can cause the
flow to be more absolutely unstable. A simpler scenario such as this single mixing layer may
also be more conducive to examining a larger amount of the above parameter space.
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