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Abstract

We consider a class of differential equations, ẍ + γ ẋ + g(x) = f (ωt), with ω ∈ R
d , describing one-

dimensional dissipative systems subject to a periodic or quasi-periodic (Diophantine) forcing. We study
existence and properties of trajectories with the same quasi-periodicity as the forcing. For g(x) = x2p+1,
p ∈ N, we show that, when the dissipation coefficient is large enough, there is only one such trajectory
and that it describes a global attractor. In the case of more general nonlinearities, including g(x) = x2

(describing the varactor equation), we find that there is at least one trajectory which describes a local
attractor.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the ordinary differential equation

ẍ + γ ẋ + x2p+1 = f (ωt), (1.1)
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where p ∈ N, ω ∈ R
d is the frequency vector, f (ψ) is an analytic quasi-periodic function,

f (ψ) =
∑
ν∈Zd

eiν·ψfν, (1.2)

with average 〈f 〉 ≡ f0 �= 0, and γ > 0 is a real parameter (dissipation coefficient). Here and
henceforth we denote with · the scalar product in R

d . By the analyticity assumption on f there
are two strictly positive constants F and ξ such that one has |fν | � F e−ξ |ν| for all ν ∈ Z

d .
If d > 1 we shall assume a Diophantine condition on the frequency vector ω, that is

|ω · ν| � C0|ν|−τ ∀ν ∈ Z
d \ {0}, (1.3)

where |ν| = |ν|1 ≡ |ν1| + · · · + |νd |, and C0 and τ are positive constants, with τ > d − 1 and C0

small enough. Note that for d = 1 the condition (1.3) is automatically satisfied for all ω �= 0.
In this paper we want to show that for γ large enough the system (1.1) admits a global attractor

which is a quasi-periodic solution with the same frequency vector ω as the forcing f . This will
be done in two steps: first we prove that for γ large enough there is a quasi-periodic solution
x0(t) with frequency vector ω (cf. Theorem 1 in Section 2); second we prove that, again for γ

large enough, any trajectory is attracted by x0(t) (cf. Theorem 2 in Section 3).
In particular, this solves for the system (1.1) a problem left as open in [12]. Indeed in [12]

we considered a class of ordinary differential equations, including (1.1), and proved existence
of a quasi-periodic solution with the same quasi-periodicity as the forcing, but we could not
conclude, not even locally, that this was the only solution with such a property. The result stated
above gives an affirmative answer to this problem for the system (1.1), by showing that the quasi-
periodic solution x0(t) is unique; cf. Theorem 3 in Section 4.

This uniqueness result holds for the more general systems studied in [12], including the
resistor–inductor–varactor circuit, or simply varactor equation, studied in [4,12]. This is a simple
electronic circuit described by the equation ẍ + γ ẋ + xμ = f (ωt), for x > 0, where R = γ is the
resistance, L = 1 is the (normalised) inductance, f (ωt) is the electromotive force, v(t) = x(t)

is the varactor voltage, and i(t) = ẋ(t) is the current. The varactor is a particular type of diode,
and it is described by the nonlinear term xμ, where typically μ ∈ [1.5,2.5]. In [4,12] the case
μ = 2 was explicitly considered, for the sake of simplicity and concreteness. In these more gen-
eral cases, the solution x0(t) is not a global attractor, but it turns out to be the only attractor in a
neighbourhood of the solution itself.

More precisely the situation is as follows. We can consider systems described by

ẍ + γ ẋ + g(x) = f (ωt), (1.4)

where f is given by (1.2) and g is an analytic function. The case g(x) = x2 corresponds to the
varactor equation studied in [4]. Studying the behaviour of the system (1.4) for γ large enough
suggests to introduce a new parameter ε = 1/γ , in terms of which the differential equation (1.4)
becomes

εẍ + ẋ + εg(x) = εf (ωt), (1.5)

and study what happens for ε small enough.
If we assume that there exists c0 ∈ R such that g(c0) = f0 and g′(c0) := ∂xg(c0) �= 0, then

the system (1.5) admits a quasi-periodic solution x0(t), analytic in t , with the same frequency
vector ω as the forcing f , and furthermore x0(t) = c0 + O(ε). This was proved in [12], where
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the solution x0(t) was explicitly constructed through a suitable summation of the perturbation
series

xP (t) =
∞∑

k=0

εkx(k)(ωt), x(k)(ψ) =
∑
ν∈Zd

eiν·ψx(k)
ν , (1.6)

for a function formally solving the equations of motion.
As a drawback of the construction we were not able to prove any uniqueness result about x0(t).

In fact, in principle, there could be other quasi-periodic solutions near x0(t), possibly with the
same frequency vector ω. Neither could we exclude the existence of other solutions reducing to
c0 as ε → 0 or even admitting the same formal expansion (1.6) in powers of ε. In this paper,
under the further positivity condition g′(c0) > 0, we eliminate these possibilities, and we prove
that there exists, in the plane (x, ẋ), a neighborhood B of the point (c0,0) where (x0(t), ẋ0(t))

is the only stable solution of (1.5). Moreover it turns out to be asymptotically stable, that is it
attracts any trajectory starting in B. Therefore, this allows us to formulate a strengthened version
of the theorem proved in [12]; cf. Theorem 4 in Section 4.

In general the neighbourhood B can be very small. In [2] we show that in specific cases, in
particular in the case g(x) = x2, one obtains improved estimates of B.

More formal statements of the results will be formulated in the forthcoming sections. Some
open problems will be discussed at the end. Here we confine ourselves to noting that, while in
the case of periodic forcing standard techniques, like those based on Poincaré sections [15,18],
could be applied, this is not the case for quasi-periodic forcing, where no Poincaré maps can be
introduced.

The rest of the paper is organised as follows. Sections 2 and 3 are devoted to the global study of
the system (1.1) for γ large enough, whereas in Section 4 we draw the conclusions. In Section 5
we pass to the study of the system (1.4), and we prove existence of a local attractor under the
non-degeneracy conditions mentioned after (1.5). Finally, in Section 6 we mention some open
problems, and possible directions of future research.

2. Existence of the quasi-periodic solution

First we show that for γ large enough there exists a quasi-periodic solution x0(t). The proof
of existence of a periodic solution in the case of periodic forcing is relatively easy, whereas in
the case of quasi-periodic forcing to prove existence of a quasi-periodic solution becomes a little
more subtle. By using a formal power series expansion, as we do, we need to introduce a suitable
summation of the series: this requires a careful multiscale analysis and employs techniques of
renormalisation group theory. The analysis is explicitly performed in [12], and uses ideas and
notions introduced first in [8] and exploited in [9–11] in similar contexts.

The periodic solutions can be proved to be Borel summable at the origin [12]. We briefly
recall here the notion of Borel summability [19]. Let f (ε) = ∑∞

n=1 anε
n a formal power series.

We say that f (ε) is Borel summable if

(1) B(p) := ∑∞
n=1 anp

n/n! converges in some circle |p| < δ;
(2) B(p) has an analytic continuation to a neighbourhood of the positive real axis, and
(3) g(ε) = ∫ ∞

0 e−p/εB(p)dp converges for some ε > 0.

A function which admits the formal power series expansion f (ε) is called Borel summable if
f (ε) is Borel summable; in that case the function equals g(ε).
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Borel summability also holds in the quasi-periodic case for two-dimensional frequency vec-
tors of constant type [13]. In [13] it is also shown that the results on the existence of periodic
or quasi-periodic solutions can be extended to any frequency vector which satisfies the Bryuno
condition (weaker than the standard Diophantine condition (1.3) usually assumed).

Theorem 1. Consider Eq. (1.1), with f a non-zero average quasi-periodic function analytic in
its argument and with ω satisfying the Diophantine condition (1.3). There exists γ0 > 0 such
that for all γ > γ0 there is a quasi-periodic solution x0(t) with the same frequency vector as the
forcing term. Such a solution extends to a function analytic in 1/γ in a disc D of the complex
plane tangent to the imaginary axis at the origin and centered on the real axis. Furthermore,
x0(t) = α + O(1/γ ), where α = f

1/(2p+1)

0 �= 0.

Proof. We can apply the results of Section 7 in [12]. If we set g(x) = x2p+1, then g(c0) = f0

yields c0 = f
1/(2p+1)

0 , so that g′(c0) �= 0 as by assumption one has f0 �= 0. Both the existence of
the analyticity domain D and the form of the solution itself follow from the analysis in [12]. �

If γ is large enough, say γ > γ 0 � γ0, then the solution x0(t) is of definite sign. In the
following we shall assume that this is the case: hence x0(t) �= 0 for all t ∈ R.

Note that if we write f (ωt) = f0 + ηf̃ (ωt), where f̃ is a function having zero-average, we
can interpret our solution as arising by bifurcation from the constant solution x(t) = α, with
α = f

1/(2p+1)

0 , as the bifurcation parameter η (not necessarily small) moves away from zero.
Earlier studies, such as in the classical book by Stoker [20], have treated cases of self-sustained

oscillations, like for example in the van der Pol equation. In these cases a limit cycle is already
present in the dynamics of the system when the time-periodic forcing term is absent, and the
problem consists in studying the persistence of the self-sustained limit cycle. In our case, the
problem is different: in the absence of the forcing all the solutions are attracted by the unique
fixed point, whereas the non-trivial attractor is generated by the presence of the forcing. Note
that our approach includes also quasi-periodic forcing, which is generally not analysed: from
a technical point of view a quasi-periodic forcing, instead of a purely periodic one, introduces
additional subtle difficulties, related to the appearance of small divisors [12,13].

3. Convergence to the quasi-periodic solution

Given the quasi-periodic solution x0(t) one can write x(t) = x0(t)+ ξ(t), with ξ(t) satisfying
the differential equation

ξ̈ + γ ξ̇ + ξF
(
ξ, x0(t)

) = 0, (3.1)

where we have defined

F(ξ, x) := 1

ξ

(
(x + ξ)2p+1 − x2p+1) =

2p∑
j=0

(
2p + 1

j

)
ξ2p+1−j xj . (3.2)

We can write (3.1) as{
ξ̇ = y,

ẏ = −γy − ξF
(
ξ, x (t)

)
,

(3.3)

0
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that is ż = Φ(z), if we define z = (ξ, y) and Φ(z) = (y,−γy − ξF (ξ, x0(t)). We denote by
ϕ(t, z0) the solution of (3.3) with initial datum z0. Define also P(ξ, t) := F(ξ, x0(t)) and
Q(ξ) := F(ξ,α) and set R(ξ, t) := P(ξ, t)/Q(ξ).

Here we prove the following result.

Theorem 2. Consider Eq. (3.1), with x0(t) the quasi-periodic solution of (1.1) given in The-
orem 1. There exists γ1 > 0 such that for all γ > γ1 all trajectories in phase space converge
toward the origin as time goes to infinity.

The proof will pass through several lemmata.

Lemma 1. Assume γ > γ 0 so that x0(t) exists and x0(t) �= 0 for all t ∈ R. There exist two
positive constants R1 and R2 such that R1 < R(ξ, t) < R2 for all ξ ∈ R and for all t ∈ R.

Proof. By (3.2) we can write

F(ξ, x) = (2p + 1)

1∫
0

ds (x + sξ)2p, (3.4)

so that F(ξ, x) � 0 for all (ξ, x) ∈ R
2. Moreover, F(0,0) = 0 and F(ξ, x) > 0 for all ξ ∈ R

if x �= 0, and lim|ξ |→∞ F(ξ, x) = ∞ for all x ∈ R. Hence for α �= 0 and γ > γ 0, one
has both P(ξ, t) > 0 and Q(ξ) > 0, hence also R(ξ, t) > 0 for all (ξ, t) ∈ R

2. Moreover,
lim|ξ |→∞ R(ξ, t) = 1 for all t ∈ R, so that the assertion follows. �
Lemma 2. Consider Eq. (3.1), with x0(t) the quasi-periodic solution of (1.1) given in Theorem 1.
There exists γ2 > 0 such that for all γ > γ2 there is a convex set S containing the origin such
that any trajectory starting inside S tends to the origin as time goes to infinity. One can take S
such that ∂S crosses both the positive and negative y-axis at a distance O(γ 2) from the origin
and both the positive and negative ξ -axis at a distance O(γ 2/(p+1)) from the origin.

Proof. Rescale time through the Liouville transformation (see [3] for a similar argument)

τ =
t∫

0

dt ′
√

R
(
ξ(t ′), t ′

)
, (3.5)

which is well defined by Lemma 1. Then, if we introduce the coordinate transformation
ψ : (ξ, y) → (v, y) by setting ξ(t) = v(τ(t)) and y(t) = √

R(ξ(t), t)w(τ(t)), Eq. (3.3) is trans-
formed into⎧⎨

⎩
v′ = w,

w′ = − w√
R

(
γ + R′

2
√

R

)
− vQ(v),

(3.6)

where primes denote differentiation with respect to τ , Q(v(τ)) = Q(ξ(t (τ ))) and R = R(v(τ),

t (τ )) = R(ξ(t (τ )), t (τ )).
The autonomous system{

v′ = w,
′ (3.7)
w = −vQ(v),
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can be explicitly solved: all trajectories move on the level curves of the function

H(v,w) = 1

2
w2 +

v∫
0

dv′ v′Q(v′). (3.8)

In (3.6) one has R′/
√

R = Ṙ/R, with Ṙ/R = Ṗ /P − Q̇/Q, and it is easy to see (Appendix A)
that there are two γ -independent positive constants B1 and B2 such that∣∣∣∣ Ṙ

2R

∣∣∣∣ <
1

γ

(
B1 + B2|w|). (3.9)

If γ satisfies γ 2 > 2B1 we can define w̃ as

w̃ = γ 2 − B1

B2
>

γ 2

2B2
, (3.10)

so that γ := (γ + R′/2
√

R )/
√

R > 0 for |w| � w̃.
Consider the compact set P̃ whose boundary ∂P̃ is given by the level curve H(v,w) = w̃2/2

of the system (3.7). Such a curve crosses the w-axis at w = ±w̃ = O(γ 2) and the v-axis at
v = O(γ 2/(p+1)). If we take an initial datum (v(0),w(0)) ∈ P̃ then the dissipation coefficient γ

in (3.6), even if it changes with time, always remains strictly positive. Moreover, H ′ = −γw2 � 0
and H ′ = 0 only for w = 0, and for w = 0 the vector field in (3.6) vanishes only at v = 0,
because Q(v) > 0 for all v (cf. the proof of Lemma 1). Then we can apply Barbashin–Krasovsky
theorem [1,17], and conclude that the origin is asymptotically stable and that P̃ belongs to its
basin of attraction.

Let P(t) be the time-dependent preimage of P̃ under the transformation ψ . By Lemma 1 if γ

is large enough there is a compact set S ⊂ P(t) for all t ∈ R, such that the boundary ∂S crosses
the positive and negative y- and ξ -axes at a distances of order γ 2 and γ 2/(p+1) from the origin,
respectively. All trajectories starting from points inside S are attracted by the origin. �
Lemma 3. Consider the curve g(ξ, t) = −γ −1ξF (ξ, x0(t)) in the plane (ξ, y). There exists
γ3 > 0 such that for γ > γ3, outside the set S defined in Lemma 2, one has

− 1

2γ
ξ2p+1 � g(ξ, t) � − 2

γ
ξ2p+1 (3.11)

for all t ∈ R.

Proof. Consider ξ � 0 (the case ξ < 0 can be discussed in the same way). By (3.2) one has

ξF
(
ξ, x0(t)

) = ξ2p+1 +
2p∑

j=1

(
2p + 1

j

)
ξ2p+1−j x

j

0 (t),

and, if γ is sufficiently large so that |x0(t)| < 2|α|, then for ξ � 2|α| the sum can be bounded by
22p+1(2|α|) ξ2p ≡ Cpξ2p . Hence one has

1

2
ξ2p+1 � ξF

(
ξ, x0(t)

)
� 2ξ2p+1, (3.12)

as soon as ξ � 2Cp (note that if ξ � 2Cp then one has automatically ξ � 2|α|). Next, we want
to show that the latter inequality is satisfied outside S .
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Fig. 1. Construction used in the proof of Lemma 3.

Consider the intersection of the graph of g(ξ, t) with ∂S . Let II be the quadrant {(ξ, y) ∈ R
2:

ξ � 0, y < 0}; cf. Fig. 1. The curve ∂S ∩ II is below the line

y1(ξ) = y0

(
1 − ξ

ξ0

)
, (3.13)

where y0 := −bγ 2, with b > 0, is the y-coordinate of the point at which ∂S crosses the y-axis,
and ξ0 := aγ 2/(p+1), with a > 0, is the ξ -coordinate of the point at which ∂S crosses the ξ -axis.
On the other hand the graph of g(ξ, t) in II is above the curve

y2(ξ) = − 2

γ

(
ξ + 2|α|)2p+1

, (3.14)

because in (3.2) one has ξF (ξ, x) � |x + ξ |2p+1 + |x|2p+1.
As a consequence in II the two curves ∂S and g(ξ, t) cannot cross each other for

ξ ∈ (0, aγ β/2], with β � 2/(2p + 1). The latter assertion can be proved by reductio ad ab-
surdum. First note that aγ β � ξ0 for γ large enough. Suppose that there exists ξ � aγ β/2 such
that y1(ξ) = y2(ξ). Then one has

b
γ 2

2
� bγ 2

(
1 − ξ

ξ0

)
= 2

γ

(
ξ + 2|α|)2p+1 � 4

γ
max

{
ξ,2|α|}2p+1

, (3.15)

that is bγ 3 � 8 max{ξ,2|α|}2p+1, which is not possible if β � 2/(2p + 1) and γ is large enough.
Therefore in II the graph of g(ξ, t) can be outside S only for ξ > aγ β/2, which is greater

than 2Cp for γ large enough. Hence (3.12) is satisfied outside S , so that (3.11) follows. �
Lemma 4. Consider Eq. (3.1), with x0(t) the quasi-periodic solution of (1.1) given in Theorem 1.
There exists γ4 > 0 such that for all γ > γ4, if z /∈ S , then either ϕ(t, z) enters S or crosses the
y-axis outside S in a finite positive time.

Proof. Consider the four quadrants

I = {
(ξ, y) ∈ R

2: ξ > 0, y � 0
}
, II = {

(ξ, y) ∈ R
2: ξ � 0, y < 0

}
,

III = {
(ξ, y) ∈ R

2: ξ < 0, y � 0
}
, IV = {

(ξ, y) ∈ R
2: ξ � 0, y > 0

}
. (3.16)
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Fig. 2. Construction used in the proof of Lemma 4.

In I one has ξ̇ � 0, ẏ < 0, in II one has ξ̇ < 0, in III one has ξ̇ � 0, ẏ > 0, and in IV one
has ξ̇ > 0. It is easy to see that each trajectory starting in I enters II and each trajectory starting
from III enters IV in a finite time (see Appendix B).

Consider now an initial datum z in II but not in S . Let C1 be a continuous curve ξ → y(ξ) in II
such that ẏ < 0 for z in II above C1; cf. Fig. 2. Existence of such a curve follows from Lemma 3,
which also implies that C1 is decreasing outside S (see Appendix C). The curve C1 divides II into
two sets IIa and IIb, with IIa above IIb. Denote by T1 and T2 the parts of IIa and IIb, respectively,
outside S . Hence for z ∈ T1 the trajectory ϕ(t, z) either enters S or enters T2. In the latter case
it cannot come back to T1, hence y(t) � y, if (ξ , y) = C1 ∩ ∂S . This means that if the solution
does not enter S then it has to cross the vertical axis and enter III.

Analogously one discusses the case of initial data z in IV, outside S : their evolution leads
either to S or to I. Hence the lemma is proved. �
Lemma 5. Consider Eq. (3.1), with x0(t) the quasi-periodic solution of (1.1) given in Theorem 1.
There exists γ5 > 0 such that for all γ > γ5 and for all z /∈ S on the vertical axis, either ϕ(t, z)

enters S or the trajectory ϕ(t, z) re-crosses the vertical axis at a point z1 which is such that
|z| − |z1| > δ for some positive z-independent constant δ.

Proof. Fix an initial datum z /∈ S on the vertical axis. This means that at t = 0 one has z = z(0) =
(0, y(0)) outside S . Assume for concreteness y(0) > 0 and set y(0) = 1/εp+1, with ε > 0. As
z(0) /∈ S there exists a constant C2 such that γ 2εp+1 � C2. Consider the change of coordinates

X = εξ, Y = εp+1y, T = ε−pt. (3.17)

Then the system (3.3) becomes{
X′ = Y,

Y ′ = −γ εpY − XF
(
X,εx0

(
εpT

))
,

(3.18)

where primes denote differentiation with respect to T . Note that Y(0) = 1 and XF(X,

εx0(ε
pT )) = X2p+1 + O(ε X2p). Call S the image of S under the transformation (3.17); cf.

Fig. 3.
We can rewrite the system (3.18) as{

X′ = Y,
′ (3.19)
Y = Ψ (X,Y ) ≡ Ψ1(X,Y ) + Ψ2(X,Y ) + Ψ3(X,Y ),
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Fig. 3. Construction used in the proof of Lemma 5.

with Ψ1(X,Y ) = −XF(X,εx0(0)), Ψ2(X,Y ) = −X(F(X,εx0(ε
pT )) − F(X,εx0(0))), and

Ψ3(X,Y ) = −γ εpY .
If we replace Ψ (X,Y ) with Ψ1(X,Y ) in (3.19) the trajectory moves on the level curve Γ =

{(X,Y ) ∈ R
2: H(X,Y ) = 1/2} for the function

H(X,Y ) = 1

2
Y 2 +

X∫
0

dX′ X′F
(
X′, εx0(0)

)
(3.20)

and crosses the vertical axis at the point (0,−1), hence at the same distance from the origin as
at t = 0. By Lemma 3 there exists in II a curve C2, decreasing outside S, such that −γ εpY �
Ψ (X,Y ) � −γ εpY/2, for Y in II below C2 (see Appendix C). Such a curve can be chosen in such
a way that it crosses the level curve Γ in a point P = (XP ,YP ), with XP = 2D1(γ εp)1/(2p+1),
for some constant D1 (see Appendix C). Note that the time T1 necessary to reach such a point is
of order 1.

If we take into account the component Ψ2(X,Y ) of the vector field in (3.19), we can move
from P at most by a quantity of order εp+1. Indeed, as long as the motion remains close to that
generated by the vector field Ψ1(X,Y ), one has∣∣F (

X,εx0
(
εpT1

)) − F
(
X,εx0(0)

)∣∣ � D′
2ε

∣∣x0
(
εpT1

) − x0(0)
∣∣ � D′′

2εp+1, (3.21)

for suitable positive constants D′
2 and D′′

2 , so that the points reached at time T1 by moving
according to the vector fields Ψ1 and Ψ1 + Ψ2 cannot be more distant than D2ε

p+1 for some
constant D2. This follows from the fact that the system is quasi-integrable, so that in a time
of order 1 the action variable can change at most by a quantity of order of the perturbation as
bounded in (3.21); see Appendix D.
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Finally the component Ψ3(X,Y ) points inward along the full length of the curve Γ . Define
T2 as the time at which the trajectory of the full system (3.19) crosses the curve C2 in a point Q

near P . Of course T2 is near T1, and so is of order 1, and X(T2) � XP /2 by construction, while
Y(T2) � YP − D2ε

p+1, with YP > −1.
From time T2 onwards, we have{

X′ = Y,

Y ′ � −γ εpY/2,
(3.22)

as long as the motion remains below C2. The latter property is easily checked to hold (see Ap-
pendix C). Then the trajectory crosses the vertical axis and meanwhile, at least, moves upward
in the vertical direction by a quantity γ εpXP /2 = D1γ εp(γ εp)1/(2p+1).

Therefore when the trajectory again crosses the vertical axis, this happens at a time T3 such
that

Y(T3) � YP − D2ε
p+1 + D1γ εp

(
γ εp

)1/(2p+1)
> −1 + �Y,

with �Y = D1γ εp(γ εp)1/(2p+1) − D2ε
p+1 � D2ε

p+1, where the latter inequality holds pro-
vided (γ εp)1+1/(2p+1) � 2D2ε

p+1, that is provided

γ 2(p+1) � D0ε
p+1, D0 = (2D2)

2p+1. (3.23)

Since εp+1γ 2 � C2, inequality (3.23) is satisfied if γ 2(p+1) � D0C2γ
−2, which requires

γ 2(p+2) � D0C2, that is γ � (D0C2)
1/2(p+2), with D0 = (2D2)

2p+1. Under this condition one
has |Y(0)| − |Y(T3)| = 1 − |Y(T3)| � �Y � D2ε

p+1, so that, in terms of the original coordi-
nate y, one has |y(0)| − |y(t3)| � D2.

Then, if the trajectory crosses the vertical axis once more in the positive direction (and this
necessarily happens if it does not enter S , by Lemma 4), this occurs at a time t4 such that |y(0)|−
|y(t4)| � 2D2, where we recall that the constant D2 is independent of the initial datum y(0).
Simply one can repeat the argument above by taking (0, y(t3)) as initial datum and calling t4 the
time of crossing of the positive ξ -axis. This means that the trajectory either enters S or, after a
complete cycle, moves closer to the origin by a finite positive distance δ = 2D0. �
Lemma 6. Consider Eq. (3.1), with x0(t) the quasi-periodic solution of (1.1) given as in Theo-
rem 1. There exists γ6 > 0 such that for all γ > γ6 for all z /∈ S there is a finite time t (z) such
that ϕ(t (z), z) ∈ S .

Proof. Consider z /∈ S . By Lemma 4 either ϕ(t, z) enters S or there exists a time t1 such that
ϕ(t1, z) is on the vertical axis outside S . Hence, without loss of generality, we can consider only
initial data z = (ξ, y) outside S such that ξ = 0. Assume y > 0 (if y < 0 the discussion proceeds
in the same way): we can apply Lemma 4 and we find that, as far as the trajectory does not
enter S , at each turn it gets closer to S by a finite quantity. Hence sooner or later it enters S . �

Theorem 2 follows from the lemmata above: it is enough to take γ1 = max{γ 0, γ2, γ3, γ4,

γ5, γ6}, so that all lemmata apply.

4. Uniqueness of the quasi-periodic solution

Let γ be γ > max{γ0, γ1}. Then there exists a quasi-periodic solution x0(t) for the sys-
tem (1.1), and such a solution is a global attractor.
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In [12] we explicitly constructed a solution x0(t) with the properties stated in Theorem 1.
Such a solution turns out to be Borel summable for d = 1. In general the solution is obtained
from the formal series through a suitable summation procedure. Since Theorem 2 implies that if
there exists a quasi-periodic solution x0(t) this has to be unique, we can conclude that for real γ

large enough there exists a unique quasi-periodic solution x0(t) with the same frequency vector
as the forcing f . By setting ε = 1/γ , in the complex ε-plane, there is a solution x1(t) which is
analytic in a domain containing a disk D with centre on the real axis and tangent at the origin to
the imaginary axis. For real γ such a solution coincides with x0(t) (as the latter is the only one),
hence, by uniqueness of the analytic continuation, the function x1(t) is the only solution of (1.1)
in all the domain D. In particular, it is the only one which admits the formal expansion given by
perturbation theory.

We can summarise the discussion above through the following statement.

Theorem 3. Consider Eq. (1.1), with f a non-zero average quasi-periodic function analytic in
its argument and with ω satisfying the Diophantine condition (1.3). There exists γ0 > 0 such that
for all real γ > γ0 there is a unique quasi-periodic solution x0(t) with the same frequency vector
as the forcing term. Such a solution describes a limit cycle in the plane (x, ẋ) which is a global
attractor.

Note that the hypotheses made in Theorem 1 are more restrictive than those considered in [12].
In particular we have excluded both polynomial nonlinearities and monomial nonlinearities with
even degree. We come back to this in the next section.

5. Local attractors for more general nonlinearities

In the previous analysis, the restriction to monomials only resulted in a strictly positive func-
tion R(ξ, t), which was used to construct the positively invariant set S . We leave as an open
problem the study of what happens if the nonlinearity x2p+1 in (1.1) is replaced with

g(x) =
2p+1∑
j=1

ajx
j , aj ∈ R, a2p+1 > 0. (5.1)

For d = 1 and γ = 0 it is known that all motions are bounded, also replacing the constants
aj with periodic functions [5,6,14]. The same holds for d > 1 [16]. One could expect that the
presence of friction tends to contract phase space toward some periodic solution (which certainly
exists for γ large enough, as proved in [12]), but our results do not allow us to treat, in general,
such a case.

If the nonlinearity x2p+1 is replaced with an even monomial x2p , with p ∈ N, then, under
the further condition that f0 > 0, there is a quasi-periodic solution x0(t): again this follows
from [12]. In such a case x0(t) is not a global attractor, as there are unbounded solutions; cf. for
example [4] for p = 1. Still one can prove that the solution found in [12] is unique, in the sense
that it is the only attractor in a neighbourhood of the solution itself, and it is a local attractor.
The same result holds, more generally, for any analytic g(x) in (1.4) such that g(c0) = f0 and
g′(c0) > 0 for some c0 ∈ R. A more formal statement is as follows.

Theorem 4. Consider Eq. (1.4), with f , given by (1.2), and g both analytic in their arguments,
and with ω satisfying the Diophantine condition (1.3). Assume that there exists c0 ∈ R such that
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g(c0) = f0 and g′(c0) := ∂xg(c0) > 0. There exists γ0 > 0 such that for γ > γ0 there is a unique
quasi-periodic solution x0(t) which has the same frequency vector as f , reduces to c0 in the
limit γ → ∞, and extends to a function analytic in a disk with center on the positive real axis and
boundary tangent to the vertical axis at the origin. Furthermore, there exists γ1 � γ0 such that for
γ > γ1 there is a neighbourhood B of the point (c0,0), containing the orbit described by x0(t),
with the property that all trajectories starting in B are attracted to the solution described by
x0(t) in the plane.

Proof. The existence of a quasi-periodic solution x0(t) with the same frequency vector ω as the
forcing was proved in [12]. As a byproduct of the proof, one can write x0(t) = c0 + x1(ωt), with
x1(ψ) analytic in ψ and of order ε, if ε = 1/γ (that is for ε small enough one has |x1(ψ)| � C|ε|
for all ψ and for a suitable C). Therefore we can write x(t) = x0(t) + ξ(t), where ξ(t) satisfies
the differential equation

ξ̈ + γ ξ̇ + ξF
(
ξ, x0(t)

) = 0, (5.2)

with

F(ξ, x) = 1

ξ

(
g(x + ξ) − g(x)

) = ∂xg(x) + O(ξ). (5.3)

Then we can write (5.2) as a system of first order differential equations,{
ξ̇ = y,

ẏ = −γy − ξF
(
ξ, x0(t)

)
,

(5.4)

and define R(ξ, t) = F(ξ, x0(t))/F (ξ, c0). It is easy to see that one has limξ→0 R(ξ, t) =
1 + O(ε), so that for ε small enough one has R1 < R(ξ, t) < R2, for two suitable positive con-
stants R1 and R2.

Then we can rescale time and variables by setting

τ =
t∫

0

dt

√
R

(
ξ(t ′), t ′

)
, ξ(t) = v

(
τ(t)

)
, y(t) =

√
R

(
ξ(t), t

)
w

(
τ(t)

)
, (5.5)

which transforms the system (5.4) into⎧⎨
⎩

v′ = w,

w′ = − w√
R

(
γ + R′

2
√

R

)
− vF(v, c0),

(5.6)

where primes denote differentiation with respect to τ .
If we neglect the friction term in (5.6) we obtain the autonomous system{

v′ = w,

w′ = −vF(v, c0) = −∂xg(c0)v + O
(
v2

)
,

(5.7)

which admits the constant of motion

H(v,w) = 1

2
w2 + 1

2
∂xg(c0)v

2 + O
(
v3), ∂xg(c0) > 0. (5.8)

Hence the origin is a stable equilibrium point for (5.7), and the level curves for H are close
to ellipses in a neighbourhood P̃ of the origin. It is easy to check that in P̃ the coefficient of
the friction term is strictly positive, for γ large enough, because R′/2

√
R is (in P̃) less than a
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constant. Hence we can apply Barbashin–Krasovsky’s theorem and conclude that the origin is
asymptotically stable and P̃ belongs to its basin of attraction. If we go back to the original vari-
ables (ξ, y) we find that P̃ is transformed back to a time-dependent set P(t). But the dependence
on t of P(t) is very weak (as R is close to 1 for γ large enough), so that there exists a convex
set S ⊂ P(t) for all t ∈ R. Hence any trajectory starting from S is attracted toward the origin. In
terms of the variables (x, y), using once more that the solution x0(t) is close to c0 within O(ε),
we can say that, for ε small enough (that is for γ large enough) there exists a neighbourhood B
of the point (c0,0) such that it contains the projection of the quasi-periodic solution x0(t) into
the plane (x, ẋ), and any trajectory starting from B is attracted by such a solution.

In particular the solution x0(t) is the only quasi-periodic solution which tends to c0 as ε → 0,
and for ε > 0 small enough, say ε < ε0, it is the only one which admits the formal power ex-
pansion (1.6). Such a solution was proved in [12] to be analytic in a domain D containing the
interval (0, ε0), hence by the uniqueness of the analytic continuation, we can conclude that x0(t)

is unique in all D. �
By looking at the proof of Theorem 4, we see that it proceeds along the same lines of the proof

of Lemma 2 in Section 3. In the extended phase space (x, ẋ, t) the orbit described by the solution
x0(t) is not a bounded set. However, this is easily remedied by replacing t ∈ R with τ ∈ T

d and
using τ̇ = ω instead of ṫ = 1 when augmenting (3.3), so that the corresponding orbit becomes
bounded in R

2 × T
d . By using the definitions of [7], Theorem 4 says that the orbit described by

x0(t) is an attractor, and its closure is an attracting set with fundamental neighbourhood T ×B.

6. Conclusions, extensions and open problems

We conclude with a list of open problems (some of which have already been mentioned in the
previous sections).

The first one concerns possible extensions of the proof of Theorem 3 to the case of more
general polynomials of the form (5.1). A natural question is: under what conditions is there still
a global attractor, in these cases, when the dissipation coefficient is large enough?

A characterisation of the set B can be given in some concrete cases, such as that of the varactor
equation mentioned in Section 1. In [2] we show that we can improve the estimate by obtaining
a set whose size increases linearly in γ in the vertical direction, but in such a way that it is still
expected to be strictly included inside the actual basin of attraction. It would be worthwhile to
attempt constructions of sets contained inside the basins of attraction that are as large as possible.

We also leave as an open problem for the varactor equation the proof that any bounded solution
is attracted by x0(t). On the basis of numerical simulations, we conjecture that this is the case.

Another interesting problem is whether one can weaken the hypotheses on the function g,
both for determining the existence of a quasi-periodic solution with the same frequency vector
as the forcing and, in that case, for proving its uniqueness and attractivity.

In [13] we showed that the Diophantine condition on the frequency vector can be relaxed
into the weaker Bryuno condition. A natural question one can ask is what happens for frequency
vectors which do not satisfy the Bryuno condition. Because of the presense of the friction an
attractor is expected to exist, but it is not clear at all how it should look like. Even in the case
of a quasi-periodic attractor, it would be difficult to prove its existence analytically, since the
techniques in [13] do not allow to control the small divisors for such vectors. One the other hand
also existence of a different attractor, such as a strange attractor, would be surprising in the case
of small perturbation.

Finally, extensions to higher-dimensional cases would be desirable.
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Appendix A. Proof of (3.9)

One has Ṗ = ∂ξP ξ̇ + ∂tP and Q̇ = ∂ξQξ̇ , so that

Ṗ

P
− Q

Q
=

(
∂ξP

P
− ∂ξQ

Q

)
ξ̇ + ∂tP

P
= ∂ξP − ∂ξQ

P
+ ∂ξQ

PQ
(Q − P) + ∂tP

P
. (A.1)

One can write

∂tP =
2p∑

j=1

(
2p + 1

j

)
jξ2p+1−j x

j−1
0 (t)ẋ0(t),

Q − P =
2p∑

j=1

(
2p + 1

j

)
ξ2p+1−j

(
α − x0(t)

)j
,

∂ξP − ∂ξQ =
2p∑

j=1

(
2p + 1

j

)
(2p + 1 − j)ξ2p−j

(
x0(t) − α

)j
, (A.2)

where ẋ0(t) = O(1/γ ) and x0(t) − α = O(1/γ ).
Finally |x0(t)| � 2|α| for all t ∈ R if γ is large enough, and both ξ2p+1−j /P and ξ2p+1−j /Q

tend to zero as ξ → ∞ for j � 1. Hence (3.9) follows, with the constants B1 and B2 depending
on p but not on γ .

Appendix B. Initial data in I and III

Take an initial datum z = (ξ, y) in I. If y = 0 then ξ̇ = 0 and ẏ = −ξF (ξ, x0(t)) < 0, so that
the trajectory enters II. If y > 0 then ξ̇ > 0 and ẏ < 0.

Moreover ∂ξ (ξF (ξ, x)) = ∂ξ (x + ξ)2p+1 = (2p + 1) (x + ξ)2p � 0 for all x ∈ R, so that, by
using the fact that ξ(t) � ξ(0) as long as (ξ(t), y(t)) remains in I, one has in I

ξF
(
ξ, x0(t)

)
� inf

t∈R

ξF
(
ξ, x0(t)

)
� ξ(0) inf

t∈R

F
(
ξ(0), x0(t)

)
� c > 0, (B.1)

where we used that F(ξ, x) is strictly greater than a positive constant for x �= 0 (see the proof of
Lemma 1). Therefore we obtain

ẏ � −γy − c, (B.2)

which implies that y(t) reaches the ξ -axis in a finite time.
Analogously one discusses the case of initial data z in III.

Appendix C. On the curves C1 and C2

Call T the subset of II outside S .
Define C1 as a continuous curve in II such that in T it is given by the graph of the function

ξ → −ξ2p+1/4γ . In (3.3) one can write ẏ = γ (−y + g(ξ, t)), with g(ξ, t) defined in Lemma 3.
By Lemma 3, in T one has g(ξ, t) � −ξ2p+1/2γ , so that at all points in T above C1 one has

−y + g(ξ, t) = |y| + g(ξ, t) � 1

4γ
ξ2p+1 − 1

2γ
ξ2p+1 � − 1

4γ
ξ2p+1,

hence ẏ < 0.
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Define C2 as a continuous curve in II such that in T it is given by the graph of the function
ξ → −4ξ2p+1/γ . By Lemma 3, one has g(ξ, t) � −2ξ2p+1/γ , so that in all points of T below
C2 one has y � −4ξ2p+1/γ � 2g(ξ, t), hence −γy � γ (−y +g(ξ, t)) � −γy/2, so that −γy �
ẏ � −γy/2. In terms of the rescaled variables (X,Y ) this yields Y ′ ≡ Ψ (X,Y ), with

−γ εpY � Ψ (X,Y ) � −γ εpY/2, (C.1)

as asserted after (3.20).
The point P is given by the intersection of the curve Y1(X) = −4X2p+1/γ εp with the level

curve Γ . Hence

1

2
= 1

2

(
4X

2p+1
P

γ εp

)2

+ XF
(
X,εx0(0)

) = 24p+1

γ 2ε2p
X

4p+2
P + X

2p+1
P + O

(
εX2p

)
,

hence XP = O((γ εp)1/(2p+1)).
Now consider the solution of (3.19) with initial datum Z(T2) = (X(T2), Y (T2)). We want to

check that the solution remains below C2 until it crosses the Y -axis. The solution of{
X′ = Y,

Y ′ = Ψ (X,Y ),
(C.2)

with Ψ (X,Y ) satisfying the bounds (C.1), moves below the line with slope −γ εp passing
through Z(T2), that is below the line of equation Y = Y1(X) := Y0 − γ εpX, with Y0 deter-
mined by the request that for X = X ≡ X(T2) one has Y0 − γ εpX = −4X2p+1/γ εp , where the
graph of −4X2p+1/γ εp describes the curve C2 in the coordinates (X,Y ). By using that X is
close to XP one realises that Y0 has to be negative. In turn this implies that the line of equation
Y = Y1(X) is below the curve C2, so that also the assertion after (3.22) is proved.

Appendix D. Variations in finite times for quasi-integrable systems

The system obtained from (3.19) by replacing Ψ (X,Y ) with Ψ1(X,Y ) is an integrable Hamil-
tonian system, with Hamiltonian (3.20). For ε = 0 the Hamiltonian reduces to

H0(X,Y ) = 1

2
Y 2 + 1

2p + 2
X2p+2, (D.1)

which can be written in terms of the action-angle variables (I, ϕ) as H0(X,Y ) = H0(I ) =
cpI (2n+2)/(n+2), where cp is a suitable p-dependent positive constant. By taking into account
the other terms of the vector field, we obtain

H(X,Y ) = H(I ) = cpI (2n+2)/(n+2) + O
(
I (2n+1)/(n+2)

)
. (D.2)

The equations obtained by adding to Ψ1(X,Y ) the vector field Ψ2(X,Y ) are still Hamiltonian,
and are described by the non-autonomous Hamiltonian H(I ) + H1(I, ϕ, t), with H0 given as
in (D.2) and H1 of order εp+1 as long as the action variables remain of order 1.

The corresponding equations of motion are{
İ = −∂ϕH1(I, ϕ),

ϕ̇ = ω0(I ) + ∂IH1(I, ϕ),

with ω0(I ) = ∂IH0(I ). Then one immediately realises that in a time of order 1 the action vari-
ables remain close to their initial values. In turn this implies that also the angle variables are
changed by order εp+1 with respect to their unperturbed values. In terms of the original coordi-
nates (X,Y ) this means that the solution remains within a distance O(εp+1) with respect to the
unperturbed value.
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