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Abstract

We study perturbations of a class of analytic two-dimensional autonomous sys-
tems with perturbations depending periodically on time; for instance one can imag-
ine a periodically driven or forced system with one degree of freedom. In the first
part of the paper, we revisit a problem considered by Chow and Hale on the existence
of subharmonic solutions. In the analytic setting, under more general (weaker) con-
ditions on the perturbation, we prove their results on the bifurcation curves dividing
the region of nonexistence from the region of existence of subharmonic solutions.
In particular our results apply also when one has degeneracy to first order — i.e.
when the subharmonic Melnikov function is identically constant. Moreover we can
deal as well with the case in which degeneracy persists to arbitrarily high orders,
in the sense that suitable generalisations to higher orders of the subharmonic Mel-
nikov function are also identically constant. The bifurcation curves consist in four
branches joining continuously at the origin, where each of them can have a singular-
ity (although generically they have not). The branches can form a cusp at the origin:
we say in this case that the curves are degenerate as the corresponding tangent lines
coincide. The method we use is completely different from that of Chow and Hale,
and it is essentially based on the proof of convergence of the perturbation theory. It
also allows us to treat the Melnikov theory in degenerate cases in which the subhar-
monic Melnikov function is either identically vanishing or has a zero which is not
simple. This is investigated at length in the second part of the paper. When the
subharmonic Melnikov function has a non-simple zero, we consider explicitly the
case where there exist subharmonic solutions, which, although not analytic, still
admit a convergent fractional series in the perturbation parameter.
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1 Introduction

Subharmonic bifurcations have been extensively studied in the literature, and are by now
a standard topic of many classical textbooks [20, 41]. The problem can be formulated
as follows. Consider a two-dimensional autonomous system, and suppose that it has a
periodic orbit of period T = 2πp/q, where p, q are relatively prime integers. Then one can
be interested in studying whether, under the action of a periodic perturbation of period
2π, some periodic solutions with period T persist. Solutions with this property are called
subharmonic solutions of order q/p.

Assume also that the perturbation depends on two parameters. A typical situation
is when dissipation is present in a periodically driven or forced system with one degree
of freedom [43, 51]; in this case two parameters naturally arise: the magnitude of the
perturbation and the damping coefficient. An interesting problem is then to study the re-
gion in the space of parameters where subharmonic solutions can occur and to determine
the bifurcation curves, which divide the regions of existence and non-existence of these
solutions. Such a problem has been considered for instance by Chow and Hale [20], for
systems of class Cr, r ≥ 2. They found that, under suitable assumptions on the unper-
turbed system (essentially a local anisochronicity condition) and on the perturbation, the
bifurcation curves exist, are smooth and have distinct tangent lines at the origin. The
condition on the perturbation, if one takes the magnitude of the perturbation as one of the
parameters, can be formulated in terms of the so-called subharmonic Melnikov function
[52, 41]. It requires in particular that this function depends explicitly on the initial phase
t0 of the unperturbed periodic solutions which persist under perturbation.

In the first part of this paper we recover the same result by Chow and Hale, in the
analytic setting, and we show that the condition on the perturbation can be weakened. In
particular the subharmonic Melnikov function can be independent of t0. As a consequence
the bifurcation curves can be degenerate, in the sense that the bifurcation curves consist
in two pair of branches with the same tangent at the origin, where they form a cusp.
Moreover, in general, the branches are not analytic (they can even fail to be differentiable
to arbitrary orders). Only if some further assumption is made do they turn out to be
analytic.

In the case of dissipative systems in the presence of forcing, such as those studied by
Hale and Táboas [43, 20], our result is significantly stronger as it requires no assumption at
all on the periodic perturbation. In particular we find the following result in the analytic
setting. Given any one-dimensional anisochronous mechanical system perturbed by a
periodic forcing of magnitude ε and in the presence of dissipation, there can be analytic
subharmonic solutions of order q/p only if the dissipation coefficient γ is below a threshold
value γ0(q/p, ε). Here we show that for any rational value p/q there is an integer exponent
m = m(q/p) ∈ R∗ such that γ0(q/p, ε) = O(εm). This can be related, in a more general
context, to a conjecture proposed in [1]. Moreover the case m(p/q) = ∞ corresponds to
infinitely many cancellations, one at each perturbation order, which makes such a case
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very unlikely. Therefore, up to these exceptional cases, we can say that any resonant torus
with frequency commensurate with the frequency of the forcing term admits subharmonic
solutions of the corresponding order, provided the damping is small enough (below a
threshold depending on the frequency). In other words, existence of any subharmonic
solutions holds without making any assumption on the periodic perturbation, other than
analyticity. Note that this is not a genericity result; we shall come back to this later on.

Our method is completely different from both that of Chow and Hale and the sin-
gularity theory approach [39, 40]. It is based on perturbation theory; in particular this
requires for the system to be analytic. Chow and Hale’s assumptions on the perturbation
reflect a case in which a first order analysis is enough to deduce existence of subharmonic
solutions. By contrast our results allow the analysis of cases in which it can be necessary
to go beyond the first order, in principle to arbitrarily high orders. We also argue that
in physical applications it can be essential to have such a stronger result. Indeed, in a
concrete example in which, for instance, the perturbation is a trigonometric polynomial,
Chow and Hale’s assumptions on the perturbation, even if they are generic, fail to be
satisfied for most values of the periods T . For those values a first order condition is not
sufficient to detect the existence of the subharmonic solution, and one must go to higher
orders. The numerical simulations performed in [1] for a driven quartic oscillator in the
presence of dissipation show that this is necessary if one wants to explain the numerical
findings for some values of the parameters. A more precise description of the method we
use is as follows. We study the perturbation series of the subharmonic solutions: first we
find conditions sufficient for these series to be well-defined to all orders, then we prove
that if the perturbation is small enough convergence of the series holds. Technically,
this is achieved by using the tree formalism, which was originally introduced in the con-
text of KAM theory by Gallavotti [24], inspired by a pioneering paper by Eliasson [22],
and thereafter has been applied in a long series of papers in the same or related fields
[7, 26, 29, 30, 31, 32, 36, 33, 34, 35]; see also [25] for a review. We note that with respect
to these papers in our case the analysis is much easier as we deal with periodic solutions
instead of quasi-periodic solutions. In this respect our analysis could be considered as
a propaedeutic introduction to the tree formalism, in a case in which there is no small
divisors problem, so that no multiscale analysis has to be introduced; see also [8, 9] for a
similar situation.

Existence of the subharmonic solutions could be proved also through other (nowadays
more conventional) methods, for instance by a simple application of the implicit function
theorem to the corresponding Poincaré map; see Appendix A for a possible implementa-
tion. We prefer to rely on the tree formalism for two reasons. First, it is very flexible,
as it naturally extends to more general — and technically more difficult — problems,
such as those with small divisors considered in the aforementioned papers. Already in the
case of subharmonic solutions, it allows a natural generalisation of the Melnikov theory
to the case in which the subharmonic Melnikov function vanishes identically to first order
and higher orders have to be investigated; such an issue will be discussed explicitly in

3



the second part of the paper (see below). Second, when performing analytical or nu-
merical computations requiring arbitrarily high accuracy, high perturbation orders have
to be reached, and the easiest most direct way to proceed is just through perturbation
theory: so our approach allows a unified treatment for both theoretical investigations and
computational ones.

In the second part of the paper we revisit the Melnikov theory on the existence of
subharmonic solutions in one-parameter real analytic systems. We shall focus on periodic
orbits, but in principle our method extends also to the study of homoclinic orbits. The
standard Melnikov theory usually studies the case in which the subharmonic Melnikov
function has a simple (i.e. first order) zero [41]. We shall consider degenerate cases in
which the subharmonic Melnikov function either vanishes identically or has a zero which is
of order higher than one. In the first case one has to go to higher orders, and if a suitable
higher order generalisation of the subharmonic Melnikov function has a first order zero,
then one can proceed very closely to the standard case, and existence of analytic subhar-
monic solutions is proved. The second case is more subtle: the subharmonic solutions (if
they exist at all) are not expected to be analytic in the parameter. However, we shall
see that, under some assumptions on the perturbation, subharmonic solutions exist and
can be studied through perturbation theory notwithstanding their lack of analyticity in
the perturbation parameter. In essence, the solutions are expressed as Puiseux series (i.e.
fractional series) in the perturbation parameter.

We note that even if there are a lot of studies in the literature on the Melnikov
theory in the degenerate case, both for subharmonic solutions and homoclinic orbits,
most of them are confined to cases where either the Melnikov function (for homoclinic
orbits) or the subharmonic Melnikov function (for periodic solutions) vanishes identically
and a finite — often second — order analysis is enough to settle the problem; see for
instance [42, 55, 54, 28]. This corresponds to a sub-case of Theorem 8. Of course there
are exceptions, such as [23, 48, 49], dealing with analysis to arbitrarily high order. The
situation in which the subharmonic Melnikov function has a zero which is not simple is
a more intriguing problem, as new mathematical features arise in such a case. We shall
discuss explicitly this situation, by making a simplifying non-degeneracy assumption to
the second order contribution of the naive perturbation theory (we refer to Section 3.1 for
a more precise formulation). It would be interesting to investigate how far the assumptions
on the perturbation can be relaxed in order still to have subharmonic solutions. We also
note that, under the aforementioned assumption, our result is stronger than that given
in [56], for two reasons: first, it applies also to the case of zeroes of even order; second,
it gives more information about the change of the phase of the unperturbed periodic
solution which is continued under perturbation, by making precise its dependence on the
perturbation parameter (again we refer to Section 3.1 for a more detailed comparison).

The results illustrated in this paper should also be compared with [18, 19], where a
different scenario, such as the persistence of the whole invariant manifold corresponding to
the resonant torus, arises in a case in which the subharmonic Melnikov function vanishes
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identically. Our analysis shows that a situation of this kind is highly non-generic.

Our method seems to be particularly suited for degenerate cases. These cases are
non-generic (generically the first order is enough to settle the problem). It could be
mentioned that genericity in the real-analytic setting is somewhat more involved than in
the Cr Whitney topology (see for instance [14], where theorems by Kupka and Smale are
extended from the smooth to the analytic case). On the contrary, our investigations aim
rather to general — not generic — results, such as the existence of subharmonic solutions
with no restriction on the perturbation. Results of this kind can be relevant, because in
many physical applications the perturbation is just a given function, and often is taken to
be (or approximated by) a trigonometric polynomial: hence, it can be of interest working
in the analytic setting. In this setting, the curves of bifurcation from the nonexistence to
the existence of subharmonic solutions generically are analytic and intersect transversally
(this corresponds to a first order condition which is generically satisfied). However, in
general they are not analytic at the origin.

Also the cases of the Melnikov theory that we study in the second part of the paper
include non-generic cases. Our final aim would be to remove any assumption on the
perturbation and characterise the analyticity properties of the subharmonic solutions in
the perturbation parameter for any perturbation: what is proved here is only a partial
step in this direction, and further investigations would be highly desirable. We note that
results of this kind, that is results which hold for any perturbation, are usually non-trivial;
see for instance [16, 17, 45, 33, 27] for other cases.

Finally we note that bifurcation phenomena, involving domains of existence and non-
existence of periodic — and also quasi-periodic — solutions in the space of parameters,
have been widely investigated in the literature. For instance we could mention the work
by Broer et al., based on the singularity theory method. In [10] resonance tongues (where
periodic orbits exist) and their boundaries (consisting in parameter values where the
periodic orbits disappear) have been studied for non-degenerate and degenerate Hopf
bifurcations of maps using methods of equivariant contact equivalence. The method has
been applied also to the study of stable (quasi-periodic) solutions for periodically and
quasi-periodically forced systems, including Hill’s equation with a quasi-periodic potential,
especially in the conservative case [15, 12, 13, 11]. Again the analysis is based on the
application of singularity theory, after a repeated averaging procedure [38]. This provides
another method to study this kind of problem with a formalism which naturally allows
consideration of cases where small divisor problems arise.

The paper is organised as follows. In the first part (Section 2) we shall study the
bifurcation curves of the subharmonic solutions. In Section 2.1 we state our main results.
These are summarised in Theorem 1, which deals with the general situation — that is when
weaker conditions are assumed on the potential, — and Theorem 2, which reproduces
Chow and Hale’s result under the same assumptions on the perturbation. Sections 2.2
and 2.3 are devoted to the proof of Theorems 1 and 2. More precisely, in Section 2.2 we
show the existence of a subharmonic solution in the form of a formal power series, while
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in Section 2.3 we prove the convergence of the series. In Section 2.4, Theorem 3 provides
some simple extensions of Theorem 2, while Theorem 4 deals with the minimal number
of subharmonic solutions of order q. In Section 2.5 we discuss, as an application of our
results, the case of a forced one-dimensional system in the presence of dissipation: this
will lead to Theorems 5 and 6 which extend the results of Hale and Táboas [43].

The second part of the paper (Section 3) is devoted to the Melnikov theory for subhar-
monic solutions. In Section 3.1 we shall make a comparison with the standard Melnikov
theory [52, 41], and formulate some other results. More precisely, Theorem 7 corresponds
to the Melnikov theory usually discussed in the literature [41], while Theorem 8 — to
be proved in Section 3.2 — provides an extension of the results to degenerate situations
in which the subharmonic Melnikov function vanishes identically but a suitable general-
isation of it still has a simple zero. Finally, Theorems 9 and 10 show the existence of
subharmonic solutions in certain cases in which the subharmonic Melnikov function (or
some higher generalisation of it) has a zero which is not simple. The proof of Theorem 9
will be provided in Section 3.3, while that of Theorem 10 will be discussed in Section 3.4.

2 Bifurcation curves

2.1 Statement of the main results

Consider the ordinary differential equation
{

α̇ = ω(A) + εF (α, A, C, t),

Ȧ = εG(α, A, C, t),
(2.1)

where (α, A) ∈ M := T × W , with W ⊂ R an open set, the map A → ω(A) is real
analytic in A, and the functions F and G depend analytically on their arguments and are
2π-periodic in α and t. Finally, ε, C are two real parameters.

The time periodicity in (2.1) might suggest to take a stroboscopic map (or Poincaré
map) at time T when looking for solutions of period T . This would lead to a two-
dimensional diffeomorphism on the annulus (cf. Appendix A).

One could also introduce a further (analytic) dependence on ε in the functions F and
G, and the forthcoming analysis could be easily performed with some trivial adaptations.
Therefore all the results and theorems stated below and in the next sections hold un-
changed in that case too. Then, the formulation given in [20] is recovered, as a particular
case, by introducing the parameter γ = εC, and setting µ = (µ1, µ2), with µ1 = ε and
µ2 = γ.

For ε = 0 the variable A is kept fixed at some value A0, while α rotates with con-
stant angular velocity ω(A0). Hence the motion of the variables (α, A, t) is quasi-periodic,
and reduces to a periodic motion whenever ω(A0) becomes commensurate with 1. De-
fine α0(t) = ω(A0)t and A0(t) = A0: in the extended phase-space M × R the solution
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(α0(t), A0(t), t + t0) describes an invariant torus, which is uniquely determined by the
“energy” A0. If ω(A0) is rational we say that the torus is resonant. The parameter t0 will
be called the initial phase: it fixes the initial datum on the torus.

As a particular case we can consider that (A, α) are canonical coordinates (action-
angle coordinates), but the formulation we are giving here is more general. In particular,
it applies also to non-Hamiltonian systems, such as the electric circuit discussed in [4]. In
general all non-resonant tori are completely destroyed under perturbation, if no further
hypotheses are made on the perturbations F, G (such as that the full system is Hamil-
tonian). Also the resonant tori disappear, but some remnants are left: indeed usually a
finite number of periodic orbits, called subharmonic solutions, lying on the unperturbed
torus, can survive under perturbation.

Denote by T0(A) = 2π/ω(A) the period of the trajectories on an unperturbed torus,
and define ω′(A) := dω(A)/dA. If ω(A0) = p/q ∈ Q, call T = T (A0) = 2πq the
period of the trajectories in the extended phase space. We shall call q/p the order of the
corresponding subharmonic solutions. Define

M(t0, C) =
1

T

∫ T

0

dt G(α0(t), A0, C, t + t0), (2.2)

which is called the subharmonic Melnikov function. Here and in the following we do not
write explicitly the dependence of the subharmonic Melnikov function on A0, which is
fixed once and for all. Note that M(t0, C) is 2π-periodic in t0.

We make the following assumptions on the resonant torus with energy A0.

Hypothesis 1 One has ω′(A0) 6= 0.

Hypothesis 2 There exists an analytic curve t → C0(t) from [0, 2π) to R such that
M(t0, C0(t0)) = 0 and ∂M(t0, C0(t0))/∂C 6= 0 for all t0 ∈ [0, 2π).

The function C0(t0) is also 2π-periodic in t0. We prove the following result. We prefer
to state the result in terms of the parameter γ = εC — instead of C — to make more
transparent the relation with [20].

Theorem 1 Consider the system (2.1) and assume that Hypotheses 1 and 2 hold for
the resonant torus with energy A0 such that ω(A0) = p/q. There exist ε0 > 0 and two
continuous functions γ1(ε) and γ2(ε), with γ1(0) = γ2(0), γ1(ε) ≥ γ2(ε) for ε ≥ 0 and
γ1(ε) ≤ γ2(ε) for ε ≤ 0, such that (2.1) has at least one subharmonic solution of order q/p
for γ2(ε) ≤ εC ≤ γ1(ε) when ε ∈ (0, ε0) and for γ1(ε) ≤ εC ≤ γ2(ε) when ε ∈ (−ε0, 0).

The situation is depicted in Figure 1, in a case in which the two functions γ1 and γ2

are analytic and intersect transversally. The graphs described by the two functions are
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ε

γ1(ε)

γ2(ε)

γ2(ε)

γ1(ε)

γ

Figure 1: Set of existence (grey region) of subharmonic solutions in the plane (ε, γ), in a case
in which the two bifurcation curves ε → γ1(ε) and ε → γ2(ε) are analytic and have different
tangent lines at the origin.

called the bifurcation curves of the subharmonic solutions: they divide the plane into two
disjoint sets such that only in one of them there are analytic subharmonic solutions.

The bifurcation curves consist in four branches joining at the origin. In general such
branches are not analytic (at ε = 0): they are not even smooth, in the sense that they are
not infinitely differentiable (at ε = 0). However, if some further assumptions are made on
the subharmonic Melnikov function, smoothness (in fact analyticity) in ε can be obtained.
Denote by C ′

0(t0) and C ′′
0 (t0) the first and second derivatives of the function C0(t0) with

respect to t0.

Hypothesis 3 If tm and tM are the values in [0, 2π) for which the function C0(t0) attains
its minimum and its maximum, respectively, then C ′′

0 (tm)C ′′
0 (tM) 6= 0.

The following result holds.

Theorem 2 Consider the system (2.1) and assume that Hypotheses 1, 2 and 3 hold for
the resonant torus with energy A0 such that ω(A0) = p/q. There exist ε0 > 0 and two
functions γ1(ε) and γ2(ε), analytic for |ε| < ε0, with γ1(0) = γ2(0), γ1(ε) > γ2(ε) for
ε > 0 and γ1(ε) < γ2(ε) for ε < 0, and with different tangent lines at the origin, such that
(2.1) has at least one subharmonic solution of order q/p for γ2(ε) ≤ εC ≤ γ1(ε) when
ε ∈ (0, ε0) and for γ1(ε) ≤ εC ≤ γ2(ε) when ε ∈ (−ε0, 0).

Theorem 2 is analogous to Theorem 2.1 of [20], Section 11 — in the analytic set-
ting instead of the differentiable one — while Theorem 1 requires fewer hypotheses.
In particular it applies when Chow and Hale’s hk(α) function vanishes identically. In
that case the graphs of the two functions γ1 and γ2 form a cusp at the origin: we
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refer to this situation as a case of degenerate bifurcation curves, see Figure 2. We
shall also see in Section 2.3 that in fact, under weaker assumptions than those made
in Hypothesis 3, we can find smoothness of the bifurcation curves, in the following
sense: under suitable assumptions there exist two analytic functions γ̃1(ε) and γ̃2(ε)
such that γ1(ε) = max{γ̃1(ε), γ̃2(ε)} and γ2(ε) = min{γ̃1(ε), γ̃2(ε)} for ε > 0, and
γ1(ε) = min{γ̃1(ε), γ̃2(ε)} and γ2(ε) = max{γ̃1(ε), γ̃2(ε)} for ε < 0. We refer to Hy-
pothesis 4 and Theorem 3 in Section 2.3 for a precise formulation of the results.

ε

γ1(ε)

γ2(ε)

γ2(ε)

γ1(ε)

γ

Figure 2: The bifurcation curves consist in four branches joining at the origin. In general the
branches are not analytic at the origin. Furthermore, they can have the same tangent at the
origin: in this case we say that the bifurcation curves are degenerate. The grey region in the
figure represents a case in which the bifurcation curves have tangent lines parallel to the ε-axis.

We shall see in Section 2.3 — cf. Theorem 4 — that for p = 1 one has at least 2q
subharmonic solutions of order q as far as min{γ1(ε), γ2(ε)} < γ < max{γ1(ε), γ2(ε)} and
at least q subharmonic solutions of order q when (ε, γ) belongs to one of the bifurcation
curves, that is when either γ = γ1(ε) or γ = γ2(ε). This agrees with Chow and Hale’s
Theorem 2.1 in [20] in the cases in which the latter applies.

Possible extensions of Chow and Hale’s results could be looked for in another direction,
such as that of relaxing the hypotheses on the unperturbed system. This problem has
been studied, for instance, in [44, 53].

The bifurcation curves studied here concern subharmonic solutions which are analytic
in ε. In principle our results do not exclude existence of other subharmonic solutions
which are not analytic. Indeed, one could speculate whether other periodic solutions with
the same period exist for ε 6= 0. In the presence of dissipation, it is unlikely that solutions
other than the attractive ones found with the method we have used, would be relevant
for the dynamics — cf. for instance the problems investigated in [5, 2, 3, 1, 6]. In general
the situation can be delicate; for instance when one investigates quasi-periodic solutions
corresponding to lower-dimensional tori of quasi-integrable systems, where uniqueness
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becomes a subtle problem — cf. for instance [36, 27, 21]. Despite this, there are cases in
which the problem can be settled — cf. [2, 33].

2.2 Existence of formal power series for the subharmonic solu-

tions

We look for subharmonic solutions of (2.1) which are analytic in ε. First, we shall try to
find solutions in the form of formal power series in ε

α(t) = α(t, ε) =

∞∑

k=0

εkα(k)(t), A(t) = A(t; ε) =

∞∑

k=0

εkA(k)(t), (2.3)

where α(0)(t) = ω(A0) t and A(0)(t) = A0, with ω(A0) = p/q, and the functions α(k)(t)
and A(k)(t), periodic with period T = 2πp for all k ∈ N, are to be determined. We shall
see that this will be possible provided the parameter C is chosen as a function of ε, again
in the form of a formal power series in ε

C = C(ε) =

∞∑

k=0

εkC(k). (2.4)

Moreover both the solution (α(t), A(t)) and the constant C will be found to depend on the
initial phase t0: in particular one has C(ε) = C(ε, t0) such that C(ε, t0 + 2π) = C(ε, t0)
and C(0) = C0(t0), and, as we shall see, a sufficient condition for formal solvability to hold
is that Hypotheses 1 and 2 are satisfied.

Note that this approach is typical of perturbation theory, and was followed, for instance
in [50], where higher order corrections to the Melnikov function are computed, however
without touching the issue of convergence of the perturbation series.

If we introduce the decompositions (2.3) and (2.4) into (2.1) and we denote with W (t)
the Wronskian matrix for the unperturbed linearised system, we obtain for k ≥ 1 (cf. [1]
for similar computations)

(
α(k)(t)
A(k)(t)

)
= W (t)

(
ᾱ(k)

Ā(k)

)
+ W (t)

∫ t

0

dτ W−1(τ)

(
U (k)(τ) + F (k−1)(τ)

G(k−1)(τ)

)
, (2.5)

where (ᾱ(k), Ā(k)) are corrections to the initial conditions, U (1)(t) = 0,

U (k)(t) = [ω(A) − ω(A0) − ω′(A0) (A − A0)]
(k)

:=

∞∑

m=2

1

m!

∂m

∂Am
ω(A0)

∑

k1+...+km=k
ki≥1

A(k1)(t) . . . A(km)(t), (2.6)
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for k ≥ 2 and

F (k)(t) = [F (α, A, C, t + t0)]
(k) :=

∞∑

m=0

∑

r1,r2,r3∈Z+

r1+r2+r3=m

∂r1

1 ∂r2

2 ∂r3

3

r1!r2!r3!
F (α0(t), A0, C0, t + t0)

∑

k1+...+km=k
ki≥1

α(k1)(t) . . . α(kr1
)(t) A(kr1+1)(t) . . . A(kr1+r2

)(t) C(kr1+r2+1) . . . C(km), (2.7)

with an analogous definition holding for G(k)(t), for k ≥ 1. Here and henceforth, given
a function of several arguments we are denoting by ∂k the derivative with respect to
the k-th argument; hence, given the function F (α, A, C, t + t0) we have ∂1F = ∂F/∂α,
∂2F = ∂F/∂A, and ∂3F = ∂F/∂C. Note that by construction both F (k)(t) and G(k)(t)
depend only on the coefficients α(k′)(t), A(k′)(t) and C(k′) with k′ ≤ k, while U (k)(t) depend
only on the coefficients with k′ < k.

The Wronskian matrix appearing in (2.5) can be written as

W (t) =

(
1 ω′(A0)t
0 1

)
. (2.8)

By using (2.8) in (2.5) we have

α(k)(t) = ᾱ(k) + t ω′(A0) Ā(k) +

∫ t

0

dτ Φ(k−1)(τ) + ω′(A0)

∫ t

0

dτ

∫ τ

0

dτ ′G(k−1)(τ ′),

A(k)(t) = Ā(k) +

∫ t

0

dτ G(k−1)(τ), (2.9)

where Φ(k−1)(t) = U (k)(t)+F (k−1)(t) depends only on the coefficients α(k′)(t), A(k′)(t) and
C(k′) with k′ ≤ k − 1

We obtain a periodic solution of period T if, to any order k ∈ N, one has

〈G(k−1)〉 :=
1

T

∫ T

0

dτ G(k−1)(τ) = 0 (2.10)

and

ω′(A0) Ā(k) + 〈Φ(k−1)〉 + ω′(A0)〈G
(k−1)〉 = 0, G(k−1)(t) =

∫ t

0

dτ G(k−1)(τ), (2.11)

where, given any T -periodic function H we denote by 〈H〉 its mean, as done in (2.10).

The parameters ᾱ(k) are left undetermined, and we can fix them arbitrarily, as we have
the initial phase t0 which is still a free parameter. For instance we can set ᾱ(k) = 0 for
all k ∈ N or else we can define ᾱ(k) = αk(t0) for k ∈ N, with the constants αk(t0) to be
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fixed in the way which turns out to be more convenient for computations: we shall see a
reasonable choice in the next Section.

Therefore, if equation (2.10) is satisfied, we have

α(k)(t) = ᾱ(k) +

∫ t

0

dτ
(
Φ(k−1)(τ) − 〈Φ(k−1)〉

)
+ ω′(A0)

∫ t

0

dτ
(
G(k−1)(τ) − 〈G(k−1)〉

)
,

A(k)(t) = Ā(k) + G(k−1)(t), (2.12)

with

Ā(k) = −
〈Φ(k−1)〉

ω′(A0)
− 〈G(k−1)〉, (2.13)

which is well-defined as ω′(A0) 6= 0 by Hypothesis 1.

So, in order to prove the formal solvability of (2.1) we have to check whether it is
possible to fix the parameter C, as a function of ε and t0, in such a way that (2.10)
follows for all k ≥ 1.

For k = 1 the condition (2.10) reads

〈G(0)〉 = M(t0, C) = 0, (2.14)

and we can choose C = C0(t0) so that this holds: this is assured by Hypothesis 2.

To higher order k ≥ 1 we can write

G(k)(α(t), A(t), C, t+t0) = ∂3G(α0(t), A0, C0, t+t0) C(k)+Γ(k)(α(t), A(t), C, t+t0), (2.15)

where the function Γ(k)(α(t), A(t), C, t + t0) depends on the coefficients C(k′) of C with
k′ < k (and on the functions α(k′)(t) and A(k′)(t) with k′ ≤ k, of course). In other words,
in (2.15) we have extracted explicitly the only term depending on C(k). Moreover one has

〈∂3G(α0(·), A0, C0, · + t0)〉 =
1

T

∫ T

0

dt ∂3G(α0(t), A0, C0, t + t0) =
∂

∂C
M(t0, C0), (2.16)

and by Hypothesis 2 one has D(t0) := ∂M(t0, C0(t0))/∂C 6= 0, so that (2.10) is satisfied
provided C(k) is chosen as

C(k) = −
1

D(t0)
〈Γ(k)(α(·), A(·), C, ·+ t0)〉 ≡ Ck(t0). (2.17)

Therefore we conclude that if we set C0 = C0(t0) and, for all k ≥ 1, we choose ᾱ(k) =
αk(t0), Ā(k) according to (2.13) and C(k) = Ck(t0) according to (2.17), we obtain that in
the expansions (2.3) the coefficients α(k)(t) and A(k)(t) are well-defined periodic functions
of period T . Of course this does not settle the problem of convergence of the series (2.3)
and (2.4). This will be discussed in the next Section.
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2.3 Convergence of the series for the subharmonic solutions

Here we shall prove that the formal power series found in Section 2.2 converge for ε small
enough, say for |ε| < ε0 for some ε0 > 0. Then for fixed ε ∈ (−ε0, ε0) we shall find the
range allowed for C by computing the supremum and the infimum, for t0 ∈ [0, 2π) of the
function t0 → C(ε, t0). The bifurcation curves will be defined in terms of the function
C(ε, t0) — cf. (2.4) — as

γ1(ε) = ε sup
t0∈[0,2π)

C(ε, t0), γ2(ε) = ε inf
t0∈[0,2π)

C(ε, t0). (2.18)

In general the functions (2.18) are not analytic in ε. We shall return to this at the end of
the section.

To prove convergence of the series (2.3) and (2.4) it is more convenient to work in
Fourier space. First of all let us define ω = 2π/T = 1/q (note that ω 6= ω(A0)) and
expand

F (α, A, C, t + t0) =
∑

ν,σ∈Z

eiναeiσ(t+t0)Fν,σ(A, C), (2.19)

so that we can write

∂r1

1 ∂r2

2 ∂r3

3 F (ω(A0) t, A0, C0(t0), t + t0)

=
∑

ν∈Z

eiνωt
∑

ν0,σ0∈Z
ν0p+σ0q=ν

eiσ0t0 (iν0)
r1 ∂r2

2 ∂r3

3 Fν0,σ0
(A0, C0(t0)), (2.20)

and an analogous expression can be obtained with the function G replacing F . By the
analyticity assumption on the functions F and G, we have the bounds

∣∣∣∣
∂r2

2 ∂r3

3

r2!r3!
Fν0,σ0

(A0, C0(t0))

∣∣∣∣ ≤ PQr1

1 Qr2

2 e−κ(|ν0|+|σ0|),

∣∣∣∣
∂r2

2 ∂r3

3

r2!r3!
Gν0,σ0

(A0, C0(t0))

∣∣∣∣ ≤ PQr1

1 Qr2

2 e−κ(|ν0|+|σ0|), (2.21)

for suitable positive constants P, Q1, Q2, κ.

We can also define ∂m
2 Uν,σ = δν,0δσ,0∂

mω(A0)/∂Am, and imagine, without loss of gen-
erality, that the constants P and Q2 are such that |∂mω(A0)/∂Am| ≤ m!PQm

2 .

Then, let us write in (2.3)

α(k)(t) =
∑

ν∈Z

eiνωtα(k)
ν , A(k)(t) =

∑

ν∈Z

eiνωtA(k)
ν , (2.22)

so that (2.12) becomes

α(k)
ν =

Φ
(k−1)
ν

iων
+ ω′(A0)

G
(k−1)
ν

(iων)2
, A(k)

ν =
G

(k−1)
ν

iων
, (2.23)
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for all ν 6= 0, whereas for ν = 0 one has

α
(k)
0 = αk(t0) −

∑

ν∈Z
ν 6=0

Φ
(k−1)
ν

iων
− ω′(A0)

∑

ν∈Z
ν 6=0

G
(k−1)
ν

(iων)2
,

A
(k)
0 = Ā(k) −

∑

ν∈Z
ν 6=0

G
(k−1)
ν

iων
= −

Φ
(k−1)
0

ω′(A0)
, (2.24)

with αk(t0) so far arbitrary and Ā(k) given by (2.13). The Fourier coefficients Φ
(k−1)
ν and

G
(k−1)
ν can be read from (2.6), (2.7) and the analogous expression for G(k)(t). Hence one

has Φ
(k−1)
ν = U

(k)
ν + F

(k−1)
ν , where U

(1)
ν = 0,

U (k)
ν = [ω(A) − ω(A0) − ω′(A0) (A − A0)]

(k)
ν

=
∞∑

r2=2

∑

ν1,...,νr2
∈Z

ν1+...+νr2
=ν

∂r2

2

r2!
ω(A0)

∑

k1+...+kr2
=k

ki≥1

A(k1)
ν1

. . . A
(kr2

)
νr2

, (2.25)

where we have set ∂2 = ∂/∂Am, for k ≥ 2, and

F (k)
ν = [F (α, A, C, t + t0)]

(k)
ν =

∞∑

m=0

∑

r1,r2,r3∈Z+

r1+r2+r3=m

∑

ν0,σ0,ν1,...,νr1+r2
∈Z

ν0p+σ0q+ν1+...+νr1+r2
=ν

(iν0)
r1

r1!
eiσ0t0 (2.26)

∂r2

2 ∂r3

3

r2!r3!
Fν0,σ0

(A0, C0(t0))
∑

k1+...+km=k
ki≥1

α(k1)
ν1

. . . α
(kr1

)
νr1

A
(kr1+1)
νr1+1 . . . A

(kr1+r2
)

νr1+r2
C(kr1+r2+1) . . . C(km),

for k ≥ 1, and an analogous definition holds for G
(k)
ν , k ≥ 1.

Furthermore one has

C(k) = −
1

D(t0)
Γ

(k)
0 (2.27)

where

Γ
(k)
0 = [Γ(α, A, C, t + t0)]

(k)
0 =

∞∑

m=0

∑

r1,r2,r3∈Z+

r1+r2+r3=m

∗ ∑

ν0,σ0,ν1,...,νr1+r2
∈Z

ν0p+σ0q+ν1+...+νr1+r2
=0

(iν0)
r1

r1!
eiσ0t0 (2.28)

∂r2

2 ∂r3

3

r2!r3!
Gν0,σ0

(A0, C0(t0))
∑

k1+...+km=k

α(k1)
ν1

. . . α
(kr1

)
νr1

A
(kr1+1)
νr1+1 . . . A

(kr1+r2
)

νr1+r2
C(kr1+r2+1) . . . C(km),

where ∗ means that the term with r1 = r2 = 0 and r3 = 1 has to be discarded — cf.
(2.15).
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Therefore we see from the first equation in (2.24) that it is convenient to fix

αk(t0) =
∑

ν∈Z
ν 6=0

Φ
(k−1)
ν

iων
+ ω′(A0)

∑

ν∈Z
ν 6=0

G
(k−1)
ν

(iων)2
=⇒ α

(k)
0 = 0, (2.29)

so that only the functions A(k)(t) have the zeroth Fourier coefficient.

In particular for k = 1 we find

α(1)
ν =

1

iων

∑

ν0,σ0∈Z
ν0p+σ0q=ν

eiσ0t0Fν0,σ0
(A0, C0(t0)) +

ω′(A0)

(iων)2

∑

ν0,σ0∈Z
ν0p+σ0q=ν

eiσ0t0Gν0,σ0
(A0, C0(t0)),

A(1)
ν =

1

iων

∑

ν0,σ0∈Z
ν0p+σ0q=ν

eiσ0t0Gν0,σ0
(A0, C0(t0)), (2.30)

for ν 6= 0, and

A
(1)
0 = −

1

ω′(A0)

∑

ν0,σ0∈Z
ν0p+σ0q=0

eiσ0t0Fν0,σ0
(A0, C0(t0)), (2.31)

for ν = 0, while by writing

C(1) = −
1

D(t0)

( ∑

ν1,ν2∈Z
ν1+ν2=0

∑

ν0,σ0∈Z
ν0p+σ0q=ν1

eiσ0t0iν0 Gν0,σ0
(A0, C0(t0)) α(1)

ν2

+
∑

ν1,ν2∈Z
ν1+ν2=0

∑

ν0,σ0∈Z
ν0p+σ0q=ν1

eiσ0t0∂2Gν0,σ0
(A0, C0(t0)) A(1)

ν2

)
≡ C1(t0), (2.32)

we can express C(1) in terms of the quantities in (2.30).

In order to study the convergence of the series it is convenient to express all quantities
in terms of trees. The strategy is very simple: one iterates the relations (2.23), (2.24) and
(2.26), which express the coefficients of order k in terms of the coefficients of lower order,
until we are left only with the coefficients of first order, for which the explicit expressions
(2.30), (2.31) and (2.32) are at our disposal. The analysis, although very easy, is rather
technical, so it will be deferred to Appendix B.

Now, we come back to the problem of determining the boundary of the set in the plane
(ε, γ), with γ = εC, in which there are subharmonic solutions of order q/p.

We have to find the solutions of (2.18), that is, solve the equation

0 =
∂

∂t0
C(ε, t0) = C ′

0(t0) + εC ′
1(t0) + ε2C ′

2(t0) + . . . , (2.33)

where C ′
k(t0) = dCk(t0)/dt0.

15



The function t0 → C(ε, t0) is analytic in t0 for all |ε| < ε0 (for which it is defined and
analytic in ε), so that for fixed ε the equation (2.33) can always be solved. It has at least
the two solutions t0 = τ1(ε) and t0 = τ2(ε) corresponding to the absolute minimum and
to the absolute maximum, respectively, of the function C(ε, t0). In general these solutions
are not smooth in ε. This proves Theorem 1.

Suppose now that at the value t0 such that C ′
0(t0) = 0 one has furthermore C ′′

0 (t0) 6= 0.
Note that generically this condition is satisfied. In that case, if τ0 = τ0(ε) is a solution of
(2.33) — τ0 is a point of minimum or maximum for C(ε, t0) — then τ0 must be analytically
close to t0 (by the implicit function theorem). Hence ε → τ0(ε) is an analytic function of
ε, so that also ε → C1(ε) and ε → C2(ε) are smooth (in fact analytic) in ε. Therefore we
can conclude that in general the bifurcation curves are not analytic, although generically
they are. Therefore Theorem 2 also follows.

2.4 Some extensions

The last observation of Section 2.3 suggests how to extend Theorem 2 to obtain smooth
bifurcation curves when Hypothesis 3 fails to be satisfied.

Hypothesis 4 There exists k ≥ 1 such that the functions Cp(t0) are identically constant
in t0 for all p = 0, . . . , k− 1. If tm and tM are the values in [0, 2π) for which the function
Ck(t0) attains its minimum and its maximum, respectively, then C ′′

k (tm)C ′′
k (tM) 6= 0.

The following result extends Theorem 2, as it deals with the case in which the sub-
harmonic Melnikov function does not depend explicitly on t0, that is C ′

0(t0) ≡ 0.

Theorem 3 Consider the system (2.1) and assume that Hypotheses 1, 2 and 4 hold for
the resonant torus with energy A0 such that ω(A0) = p/q. There exist ε0 > 0 and two
functions γ̃1(ε) and γ̃2(ε), analytic for |ε| < ε0, with γ̃1(0) = γ̃2(0) and γ̃1(ε) 6= γ̃2(0) for
all ε 6= 0, such that the two functions

γ1(ε) =

{
max{γ̃1(ε), γ̃2(ε)}, ε > 0,

min{γ̃1(ε), γ̃2(ε)}, ε < 0,
γ2(ε) =

{
min{γ̃1(ε), γ̃2(ε)}, ε > 0,

max{γ̃1(ε), γ̃2(ε)}, ε < 0,
(2.34)

have the same tangent lines at the origin, and (2.1) has at least one subharmonic solution
of order q/p for γ2(ε) ≤ εC ≤ γ1(ε) when ε ∈ (0, ε0) and for γ1(ε) ≤ εC ≤ γ2(ε) when
ε ∈ (−ε0, 0).

The proof follows the same lines as that of Theorem 2. The only difference is that
up to order k − 1 the initial phase is left undetermined. In fact to first order one has
M(t0, C) = M(C) = 0 which fixes C = C0 (by Hypothesis 2). Also to orders k′ =
2, . . . , k − 1 the constants Ck are fixed and are independent of t0 by Hypothesis 4. Then
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we can write C(ε, t0) = C1(ε) + C2(ε, t0), with C1(ε) = C0 + εC1 + . . . + εk−1Ck−1 and
C2(ε, t0) = εk(Ck(t0)+O(ε)), and from order k on the constants Ck are fixed as functions
of t0. Moreover equation (2.33) reduces to 0 = C ′

k(t0) + εC ′
k+1(t0) + . . .. Therefore we

can reason as in the previous case (k = 0) and we find that Ck(t0) has at least two
stationary points t0 = t1 and t0 = t2, corresponding to the minimum point and to the
maximum point, respectively. By Hypothesis 4 also C2(ε, t0) has two stationary points at
τ1(ε) = t1 + O(ε) and τ2(ε) = t2 + O(ε), with τ1(ε) and τ2(ε) analytic in ε for ε small
enough. Then we can define γ̃1(ε) = C(ε, τ1(ε)) and γ̃2(ε) = C(ε, τ2(ε)): by construction,
both γ̃1(ε) and γ̃1(ε) are analytic in ε for ε small enough. If we define γ1(ε) and γ2(ε)
according to (2.34) then the proof of the theorem is achieved.

Note that in this case the definition (2.34) coincides with the general definition (2.18)
for the bifurcation curves. Furthermore, if we assume Hypothesis 3 instead of Hypothesis
4, then one has γ̃1(ε) = γ1(ε) and γ̃1(ε) = γ1(ε), so that also γ1(ε) and γ2(ε) are analytic,
as stated in Theorem 2.

Finally we note that if the functions Ck(t0) are identically constant in t0 for all k ∈ Z+

then one has C(ε, t0) = C(ε). In this case the two curves γ1(ε) and γ2(ε) coincide, and
all values of t0 are allowed. This means that the whole manifold corresponding to the
resonant torus persists. On the other hand the parameter C must be fixed in a very
precise way, as a function of ε, and any small deviation from that value destroys the
torus. This result can be compared with [18, 19], where a similar situation is discussed.

For (ε, γ) inside the set of existence of subharmonic solutions one can investigate how
many of them exist. For p = 1 the initial phase t0 varies in the interval [0, 2πq], where
T0 = 2πq is the period of the unperturbed periodic solution. The function C(ε, t0) has
period 2π in t0, so that it is repeated q times in the interval [0, 2πq]. Hence for any fixed
value |ε| < ε0 and any C strictly between the maximum and the minimum value attained
by the function t0 → C(ε, t0) there are at least 2q values ti, i = 1, . . . , 2q, such that
C = C(ε, ti). If C coincides with either its maximum or its minimum then there are at
least q values ti, i = 1, . . . , q, such that C = C(ε, ti). Therefore we can conclude that,
for p = 1, inside the set of existence of subharmonic solutions there are at least 2q such
solutions, as found in [20], while on the boundary of that set there are q of them.

We can summarise the discussion above in the following statement.

Theorem 4 Under the same assumptions of Theorem 1 assume p = 1. Take |ε| < ε0,
and for such values of ε let ε → γ1(ε) and ε → γ2(ε) be the two bifurcation curves whose
existence is assured by Theorem 1. For min{γ1(ε), γ2(ε)} < γ < max{γ1(ε), γ2(ε)} there
at least 2q subharmonic solutions of order q. If either γ = γ1(ε) or γ = γ2(ε) one has at
least q subharmonic solutions of order q.

Theorem 4 should be compared with Theorem 2.1 in [20].
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2.5 Application to dissipative systems with forcing

Let us consider a one-dimensional system, subject to a conservative force g(x), in the
presence of dissipation and of a periodic forcing. If the periodic forcing and the dissipation
coefficient are both small we can write the equations for the system as

ẍ + g(x) + γẋ = εf(x, t), γ = ε C, (2.35)

where εf(x, t) is the forcing of period 2π and C is a parameter. Assume that both g and
f are analytic in their arguments. If f depends only on t, equation (2.35) reduces to the
equation studied in [43].

Let us assume that the unperturbed system (ε = 0) is Liouville-integrable and
anisochronous. This means that, in action-angle variables, the equations (2.35) can be
written in the form (2.1), and, furthermore, that Hypothesis 1 is satisfied.

We define the subharmonic Melnikov function in terms of the action-angle variable as
in (2.2). To check that Hypothesis 2 is also satisfied we use the following result.

Lemma 1 The subharmonic Melnikov function is invariant under a transformation of
coordinates.

Proof. Consider a system of differential equations in R2

ẋ = f(x) + εg(x, t), (2.36)

and define the subharmonic Melnikov function [52, 41, 20] for a subharmonic solution
x0(t) of period T as

M(t0) =
1

T

∫ T

0

dt
(
f1(x0(t)) g2(x0(t), t + t0) − f2(x0(t)) g1(x0(t), t + t0)

)
. (2.37)

Take the transformation of coordinates ξ → x = h(ξ). In the new coordinates the system
reads

ξ̇ = φ(ξ) + εγ(ξ, t), (2.38)

where φ(ξ) = ∂h−1(h(ξ)) f(h(ξ)) and γ(ξ) = ∂h−1(h(ξ)) g(h(ξ)), and the subharmonic
Melnikov function becomes

M(t0) =
1

T

∫ T

0

dt
(
φ1(ξ0(t)) γ2(ξ0(t), t + t0) − φ2(ξ0(t)) γ1(ξ0(t), t + t0)

)
, (2.39)

where ξ0(t) is the subharmonic solution expressed in the new variables.

By noting that

∂h−1(h(ξ)) = (∂h(ξ))−1 =
1

J

(
∂2h2(ξ) −∂2h1(ξ)
−∂1h2(ξ) ∂1h1(ξ)

)
, (2.40)
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where J = det ∂h = ∂1h1∂2h2 − ∂1h2∂2h1 is the Jacobian of the transformation, one
obtains

M(t0) =
1

T

∫ T

0

dt
1

J

(
(∂2h2f1 − ∂2h1f2) (−∂1h2g1 + ∂1h1g2) −

(−∂1h2f1 + ∂1h1f2) (∂2h2g1 − ∂2h1g2)
)

=
1

T

∫ T

0

dt
1

J
(∂1h1∂2h2 − ∂1h2∂2h1) (f1g2 − f2g1) , (2.41)

where the function h is computed in ξ0(t) and the functions f, g are computed in x0(t) =
h(ξ0(t)). Hence (2.37) yields M(t0) = M(t0), so that the assertion follows.

This means that we can compute the subharmonic Melnikov function for the sys-
tem (2.35) in the coordinates (x, y) = (x, ẋ). In that case the unperturbed vector field
is (y,−g(x)) and the perturbation reads (0,−εCy + εf(x, t)), so that the subharmonic
Melnikov function becomes

M(t0, C) =
1

T

∫ T

0

dt y0(t)
(
− Cy0(t) + f(x0(t), t + t0)

)

= −C〈y2
0〉 + 〈y0f(x0(·), · + t0)〉. (2.42)

Therefore the subharmonic Melnikov function vanishes provided C = C0(t0), where
C0(t0) = (〈y2

0〉)
−1〈y0f(x0(·), · + t0)〉, which is well-defined because 〈y2

0〉 > 0. Moreover
one has ∂M(t0, C)/∂C = −〈y2

0〉 6= 0. Therefore Hypothesis 2 is also satisfied, and Theo-
rem 2 applies to the system (2.35).

We can state our result as follows.

Theorem 5 Consider the system (2.35) and assume that Hypothesis 1 holds for the in-
variant torus with energy A0 such that ω(A0) = p/q. There exist ε0 > 0 and two con-
tinuous functions γ1(ε) and γ2(ε), with γ1(0) = γ2(0), γ1(ε) ≥ γ2(ε) for ε ≥ 0 and
γ1(ε) ≤ γ2(ε) for ε ≤ 0, such that (2.35) has at least one subharmonic solution of pe-
riod 2πp for γ2(ε) ≤ εC ≤ γ1(ε) when ε ∈ (0, ε0) and for γ1(ε) ≤ εC ≤ γ2(ε) when
ε ∈ (−ε0, 0).

Of course Theorem 5 is a corollary of Theorem 1. It should be compared with Corollary
2.3 in [20] (cf. also [43]). Our result is stronger as it requires, in Chow and Hale’s
notations, only Hypothesis (H1), which corresponds to our Hypothesis 1. If one assumes
also Hypothesis (H4) of [20], which corresponds to our Hypothesis 3, then Theorem 2
applies, and the result of [20] is recovered.

One expects that, in the case of system (2.35), the two bifurcation curves γ1(ε) and
γ2(ε) contain the real axis, that is min{γ1(ε), γ2(ε)} ≤ 0 ≤ max{γ1(ε), γ2(ε)}. Indeed for
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γ = 0 the equation (2.35) describes a quasi-integrable Hamiltonian system, and existence
of periodic solutions is well known in this case, at least under some non-degeneracy con-
dition on the unperturbed system, such as Hypothesis 1. If C0(t0) is not zero then it is
easy to check that the set of existence of subharmonic solutions includes the real axis.
This follows from the following result.

Lemma 2 The function C0(t0) has zero mean.

Proof. Call

F (x0(t)) =

∫ 2π

0

dt0
2π

f(x0(t), t + t0) =

∫ 2π

0

dt0
2π

f(x0(t), t0). (2.43)

By (2.42) the mean (with respect to t0) of C0(t0) is

∫ 2π

0

dt0
2π

C0(t0) =
1

〈y2
0〉

∫ 2π

0

dt0
2π

∫ T

0

dt

T
ẋ0(t)f(x0(t), t + t0)

=

∫ T

0

dt

T
ẋ0(t)F (x0(t)), (2.44)

which vanishes, as the integrand can be written as a total derivative with respect to t.

In particular Lemma 2 implies that if C0(t0) is not identically constant then its maxi-
mum is strictly positive and its minimum is strictly negative, hence max{γ1(ε), γ2(ε)} > 0
and min{γ1(ε), γ2(ε)} < 0.

To extend the same result to the case in which the functions Ck′(t0) are identically
constant in t0 for all k′ ≤ k − 1, with k ≥ 1 arbitrarily high, is more delicate, and it
requires some work. The result is the following one.

Lemma 3 Assume that for some k̄ ∈ Z+ the coefficients Ck′(t0) vanish identically for all
k′ = 0, . . . , k̄ − 1. Then Ck̄(t0) has zero mean in t0.

The proof is given in Appendix C, and relies on the tree formalism introduced in
Appendix B — which one should refer to for notations.

We shall also need the following result.

Lemma 4 Assume that for some k̄ ∈ Z+ the coefficients Ck′(t0) are identically constant
for all k′ = 0, . . . , k̄ − 1. Then Ck′(t0) ≡ 0 for all k′ = 0, . . . , k̄ − 1.

Proof. The proof is by induction. Fix 0 ≤ k < k̄, and assume that Ck′(t0) ≡ 0 for all
k′ ≤ k − 1. Then by Lemma 3 the function Ck(t0) has zero mean. Since it is constant by
hypothesis then Ck(t0) ≡ 0.
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Let k ∈ Z+ be such that Ck′(t0) is identically constant in t0 for k′ = 0, . . . , k − 1
whereas Ck(t0) depends explicitly on t0. If k = 0 this simply means that C0(t0) depends
explicitly on t0. By Lemma 4 one has Ck′(t0) ≡ 0 for all k′ ≤ k − 1, and by Lemma
4 the function Ck(t0) has zero mean in t0. Since Ck(t0) is not identically constant then
supt0∈[0,2π) Ck(t0) > 0 and inft0∈[0,2π) Ck(t0) < 0. Furthermore, in such a case C(ε, t0) =

εk(Ck(t0) + O(ε)), so that also

sup
t0∈[0,2π)

C(ε, t0) > 0, inf
t0∈[0,2π)

C(ε, t0) < 0, (2.45)

for ε small enough. If we recall the definition (2.18) of the bifurcation curves we can
formulate the following result.

Theorem 6 Under the same assumptions of Theorem 5 let ε → γ1(ε) and ε → γ2(ε) be
the two bifurcation curves whose existence is assured by Theorem 5. One has γ1(ε) ≥ 0 ≥
γ2(ε) for ε ∈ (0, ε0) and γ1(ε) ≤ 0 ≤ γ2(ε) for ε ∈ (−ε0, 0).

As (2.45) shows, if there is k ≥ 0 such that Ck′(t0) ≡ 0 for k′ = 0, . . . , k − 1 and
Ck(t0) 6= 0, then one has the strict inequalities γ1(ε) > 0 > γ2(ε) for ε ∈ (0, ε0) and
γ1(ε) < 0 < γ2(ε) for ε ∈ (−ε0, 0). On the contrary if all Ck vanish identically, so that
the full function C(ε, t0) has to be zero, then γ1(ε) = γ2(ε) = 0.

Therefore Theorems 5 and 6 show that any one-dimensional anisochronous mechanical
system, when perturbed by a periodic forcing and in the presence of dissipation, up to
the exceptional cases in which the functions Ck(t0) are constant — and hence vanish, by
Lemma 4 — in t0 for all k ∈ Z+, admits subharmonic solutions of all orders, without any
assumption on the perturbation, — a result which does not follow from the analysis of
[43, 20].

The case that all the functions Ck(t0) are identically constant in t0 is really exceptional.
This can be appreciated by the following argument. If the function C(ε, t0) does not
depend on t0 then not only, by Lemma 4, it must vanish identically, i.e. C(ε, t0) = C(ε) ≡
0, but we find also that t0 is left undetermined. In other words the periodic solution
persists for all values of t0. This means that if we take the system (2.35) with γ = 0, so
that it becomes an autonomous quasi-integrable Hamiltonian system, with no dissipation
left, the full resonant torus with frequency ω = p/q persists under perturbation. This
situation is certainly unlikely, even if not impossible in principle. For instance one can
take the system described by the Hamiltonian

H(x, y, t) =
1

2
y2 +

1

4
x4 + εf(t)

(
1

2
y2 +

1

4
x4 − E

)2

, (2.46)

with E corresponding to the unperturbed solution (x0(t), y0(t)) with frequency ω. Then
such a solution still satisfies the corresponding Hamilton equations for all values of ε and
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for all values of the initial phase t0: that is the full resonant torus with frequency ω
persists. In particular if ω = p/q is rational, so that the frequency of the unperturbed
solution becomes commensurate with the frequency 1 of the perturbing potential f , the
corresponding torus is resonant.

It is important to stress that if we look for a subharmonic solution which continues
some unperturbed periodic solution with a given period T = 2πq/p it is not so rare
that the corresponding integral 〈y0f(x0(·), · + t0)〉 identically vanishes. In fact, if f is a
trigonometric polynomial (which is often the case in physical applications) this happens
for all p/q but a finite set of values. An explicit example has been considered in [1]. In
these cases the subharmonic Melnikov function does not depend on t0 and it is linear in
C: hence (2.42) can be satisfied only by taking C0(t0) ≡ 0. Then, it becomes essential to
go to higher orders of perturbation theory to study for which values of C a subharmonic
solution of order q/p appears. Again, we refer to [1] for a situation in which one must
perform a higher order analysis to explain the numerical findings.

3 Melnikov theory in degenerate cases

3.1 Statement of the results

The Melnikov theory [41] considers systems which, in suitable coordinates, can be written
as in (2.1), without the parameter C:

{
α̇ = ω(A) + εF (α, A, t),

Ȧ = εG(α, A, t),
(3.1)

where all notations are as explained after (2.1). Define the subharmonic Melnikov function
as

M(t0) =
1

T

∫ T

0

dt G(α0(t), A0(t), t + t0), (3.2)

and set M ′(t0) = dM(t0)/dt0. Here and henceforth A0(t) = A0 and α0(t) = ω(A0)t.

We can repeat the analysis of formal solvability in Section 2.2, with some adaptations
due to the fact that no extra parameters C(k) are at our disposal to any perturbation
orders.

In particular to first order one needs M(t0) = 0, so that t0 must be a zero for the
subharmonic Melnikov function. This suggests, as done in the first part of the paper,
that we write the system (3.1) in the form

{
α̇ = ω(A) + εF (α, A, t + t0),

Ȧ = εG(α, A, t + t0),
(3.3)

in such a way that we can set equal to zero the initial angle of the unperturbed solution
to be continued, as done after (3.2).
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To higher orders we can write

G(k)(α(t), A(t), C, t + t0) = ∂1G(α0(t), A0, t + t0) ᾱ(k) + Γ(k)(α(t), A(t), t + t0), (3.4)

where the function Γ(k)(α(t), A(t), t + t0) depends on the corrections ᾱ(k′) to the initial
phase, only with k′ < k.

To any perturbation order k the constant ᾱ(k) is left undetermined. Anyway we are
no longer free to fix it equal to some arbitrary value, for instance zero, as we no longer
have the constants C(k) as free parameters. Hence we shall need the corrections ᾱ(k) to
assure solvability of the equations of motion to any order. This will be possible in the
light of the following result.

Lemma 5 One has ω(A0)〈∂1G(α0(·), A0, · + t0)〉 = −M ′(t0).

Proof. One has

d

dt
G(α0(t), A0, t + t0) = ω(A0) ∂1G(α0(t), A0, t + t0) +

∂

∂t0
G(α0(t), A0, t + t0), (3.5)

where we have used the fact that Ȧ0(t) = 0 and α̇0(t) = ω(A0). If we integrate (3.5) over
a period we obtain

0 =
1

T

∫ T

0

dt
d

dt
G(α0(t), A0, t + t0)

= ω(A0)〈∂1G(α0(·), A0, · + t0)〉 +
∂

∂t0
〈G(α0(·), A0, · + t0)〉, (3.6)

so that

ω(A0)〈∂1G(α0(·), A0, · + t0)〉 = −
∂

∂t0
〈G(α0(·), A0, · + t0)〉 = −M ′(t0). (3.7)

Hence the assertion follows.

We shall call, slightly improperly, the constants ᾱ(k) the corrections to the initial phase.
Indeed, we can either fix the initial phase t0 and change of the initial value α(0) of the
angle variable α(t) or leave t0 as a free parameter to be modified at each order and set
ᾱ(k) = 0 for all k ≥ 1. The two procedures are completely equivalent, and we shall find
more convenient to choose the first one.

Thus, if we impose the condition that t0 be a simple zero for the subharmonic Mel-
nikov function we find that in (3.4) the mean of the derivative ∂1G(α0(t), A0, t + t0) is
different from zero, and this allows us to fix ᾱ(k) in such a way as to make the mean of
G(k)(α(t), A(t), t + t0) vanish. Hence, by fixing the constants Ā(k) as explained in Section
2.2 and the constants ᾱ(k) as stated above, we find that a solution in the form of a formal
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power series in ε exists. The convergence of the series, hence the existence of an analytic
solution, can be proved by reasoning as in Section 2.3. We do not repeat the analysis,
which would essentially be a word for word copy of what was done in Section 2.3.

In conclusion, we have proved the following result — well-known in the literature [41].

Theorem 7 Consider the resonant torus with frequency ω = p/q for the system (3.1)
with ε = 0, and assume that t0 is a simple zero for the subharmonic Melnikov function
(3.2) corresponding to such a frequency. There exists ε0 > 0 such that for |ε| < ε0 the
system (3.1) has at least one subharmonic solution of order q/p. Such a solution reduces
to one on the unperturbed torus as ε → 0.

However, our analysis permits us to generalise the result above. Define

M0(t0) = M(t0), Mk(t0) = 〈G(k)(α(·), A(·), ·+ t0)〉, k ∈ N, (3.8)

where the notations of (3.4) have been used. We note since now that if Mk′(t0) vanishes
identically for all k′ = 0, 1, . . . , k−1, then also Mk(t0) is well-defined; this will be explicitly
proved in Section 3.2. We refer to the functions Mk(t0) as the higher order subharmonic
Melnikov functions. The following result follows.

Theorem 8 Consider the resonant torus with frequency ω = p/q for the system (3.1)
with ε = 0. Assume that the functions Mk′ are identically zero for all k′ = 0, 1, . . . , k− 1,
and assume that t0 is a simple zero for the function Mk. There exists ε0 > 0 such that
for |ε| < ε0 the system (3.1) has at least one subharmonic solution of order q/p. Such a
solution reduces to one on the unperturbed torus as ε → 0.

The proof is given in Section 3.2.

Of course, the system (2.1) can also be studied as illustrated in this section. One
simply treats the parameter C as fixed, and one fixes the initial phase t0 in such a way
that Theorem 7 or Theorem 8 can be applied — of course, provided the corresponding
hypotheses are satisfied. This has been done in [1] to study the subharmonic solutions of
a forced cubic oscillator in the presence of dissipation.

We also note that, as a particular case of Theorem 8, it can happen that Mk ≡ 0 for
all k ∈ Z+. In that case formal solvability of the equations holds to all orders, and the
convergence of the series requires no condition on t0, and it can be proved by proceeding
as in Section 3.2. In particular in such a case the full resonant torus persists under pertur-
bation. Of course, the identical vanishing of all functions Mk is a very unlikely situation,
and, without any further parameter at our disposal, we cannot realistically expect this to
happen. This shows that the persistence of the full torus when the subharmonic Melnikov
function is identically zero is a very rare event.

Theorems 7 and 8 deal with the case in which M(t0) either vanishes identically or has a
simple zero in some value of t0. Another possibility is that M(t0) = 0 for some t0, and yet
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t0 is not a simple zero. In that case the vanishing of the subharmonic Melnikov function
allows pushing perturbation theory in ε up to first order (included), as the following result
shows.

Lemma 6 Set (α0(t), A0(t)) = (ω(A0)t, A0), with ω(A0) = p/q. Assume ω′(A0) 6= 0.
Consider the subharmonic Melnikov function M(t0) in (3.2), and assume that t0 is a zero
for M(t0). Then there exist two periodic functions α1(t) and A1(t), with 〈α1〉 = 0 and
ω′(A0)〈A1〉+〈F 〉 = 0, such that (α0(t)+εα1(t), A0 +εA1(t)) solves (3.3), up to first order
in ε.

Proof. By substituting (α0(t)+εα1(t), A0+εA1(t)) into the equations of motion one finds,
to first order in ε,

α̇1 = ω′(A0) A1 + F, Ȧ1 = G, (3.9)

where F = F (α0(t), A0, t + t0) and G = G(α0(t), A0, t + t0). Then M(t0) = 0 implies
〈G〉 = 0, so that the second equation in (3.9) can be solved. We write its solution as

A1(t) = 〈A1〉+Ã1(t), with 〈Ã1〉 = 0, and fix 〈A1〉 in such a way that ω′(A0)〈A1〉+〈F 〉 = 0,
so that also the first equation becomes soluble. Call α1(t) the corresponding zero-mean
solution. Then the assertion follows.

However, if the zero of the subharmonic Melnikov function is not simple, perturbation
theory cannot be pursued further in general, as is easy to check. More generally if the
higher order subharmonic Melnikov functions Mk defined in (3.8) vanish identically for all
k up to some order k̄−1, perturbation theory can be worked out up to order k̄−1, but then
it can be continued to higher order along the lines outlined before (cf. Theorem 8) only if
Mk̄ has a simple zero. Then, when the zero is not simple, one can ask whether some kind
of perturbation theory is still possible or even, more generally, whether a subharmonic
solution exists at all. We shall see that, at least with some extra assumptions, a positive
answer can be given to both questions. We start with the case in which M(t0) has a
non-simple zero t0. Introduce the constant

a1 := 〈∂1G(α(·), A0, · + t0) α1(·) + ∂2G(α(·), A0, · + t0) A1(·)〉, (3.10)

expressed in terms of the functions α1 and A1 introduced in the statement of Lemma 6.
Then we can formulate the following result.

Theorem 9 Consider the system (3.1) and assume that A0 be such that ω := ω(A0) = p/q
and ω′(A0) 6= 0. Define the subharmonic Melnikov function according to (3.2), with
(α0(t), A0(t)) = (ωt, A0). Assume that
(i) there exists k0 ≥ 0 such that the derivatives dkM(t0)/dtk0 are identically zero for all
k = 0, 1, . . . , k0 − 1, while D := dk0M(t0)/dtk0

0 6= 0;
(ii) one has a1 6= 0.
Then there exists ε0 > 0 such that the following assertions hold.
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(1) If k0 is odd, then for |ε| < ε0 the system (3.1) has at least one subharmonic solution
of order q/p, which is analytic in |ε|1/k0.
(2) If k0 is even and εa1D < 0, then for |ε| < ε0 the system (3.1) has at least one
subharmonic solution of order q/p, which is analytic in |ε|1/k0.

The proof of Theorem 9 will be given in Section 3.3. An example in which the
conditions (i) and (ii) in Theorem 9 are satisfied is provided by (3.1) with ω(A) = A,
F (α, A, t) = 8 sin α sin t and G(α, A, t) = sin2 α (4 cos2 t − 1). An easy computation gives
M(t0) = sin2 t0 and a1 = −1; see Appendix D. In that case one needs ε > 0 in (3.1) in
order to have a subharmonic solution which reduces to one of the unperturbed ones as
ε → 0; again see Appendix D.

The condition a1 6= 0 aims to fix the first correction to the initial phase by the second
order analysis; cf. the analogous condition in [27], where fractional Lindstedt series were
proved to exist for lower-dimensional tori. Therefore, it is a simplifying hypothesis, which
certainly can be relaxed. We leave as an open problem to find the most general assumption
on the perturbation in order to have a subharmonic solution. Note that, in general, some
condition is expected to be necessary: for instance in the aforementioned example no
subharmonic solution can exist for ε < 0. However the example corresponds to a case in
which the subharmonic Melnikov function has a zero of even order. We expect that no
condition at all is required on the perturbation when the zero is of odd order; cf. [56].

On the other hand Theorem 9 is stronger than Theorem 4 of [56], when applied to a
model for which a1 6= 0. Indeed, it deals also with the case in which t0 is a zero of even
order. Moreover it makes precise the dependence on the perturbation parameter of the
change of phase of the persisting unperturbed periodic solution: it indicates that this is
analytic in |ε|1/k0 , i.e. in a fractional power of ε (from [56] we can only deduce that for a
suitable change of phase, tending to 0 as ε tends to 0, a subharmonic solution exists).

As already noted, we can imagine cases in which the functions Mk′ are identically
zero for all k′ = 0, 1, . . . , k̄ − 1, while Mk̄ has a zero t0 which is not simple. In that case
we define ak̄ analogously to what was done in (3.10), by considering the contributions to
G(α, A, t + t0) to order k̄ which do not depend on the mean of α(t), i.e. which can be

obtained by imposing α
(k′)
0 = 0 for all k′ = 1, . . . , k̄−1. Then the following generalization

of Theorem 9 holds.

Theorem 10 Consider the system (3.1) and assume that A0 be such that ω := ω(A0) =
p/q and ω′(A0) 6= 0. Define the higher order subharmonic Melnikov functions according
to (3.8), with (α0(t), A0(t)) = (ωt, A0) and (α(k′)(t), A(k′)(t)) recursively defined for k′ =
1, . . . , k̄ − 1. Assume that
(i) the functions Mk′ are identically zero for all k′ = 0, 1, . . . , k̄ − 1,
(ii) there is k0 ≥ 0 such that the derivatives dkMk̄(t0)/dtk0 are identically zero for all
k = 0, 1, . . . , k0 − 1, while D := dk0Mk̄(t0)/dtk0

0 6= 0;
(ii) one has ak̄ 6= 0.
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Then there exists ε0 > 0 such that the following assertions hold.
(1) If k0 is odd, then for |ε| < ε0 the system (3.1) has at least one subharmonic solution
of order q/p, which is analytic in |ε|1/k0.
(2) If k0 is even and εak̄D < 0, then for |ε| < ε0 the system (3.1) has at least one
subharmonic solution of order q/p, which is analytic in |ε|1/k0.

The proof can be obtained with a little effort by combining the proof of Theorem 8
with that of Theorem 9, up to some preliminary considerations which will be discussed
in Section 3.4.

3.2 Higher order subharmonic Melnikov functions

To prove Theorem 8 we start by showing that the perturbation series for the subharmonic
solutions, hence also for the higher order subharmonic Melnikov functions, are well defined.
First of all, we need the following preliminary result.

Lemma 7 Consider a T -periodic function F of the form F (ωt, A0, t+ t0), with ω and A0

constants, and denote with 〈F 〉 the mean over a period T . If 〈F 〉 vanishes identically in
t0 then also 〈∂n

1 ∂m
2 F 〉 = 0 for all t0 and for all n, m ∈ Z+.

Proof. The proof is by induction on n. For n = 0 one has 〈∂m
2 F 〉 = ∂m

2 〈F 〉 = 0. Next,
assume that 〈∂n−1

1 ∂m
2 F 〉 = 0. Then ω〈∂n

1 ∂m
2 F 〉 = ω〈∂1(∂

n−1
1 ∂m

2 F )〉 = 〈d(∂n−1
1 ∂m

2 F )/dt〉 −
〈∂3(∂

n−1
1 ∂m

2 F )〉 = −〈∂3(∂
n−1
1 ∂m

2 F )〉 = ∂3〈∂
n−1
1 ∂m

2 F 〉 = 0, by the inductive hypothesis.

We use Lemma 7 to show that, if ω = ω(A0) = p/q and ω′(A0) 6= 0, the perturbation
series for the subharmonic solutions of (3.3) of order q/p are well defined.

We look for a solution of (3.3) in the form (2.3) of a power series in ε. To any order
k the functions α(k)(t) and A(k)(t) are well defined, and given by (2.12), provided the
compatibility conditions (2.10) and (2.11) are satisfied. We can rewrite (2.11), hence the
second line of (2.24), as

ω′(A0) A
(k)
0 + Φ

(k−1)
0 = 0, (3.11)

where, by construction, the function Φ
(k)
0 depends on the constants α

(k′)
0 and A

(k′)
0 only

for k′ < k. Hence, we can use (3.11) to deduce A
(k)
0 in terms of the constants of lower

order.

To any order k the function G(k)(t) can be expressed in terms of the functions α(k′)(t)

and A(k′)(t), with k′ < k, hence it will depend on the constants α
(k′)
0 and A

(k′)
0 , with k′ < k.

For k ≥ 1 call Ω(k)(t) the function obtained from G(k)(t) by setting α
(k′)
0 = A

(k′)
0 = 0 for

all k′ = 1, . . . , k, and set Ω(0)(t) = G(0)(t). The following result holds.
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Lemma 8 For any k ≥ 1 we can write 〈G(k)〉 as

〈G(k)〉 =
∞∑

n,m=0

k∑

k0=0

∑

k1,...,kn+m≥1
k1+...+kn+m=k

Z(k)
n,m

1

n!

1

m!
〈∂n

1 ∂m
2 Ω(k0)〉α

(k1)
0 . . . α

(kn)
0 A

(kn+1)
0 . . . A

(kn+m)
0 , (3.12)

where Z
(k)
n,m are suitable combinatorial factors, and the term with n = m = 0 (which forces

k0 = 0) has to be interpreted as 〈Ω(k)〉 = Ω
(k)
0 .

The proof is given in Appendix E. Note that in fact th sum over n and m in (3.12)
contains only a finite number of summands. Hence for any k ≥ 2 we can rewrite 〈G(k−1)〉
in (2.10) according to (3.12).

Suppose that 〈G(0)〉 = M(t0) vanishes identically. Then the initial phase t0 remains

arbitrary and, by fixing A
(1)
0 according to (3.11) in terms of t0, the functions α(1)(t) and

A(1)(t) are well defined. Moreover the constant α
(1)
0 is left undetermined. In particular,

M1(t0) = 〈G(1)〉 is also well defined as it is expressed in terms of the functions α(1)(t)
and A(1)(t). Suppose that also M1(t0) is identically zero; note that by Lemma 7 one

has M1(t0) = Ω
(1)
0 , so that the vanishing of M1(t0) does not depend on the value of the

constant α
(1)
0 . Then we can fix A

(2)
0 from (3.11) in terms of t0 and the parameter α

(1)
0 , and

solve the equations of motion to second order to obtain α(2)(t) and A(2)(t). Note that so

far t0, α
(1)
0 and α

(2)
0 are still arbitrary.

In the same way, for all k′ as far as Mk′(t0) = 〈G(k′)〉 is identically zero, the equations of

motion can be solved, independently of the value of t0 and of the constants α
(1)
0 , . . . , α

(k′−1)
0 ,

which all remain arbitrary. Again, for this to be possible each constant A
(k′)
0 has to be

fixed from (3.11) in terms of t0 and of the constants α
(1)
0 , . . . , α

(k′−1)
0 , while α

(k′)
0 is left

undetermined. Note that, again by Lemma 7, one has Mk′(t0) = Ω
(k′)
0 for all such k′: this

makes the property that the functions Mk′ vanish identically to be independent of the

values of the constants α
(1)
0 , . . . , α

(k′−1)
0 .

Now, suppose that Mk′(t0) vanishes identically for k′ up to k − 1, and that instead

Mk(t0) has a simple zero — i.e. D := M ′
k(t0) 6= 0. Then Mk(t0) = Ω

(k)
0 (by Lemma 7),

and again the equations of motion to order k can be solved as in the previous cases. The
only difference is that now t0 must be fixed to be the simple zero of Mk(t0); the constants

α
(1)
0 , . . . , α

(k)
0 are still arbitrary parameters, while for k′ = 1, . . . , k each constant A

(k′)
0 is

fixed in terms of t0 and of the parameters α
(1)
0 , . . . , α

(k′−1)
0 .

Now we pass to the next order k + 1. By Lemma 7 we can write 〈G(k+1)〉 =

〈∂1Ω
(k)〉α

(1)
0 +〈∂2Ω

(k)〉A
(1)
0 +Ω

(k+1)
0 = 0, where we recall that A

(1)
0 depends only on t0. More-

over one has ω(A0)〈∂1Ω
(k)〉 = 〈dΩ(k)/dt〉−〈∂Ω(k)/∂t0〉 = −∂〈Ω(k)〉/∂t0 = −∂〈G(k)〉/∂t0 =

−M ′
k(t0) = −D 6= 0. Hence we can fix α

(1)
0 in terms of t0.
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And so on: for all higher orders k′ ≥ k +2 one can write 〈G(k′)〉 as in (3.12). By using

Lemma 7 once more we see that the sum contains a term 〈∂1Ω
(k)〉α

(k′−k)
0 plus other terms

which depend on the parameters α
(k′′)
0 only for k′′ < k′ (hence which have been fixed in

terms of t0 at some previous step). Hence we can fix also α
(k′−k)
0 in terms of t0.

This shows that the formal series (2.3) are well defined. In particular this yields that
the higher order subharmonic Melnikov functions are also well defined. Of course, we have
still to prove convergence of the series. But this can be done as in the proof of Theorem
7, by using trees, and we shall not repeat the analysis.

3.3 Fractional series for subharmonic solutions

In this Section we prove Theorem 9. Set ε = σηk0 , with η > 0 and σ ∈ {±1} to be fixed.
We shall look for solutions of (3.3) of the form

α(t) = α0(t)+
∞∑

k=1

ηkα
[k]
0 +

∞∑

k=k0

ηk
∑

ν∈Z
ν 6=0

eiνωtα[k]
ν , A(t) = A0+

∞∑

k=k0

ηk
∑

ν∈Z

eiνωtA[k]
ν , (3.13)

where a different notation for the Taylor label is used with respect to (2.3) to stress that
we are expanding in η and not in ε. Then (3.3) becomes, for all k ≥ 1 and ν 6= 0,

(iων)2α[k]
ν = (iων)Φ[k]

ν + ω′(A0) Γ[k]
ν

, (iων)A[k]
ν = Γ[k]

ν , (3.14)

provided one has
ω′(A0) A

[k]
0 + Φ

[k]
0 = 0, Γ

[k]
0 = 0, (3.15)

for all k ≥ 1 and for ν = 0. In (3.14) and (3.15) we have defined

Φ = ω(A)− ω(A0)− ω′(A0) (A−A0) + εF (α, A, t + t0), Γ = εG(α, A, t + t0), (3.16)

and denoted by Φ
[k]
ν and Γ

[k]
ν the Fourier component with label ν of the contribution of

order k in η of the function Φ and Γ, respectively; cf. for instance (2.25) for analogous
notations. Note that in (3.16) the parameter ε must be expressed in terms of η as ε = σηk0.

In (3.15) it is convenient to write

Φ̃
[k]
0 := ω′(A0) A

[k]
0 + Φ

[k]
0 = 0, (3.17)

where by construction Φ
[k]
0 can depend on the constants A

[k′]
0 only for k′ < k.

Before proving that a solution of the form (3.11) really exists, we need a preliminary
result which generalises Lemma 5.

Lemma 9 One has (−ω(A0))
j〈∂j

1G(α0(·), A0, · + t0)〉 = djM(t0)/dtj0 for all j ∈ Z+.
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The proof is omitted as it can be easily obtained by induction on j, by reasoning as
in the proof of Lemma 5.

The identities (3.15) are satisfied for k < k0 because Φ and Γ are of order ε = O(ηk0);

see (3.16). In particular for all k < k0 one has A
[k]
0 = 0, while the parameters α

[k]
0 can

assume any value.

For k = k0 the identities (3.15) can be obtained by fixing t0 so that M(t0) = 0 and

choosing A
[k0]
0 according to (3.17). The parameter α

[k]
0 , so far, remains arbitrary.

For k0 < k < 2k0 the identities Γ
[k]
0 = 0 are still satisfied by the assumption (i) on

M(t0), by Lemma 9 and by the observation that the first constant A
[k]
0 to be non-vanishing

is that with k = k0. The identities Φ̃
[k]
0 = 0 can be made to hold by fixing recursively the

constants A
[k]
0 when equating to zero the right hand side of (3.17).

For k = 2k0 again the identity Φ̃
[2k0]
0 = 0 can be easily imposed by suitably choosing

A
[2k0]
0 . The identity Γ

[2k0]
0 = 0 can be dealt with as follows. By using the assumptions on

M(t0) and Lemma 9 we can write

Γ
[2k0]
0 =

1

k0!
D(α

[1]
0 )k0 + σa1 = 0, (3.18)

where a1 is defined according to (3.10). Note that up to order 2k0 − 1 the solution (3.13)
equals the solution obtained from the naive perturbation theory in ε up to first order, up
to the values of the parameters α

[k]
0 , which now are arbitrary and which, in any case, do

not appear in a1. Therefore, since D 6= 0 by assumption (i), we can use (3.18) to fix α
[1]
0

as

α
[1]
0 =

(
−

k0!σa1

D

)1/k0

, (3.19)

provided this expression makes sense. If k0 is odd then we can fix both σ = 1 and σ = −1:
as ε = σηk0, this means that both the cases ε > 0 and ε < 0 can be taken into account.
On the contrary if k0 is even we are forced to fix σ in such a way that σa1D < 0, and, as a
consequence, only either positive or negative values of ε can be considered. This justifies
the different assertions for odd k0 and even k0 in the statement of the theorem.

To go to higher orders k > 2k0 simply note that the identities Φ̃
[k]
0 = 0 can be obtained

once more by suitably fixing A
[k]
0 . On the other hand the identities Γ

[k]
0 = 0 can be obtained

by writing

Γ
[k]
0 =

1

(k0 − 1)!
D(α

[1]
0 )k0−1α

[k−2k0+1]
0 + Γ̃

[k]
0 , (3.20)

where Γ̃
[k
0 , by construction, can depend on the constants α

[k′]
0 only for k′ < k − 2k0 + 1.

Hence we can use (3.20) to fix α
[k−2k0+1]
0 for k > 2k0 as

α
[k−2k0+1]
0 = −

(k0 − 1)!

D(α
[1]
0 )k0−1

Γ̃
[k]
0 , (3.21)
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provided, of course, α
[1]
0 6= 0. But this follows from assumption (ii) — indeed such an

assumption was made exactly with this aim.

We can summarise the discussion as follows. If we fix α
[1]
0 according to (3.19) and set

A
[k]
0 = −

1

ω′(A0)
Φ

[k]
0 , k ≥ k0, α

[k]
0 = −

(k0 − 1)!

D(α
[1]
0 )k0−1

Γ̃
[k+2k0−1]
0 , k ≥ 2, (3.22)

then we can find a 2π/ω-periodic solution of (3.3) in the form of a formal power series in
η. The convergence of the series can be discussed exactly as in Section 2.3 and Appendix
B, and no further difficulties arise.

3.4 Fractional series when the subharmonic Melnikov function

is zero

Theorem 10 can be proved essentially by reasoning as for Theorem 8. The main difference
is that we have to take into account the recursion scheme envisaged in Section 3.3 to deal
with the case in which the subharmonic Melnikov function has a zero with is not simple.

So, we look for solutions of the form (3.13) instead of (2.3). As in Section 3.2, the
equations of motion can be solved to any order provided the compatibility conditions
(3.15) are satisfied.

Note that the higher order subharmonic Melnikov functions can be expressed as
Mk(t0) = 〈G[kk0]〉. For all k ≥ k0 + 1 one can write 〈G[k]〉 as

〈G[k]〉 =
∑

n,m=0

k∑

k̃=0

∑

k1,...,kn+m≥1

k1+...+kn+m=k−k̃

Z(k)
n,m

1

n!

1

m!
〈∂n

1 ∂m
2 Ω[k̃]〉α

[k1]
0 . . . α

[kn]
0 A

[kn+1]
0 . . . A

[kn+m]
0 (3.23)

where the function Ω[k] is obtained from G[k] by setting α
[k′]
0 = A

[k′]
0 = 0 for all 1 ≤ k′ < k

— see (3.12) in Section 3.2 for analogous notations — and the term with n = m = 0

has to be interpreted as Ω
[k]
0 . The proof of (3.23) proceeds as that of Lemma 9 given in

Appendix E.

By assumption one has 〈G[kk0]〉 = 0 for all k = 1, . . . , k̄ − 1, hence, because of Lemma
7, also 〈∂n

1 ∂m
2 G[kk0]〉 = 0 for all k = 1, . . . , k̄−1 and all n, m ∈ Z+. Note that in principle,

the property that all functions Mk′ vanish up to order k′ = k̄ − 1 could be ill-posed,
because of the presence of the arbitrary constants α

[1]
0 , . . . , α[k])0, but we shall see, thanks

to (3.23), that in fact such a property holds independently of the values of these constants.

For 1 ≤ k < k0 the functions Φ̃[k] and Γ[k] are identically zero, so that for all k =
1, . . . , k0 − 1 one obtains α

[k]
ν = 0 for ν 6= 0 and A

[k]
ν = 0 for all ν, according to (3.13).

Moreover the constants α
[1]
0 , . . . , α

[k0−1]
0 remain arbitrary, as well as t0.
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To order k0 one has 〈G[k0]〉 = 〈G(1)〉 = 0 for all t0, by assumption. Again the equations

of motion can be solved, provided A
[k0]
0 is suitably fixed in terms of t0 according to (3.17).

On the contrary α
[k0]
0 is not fixed, and gives another arbitrary constant.

When considering the following orders k0 < k < k̄k0−1 we can reason essentially in the
same way. The equations of motion can be solved to any order, independently of the value
of the constants α

[1]
0 , . . . , α[k−k0], because for 1 ≤ k ≤ k̄− 1 one has 〈Ω[kk0]〉 = 〈G[kk0]〉 = 0

by assumption, hence 〈∂n
1 ∂m

2 Ω[kk0]〉 = 0 for all n, m ∈ Z+ by Lemma 7.

Therefore up to order k̄k0 − 1 the initial phase t0 and the constants α[1], . . . , α[k̄k0−1]

are still arbitrary parameters, while each constant A
[k]
0 , for k = k0 + 1, . . . , k̄k0 − 1, must

be fixed in terms of t0 and α
[1]
0 , . . . , α

[k−k0]
0 .

To order k̄k0, the same argument applies. The only difference is that now t0 is to be
fixed as the non-simple zero of M(t0), which exists by assumption. This, together with

a suitable choice of the constant A
[k̄k0]
0 , allows to solve the equations of motion to order

k̄k0.

To orders k̄k0 < k < (k̄ +1)k0−1 again we can rely on Lemma 7 to deduce that 〈G[k]〉

vanishes for any choice of the parameters α
[1]
0 , . . . , α

[k̄k0]
0 .

The first non-trivial contribution arises for k = (k̄ + 1)k0. In that case one has, from
(3.22),

〈G[(k̄+1)k0]〉 = 〈∂k0

1 Ω[k̄k0]〉(α
[1]
0 )k0 + σak̄ = 0, (3.24)

where ak̄ takes into account all the other contributions, and depends only on t0. Since, by
assumption (ii), one has (−ω(A0))

k0〈∂k0

1 G[k̄k0]〉 = ∂k0

3 〈G[k̄k0]〉 = dk0Mk̄(t0)/dtk0

0 = D 6= 0,
then 〈∂k0

1 Ω[k̄k0]〉 = 〈∂k0

1 G[k̄k0]〉 is also different from zero, so that we can use (3.24) to fix

α
[1]
0 in terms of t0.

For all k > (k̄ + 1)k0 we can reason as in Section 3.2, and can fix the constants

α[k−(k̄+1)k0+1] in terms of t0, by using that 〈∂k0

3 G[k̄k0]〉 and α
[1]
0 are both non-zero.

Hence, eventually we find recursion relations for all the constants α
[k]
0 and A

[k]
0 in terms

of t0. Once more the convergence the series can be discussed as was done in Section 2.3
and Appendix B.

A Proof based on the implicit function theorem

Here we sketch a proof of existence of subharmonic solutions, based on the application of
the implicit function theorem.

Without loss of generality we can assume A0 = 0. Set ω(A0) = ω and ω′(A0) = k, and
rescale A = εξ. Then in terms of (α, ξ) the equation (2.1) becomes

{
α̇ = ω + ε (kξ + F (α, 0, C, t) + ε f(α, ξ, C, t, ε)) ,

ξ̇ = G(α, 0, C, t) + ε g(α, ξ, C, t, ε),
(A.1)
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for suitable analytic functions f and g. The corresponding Poincaré map, that is the
stroboscopic map at time T = 2π/ω, reads





α → α + ωT + ε

∫ T

0

dt (kξ(t) + F (α(t), 0, C, t) + ε f(α(t), ξ(t), C, t, ε)) ,

ξ → ξ +

∫ T

0

dt (G(α(t), 0, C, t) + ε g(α(t), ξ(t), C, t, ε)) ,

(A.2)

which can be rewritten as
{

α → α + ωT + ε (kξ + N1(α, C) + ε f1(α, ξ, C, ε)) ,

ξ → ξ + M1(α, C) + ε g1(α, ξ, C, ε),
(A.3)

for suitable analytic functions M1, N1, f1 and g1. Here the origin of time is fixed as t = 0,
so that α = α(0) becomes the free parameter: up to this difference in notation, M1(α, C)
is the subharmonic Melnikov function (2.2). Therefore existence of a fixed point for the
Poincaré map, hence of a periodic solution with period T for the system (A.1), requires

{
kξ + N1(α, C) + ε f1(α, ξ, C, ε) = 0,

M1(α, C) + ε g1(α, ξ, C, ε) = 0,
(A.4)

which, under the further Hypothesis 2, entails an analytic solution C = C(α, ε). In turn,
from this we can deduce the assertions of Theorems 1 to 5.

The proof is only apparently simpler. First, we have not given an explicit expression
of all the functions involved. Second, obtaining a formula for them to within any given
order essentially requires going through the calculations of perturbation theory described
in the text. Of course, if only an existence result is required, the implicit function theorem
method would be more direct.

B Tree formalism

Trees are defined in the standard way. We briefly recall the basic notations, by referring
to [25] for an introductory review and further details, and also to [26, 34] for a discussion
in similar contexts.

A tree θ is defined as a partially ordered set of points, connected by oriented lines. The
lines are consistently oriented toward a unique point r called the root. The root admits
only one entering line called the root line. All points except the root are called nodes.
Denote with V (θ) and L(θ) the set of nodes and lines in θ, respectively, and with |L(θ)|
and |V (θ)| the number of lines and nodes of θ, respectively.

If a line ℓ connects two points v1, v2 and is oriented from v2 to v1, we say that v2 ≺ v1

and we shall write ℓv2
= ℓ. We shall say also that ℓ exits v2 and enters v1. It can be
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convenient to imagine that the line ℓ carries an arrow pointing toward the node v1: the
arrow will be thought of as superimposed on the line itself.

More generally we write v2 ≺ v1 if v1 is on the path of lines connecting v2 to the root:
hence the orientation of the lines is opposite to the partial ordering relation ≺. Along the
path from v2 to v1 all arrows point toward v1. In particular all arrows point toward the
root.

Each line ℓ carries a pair of labels (hℓ, δℓ), with hℓ ∈ {α, A, C} and δℓ ∈ {1, 2} such
that δℓ = 1 for hℓ 6= α. We call hℓ and δℓ the component label and the degree label of the
line ℓ, respectively. Given a node v call rv1, rv2, and rv3 the number of lines entering v

carrying a component label h = α, h = A, and h = C, respectively. Hence, the values of
rv1, rv2, rv3 are uniquely determined by the component labels of the lines entering v.

We associate with each node v two mode labels νv, σv ∈ Z and we also set for con-
venience hv = hℓv

and δv = δℓv
. We also introduce a further badge label βv by setting

βv ∈ {0, 1} when hv = h and δv = 1 and βv = 1 in all the other cases.

With each line ℓ we associate a further label νℓ ∈ Z, called the momentum of the line,
such that

νℓ = νℓv
=

∑

w∈V (θ)
w�v

(νw + σw) , (B.1)

with the constraints that νℓ = 0 if hℓ = C and νℓ 6= 0 if hℓ = α. The relation (B.1)
expresses a conservation law at each node: the momentum of the line exiting v is the sum
of the momenta of the lines entering v plus the mode labels of the node v itself. Note
that the momentum “flows” through each line in the sense of the arrow superimposed on
the line.

The trees with all the labels listed above are called labelled trees. Then given a labelled
tree θ we associate with each line ℓ a propagator

gℓ =





ω′(A0)
δℓ−1

(iωνℓ)δℓ
, hℓ = α, A, νℓ 6= 0,

−
1

ω′(A0)
, hℓ = A, νℓ = 0,

−
1

D(t0)
, hℓ = C, νℓ = 0,

(B.2)
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and with each node v a node factor

Nv =






(iν0)
rv1∂rv2

2 ∂rv3

3

rv1!rv2!rv3!
eiσvt0Fνv ,σv

(A0, C0(t0)), hv = α, δv = 1, βv = 1

∂rv2

2

rv2!
ω(A0), hv = α, δv = 1, βv = 0

(iν0)
rv1∂rv2

2 ∂rv3

3

rv1!rv2!rv3!
eiσvt0Gνv ,σv

(A0, C0(t0)), hv = α, δv = 2, βv = 1

(iν0)
rv1∂rv2

2 ∂rv3

3

rv1!rv2!rv3!
eiσvt0Gνv ,σv

(A0, C0(t0)), hv = A, δv = 1, βv = 1

(iν0)
rv1∂rv2

2 ∂rv3

3

rv1!rv2!rv3!
eiσvt0Gνv ,σv

(A0, C0(t0)), hv = C, δv = 1, βv = 1

(B.3)

with the constraints that when hv = C (and δv = 1) one has either rv3 ≥ 2 or rv1+rv2 ≥ 1,
and when βv = 0 (and hv = h, δv = 1) one has rv1 = rv3 = 0 and rv2 ≥ 2. These
constraints reflect the condition ∗ in (2.28) and, respectively, the fact that only derivatives
with respect to A appear in (2.25).

Finally we define the value of a tree θ the number

Val(θ) =
( ∏

ℓ∈L(θ)

gℓ

)( ∏

v∈V (θ)

Nv

)
, (B.4)

which is a well-defined quantity: indeed all propagators and node factors are bounded
quantities.

Call the order of the tree θ the number

k(θ) = {ℓ ∈ L(θ) : hℓ 6= C, βℓ 6= 0} , (B.5)

the total momentum of θ the momentum ν(θ) of the root line, and the total component
label of θ the component label h(θ) associated to the root line. The number of nodes (and
lines) of any tree θ is related to its order k(θ) as follows.

Lemma 10 For any tree θ one has |L(θ)| = |V (θ)| ≤ 3k(θ).

Proof. The equality |L(θ)| = |V (θ)| is obvious by construction. We prove by induction
on k the bounds

|V (θ)| ≤

{
3k(θ) − 2, h(θ) = α, A,

3k(θ) − 1, h(θ) = C.
(B.6)
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For k = 1 the bound (B.6) is trivially satisfied, as a direct check shows: simply compare
(2.30) to (2.32) with the definition of trees in that case. Assume that the bound holds
for all k′ < k, and let us show that then it holds also for k. Call ℓ0 the root line of θ and
v0 the node which the root line exits. Call r1, r2, and r3 the number of lines entering v0

with component labels α, A, and C, respectively, and denote with θ1, . . . , θr1+r2+r3
the

subtrees which have those lines as root lines. Then

|V (θ)| = 1 +
r1+r2+r3∑

r=j

|V (θj)|. (B.7)

If ℓ0 has component label hℓ0 ∈ {α, A} and badge label βℓ0 = 1 we have

|V (θ)| ≤ 1 + 3 (k − 1) − r3 − 2 (r1 + r2) ≤ 3k − 3 < 3k − 2, (B.8)

by the inductive hypothesis and by the fact that k(θ1) + . . . + k(θr1+r2+r3
) = k − 1. If ℓ0

has component label hℓ0 = α and badge label βℓ0 = 0 we have

|V (θ)| ≤ 1 + 3k − r2 ≤ 3k − 3 < 3k − 2, (B.9)

by the inductive hypothesis, by the fact that k(θ1) + . . . + k(θr1+r2+r3
) = k, and by the

constraint that r2 ≥ 2 and r1 = r3 = 0. Finally if ℓ0 has component label hℓ0 = C we
have

|V (θ)| ≤ 1 + 3k − r3 − 2 (r1 + r2) ≤ 3k − 1, (B.10)

by the inductive hypothesis, by the fact that k(θ1) + . . . + k(θr1+r2+r3
) = k, and by the

constraint that either r3 ≥ 2 or r1 + r2 ≥ 1 in such a case — cf. the comment after (B.3).
Therefore the assertion is proved.

Define Θk,ν,h as the set of all trees of order k(θ) = k, total momentum ν(θ) = ν, and
total component label h(θ) = h. By collecting together all the definitions given above,
one obtains the following result.

Lemma 11 The Fourier coefficients α
(k)
ν and A

(k)
ν and the constants Ck can be written

in terms of trees as

α(k)
ν =

∑

θ∈Θk,ν,α

Val(θ), ν 6= 0, α
(k)
0 = 0

A(k)
ν =

∑

θ∈Θk,ν,A

Val(θ), C(k) =
∑

θ∈Θk,0,C

Val(θ). (B.11)

for all k ≥ 1.
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The proof of (B.11) can be performed by induction; cf. [25] for details.

The number of unlabelled trees of order k is bounded by the number of random walks
of 2k steps, hence by 22k [37]. The sum over all labels except the mode labels and the
momenta is bounded again by a constant to the power k — simply because all such labels
can assume only a finite number of values. Finally the sum over the mode labels — which
uniquely determine the momenta through the relation (B.1) — can be performed by using
for each node half the exponential decay factor e−κ(|νv |+|σv |) provided by the bounds (2.21).
The conclusion is that we obtain eventually the following result.

Lemma 12 The Fourier coefficients and constants in (B.11) satisfy the bounds

∣∣α(k)
ν

∣∣ ≤ B1B
k
2e−κ|ν|/2,

∣∣A(k)
ν

∣∣ ≤ B1B
k
2e−κ|ν|/2,

∣∣C(k)
∣∣ ≤ B1B

k
2 , (B.12)

for suitable constants B1 and B2.

The bounds of Lemma 12 prove the convergence of the series (2.3) and (2.4) for |ε| < ε0,
with ε0 small enough. Note that with respect to [25] here the analysis is much easier as
there is no small divisors problem.

The construction described above also provides a useful algorithm which can be imple-
mented numerically in order to compute the solution to any prescribed accuracy (provided
ε is small enough).

C Proof of Lemma 2

Write the system (2.35) in action-angle variables. Then there exists a Hamiltonian func-
tion H(α, A, t, ε) = H0(A) + εH1(α, A, t) such that ω(A) = ∂AH0(A) and

{
α̇ = ω(A) + ε∂AH1(α, A, C, t) + εC Φ(α, A),

Ȧ = −ε∂αH1(α, A, C, t) + εC Ψ(α, A),
(C.1)

where Φ = −y ∂α/∂y and Ψ = y ∂A/∂y. Then (2.23) become

α(k)
ν =

1

iων

(
U (k) + ∂AH

(k−1)
1

)
ν

+ ω′(A0)
1

(iων)2

(
−∂αH

(k−1)
1

)
ν

+ (CΦ)(k−1)
ν ,

A(k)
ν =

1

iων

(
−∂αH

(k−1)
1

)
ν

+ (CΨ)(k−1)
ν , (C.2)

for all k ∈ N and all ν 6= 0, with U (1) = 0 and U (k) = [ω(A)−ω(A0)−ω′(A0) (A−A0)]
(k)

for k ≥ 2. Moreover (2.27) reads

k∑

k′=0

Ck′Ψ
(k′)
0 + Γ̄

(k)
0 = 0, Γ̄

(k)
0 =

(
−∂αH

(k−1)
1

)

0
, (C.3)
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which, for k = k̄, gives Γ
(k̄)
0 = Γ̄

(k̄)
0 and Ck̄Ψ

(0)
0 + Γ̄

(k̄)
0 = 0 because C1 = . . . = Ck̄−1 = 0 by

assumption. Moreover Ψ(0) = −〈y2
0〉 6= 0, by Lemma 1 and Hypothesis 2.

Therefore Ck = C(k), with C(k) given by the sum (B.11) of tree values. We can split
the set Θk,0,C into the union of disjoint families F as follows. Given a tree θ ∈ Θk,0,C call
v0 the node which is connected to the root through the root line, and define V0(θ) as the
subset of nodes v ∈ V (θ) such that all the lines ℓ along the path connecting v to v0 have
νℓ 6= 0. Then define F = F(θ) as the set of trees obtained from θ by “shifting” the root
line to any node in V0(θ), i.e. by attaching the root line to any node v ∈ V0(θ). Of course,
as a consequence of the shift of the root line from v0 to v, the arrows of all lines along the
path between the two nodes are reversed. If one recalls the diagrammatic rules introduced
in Section 2.3 to associate with any tree θ a value Val(θ), this means that all lines with
labels (h, δ) = (α, 1) are transformed into lines with labels (h, δ) = (A, 1). Moreover the
momenta of all such lines change sign. The latter property can be seen as follows. The
momentum is defined as the sum of all mode labels of the nodes preceding the lines —
cf. (B.1) — and the sum of all the mode labels is zero for any tree θ ∈ Θk,0,C: then,
when the arrow of a line ℓ is reversed the nodes preceding ℓ become the nodes following ℓ
and vice versa, so that νℓ becomes −νℓ. Hence the propagators of the lines ℓ with δℓ = 1
change sign, whereas the propagators of the lines ℓ with δℓ = 2 are left unchanged. As
a consequence, for each tree θ′ ∈ F(θ) we can write Val(θ) = iνvVal(θ), where v is the
node v ∈ V0(θ) which the root line exits and Val(θ) is the same quantity for all θ′ ∈ F(θ).
Therefore ∑

θ′∈F(θ)

Val(θ) = Val(θ)
∑

v∈V0(θ)

iνv. (C.4)

Moreover one has

∑

v∈V (θ)

(νv + σv) = 0 =⇒
∑

v∈V0(θ)

(νv + σv) = 0 =⇒
∑

v∈V0(θ)

νv = −
∑

v∈V0(θ)

σv, (C.5)

so that the mean in t0 of (C.4) gives

∫ 2π

0

dt0
2π

∑

θ′∈F(θ)

Val(θ) =

∫ 2π

0

dt0
2π

Val(θ)
∑

v∈V0(θ)

iνv

= −

∫ 2π

0

dt0
2π

Val(θ)
∑

v∈V0(θ)

iσv = 0, (C.6)

because the mean is the sum over all labels σv ∈ V (θ) such that
∑

v∈V (θ) σv =∑
v∈V0(θ) σv = 0. By using the fact that the set Θk,0,C can be written as a disjoint union

of the sets F , we obtain that Γ̄
(k̄)
0 has zero mean in t0, so that the assertion follows.
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D An example

In this appendix we give an example where the conditions of Theorem 9 are satisfied.
Consider the system {

α̇ = A + 8ε sin α sin(t + t0),

Ȧ = ε sin2 α (4 cos2(t + t0) − 1) .
(D.1)

and consider the unperturbed solutions (α0(t), A0(t)) = (t, 1) with period 2π.

Set s(t) = sin t and c(t) = cos t. As usually we denote by 〈·〉 the mean of any 2π-
periodic function; one has 〈s2〉 = 1/2, 〈s2c2〉 = 1/8, 〈s4〉 = 3/8, and 〈s2c4〉 = 1/16.

The subharmonic Melnikov function (3.2) becomes

M(t0) = 4〈s2c2〉 cos2 t0 + 4〈s4〉 sin2 t0 − 8〈c3s〉 sin t0 cos t0 − 〈s2〉 = sin2 t0, (D.2)

so that M(0) = M ′(0) = 0 and M ′′(0) = 2.

To first order one has Ȧ1 = sin2 t(4 cos2 t − 1), so that A1(t) = Ā1 + sin3 t cos t, where
Ā1 = 〈A1〉 has to be fixed by requiring Ā1 + 8〈s2〉 = 0; this gives Ā1 = −4. Then
α̇1 = A1 + 8 sin2 t can be integrated, and gives α1(t) = ᾱ1 + sin4 t/4− 4 sin t cos t, with ᾱ1

such that 〈α1〉 = 0.

Therefore we have found that, by setting

α1(t) = ᾱ1 +
1

4
sin4 t − 4 sin t cos t, A1(t) = −4 + sin3 t cos t, (D.3)

then (t + εα1(t), 1 + εA1(t)) solve (3.3) with t0 = 0 up to the first order. The constant a
can be expressed in terms of such an approximate solution according to (3.10). By using
that ∂1G(α, A, t) = 2 sin α cos α(4 cos2 t − 1) and ∂2G(α, A, t) = 0, one has

a1 = 2〈sc
(
4c2 − 1

) (
s4/4 − 4sc

)
〉

= 2〈s5c3〉 −
1

2
〈s5c〉 − 32〈s2c4〉 + 8〈s2c2〉 = 0 + 0 − 2 + 1 = −1, (D.4)

hence a1 6= 0. Since k0 = 2 one must require εa1D < 0, which yields ε = η2 > 0. Hence
for ε positive and small enough there is a subharmonic solution of order 1.

It is not difficult to see that if ε < 0 there is no subharmonic solution of order 1 which
reduces to one of the unperturbed ones as ε → 0. This can be obtained by trying to write
the solution in the form α = t + η + β and A = 1 + B, with 〈β〉 = 0, and η, β and B
all tending to 0 as ε → 0, and explicitly checking that no solution of this form can exist.
The discussion proceeds as in [27], Appendix B, which we refer to for details.

E Proof of Lemma 9

The expression 〈G(k)〉 = G
(k)
0 can be written as in (2.26), with G instead of F and r3 = 0

(as there is no parameter C in the perturbation). Suppose now that we express all Fourier
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coefficients α
(k′)
ν′ and A

(k′)
ν′ in terms of trees, except those with ν ′ = 0, which are kept as

free parameters. We can iterate the construction, and every time a Fourier coefficient
with label ν ′ = 0 appears, it is not further expanded. In this way we obtain eventually a
tree with two kinds of end-points (i.e. of nodes with no entering lines), according to the
value of the momentum of the exiting line. If the line ℓ exiting the end-point v carries
a momentum νℓ 6= 0, then the end-point v has the same labels and factors as the other
points which have entering lines. If on the contrary one has νℓ = 0, then the end-point
v carries the labels kv ∈ N and hv ∈ {α, A}, and represents either α

(kv)
0 (if hv = α) or

A
(kv )
0 (if hv = A). If the corresponding exiting line ℓ connect v to a node w then there is

a further derivative acting on the node factor associated to the node w: such a derivative
will be ∂1 if hv = α and ∂2 if hv = A; of course, if (νw, σw) are the mode labels associated
to the node w then ∂1 yields a factor iνw; see (B.3).

We can represent the tree as a tree with leaves: the leaves v1, v2, . . . represent the
new kind of end-points, together with the corresponding exiting lines, while the rest of
the tree, say θ0, differs from those considered in Section 2.3 because of the extra possible
derivatives acting on the node factors. Of course the order of θ0 will be equal to k minus
the sum of the labels kv associated to all the leaves v.

If we neglect these extra derivatives then the product of node factors and propagators
in θ0 gives a value Val(θ0), which would be a contribution to G

(k0)
0 . More precisely it is a

contribution to Ω
(k0)
0 because it does not contain any coefficient α

(k′)
0 nor A

(k′)
0 .

Suppose now that we collect together all trees with the same leaves. Take, for instance,
the case of trees with only one leaf representing α

(1)
0 (for which k0 = k − 1), and consider

all trees have all the same θ0. All of them are obtained by attaching the leaf to a node of
θ0 and applying an extra derivative ∂1 to the node factor associated to that node. If we
sum together all these contributions we obtain a quantity proportional to ∂1Val(θ0) times

α
(1)
0 . If we sum over all possible choices of θ0 we reconstruct 〈∂1G

(k−1)〉α
(1)
0 .

The argument applies in general, independently on the number of leaves and their
orders, so that, by grouping together all trees with the same θ0 and with the same leaves,
we reconstruct a contribution ∂n

1 ∂m
2 Val(θ0) times the constants represented by the n + m

leaves that we are considering. Summing all possible choices of θ0 and of leaves, we arrive
at (3.12), with suitable numbers Z

(k)
n,m which takes into account the combinatorics.
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