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Abstract. Sharp estimates are obtained for the constants appearing in
the Sobolev embedding theorem for the L∞ norm on the d−dimensional
torus for d = 1, 2, 3. The sharp constants are expressed in terms of
the Riemann zeta-function, the Dirichlet beta-series and various lattice
sums. We then provide some applications including the two dimensional
Navier-Stokes equations.

1. Introduction and Notation

The classical interpolation inequalities of functional analysis are of pri-
mary importance in the analysis of solutions of partial differential equations
of mathematical physics (see for example [1, 33, 36, 24, 12, 13, 7, 8, 27, 17,
31, 9] and references there-in). Among the many fundamental interpolation
inequalities, the Sobolev Embedding Theorem (SET) plays a central role as
an indispensable tool in the analysis of solutions of nonlinear partial differ-
ential equations. In this paper, we extend the analysis reported in [5] to
the case of the multidimensional torus. In [5] sharp estimates are obtained
for the constants appearing in the Sobolev embedding theorem on the two
dimensional torus. Here, we wish to derive similar estimates for the case of
spatial dimensions d = 1, 2, 3 in a unified way.

Let us first give some standard preliminary functional setting and nota-
tions [34, 1, 26, 30, 37]. Denote by Ω = [0, L]d the d−dimensional torus ; for
any scalar and mean-zero function φ(x) with x ∈ Ω let ‖φ‖pp =

∫
Ω |φ(x)|p dx

be the norm associated to the Banach space of Ω−periodic functions ; we
also define the L∞ norm as

‖φ(x)‖∞ = sup
x∈Ω
|φ(x)| . (1.1)
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For p = 2, we denote by L2(Ω) the Hilbert space of Ω−periodic functions;
given n = n1 + n2 + · · ·+ nd with all the ni non-negative integers, let

Dn := Dn1,n2,··,nd =
∂n1+n2+···+nd

∂xn1
1 ∂xn2

2 · · · ∂x
nd
d

, (1.2)

and let

Ḣn :=
{
φ :

∫
Ω
φdx = 0,

∫
Ω

(Dn1,n2,··,ndφ)2dx < +∞ for n1+n2+···+nd = n
}

(1.3)
together with

‖φ‖2
Ḣn :=

∑
n=n1+··+nd

n!

n1! · ·nd!
‖Dn1,n2,··,ndφ‖2L2 , (1.4)

be the Sobolev space of mean zero Ω−periodic functions with up to n−
derivatives in L2(Ω). It then follows from Parseval’s identity that∑
n=n1+··+nd

n!

n1! · ·nd!
‖Dn1,n2,··,ndφ‖2L2 = Ld

(
2π
L

)2n ∑
n=n1+··+nd

∑
~k∈Zd\{~0}

|~k|2n|φ~k|
2.

(1.5)
In (1.5) the Fourier series expansion has been used for the mean zero function

φ =
∑

~k∈Zd\{~0}

φ~ke
2πi~k·~x/L , (1.6)

and
(

2π
L

)2 ~k · ~k =
(

2π
L

)2 (
k2

1 + k2
2 + · · ·+ k2

d

)
. By the same token the corre-

sponding Sobolev space of mean zero periodic functions can be defined as
Ḣs for every real number s ; this is the same as

Ḣs =
{
φ :φ =

∑
~k∈Zd\{~0}

φ~ke
2πi~k·~x/L, (1.7)

φ~k = φ−~k,
(

2π
L

)2s ∑
~k∈Zd\{~0}

|~k|2s|φ~k|
2 < +∞

}
.

Hence, by extending (1.4) to non-integer positive values, we have Ḣs = {φ :
‖φ‖2

Ḣs < +∞}. These Sobolev spaces, defined on the d−dimensional torus,

are used below as we need to deal with the negative Laplacian A = −∆ (as a
self-adjoint unbounded operator) and its fractional powers. More precisely,
we have that the eigenvalues of the negative Laplacian A = −∆ are given by
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the numbers
(

2π
L

)2 |~k|2, so the domain of its powers As is the set of functions
such that

Ld
(

2π
L

)4s ∑
~k∈Zd\{~0}

|~k|4s|φ~k|
2 = ‖Asφ(x)‖22 < +∞ . (1.8)

In particular, for s = 1
2

(on the torus) we have

‖A
1
2φ(x)‖22 = ‖∇φ(x)‖22 = Ld

(
2π
L

)2 ∑
~k∈Zd\{~0}

|~k|2|φ~k|
2 , (1.9)

while for s = 1 we have (on the torus)

‖Aφ(x)‖22 = ‖(−∆)φ(x)‖22 = Ld
(

2π
L

)4 ∑
~k∈Zd\{~0}

|~k|4|φ~k|
2 . (1.10)

In the rest of the paper, with a minor abuse of notation, for any s > 0, we
make the formal identification

‖A
s
2φ(x)‖22 = ‖(−∆)

s
2φ(x)‖22 = Ld

(
2π
L

)2s ∑
~k∈Zd\{~0}

|~k|2s|φ~k|
2, (1.11)

provided it is understood that these operators are being used as differential
operators “acting” on functions in Ḣs, according to (1.7) and (1.8).

The layout of the paper is as follows: in Section 2, we prove results on
the sharp estimates of the constants on the torus in the SET (see Theorems
1, 2 and 3). Then in Section 3, we apply the results obtained in section 2 in
order to find estimates for the L∞ norm of solutions of the dissipative partial
differential equation known as the Kolmogorov-Petrovskii-Piscuinov-Fisher
equation (KPPE) (see Theorems 4 and 5). In Section 3, we also consider
the two dimensional Navier-Stokes equations and we prove the asymptotic
bound in Theorem 6.

2. Sharp constants in the Sobolev embedding theorem for the
L∞-norm on the torus in one, two and three space dimensions

In this section, we wish to estimate explicitly the constants on the torus in
the SET, for the L∞ norm of any mean-zero function φ ∈ Ḣs, which depends
upon one, two or three space variables. First note that on the d-dimensional
torus Ω, if s > d/2, for any mean zero function φ ∈ Ḣs it is true that [35]

‖φ‖∞ ≤ cs‖φ‖Ḣs ,

where cs is a positive constant depending upon s only. Our aim in this
section is to obtain a sharp estimate of the constant cs, appearing in the
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above inequality. For simplicity, we consider the d−dimensional torus of
length 2π, namely, Ω = [0, 2π]d.

One-Dimensional Case d = 1. We begin with space dimension d = 1.
From here on, we use the more flexible notation

∑′ :=
∑

k∈Zd\{0}, that is,

the prime in the symbol
∑′ meaning that the sum is to be taken all over the

lattice Zd excluding only the case where the indices are all simultaneously
zero. So we start by proving the following :

Theorem 1. On the one-dimensional torus Ω = [0, 2π], for every positive

real number s = 1+ε
2 with ε > 0, the L∞ norm of a scalar function φ(x) ∈ Ḣs

satisfies the estimate

‖φ(x)‖2∞ ≤
ζ(1 + ε)

π
‖(−∆)

1+ε
4 φ(x)‖22 , (2.1)

where the coefficient

ζ(1 + ε) =
∑
n≥1

1

n1+ε
, (2.2)

is sharp and coincide with the Riemann zeta-function.

Proof. We first expand our function in Fourier series φ(x) =
∑′ φkeikx ;

to give

‖φ(x)‖∞ ≤
∑′
|φk| =

∑′ |k|(1+ε)/2

|k|(1+ε)/2
|φk|

≤
(∑′ 1

|k|1+ε

)1/2 (∑′
|k|1+ε|φk|2

)1/2

=
√

2(ζ(1 + ε))
1
2 (2π)−1/2‖(−∆)

1+ε
4 φ‖2 . (2.3)

which, when squared up, gives (2.1). In order to see that c(ε) = ζ(1 + ε) is
sharp, we use the extremal functions [32]

φ =
∑′
|k|−(1+ε)eikx . (2.4)

Now, first note that from the definition of φ it follows that,

‖φ(x)‖∞ ≤
∑′
|k|−(1+ε) . (2.5)

Secondly,

‖φ(x)‖∞ ≥ |φ(0)| = φ(0) =
∑′
|k|−(1+ε), (2.6)

so we obtain,

‖φ(x)‖∞ = φ(0) =
∑′
|k|−(1+ε) . (2.7)



Sharp constants for the L∞-norm on the torus 63

It follows that all the above inequalities become equalities and hence c(ε) =
ζ(1+ε)
π cannot be improved, namely, it is sharp or optimal. The proof is now

complete. �

Remark. Note that in the one-dimensional case the embedding Hs → L∞

for integer values of s ≥ 1, was found by Stechkin and it is reported in the
appendix by V.Y. Levin and S.B. Stechkin in the Russian edition of [18].

Formula (2.1) gives the explicit value of the constant in front of all the

Sobolev spaces Ḣs with s = 1+ε
2 for every ε > 0. For instance, by choosing

the value ε = 1, then

ζ(2) =
∑
n≥1

1

n2
=
π2

6
; (2.8)

hence in this case we have,

‖φ(x)‖2∞ ≤
π

6
‖(−∆)

1
2φ(x)‖22 ≡

π

6
‖∇φ(x)‖22. (2.9)

If we take the value ε = 2, we have,

ζ(3) =
∑
n≥1

1

n3
= B = 1.20205690032... , (2.10)

and thus for the ‖φ(x)‖2∞, we have,

‖φ(x)‖2∞ ≤
B

π
‖(−∆)

3
4φ(x)‖22. (2.11)

We wish now to find the asymptotic of the Riemann zeta-function for small
values of the positive parameter ε. In this case one obtains,

ζ(1 + ε) =
1

ε
+ γ +

∞∑
n=1

(−1)n

n!
γnε

n , (2.12)

where γ ' 0.58 is the Euler-Mascheroni constant and γn are the Stieltjes
constants. Therefore, we can state the following Corollary which provides
the explicit computation of the constant in the Sobolev embedding theorem
on the one-dimensional torus of length 2π :

Corollary 1. On the one-dimensional torus Ω = [0, 2π], in the limit ε→ 0+,

the L∞ norm of a scalar function φ(x) ∈ Ḣ
1+ε
2 obeys the estimate

‖φ(x)‖2∞ ≤ c2
ε‖(−∆)

1+ε
4 φ‖22 , (2.13)

where c2
ε = 1

π

(
1
ε + γ

)
+O(ε) for ε→ 0+ .
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Two-Dimensional - Case d = 2. This case has been investigated in detail
in [5] and for the convenience of the reader, we report here a brief summary.
First we state

Theorem 2. On the two-dimensional torus Ω = [0, 2π]2, for every positive
real number s = 1 + ε with ε > 0, the L∞ norm of a scalar function φ(x) ∈
Ḣ1+ε satisfies the estimate

‖φ(x)‖∞ ≤ [4ζ(1 + ε)β(1 + ε)]
1
2 (2π)−1‖(−∆)

1+ε
2 φ(x)‖2 , (2.14)

where C(ε) = 4ζ(1 + ε)β(1 + ε) is sharp, and where ζ(1 + ε) and β(1 + ε)

ζ(1 + ε) =
∑
n≥1

1

n1+ε
, β(1 + ε) =

∑
n≥0

(−1)n

(2n+ 1)1+ε
, (2.15)

are the Riemann zeta-function and Dirichlet series, respectively.

For the proof see [5], where one can also find some particular cases giving
the values of the sharp constants. Furthermore, the asymptotics regime
ε→ 0+ in the two-dimesnional case is provided by:

Corollary 2. On the two-dimensional torus Ω = [0, 2π]2, in the limit ε →
0+, the L∞ norm of a scalar function φ(x) ∈ Ḣ1+ε satisfies the estimate

‖φ(x)‖2∞ ≤ c2
ε‖(−∆)

1+ε
2 φ‖22 , (2.16)

where c2
ε = 1

4π

(
1
ε + γ̂

)
+O(ε) for ε→ 0+ , and γ̂ := γ+ 4β′(1)

π , with γ ' 0.58
and β′(1) ' 0.19.

Here as ε→ 0+

4ζ(1 + ε)β(1 + ε) ' π(γ + ε−1) + 4β′(1) +O(ε), (2.17)

provided ε is small enough. For more details, see [5].

Three-Dimensional Case d = 3. In three spatial dimensions, we prove
the following:

Theorem 3. On the three-dimensional torus Ω = [0, 2π]3, for every positive
real number s = 3

2 + ε with ε > 0, the L∞ norm of a scalar function φ(x) ∈
Ḣ

3
2

+ε satisfies the estimate

‖φ(x)‖2∞ ≤
a(2s)

(2π)3
‖(−∆)

s
2φ(x)‖22 , (2.18)

where [39, 40, 41, 10, 11]

a(2s) =
∑′

(~k · ~k)−( 3
2

+ε) =
3b(2s) + 3c(2s) + d(2s)

23−2s − 1
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with

b(2s) =
∑′

(−1)k1(k2
1 + k2

2 + k2
3)−s,

c(2s) =
∑′

(−1)k1+k2(k2
1 + k2

2 + k2
3)−s,

d(2s) =
∑′

(−1)k1+k2+k3(k2
1 + k2

2 + k2
3)−s.

Remark. Note that for s > 3
2 , 3b(2s) + 3c(2s) + d(2s) < 0 and so

a(2s) =
3b(2s) + 3c(2s) + d(2s)

23−2s − 1
> 0

as it should.

Proof. The proof is similar to the one and two dimensional case and we
give here the main steps for the reader’s convenience: expand φ(x) in Fourier
series

φ(x) =
∑′

φ~ke
i~k·~x ; (2.19)

to give

‖φ(x)‖2∞ ≤
(∑′

|φ~k|
)2

(2.20)

≤
(∑′ 1

(~k · ~k)
3
2

+ε

)(∑′
(~k · ~k)

3
2

+ε|φ~k|
2
)

=
1

(2π)3

(∑′
(~k · ~k)−( 3

2
+ε)
)
‖(−∆)

3
2+ε

2 φ(x)‖22 =
a(2s)

(2π)3
‖(−∆)

s
2φ(x)‖22.

with s = 3
2 + ε. The sharpness of the coefficient a(2s) is shown in the same

way as in the one-dimensional case.

3. Applications to Partial Differential Equations

In this section, we apply the results obtained above to find estimates for
the L∞ norm of solutions of Partial Differential Equations (PDEs). Before
beginning, let us make clear the notations we will use in this section: because,
we are going to deal with powers of functions in the Sobolev space

Ḣn :=
{
u :

∫
Ω
udx = 0,

∫
Ω

(Dn1,n2,··,ndu)2dx < +∞ for n1+n2+···+nd = n
}
,

(3.1)
in order to avoid confusion, we will define in a similar way to (1.4)

Jn := ‖u‖2
J̇n

=
∑

n=n1+··+nd

n!

n1! · ·nd!
‖Dn1,n2,··,ndu‖2L2 , (3.2)
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in addition to the fact that this notation appears in previous works in the
literature (see for example, [3, 16]).

3.1. Estimates for the Kolmogorov-Petrovskii-Piscuinov-Fisher
equation. The first PDE we wish to study is the well known Kolmogorov-
Petrovskii-Piscuinov-Fisher equation (KPPE), namely

ut = α∆u+ λu− u3 (3.3)

with α and λ positive constants, in the domain Ω = [0, 2π]d with periodic
boundary conditions. Equation (3.3) is known to have a unique solution
for every initial datum u0 ∈ L2(Ω); the solution u ∈ C([0, T ];H), where
H = L2(Ω), and T > 0; in addition the corresponding semigroup Stu0 = u(t)
has a global attractor A ⊂⊂ H (for details see [2, 37, 26]). We wish to find
estimates for the Jn as accurate as possible and then use them to obtain the
corresponding estimates for the L∞ norm of the solutions by using the sharp
estimate found in Section 2.

First note that one can show that the time-dependent functionals Jn sat-
isfy, a so-called ladder differential inequality ([3, 16, 4]), namely for any
en > d

2 , where d is the spatial dimension, we have that

1
2 J̇n ≤ −αJn+1 + λJn + cn‖u‖2∞Jn, (3.4)

where the constants cn do not depend upon the solution function u(x, t). It
is immediately apparent that computing all the constants cn appearing in
the ladder is a formidable task and so, because we wish to be as explicit and
sharp as possible, we are somehow forced to restrict ourselves to the first few
Jn, where we can obtain explicitly all the constants involved in the ladder
inequality. In particular, we know that for the one-dimensional case d = 1,
we can restrict ourselves to the analysis of J0 and J1, which together are
sufficient for having un upper bound on the ‖u‖∞ norm of the solution of
the PDE. On the other hand, for the d = 2, 3 case we will have to analyze J2

also. Before we start our analysis, we wish to make the following important
remark:

From now on with an overbar we mean the so-called limit superior taken
over all the initial conditions as time goes to plus infinity; more formally we
mean that we are using the classical Gronwall inequality and then we take the
limit over all the initial conditions as time goes to infinity; in other words,
an overbar over a time-dependent quantity X, which also depends upon the
initial condition, namely X(u0, t) means the least majorant of the set com-
prised of all the limits of X(u0, t) as t tends to infinity for all the possible set
of initial data. Occasionally, the set of initial data may be restricted to the
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global attractor of the PDE under investigation, but this will be clear from
the context if not explicitly stated.

Also, because our analysis above is done for mean zero functions and, in
addition, because we may need occasionally to use the Poincaré inequality,
we restrict ourselves to the sub-space S0 of solutions of the KPPF equation
containing only periodic odd solutions. One can see that the KPPF flow
does have the property of leaving invariant the sub-space of odd solutions
(or even ones as well).

So let us now start with the analysis of J0 :

Lemma 1. Given any (smooth) solution u(x, t) ∈ S0 of the KPPP equation
the time-asymptotic behaviour of J0(t), namely J0, is given by,

J0 := lim
t→∞

J0(t) ≤ (2π)d(λ− α). (3.5)

Proof. Differentiating J0(t) with respect to time and using equation (3.3)
we find

1

2
J̇0 = −αJ1 + λJ0 −

∫
Ω

(u)4 dx. (3.6)

For non-trivial behaviour, one can see that we must have λ > α, and of
course we will assume that this condition is satisfied. Thus, by applying the
Poincaré inequality to the term J0, we obtain J0 ≤ J1 with the constant
being exactly one on the torus of length 2π [35]; also by applying a Cauchy-
Schwarz inequality to the term

∫
Ω(u)2 dx we get(∫

Ω
(u)2 dx

)2
≤ (2π)d

∫
Ω

(u)4 dx;

inserting these estimates into (3.6) we obtain,

J̇0 ≤ 2(λ− α)J0 −
2J2

0

(2π)d
. (3.7)

We need to study the solutions of the above differential inequality. By a
comparison principle, they are bounded above by the solutions of the one-
dimensional ODE

J̇0 = 2(λ− α)J0 −
2J2

0

(2π)d
.

One can see that the fixed points are J0 = 0, (2π)d(λ − α) with 0 being
unstable and (2π)d(λ − α) being stable. Thus, the long-time asymptotic
behaviour of J0 (denoted with J0) is given by,

J0 := lim
t→∞

J0(t) ≤ (2π)d(λ− α), (3.8)



68 Michele V. Bartuccelli

which is independent of the initial condition u(x, t = 0). �

We now estimate J1 with a similar strategy; we have:

Lemma 2. The time-asymptotic behaviour of J1(t), namely J1, is given by

J1 := lim
t→∞

J1(t) ≤ (2π)dλ(λ− α)

α
. (3.9)

Proof.
1

2
J̇1 = −αJ2 + λJ1 −

∑
n=n1+··+nd=1

∫
Ω

3u2(Du)2 dx; (3.10)

the last term is negative (or zero) and so it can be neglected. So we obtain
the estimate

1

2
J̇1 ≤ −α

J2
1

J0
+ λJ1, (3.11)

where we have used again the Cauchy-Schwarz inequality on the J1 term,

J1 ≤ J
1
2
2 J

1
2
0 . A similar analysis to that used in obtaining the estimate (3.8)

gives for J1 the result

J1 := lim
t→∞

J1(t) ≤ λ

α
J0 ≤

(2π)dλ(λ− α)

α
. (3.12)

�

We are then ready to obtain the estimate for the ‖u(x)‖∞ of the solution
in the one-dimensional case:

Theorem 4. The time-asymptotic upper bound for the ‖u(x)‖∞ of the so-
lution of (3.3) in the d = 1 case is given by

‖u(x)‖2∞ ≤
π2

3

λ(λ− α)

α
. (3.13)

Proof. First we take the sharp result (2.1), namely,

‖u(x)‖2∞ ≤
ζ(1 + ε)

π
‖(−∆)

1+ε
4 u(x)‖22 . (3.14)

By taking the value ε = 1, we therefore obtain,

‖u(x)‖2∞ ≤
π

6
‖(−∆)

1
2u(x)‖22 =

π

6
‖∇u(x)‖22 =

π

6
J1; (3.15)

using (3.12) in the estimate (3.15) we obtain

‖u(x)‖2∞ ≤
π2

3
λ(λ−α)

α . �

We now provide the estimate for the two-dimensional case. Here, of course
we need to integrate over the periodic domain Ω = [0, 2π]2. We want to
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obtain as sharp as possible estimates for J2. We begin with the study of
J2(t) :

Lemma 3. The time-asymptotic estimate of J2 is given by,

J2 ≤
4π2λ(λ− α)

α3
(αλ+ 312πλ(λ− α)) . (3.16)

Proof. The differential inequality for J2(t) is given by,

1

2
J̇2 ≤ −αJ3 + λJ2 −

∑
n=n1+n2=2

2!

n1!n2!

∫
Ω

(D2u)(D2u3) dxdy. (3.17)

We first analyze the nonlinear term:

−
∑

n=n1+n2=2

2!

n1!n2!

∫
Ω

(D2u)(D2u3) dx dy (3.18)

= −6

∫
Ω
u(ux)2uxx − 3

∫
Ω
u2(uxx)2 dxdy − 6

∫
Ω
u(uy)

2uyy dxdy

− 3

∫
Ω
u2(uyy)

2 dxdy − 6

∫
Ω
u2(uxy)

2 dxdy − 12

∫
Ω
uuxuyuxy dxdy;

integrating by parts the first, the third and the last term on the right hand
side and then rearranging we obtain,

−
∑

n=n1+n2=2

2!

n1!n2!

∫
Ω

(D2u)(D2u3) dxdy = 2

∫
Ω

(ux)4 dxdy (3.19)

− 3

∫
Ω
u2(uxx)2 dxdy + 2

∫
Ω

(uy)
4 dxdy − 3

∫
Ω
u2(uyy)

2 dxdy

− 6

∫
Ω
u2(uxy)

2 dxdy + 6

∫
Ω

(ux)2(uy)
2 dxdy + 6

∫
Ω
uuxx(uy)

2 dxdy;

by splitting the last two terms by applying first a Cauchy-Schwarz inequality
and then a Young inequality we get,

−
∑

n=n1+n2=2

2!

n1!n2!

∫
Ω

(D2u)(D2u3) dxdy = 2

∫
Ω

(ux)4 dxdy (3.20)

− 3

∫
Ω
u2(uxx)2 dxdy + 2

∫
Ω

(uy)
4 dxdy − 3

∫
Ω
u2(uyy)

2 dxdy

− 6

∫
Ω
u2(uxy)

2 dxdy + +3

∫
Ω

(ux)4 dxdy + 3

∫
Ω

(uy)
4

+ 3

∫
Ω
u2(uxx)2 dxdy + 3

∫
Ω

(uy)
4 dxdy; +3

∫
Ω

(uy)
4.
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Simplifying we finally obtain that the nonlinear term can be estimated as
follows:

−
∑

n=n1+n2=2

2!

n1!n2!

∫
Ω

(D2u)(D2u3) dxdy ≤ 5

∫
Ω

(ux)4 dxdy+8

∫
Ω

(uy)
4 dxdy.

(3.21)
Thus, we have to estimate the terms 5

∫
Ω(ux)4 dxdy and 8

∫
Ω(uy)

4 dxdy. In
the two-dimensional case, we can use an improved version of the Ladyzhen-
skaya inequality [21], namely for any mean zero function φ(x, y) on the 2d
torus we have the inequality∫

Ω
(φ(x, y))4 dxdy ≤ 6

π

∫
Ω

(φ(x, y))2 dxdy

∫
Ω
|∇φ|2 dxdy;

hence we can estimate the term 5
∫

Ω(ux)4 dxdy as

5

∫
Ω

(ux)4 dxdy ≤ 30

π

(∫
Ω

(ux)2 dxdy
)(∫

Ω
(u2
xx + u2

xy) dxdy
)

and similarly,

8

∫
Ω

(uy)
4 dxdy ≤ 48

π

(∫
Ω

(uy)
2 dxdy

)(∫
Ω

(u2
yy + u2

xy) dxdy
)
.

By noting that∫
Ω

(ux)2 dxdy ≤ J1 and

∫
Ω

(u2
xx + u2

xy)dxdy ≤ J2

we can write for (3.17) the inequality

1
2 J̇2 ≤ −αJ3 + λJ2 + 78

π J1J2. (3.22)

By using J2 ≤ J
1
2
3 J

1
2
1 and(

1
α(λ+ 78

π J1)2J1

) 1
2 (αJ3)

1
2 ≤ α

2J3 + 1
2α(λ+ 78

π J1)2

(3.22) becomes

J̇2 ≤ −α
J2
2
J1

+ 1
α(λ+ 78

π J1)2J1. (3.23)

By means of an analysis similar to the one done for J0 and J1, we have that
the time asymptotic behaviour for J2 is given by

J2 ≤ 1
α

(
λ+ 78

π J1

)
J1. (3.24)

By substituting the estimate (3.9) (which holds in any spatial dimension)
for J1 we obtain

J2 ≤ 4π2λ(λ−α)
α3 (αλ+ 312πλ(λ− α)) . (3.25)
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By using the estimate (3.25), one can then state the

Theorem 5. The time-asymptotic upper bound for the ‖u(x)‖∞ of the so-
lution of (3.3) in the d = 2 case is given by

‖u(x)‖2∞ ≤
24Kλ

π2α3
(λ− α)(αλ+ 312πλ(λ− α)). (3.26)

Proof. We use formula (2.14) obtained in Theorem 2 with ε = 1, namely,

‖u(x)‖2∞ ≤
1

π2
ζ(2)β(2) ‖ −∆u(x)‖22 ≤

1

π2
ζ(2)β(2) J2. (3.27)

By using the values for ζ(2)β(2) = 6π−2K with K = 0.915965594... and
inserting the estimate (3.25) for J2, we finally obtain

‖u(x)‖2∞ ≤
24Kλ

π2α3
(λ− α)(αλ+ 312πλ(λ− α)). (3.28)

3.2. Estimates for the two-dimensional Navier-Stokes equations.
Consider the incompressible Navier-Stokes equations on the two-dimensional
periodic domain Ω = [0, 2π]2,

ut + (u · ∇)u = ν∆u−∇P + f, div u = 0, div f = 0, u(0) = u0. (3.29)

Here, as usual, we denote with u = (u1, u2) the velocity vector, with P the
pressure, with ν the constant kinematic viscosity and with f the external
forces applied to the fluid. Following rigorous results [2, 37, 26, 35, 28] for the
Navier-Stokes flow on the two-dimensional torus, it is rigorously proved that
for any periodic and divergence free initial condition u0 ∈ J1 and any force
f ∈ L2(Ω) there is a unique solution u ∈ C([0, T ];H) which is also divergence
free, and in addition, it depends continuosly on the initial condition u0. We
take the spatial average of both the velocity field and the force field to be
zero, namely we suppose that (all the integrals are evaluated on the domain
Ω = [0, 2π]2) ∫

u(x, t)dx = 0, and

∫
f(x)dx = 0.

Define the functional quantities (which are Sobolev norms by virtue of the
mean-zero assumptions on u, f and the Poincaré inequality)

Jn =
2∑
i=1

∑
n=n1+n2

n!

n1!n2!

∫
|Dnui|2dx ≡ ‖Dnu‖22, (3.30)

Fn =
2∑
i=1

∑
n=n1+n2

n!

n1!n2!

∫
|Dnfi|2dx ≡ ‖Dnf‖22. (3.31)
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Then for n ≥ 1 the Jn satisfy a ladder theorem [3, 16, 23]

1

2
J̇n ≤ −ν Jn+1 + cn‖Du‖∞ Jn + J1/2

n F 1/2
n , (3.32)

where the cn are constants not dependent upon the solution function u.
By using the inequality

Jp+qn ≤ Jqn+pJ
p
n−q 0 < q ≤ n, p ≥ 1, (3.33)

we can cast (3.32) as

1

2
J̇n ≤ −ν

J
1+1/s
n

J
1/s
n−s

+ cn Jn ‖Du‖∞ + J1/2
n F 1/2

n , (3.34)

where 1 ≤ s < n. As we mentioned above, it is clear that computing all
the constants cn appearing in the ladder is extremely hard and so we will
restrict ourselves to the first few Jn; more precisely, we consider the 2 di-
mensional Navier-Stokes equations, and hence, we need to analyze in details
the quantities J0, J1, J2. As it is well known for J0 we have

1
2 J̇0 ≤ −ν J1 + J

1/2
0 F

1/2
0 ; (3.35)

by using a Poincaré inequality on the J1 term we obtain

1
2 J̇0 ≤ −ν J0 + J

1/2
0 F

1/2
0 ; (3.36)

thus, by an analysis similar to the one employed for the KPPF equation
above we obtain

J0 := lim
t→∞

J0(t) ≤ F0

ν2
. (3.37)

For J1 a similar strategy yields the same estimate obtained for J0, namely

1

2
J̇1 ≤ −ν J2 + J

1/2
2 F

1/2
0 , (3.38)

where we have performed first an integration by parts and then a Cauchy-
Schwarz inequality to obtain the last term; by splitting the last term by
using a Young inequality, simplifying and then using a Poincaré inequality
on the −ν

2J2 term and rearranging we have

1

2
J̇1 ≤ −

ν

2
J1 +

1

2ν
F0 (3.39)

and thus,

J1 := lim
t→∞

J1(t) ≤ F0

ν2
. (3.40)
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We now turn our attention to the analysis of J2 : because we need to
analyze with great care both the nonlinear term and the term originating
from the forcing, we write the ladder (3.32) with n = 2 from the beginning,
namely, by denoting the velocity field by u = (u1, u2), we have

1

2
J̇2 ≤ −ν J3 +

2∑
i=1

∑
n=n1+n2=2

2!

n1!n2!

∫
(D2ui)(D

2(u1
∂ui
∂x

+ u2
∂ui
∂y

))

+
2∑
i=1

∑
n=n1+n2=2

2!

n1!n2!

∫
(D2ui)(D

2fi) dx. (3.41)

We wish now to estimate the nonlinear term and the forcing term as accu-
rately as we possibly can; we start with

Lemma 4. For the incompressible two-dimensional Navier-Stokes equations
on the two-dimensional torus Ω = [0, 2π]2, the nonlinear term obeys the
estimate

2∑
i=1

∑
n=n1+n2=2

2!

n1!n2!

∫
(D2ui)(D

2(u1
∂ui
∂x

+ u2
∂ui
∂y

)) ≤ 3|Du|∞ J2, (3.42)

where

|Du|∞ = sup
x∈Ω
{|∂ui
∂xj
|, i, j = 1, 2} with x1 = x, x2 = y

is the maximum component of the various spatial derivatives of the velocity
field
u = (u1, u2).

Proof. See Appendix A.
Thus, in the light of Lemma 4 we can state the

Lemma 5. The time-asymptotic estimate of J2(t) is given by

J2 ≤
(2F0

ν3

( 34F 3
0

2π2ν9
+

(F0F3)
1
2

ν

)) 1
2
. (3.43)

Proof. We start from the inequality (3.32), which then becomes

1
2 J̇2 ≤ −νJ3 + 3|Du|∞J2 + J

1/2
1 F

1/2
3 , (3.44)

where the last term has been obtained by first integrating by parts and then
using a Cauchy-Schwarz inequality. By using [22]

|Du|∞ ≤
√

1
πJ

1
4
3 J

1
4
1 and J2 ≤ J

1
2
3 J

1
2
1 ,



74 Michele V. Bartuccelli

the inequality (3.44) becomes,

1
2 J̇2 ≤ −νJ3 + 3

√
1
πJ

3
4
3 J

3
4
1 + J

1/2
1 F

1/2
3 . (3.45)

Splitting the term 3
√

1
π J

3
4
3 J

3
4
1 by using a Young inequality and simplifying

and rearranging we obtain

J̇2 ≤ −
ν

2
J3 +

34

2π2ν3
J3

1 + 2J
1/2
1 F

1/2
3 . (3.46)

By using −J3 ≤
−J2

2
J1

, we have that the long-time asymptotic behaviour of
J2 is given by

J2 ≤
(2F0

ν3

( 34F 3
0

2π2ν9
+

(F0F3)
1
2

ν

)) 1
2
. (3.47)

Because we are going to use the Brezis-Gallouet inequality with explicit
constants, we need to have an accurate pointwise in time estimate of the
J1(t) norm, and then take the limit as time goes to infinity. In fact, in the
Brezis-Gallouet inequality the J1(t) norm appears in the denominator and
so, it is a detailed time-pointwise analysis that is needed. Recall that the
Brezis-Gallouet inequality states that for any J2 mean-zero function φ(x, y)
on the two-dimensional torus we have (see formula (48) in [5])

‖φ‖2∞ ≤
‖∇φ‖22

4π
[η + ln δ] , (3.48)

where 1 << δ :=
‖∆φ‖22
‖∇φ‖22

, ε = 1
ln δ << 1, and η := 1 + γ + 4β′(1)

π +O(ε) '
1.83 +O(ε) with γ ' 0.58 being the Euler-Mascheroni constant and β′(1) '
0.19, or alternatively (see Theorem 3.8 in [6])

‖φ‖2∞ ≤
‖∇φ‖22

4π

[
ln δ + ln(1 + ln δ) + L̂

]
, (3.49)

where δ ≥ 1 and L̂ ' 2.15. In the vector case u = (u1, u2), as for example in
the Navier-Stokes equations, the explicit constants are essentially the same
(see Appendix B), and so for (3.48), we correspondingly obtain the estimate

‖u‖2∞ ≤
J1

4π

[
η̂ +

1

2
ln
(J2

J1

)]
with

J2

J1
>> 1, (3.50)

where η̂ = η − 1
4 ln(4c1c2), and a similar one for (3.49); c1, c2 are two positive

constants such that c1 + c2 = 1.
So in order to use (3.50), we need an estimate of the lower bound of J1(t),

as this term appears in the denominator of the Brezis-Gallouet inequality.
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Its behaviour will naturally depend on the structure of the forcing function,
and its estimate is a very tricky business; the only “current” estimate of a
lower bound is that contained in [15] for the energy of solutions inside the
attractor of the two-dimensional NSE on the torus; taking the length of the
torus to be 2π, the estimate in [15] reads

J1 ≥ J0 > Γ Λ, (3.51)

where

Γ = (6c3)−6(
πν

4c0
)2G38(ln(G+ 1))18, (3.52)

Λ = 3−8(
π

4c0
)−24G−48(ln(G+ 1))−24, G =

F
1
2

0

ν2
, c3 =

7

8
(21)

1
3 ;

in the above formula G is the so-called Grashof number and c0 is an absolute
constant of order one.

Hence, we have effectively proved the following result:

Theorem 6. Assume that the kinematic viscosity is small enough, namely,
there exists a ν0 such that 0 < ν0 << 1. Then for ν < ν0, the long-time
behaviour of the ‖u‖2∞ norm of the solution of the two-dimensional Navier-
Stokes equations on the torus of length 2π is obtained by taking (3.47) and
(3.51) and by inserting them into (3.50). One obtains

‖u‖2∞ ≤
1

4π

F0

ν2

[
η̂ + ln

(
J2(ΓΛ)−1

)]
. (3.53)

It is of course interesting to compute the estimate (3.53) in the limit of
very small ν obtaining

‖u‖2∞ ≤
1

4π

F0

ν2
[−28 ln ν + η̃], ν → 0+, (3.54)

where η̃ = η̂ + ln
(

310

π (π4 )22 (6c3)6

c220
F 7

0 (ln(
F

1
2
0
ν2

+ 1))6
)
.

Appendix A. Here we wish to prove Lemma 4 which we re-write for the
convenience of the reader:

Lemma 4. For the incompressible 2−dimensional Navier-Stokes equations
on the two-dimensional torus Ω = [0, 2π]2, the nonlinear term obeys the
estimate

2∑
i=1

∑
n1+n2=2

2!

n1!n2!

∫
(D2ui)(D

2(u1
∂ui
∂x

+ u2
∂ui
∂y

)) ≤ 3|Du|∞ J2, (3.55)
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where

|Du|∞ = sup
x∈Ω
{|∂ui
∂xj
|, i, j = 1, 2} with x1 = x, x2 = y

is the maximum component of the various spatial derivatives of the velocity
field u = (u1, u2).

Proof. Take the terms
2∑
i=1

∑
n1+n2=2

2!

n1!n2!

∫
(D2ui)(D

2(u1
∂ui
∂x

+ u2
∂ui
∂y

)) (3.56)

and insert the calculations of the derivatives D2(u1
∂ui
∂x + u2

∂ui
∂y ) obtaining

2∑
i=1

∑
n1+n2=2

2!

n1!n2!

∫
(D2ui)[(D

2u1)
∂ui
∂x1

+ 2(Du1)(D
∂ui
∂x1

) + u1(D2 ∂ui
∂x1

)

+ (D2u2)
∂ui
∂x2

+ 2(Du2)(D
∂ui
∂x2

) + u2(D2 ∂ui
∂x2

)], (3.57)

where D2 is equal in turn to ∂2

∂x2
, ∂

2

∂y2
, ∂2

∂x∂y . After an integration by parts,

the third and the last terms in the square brackets disappear due to the
divergence theorem; for the remaining terms we make the following trans-
formations: whenever any of the spatial derivatives of any component of the
velocity field appears, we take it out of the integral sign in the L∞ norm;
hence any one of the terms

∫
(D2ui)(D

2uj)
∂ui
∂xj

becomes∫
(D2ui)(D

2uj)
∂ui
∂xj

≤ |∂ui
∂xj
|∞
∫
|(D2ui)(D

2uj)|. (3.58)

Furthermore, observe that if i = j in (3.58), then∫
|(D2ui)(D

2ui)| = Jxi,xi2,ui
,

where by Jxi,xi2,ui
, we denote one of the components of J2 “along” the ui

component of the velocity field. On the other hand, if i 6= j, then to terms
of the form

|∂ui
∂xj
|∞
∫
|(D2ui)(D

2uj)|, i 6= j, (3.59)

we first apply a Cauchy-Schwarz inequality to the integral, and then a Young
inequality to the term as a whole; this gives as a result terms of the form

1

2
|∂ui
∂xj
|∞J

xi,xj
2,ui

, i, j = 1, 2.
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Hence, by doing the above transformations to all the terms forming

2∑
i=1

∑
n=n1+n2=2

2!

n1!n2!

∫
(D2ui)(D

2(u1
∂ui
∂x

+ u2
∂ui
∂y

)), (3.60)

then collecting all the terms having the same | ∂ui∂xj
|∞, and using that | ∂ui∂xj

|∞ ≤
|Du|∞, we obtain the result stated in the Lemma. �

Appendix B. Consider a real vector valued function in two spatial dimen-
sions u = (u1(x1, x2), u2(x1, x2)) defined on the torus T 2 = [0, 2π]2. Its
modulus squared is given by |~u|2 = u2

1 + u2
2 = |u2

1 + u2
2|. Thus, its sup norm

over (x, y) ∈ T 2 is given by

|~u|2∞ = |u2
1 +u2

2|∞ ≤ |u1|2∞+ |u2|2∞ ≤
||∇u1||22

4π
[η+ ln δ1] +

||∇u2||22
4π

[η+ ln δ2],

(3.61)

where δi =
||∆ui||22
||∇ui||22

i = 1, 2 (see formula (3.48)). Now we observe that δi ≤
δ1δ2, i = 1, 2, and so

|~u|2∞ ≤
||∇u1||22

4π
[η + ln δ1] +

||∇u2||22
4π

[η + ln δ2] ≤ J1

4π
[η + ln(δ1δ2)]. (3.62)

Now, we use the important result that, provided the vorticity field is
sufficiently regular and not zero, both components of the divergence free
velocity field are not zero and (generally) of the same order; this follows
from solving the Poisson equation on the two-dimensional torus [29]. More
precisely, let x = (x1, x2) and u = u(x) = (u1(x1, x2), u2(x1, x2)) be the
divergence free velocity field in the two-dimensional Navier-Stokes equations
on the torus T = [0, 2π]2. Then assuming that the vorticity field is known,
the solution of the equations

∇× u = ω, ∇ · u = 0 (3.63)

in the unknown quantity u, is given by

u(x) =
i

2π

∑′
(k2,−k1)

ω(k)

k2
eik·x, (3.64)

where k = (k1, k2), k · k = k2 and ω(k) is the Fourier transform of ω(x).
Thus, provided that in the forced two-dimensional incompressible Navier-
Stokes equations, the curl of the forcing f(x) = (f1(x), f2(x)) is not zero,
namely ∇ × f 6= 0, it is reasonable to suppose that the two components
of the velocity field, namely (u1(x1, x2), u2(x1, x2)) are bounded away from
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zero in L2, namely ||u1||22 > 0, ||u2||22 > 0. Also on the torus one has

||∇u||22 = ||ω||22 ≥ (2π)−2
(∫
|ω|
)2

> 0,

provided that |ω(x, t)| is not identically zero, and so for generic non-zero
vorticity fields one has that both components of the spatial gradient of the
velocity field are non-zero. Hence, if the identically zero solution of the forced
Navier-Stokes equations u(x) is not in the global attractor A, then for all
t > 0, one has that the L2 norm (squared) of each component of the velocity
field ||u1(t)||22 > 0, ||u2(t)||22 > 0 [15]. Then noting that J1 = ||∇~u||22 =
||∇u1||22 + ||∇u2||22 it follows that (by using the Poincaré inequality)

J1 > ||∇u1||22 ≥ ||u1||22 > 0, J1 > ||∇u2||22 ≥ ||u2||22 > 0. (3.65)

We now wish to estimate as accurately as we possibly can the term ln(δ1δ2).
First, from the above considerations, one can assume that ||∇u1||22 = c1J1

with the constant 0 < c1 < 1, and similarly, ||∇u2||22 = c2J1 with the
constant 0 < c2 < 1, and c1 + c2 = 1. Thus, from

ln(δ1δ2) = ln

(
||∆u1||22||∆u2||22
||∇u1||22||∇u2||22

)
we obtain

1

2
ln

(
||∆u1||2||∆u2||2
||∇u1||2||∇u2||2

)
≤ 1

2
ln

(
||∆u1||22 + ||∆u2||22

2
√
c1c2J1

)
≤ 1

2
ln

(
J2

2
√
c1c2J1

)
.

(3.66)
Rearranging we finally obtain

‖u‖2∞ ≤
J1

4π

[
η̂ + 1

2 ln
(
J2
J1

) ]
, (3.67)

where η̂ = η − 1
4 ln(4c1c2) which is (3.50) as required.
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