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We present a comprehensive study of interpolation inequalities for periodic functions
with zero mean, including the existence of and the asymptotic expansions for the
extremals, best constants, various remainder terms, etc. Most attention is paid to the
critical (logarithmic) Sobolev inequality in the two-dimensional case, although a
number of results concerning the best constants in the algebraic case and different
space dimensions are also obtained.

1. Introduction

We study the critical Sobolev inequality (see [6, 16])

‖u‖2
C(Ω) � ‖u‖2

H1(Ω)

(
C1 log

‖u‖2
H2(Ω)

‖u‖2
H1(Ω)

+ C2

)
(1.1)

in the particular case when Ω is a two-dimensional torus. This inequality, which
can be formally considered as a limit case (l → 1, n = 2, d = 2) of the algebraic
inequality of the Gagliardo–Nirenberg type

‖u‖C(Ω) � CΩ(l, n)‖(−∆)−l/2u‖θ
L2(Ω)‖(−∆)−n/2u‖1−θ

L2(Ω),

θ =
n − d/2
n − l

, n > d/2 > l, Ω ⊂⊂ R
d,

⎫⎪⎬⎪⎭ (1.2)

is known to be very useful in many problems related to partial differential equa-
tions and mathematical physics. For instance, it is used to obtain best known
upper bounds for the attractor dimension of the Navier–Stokes system on a two-
dimensional torus (see, for example, [30]), for proving the uniqueness of weak solu-
tions for von Karman-type equations arising in elasticity (see [9] and references
therein) as well as for the so-called hyperbolic relaxation of the two-dimensional
Cahn–Hilliard equation (see [15]) or the two-dimensional Klein–Gordon equation
with exponential nonlinearity (see [18]). We also mention that a slightly different
logarithmic inequality is used at a crucial point in the proof of the global existence
of strong solutions of the two-dimensional Euler equations (see [34]).
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Note that, nowadays, most classical inequalities of Gagliardo–Nirenberg type
can be easily verified using interpolation theory (see, for example, [31]). However,
the best constants in those inequalities, as well as the existence and the analytic
structure of the extremals, is a much more delicate and interesting question, which
is far from being completely understood despite persistent interest in the problem
and the many interesting results obtained during the last 50 years; see [1, 3, 5, 7,
8, 10, 12, 19–21, 23, 24, 28, 29, 32] and references therein. Most studied is the case of
the whole space Ω = R

d; more or less complete results are available in the case
where the inequality does not contain derivatives of order higher than one and in
the Hilbert case. In the first case, the rearrangement technique works and reduces
the problem to the one-dimensional case and, in the second case, one can use the
Parseval equality. In particular, as proved in [21], the best constant in (1.2) for the
case Ω = R

d is

cRd(l, n) =
(

πω(d)
(2π)d sin((d − 2l)/2(n − l))

(
1

(d − 2l)d−2l(2n − d)2n−d

)1/2(n−l))1/2

,

(1.3)
where ω(d) = 2πd/2/Γ (d/2) is the surface area of the (d − 1)-dimensional sphere.
In addition, the extremal function u∗ ∈ (−∆)−n/2L2(Rd) ∩ (−∆)−l/2L2(Rd) exists
and is unique up to a shift and scaling u∗(x) → αu∗(βx − x0), α, β ∈ R, x0 ∈ R

d;
u∗ is given by

u∗(x) =
1

(2π)d/2

∫
Rd

1
|ξ|2n + |ξ|2l

eixξ dx. (1.4)

The situation becomes more complicated in the case where Ω is a bounded domain
of R

d, even for the algebraic inequality (1.2) with Hilbert norms on the right-hand
side. To the best of our knowledge, two different scenarios are possible here. In the
first case, the sharp constant cΩ(l, n) coincides with cRd(l, n) but, in contrast to
the case of R

d, there are no exact extremals and the approximative extremals can
be constructed by the proper scaling and cutting of (1.4). This case is realized, for
instance, if Dirichlet boundary conditions are posed, if Ω = S

1 is a circle (periodic
boundary conditions) and n = 0 or if Ω = S

d is a higher-dimensional sphere (d = 2
and ∆ is a Laplace–Beltrami operator), with n = 0 and l � 7. See [20, 21] for
details. In the present paper, we show that it is also true for the tori Ω = T

2 and
Ω = T

3 if l = 0 and n is not too large; see § 5. In addition, in that case, (1.2) can
be improved by adding an extra lower-order term in the spirit of Brézis and Lieb
(see [7]). In particular, as shown in § 5, the inequality

‖u‖2
C(T2) � 1

4‖u‖L2(T2)‖∆xu‖L2(T2) − 1
2π2 ‖u‖2

L2(T2) (1.5)

holds for all 2π × 2π-periodic functions with zero mean. However, even for this
improved inequality the exact extremal functions do not exist, and further improve-
ments can be obtained.

In the second case, the sharp constant in (1.2) is strictly larger than the analogous
constant in R

d,
cΩ(l, n) > cRd(l, n), (1.6)

and there is/are exact extremal function(s) for (1.2) in Hn(Ω). In particular, this
holds for Ω = S

2 with l = 0, n � 8; see [21] (see also [20] for the analogous
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effect for the slightly different inequality in the one-dimensional case). In that case,
the constant cΩ(l, n) can be found only numerically as a root of a transcendental
equation.

It was conjectured by Ilyin that the analogous effect holds on multi-dimensional
tori Ω = T

d, d > 1 and l = 0. In the present paper, we verify that this conjecture is
indeed true and that (1.6) holds for Ω = T

2 (with zero mean) for l = 0 and n = 10.
In addition, we establish the following three-dimensional analogue of (1.5):

‖u‖2
C(T3) �

√
2
√

3
6π

‖u‖1/2
L2(T3)‖∆u‖3/2

L2(T3) − K‖u‖2
L2(T3), (1.7)

where the sharp constant
√

2
√

3/6π still coincides with the analogous constant in
the whole space R

3 but, nevertheless, (1.7) possesses an exact extremal function
and the best value for the second constant K can be found only numerically (K ∼
0.996/2π3; see § 5).

We now return to limit logarithmic inequality (1.1). This case looks more difficult
than the algebraic one, in particular, since it is not clear a priori whether or not
the transcendental function δ → C1 log δ + C2 (δ := ‖u‖2

H2(Ω)/‖u‖2
H1(Ω)) on the

right-hand side of (1.1) is optimal. Indeed, a detailed study of the slightly different
logarithmic inequality

‖u‖2
C(Ω) � ‖u‖2

H1(Ω)

(
C ′

1 log
‖u‖2

Cα(Ω)

‖u‖2
H1(Ω)

+ C ′
2

)
, (1.8)

where the H2-norm is replaced by the Hölder norm with α ∈ (0, 1), is given in recent
papers [3, 19] for the case where Ω is a unit ball and the function u satisfies the
Dirichlet boundary conditions (see also [26, 27, 32]). As shown there, C ′

1 > 1/4πα
and, in order to be able to take C ′

1 = 1/4πα, an extra double-logarithmic corrector
(δ → log log δ) is required. Thus, based on that result and on the interpolation
inequality

‖u‖2
Cα � C‖u‖2(1−α)

H1 ‖u‖2α
H2 ,

one may expect the improved version of (1.1),

‖u‖2
C(T2)

� 1
4π

‖∇u‖2
L2(T2)

(
log

‖∆u‖2
L2(T2)

‖∇u‖2
L2(T2)

+ log
(

1 + log
‖∆u‖2

L2(T2)

‖∇u‖2
L2(Ω)

)
+ L

)
, L > 0,

(1.9)

to be optimal for the case of 2π×2π-periodic functions u with zero mean. Note that
the analysis presented in [3, 19] is based on reducing the problem to the radially
symmetric case via the rearrangement technique, and use of the Dirichlet boundary
conditions is essential, so it is not clear how to extend it, either to the case of the
torus or to the case of the H2-norm. Nevertheless, as we will see below, (1.9) is true
for the properly chosen constant L (which can be found numerically as a solution
of a transcendental equation: L ∼ 2.15627). In addition, there exist exact extremal
functions for this inequality; see § 3.
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The main aim of the present paper is to introduce a general scheme that allows
the analysis of inequalities (1.1), (1.2) and (1.9), at least on tori, from a unified point
of view, and to illustrate it in the most complicated logarithmic case (although non-
trivial applications to the algebraic case will be also considered). One important
feature of our approach is that, in contrast to, say, [19,21] (and similarly to [3]), the
concrete form of the right-hand sides in those inequalities is not postulated a priori,
but appears a posteriori as a result of computations. Indeed, instead of (1.9), we
consider the variational problem with constraints

‖u‖2
L∞

‖∇u‖2
L2

→ max, u ∈ H2(T2),
∫

T2
u(x) dx = 0,

‖∆u‖2
L2

‖∇u‖2
L2

= δ (1.10)

and prove that, for every δ > 0, this problem has a unique (up to shifts, scaling
and alternation of sign) solution

uµ(x) =
∑

k∈Z2−{0}

eik·x

k2(1 + µk2)
, k2 := k2

1 + k2
2 (1.11)

(compare with (1.4)) and the parameter µ can be found, in a unique way, as a
solution of

‖∆uµ‖2
L2

‖∇uµ‖2
L2

= δ. (1.12)

Let us denote the maximum in (1.10) by Θ(δ); as we will see, Θ is a real analytic
function of δ. Then,

‖u‖2
C(T2) � ‖∇u‖2

L2(T2)Θ

(‖∆u‖2
L2(T2)

‖∇u‖2
L2(T2)

)
(1.13)

holds, and, by definition, Θ is the least possible function in this inequality. Thus,
(1.13) can be considered as an optimal version of (1.1) and (1.9). However, (1.13)
is not convenient for applications, since the function Θ is given in a very implicit
form through lattice sums (1.11), which, to the best of our knowledge, cannot
be expressed in closed form through the elementary functions (in contrast to the
case of inequality (1.8) in a unit ball; see [3]) and, in addition, direct numerical
computation of them is not easy, especially for large δ (small µ), due to a very slow
rate of convergence.

In order to overcome this problem, we have found the asymptotic expansions
for the function Θ(δ) as δ → ∞. Namely, we have proved that the function Θ(δ)
coincides, up to exponentially small terms (of order O(exp(−2πδ1/2))), with the
function Θ0(δ) given by the parametric expression

Θ0 =
1

4π2 · (π log(1/µ) + β + µ)2

π log(1/µ) + β − π + 2µ
, δ =

π/µ − 1
π log(1/µ) + β − π + 2µ

, (1.14)

where β := π(2γ +2 log 2+3 log π − 4 log Γ (1/4)), γ is the Euler constant and Γ (z)
is the Euler gamma function. In particular,

Θ0(δ) =
1
4π

log δ +
1
4π

log log δ +
β + π

4π2 + Oδ→∞(1),
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which justifies (1.9) and shows that the constant L � L∞ := (β +π)/π. In practice,
the numerics show that L � Lopt > L∞; see § 3.

In addition, combining the analytic asymptotic expansions for Θ(δ) with numer-
ical simulation for relatively small δ, we show that

Θ(δ) � Θ0(δ) (1.15)

for all δ � 1. Thus, the much simpler function Θ0 can be used instead of Θ in the
right-hand side of (1.13). Actually, Θ0 gives a reasonable approximation to Θ for
all values of δ. For instance, for δ = 1, 2 and 4, respectively, we have Θ = 0.10134,
0.26651 and 0.35112 (respectively, Θ0 = 0.17797, 0.26660 and 0.35112).

The paper has the following structure. The proof of the existence of the condi-
tional extremals for (1.10), as well as analytical formulae for them in terms of the
lattice sums, are given in § 2.

The key asymptotic expansions for the lattice sums involving the parametric
expression for Θ(δ), as well as for the extremals uµ(x), are presented in § 3. Based
on these expansions, we check the validity of (1.9), as well as estimate (1.15).

The alternative approaches to logarithmic inequality (1.1) are analysed in § 4.
Actually, there are at least two known ways to prove this inequality without study-
ing the corresponding extremal problem. One of them is based on the embedding
H1+ε ⊂ C, with further optimization of the exponent ε > 0 (see, for example, [2]),
and the other, more classical one (which was used in the original paper [6]), splits
the function u into lower and higher Fourier modes and estimates them via the H1-
and H2-norms, respectively. Based on the above asymptotic analysis, we show that
the second method is preferable and allows us to find the correct expressions for
the two leading terms in the asymptotic expansions of the function Θ.

The application of our approach to the simpler algebraic case (1.2), with l = 0
and arbitrary space dimension d, is considered in § 5. We establish the following
improved version of (1.2):

‖u‖2
C(Td) � cd(n)‖u‖2−d/n

L2 ‖(−∆x)n/2u‖d/n
L2 − Kd(n)‖u‖2

L2 , (1.16)

where cd(n) = cRd(0, n) for all n ∈ N such that 2n − d > 0 and the constant Kd(n)
may be either positive or negative. We prove that, in the one-dimensional case, this
constant is strictly positive, but it may be either positive or negative in the multi-
dimensional case, depending on n. We also present combined analytical/numerical
results for the constants Kd(n) for d and n not large. In particular, (1.5), (1.7)
mentioned above, as well as the one-dimensional inequalities

‖u‖2
C(T1) � ‖u‖L2‖u′‖L2 − 1

π
‖u‖2

L2 , ‖u‖2
C(T1) �

√
2

4
√

27
‖u‖3/2

L2 ‖u′′‖1/2
L2 − 2

3π
‖u‖2

L2 ,

are verified therein.
The large n limit of (1.16) is studied in § 6. The results of this section clarify the

nature of oscillations in the analog of the function δ → Θ(δ) for that inequality
and show the principal difference between the one-dimensional case, where regular
oscillations occur (after the proper scaling), and the multi-dimensional case, where
the oscillations are irregular due to some number-theoretic reasons.

Finally, the computation of the integration constant β is given in the appendix.
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2. Conditional extremals: existence, uniqueness and analytical
expressions

This section is devoted to the study of maximization problem (1.10), which we
rewrite in the equivalent form

‖u‖2
C(T2) → sup, u ∈ H2(T2),

∫
T2

u(x) dx = 0, ‖∆u‖2
L2 = δ, ‖∇u‖2

L2 = 1.

(2.1)
In addition, we note that (2.1) is invariant with respect to translations u(x) →
u(x + h) and alternation u(x) → −u(x). Thus, without loss of generality, we may
assume that ‖u‖C(T2) = u(0) > 0, and so reduce (2.1) to

u(0) → sup, u ∈ H2(T2),
∫

T2
u(x) dx = 0, ‖∆u‖2

L2 = δ, ‖∇u‖2
L2 = 1.

(2.2)
Thus, the function Θ in (1.13) can be defined as

Θ(δ) := sup
{

u(0)2, u ∈ H2(T2),
∫

T2
u(x) dx = 0, ‖∆u‖2

L2 = δ, ‖∇u‖2
L2 = 1

}
.

(2.3)
It is, however, more convenient to rewrite (2.2) and (2.3) in Fourier space by expand-
ing

u(x) =
1
2π

∑′
ukeix·k, (2.4)

where
∑′ means the sum over the lattice k ∈ Z

2, excepting k = 0. Using the
Parseval equality, we transform (2.2) to

1
2π

∑′
uk → sup,

∑′
(k2)2|uk|2 = δ,

∑′
k2|uk|2 = 1. (2.5)

Finally, we observe that, without loss of generality, we may assume that all uk

in (2.5) are real and non-negative.

Lemma 2.1. For every δ � 1 there exists an extremal function (maximizer) for
(2.2) (or, equivalently, for (2.5)).

Proof. Let un(x), un(0) > 0, be a maximizing sequence for (2.2) such that

Θ(δ) = lim
n→∞

un(0)2.

Such a sequence exists if and only if δ � 1, since under that condition the set of
functions u ∈ H2(T2) for which the constraints of (2.2) are satisfied is not empty.
Clearly, un is bounded in H2 and, consequently, without loss of generality, we may
assume that un → u∗ weakly in H2 (and strongly in C(T2) and in H1). We claim
that u∗ is the desired maximizer. Clearly,

Θ(δ) = u∗(0)2, ‖∇u∗‖2
L2 = 1, ‖∆u∗‖2

L2 � δ. (2.6)

Thus, we need only check that the last inequality is in fact an equality. Assume that
it is not true and that ‖∆xu∗‖2

L2 = δ0 < δ. We fix k0 ∈ Z
2 such that uk0 > 0, take
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any small ε > 0 and N > |k0| and consider the perturbed function

uε,N (x) = u∗(x) − βeik0·x + ε
∑

|k0|<k<N

eikx

|k|2 log(|k| + 1)
,

where β = β(ε, N) > 0 is chosen in such way that ‖∇uε,N‖L2 = 1. Using the fact
that ∑′ 1

|k|2 log2(|k| + 1)
< ∞

and that uk0 > 0, one can easily show that there exist positive constants ε0 and l,
independent of N , such that

0 < β(ε, N) � lε ∀ε � ε0 (2.7)

and all N . On the other hand, using (2.7) and the fact that∑′ 1
|k|2 log(|k| + 1)

= ∞,

we see that there exists N0, independent of ε, such that

uε,N (0) > u∗(0) ∀N � N0, ε � ε0. (2.8)

Finally, since

lim
ε→0

‖∆xuε,N‖2
L2 = δ0 < δ, lim

N→∞
‖∆xuε,N‖L2 = ∞,

we may find N∗ > N0 and ε∗ < ε0 such that ‖∆xuε∗,N∗‖2
L2 = δ. This, together

with (2.8), shows that
Θ(δ) > u∗(0)2,

which contradicts our choice of function u∗(x) (see (2.6)) and completes the proof
of the lemma.

Remark 2.2. In particular, the above arguments show that the function δ → Θ(δ)
is strictly increasing.

We are now ready to state the main result of this section, which gives the existence
and uniqueness for the extreme functions of (2.1). These functions will be referred
to as conditional extremals for the critical Sobolev inequality considered.

Theorem 2.3. For every fixed δ � 1, (1.10) has a unique (up to translations,
scalings and alternation) solution

uµ(x) :=
∑′ eik·x

k2(1 + µk2)
, (2.9)

where µ = µ(δ) ∈ (−∞,−1] ∪ (0,∞] is determined as the unique solution of the
equation

F (µ) :=
∑′ 1/(1 + µk2)2∑′ 1/k2(1 + µk2)2

= δ. (2.10)
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Thus, the desired function Θ(δ) possesses the parametric representation

Θ(µ) :=
1

4π2

(
∑′ 1/|k|2(1 + µ|k|2))2∑′ 1/|k|2(1 + µ|k|2)2

, δ(µ) :=
∑′ 1/(1 + µk2)2∑′ 1/k2(1 + µk2)2

(2.11)

and µ ∈ (−∞,−1] ∪ (0,∞].

Remark 2.4. Being pedantic, (2.9) is well-defined for µ ∈ (−∞,−1) ∪ (0,∞) only
and extra care is required for the limit cases µ = −1 and µ = ∞. Indeed, in the case
µ = ∞, (2.9) formally gives the irrelevant value uµ(x) ≡ 0 and, for µ = −1, we have
that uµ(x) = ∞ (due to the poles at k = (±1, 0) and k = (0,±1)). However, since
the extremals uµ(x) are defined up to a scaling, we may retrieve the correct limit
values of uµ at µ = ∞ and µ = −1 by the proper scaling. In particular, for µ → ∞,
we need to use the scaling factor 1/µ in front of the right-hand side of (2.9), which
gives that

u∞(x) :=
∑′ eik·x

|k|4 , δ∞ =
∑′ 1/|k|4∑′ 1/|k|6

.

Thus, the singularity at µ = ∞ is removable and (as is not difficult to check) the
function δ → Θ(δ) defined via (2.11) is real analytic near δ = δ∞. Analogously,
using the scaling factor (1 + µ)/2 in (2.9) and passing to the limit µ → −1, we end
up with

u−1(x) = cos x + cos y, δ−1 = 1,

which is the correct extremal function for the limit case δ = 1. Thus, the singularity
at µ = −1 is again removable and the function δ → Θ(δ) is also real analytic near
δ = 1.

In contrast to that, the singularity near µ → 0+ (which corresponds to the most
interesting case, for us, of δ → ∞) is essential and the majority of the paper is
devoted to the study of various asymptotic expansions near µ = 0.

Proof of the theorem. Instead of (1.10), we will consider the equivalent problem
(2.5). The extremals of that problem can be easily found using Lagrange multipliers.
Introducing the Lagrange function

L(u) :=
1
2π

∑′
uk + A1

∑′
|k|2u2

k + A2

∑′
|k|4u2

k, A1, A2 ∈ R,

differentiating it with respect to uk and using the necessary condition d(L(u))/ du =
0 for extremals, we find that

u∗
k = u∗

k,A1,A2
=

1
4π|k|2(A1 + A2|k|2) , (2.12)

where, as usual, the multipliers A1 and A2 should be chosen to satisfy the con-
straints. Since we already know (from lemma 2.1) that the maximizer uδ(x) exists,
its Fourier coefficients should satisfy (2.12) for some A1 and A2. Moreover, taking
into account the fact that the initial variational problem is scaling invariant, we
may get rid of one of the multipliers A1 and A2 by introducing µ = A2/A1. We
will then end up with the one-parameter family of extremals (2.9) depending on µ
(the case A1 = 0 is not lost and will correspond, in what follows, to µ = ∞). Of
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course, the parameter µ should be chosen to satisfy the constraints, namely, that
‖∆uµ‖2

L2/‖∇uµ‖2
L2 = δ. This gives (2.10), and (2.11) follows immediately from the

definition of Θ(δ).
Thus, we need only verify that the solution of F (µ) = δ is unique. To this end, we

first recall that all the Fourier coefficients of the conditional maximizer(s) should be
either non-negative or non-positive. This, together with (2.9), gives the conditions
that µ ∈ (−∞,−1], which corresponds to all negative coefficients, and µ ∈ (0,∞],
which corresponds to all positive ones. Thus, only the values µ ∈ (−∞,−1]∪ (0,∞)
may correspond to the true maximizers and we need not consider the case µ ∈
(−1, 0). The following lemma gives the uniqueness of a solution of (2.10) in this
domain of µ.

Lemma 2.5. Let ε := 1/µ. Then, the function F̃ (ε) := F (ε−1) is continuous (in
fact, real analytic), strictly increasing on [−1,∞) and satisfies

F̃ (−1) = 1, lim
ε→+∞

F̃ (ε) = +∞. (2.13)

Therefore, the solution of F (µ) = δ, µ ∈ (−∞,−1] ∪ (0,∞), exists and is unique
for all δ � 1.

Proof. The function F̃ (ε) is

F̃ (ε) =
∑′ 1/(ε + |k|2)2∑′ 1/|k|2(ε + |k|2)2

and, differentiating this with respect to ε, we have that

F̃ ′(ε) = −2
∑′

k

∑′
l 1/l2(ε + k2)2(ε + l2)2(1/(ε + k2) − 1/(ε + l2))

(
∑′ 1/|k|2(ε + |k|2)2)2

= 2
∑′

k

∑′
l(1/(ε + k2)3(ε + l2)3)((k2 − l2)/l2)

(
∑′ 1/|k|2(ε + |k|2)2)2

.

The double-double sum in the numerator can be rearranged to contain only positive
terms. Indeed, putting together the terms corresponding to the indices (l, k) and
(k, l), we see that

1
(ε + k2)3(ε + l2)3

(
k2 − l2

l2
+

l2 − k2

k2

)
=

(k2 − l2)2

k2l2(ε + k2)3(ε + l2)3
> 0.

Thus, we need only verify (2.13). The first assertion is obvious since both numerator
and denominator in the definition of F̃ have simple poles at ε = −1 with the same
residue. The second limit is a bit more difficult, but we do not want to prove it here
since the detailed analysis of the asymptotic behaviour of F as µ → 0 will be given
in the next section. Lemma 2.5 is proved.

Thus, due to the proven uniqueness of a solution of (2.10), the conditional maxi-
mizer uµ(x) = uµ(δ)(x) for variational problem (1.10) is also unique and theorem 2.3
is proved.
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Remark 2.6. One can see that the extremals uµ(x) defined by (2.9) satisfy the
boundary-value problem

∆x(1 − µ∆x)uµ = −4π2δ(x) + 1 (2.14)

endowed with periodic boundary conditions (here δ(x) is a standard Dirac delta-
function) and, therefore, are closely related to fundamental solutions for this family
of fourth-order elliptic differential operators. It can also be derived by applying the
method of Lagrange multipliers directly to (2.2) (without passing to Fourier space).
We will use this fact in the following, in order to find good asymptotic expansions
for uµ(x).

3. Asymptotic expansions

In this section, we deduce the asymptotic expansions up to exponential order for
the lattice sums used in theorem 2.3, which are crucial for our approach. Namely,
we will analyse the asymptotic behaviour of

f(µ) =
∑′ 1

k2(1 + µk2)
,

g(µ) =
∑′ 1

k2(1 + µk2)2
,

h(µ) =
∑′ 1

(1 + µk2)2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.1)

as µ → 0. Actually, these sums are closely related to each other as

f ′(µ) = −h(µ), g(µ) = f(µ) − µh(µ) (3.2)

and, therefore, up to a non-trivial integration constant, we need only study the
simplest function, h(µ).

Lemma 3.1. The function h(µ) possesses the asymptotic expansion

h(µ) =
π

µ
− 1 + 4π2µ−5/4e−2π/

√
µ(1 + oµ(1)) (3.3)

as µ → 0+.

Proof. The derivation of the expansion is based on the Poisson summation formula.
Using the fact that∑

k∈Z2

ϕµ(k) =
∑
k∈Z2

ϕ̂µ(2πk), ϕµ(z) =
1

(1 + µz2)2
, (3.4)

ϕµ(z) = ϕ1(µ1/2z) and ϕ̂µ(ξ) = µ−1ϕ̂1(µ−1/2ξ) together with the fact that ϕ1 is
analytic in a strip | Im z| < 1, we conclude that ϕ̂1(ξ) is exponentially decaying, i.e.

|ϕ̂1(ξ)| � Cεe−(1−ε)|ξ| ∀ε > 0, ξ ∈ R
2.

Thus, if we need the asymptotic expansion of the left-hand side of (3.4) up to
exponential order, only the term with k = 0 is needed in the right-hand side and,
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therefore, replacing the sum by the corresponding integral gives an exponentially
sharp approximation to the lattice sum:

h(µ) =
∑′ 1

(1 + µk2)2
=

∑
k∈Z2

ϕµ(k) − 1

=
∫

R2

dx

(1 + µ|x|2)2 − 1 + o(e(−2+ε)πµ−1/2
)

=
π

µ
− 1 + o(e(−2+ε)πµ−1/2

) (3.5)

for arbitrary (small) ε > 0. However, if we need the leading exponentially small
term in expansions like (3.3), we need to look at four more terms on the right-hand
side of (3.4), namely, the terms corresponding to k = (0, 1), (0,−1), (1, 0), (−1, 0)
(other terms will decay faster than exp((−2+ε)

√
2π/µ1/2)). To this end, we need to

compute the two-dimensional Fourier transform of the radially symmetric function
ϕµ(|x|). This can be done, for instance, by noting that the Fourier transform is a
radially symmetric fundamental solution of the squared Helmholtz operator

(1 − µ∆x)2u = δ(x).

The radially symmetric solution of this equation can be explicitly written in terms
of Bessel functions as

R(|ξ|) := ϕ̂1(ξ) = π|ξ|µ−3/2K1(|ξ|/
√

µ), (3.6)

where K1 is the standard Bessel K-function of order 1 (see, for example, [33]).
Thus, we need only find the leading term in R(2πµ−1/2) as µ → 0+, which can be
done by using known expansions for the Bessel functions (see [33]):

R(2πµ−1/2) = π2µ−5/4e−2π/
√

µ(1 + oµ(1)).

Taking into account the fact that there are four identical terms on the right-hand
side of (3.4), which correspond to |k| = 1, we arrive at (3.3) and finish the proof of
the lemma.

As a next step, we derive analogous expansions for f(µ) and g(µ). However, the
trick with the Poisson summation formula is not directly applicable here since the
corresponding function ϕ will have singularity at x = 0 and, as we will see below,
this leads to an extra residual-type term in the expansions. Instead, we will use
relations (3.2) in order to find the expansions for f and g up to an integration
constant.

Corollary 3.2. The functions f(µ) and g(µ) possess the asymptotic expansions

f(µ) = π log
1
µ

+ µ + β − 4πµ1/4e−2π/
√

µ(1 + oµ(1)) (3.7)

and

g(µ) = π log
1
µ

+ 2µ + β − π − 4π2µ−1/4e−2π/
√

µ(1 + oµ(1)) (3.8)

as µ → 0, where the integration constant β = π(2γ+2 log 2+3 log π−4 log Γ (1/4)).
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Proof. Up to the integration constant β, expansions (3.7) and (3.8) are straightfor-
ward corollaries of (3.3) and (3.2), so we only mention here the explicit expression
for the integral of the leading exponential term in (3.3) with respect to µ,∫ ∞

µ

4π2x−5/4e−2π/
√

x dx = 4π2
√

2 erf(
√

2πµ−1/4),

where erf(x) is the usual probability integral. Then, using the well-known expan-
sions for erf(z) near z = ∞, we find the leading exponential term in (3.7) (and (3.8)
follows immediately from the second formula of (3.2)).

Thus, we need only find the integration constant β. This, however, is a much
more delicate problem and the arguments above do not indicate how to compute
it. The derivation, based on the Hardy formula for the two-dimensional analogue of
the Riemann zeta function, is given in the appendix. Corollary 3.2 is proved.

Corollary 3.3. Let the functions Θ(δ) and Θ0(δ) be defined via (2.3) and (1.14),
respectively. Then,

Θ(δ) = Θ0(δ) + o(e−(2−ε)πδ1/2
) (3.9)

as δ → ∞ (here ε > 0 is arbitrary).

Indeed, (3.9) follows in a straightforward way from theorem 2.3 and (3.3), (3.7)
and (3.8) (even without the leading exponentially small terms).

We now check that Θ0(δ) is always larger than Θ(δ). We start by checking this
property for large δ.

Lemma 3.4. There exists δ0 > 0 such that

Θ(δ) � Θ0(δ) (3.10)

for all δ > δ0.

Proof. We introduce the following exponentially corrected analogue of the function
Θ0:

Θexp(µ) =
1

4π2

(π log(1/µ) + β + µ − 4πµ1/4e−2π/
√

µ)2

π log(1/µ) + β − π + 2µ − 4π2µ−1/4e−2π/
√

µ
,

δ(µ) =
π/µ − 1 + 4π2µ−5/4e−2π/

√
µ

π log(1/µ) + β − π + 2µ − 4π2µ−1/4e−2π/
√

µ
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.11)

Then, according to (3.3), (3.7) and (3.8), the function Θexp(δ) gives a better approx-
imation to Θ(δ) than Θ0(δ) if δ is large. Consequently, to prove the lemma, it is
sufficient to verify that

Θexp(δ) � Θ0(δ) (3.12)

for large δ. To this end, we introduce small ε := 4πµ−1/4e−2π/
√

µ and write (3.11)
in the form

Θ(µ, ε) =
1

4π2

(π log(1/µ) + β + µ − µ1/2ε)2

π log(1/µ) + β − π + 2µ − πε
,

δ(µ, ε) =
π/µ − 1 + πµ−1ε

π log(1/µ) + β − π + 2µ − πε
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.13)
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Then, since ε is extremely small in comparison with µ if µ is small, we may consider
it as an infinitesimal increment. Therefore, (3.12) will be satisfied if and only if the
infinitesimal shift along the vector (∂εδ, ∂εΘ)|ε=0 lies under the tangent line to
(δ(µ, 0), Θ(µ, 0)). This requires us to verify the condition that

(∂µΘ∂εδ − ∂εΘ∂µδ)|ε=0 < 0.

Direct calculation gives that

(∂µΘ∂εδ − ∂εΘ∂µδ)|ε=0

= − 1
2π2

(π log(1/µ) + β + µ)(π2 log(1/µ) + πβ − 2π2 + 5πµ − 2µ2)
µ3/2(π log(1/µ) + β − π + 2µ)3

and we see that the right-hand side is indeed negative if µ is small enough. Thus,
lemma 3.4 is proved.

Thus, the desired inequality (3.9) is analytically verified for large δ. In contrast,
it is unlikely that it can be analogously checked for small values of δ since the
asymptotic expansions do not work here and we need to work directly with the
lattice sums. However, the numerics are reliable for δ ‘not large’, so instead we
check it numerically in that region. As follows from our numerical simulations, the
conjecture is indeed true for all values of δ � 1. Thus, we have verified the validity
of the improved version of the critical Sobolev inequality

‖u‖2
C(T2) � ‖∇u‖2

L2(T2)Θ0

(‖∆u‖2
L2(T2)

‖∇u‖2
L2(T2)

)
(3.14)

for all 2π × 2π-periodic functions with zero mean.

Remark 3.5. As we have already mentioned, the value of Θ(δ) is extremely close
to Θ0(δ), even for relatively small δ (e.g. for δ = 4 the difference is already less than
10−5), so the high precision computations of the lattice sums (3.1) are required in
order to show that Θ is indeed smaller than Θ0. Since direct computation of these
sums includes many terms, this method is rather slow. Alternatively, using the
Poisson summation formula, we have that

h(µ) =
π

µ
− 1 + 2π2µ−3/2

∑′
|k|K1(2πµ−1/2|k|)

and, integrating this over µ and keeping in mind the value of the integration con-
stant, we arrive at

f(µ) = π log
1
µ

+ β + µ − 8π
∑′

K0(2πµ−1/2|k|), g(µ) = f(µ) − µh(µ).

Since the Bessel functions K0(x) and K1(x) decay exponentially as |x| → ∞, the
transformed series converge much faster and appear preferable for the high preci-
sion computations. Actually, we use both approaches in order to double check our
numerics.

Our next task is to present a rougher version of (3.14), approximating the right-
hand side of (3.14) by simpler functions. To this end, we need the following lemma.
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Lemma 3.6. The function Θ(δ) possesses the asymptotic expansion

Θ(δ) =
1
4π

(
log δ + log log δ +

β + π

π
+

log log δ

log δ
+ O((log δ)−1)

)
(3.15)

as δ → ∞.

Proof. We first note that, since Θ(δ) is exponentially close to Θ0(δ), we may ver-
ify (3.15) for the function Θ0 only. To this end, we need to find the expansion for
µ = µ(δ) (δ 
 1, which corresponds to µ � 1) from

δ =
π/µ − 1

π log(1/µ) + β − π + 2µ

and insert it into the expression for Θ0(µ). To compute the expansion for µ(δ),
we drop the term 2µ in the denominator (which only leads to an error of order
O(δ−1+ε), ε > 0, in the final answer). Then, the equation obtained,

π/µ − 1
π log(1/µ) + β − π + 2µ

= δ,

can be solved explicitly in terms of the so-called Lambert W function

1
µ

= −δW−1

(
−δ−1 exp

(
−1 + δ(β − π)

πδ

))
, (3.16)

where W−1 is the −1-branch of the Lambert function (see [11] for details). We also
note that

Θ0(µ) =
1
4π

log
1
µ

+
β + π

4π2 + O

((
log

1
µ

)−1)
(3.17)

and, therefore, the remainder is again non-essential for (3.15) and can be dropped.
Thus, it remains only to expand the logarithm of the right-hand side of (3.16). To
this end, we use the expansion (see [11]) for the Lambert function W−1 near zero:

W−1(−z) = log z − log(− log z) + O

(
log(− log z)

log(−z)

)
, z → 0 − . (3.18)

This gives that

1
µ

= δ log δ + δ(π − β) − 1
π

+ δ log
(

log δ + π − β − 1
πδ

)
+ O

(
log log δ

log δ

)
.

Taking the logarithm of the right-hand side of this formula, inserting the result
in (3.17) and dropping the lower-order terms, we end up with (3.15) and complete
the proof of the lemma.

We are now ready to state the improved critical Sobolev inequality with double-
logarithmic correction.

Theorem 3.7. The inequality

‖u‖2
C(T2) � 1

4π
‖∇u‖2

L2(T2)

(
log

‖∆u‖2
L2(T2)

‖∇u‖2
L2(T2)

+ log
(

1 + log
‖∆u‖2

L2(T2)

‖∇u‖2
L2(T2)

)
+ L

)
(3.19)
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holds for all 2π×2π-periodic functions u with zero mean. The constant L > β+π/π
is defined as

L := max
δ�1

{4πΘ(δ) − (log δ + log(1 + log δ))}. (3.20)

This maximum is achieved at some finite 1 < δ∗ < ∞ and the corresponding con-
ditional extremal uµ(δ∗)(x) is an exact extremal function for (3.19).

Proof. In the light of the asymptotic expansion (3.15) and the fact that Θ(δ) is
continuous, the supremum over δ � 1 of the function on the right-hand side of (3.20)
is finite. Moreover, since the first decaying term in that expansion (log log δ/ log δ)
is positive, the inequality cannot hold with L = (β +π)/π. In fact, there is an extra
‘1’ in the double-logarithmic term in (3.19) in comparison with (3.15), introduced
in order that the right-hand side be a well-defined function for all δ � 1. However,
this term is only an O((log δ)−1) correction, which is weaker than the first decaying
term in the expansions (3.15) and cannot change anything.

Thus, the above supremum cannot be achieved as δ → ∞ and, therefore, since
Θ(δ) is continuous, it is achieved at some finite point δ = δ∗ and must be larger
than the value at infinity (L > (β + π)/π ∼ 1.82283). Then, by the definition of
Θ and L, (3.19) holds and equality is achieved on the function u(x) = uµ(δ∗)(x).
Theorem 3.7 is proved.

According to our numerical analysis, the maximum in (3.20) is unique and is
achieved at δ∗ ∼ 3.92888, which corresponds to L ∼ 2.15627. Thus, the exact
extremum function uµ(δ∗)(x) is also unique up to translations, scaling and alterna-
tion.

We conclude this section by analysing the structure of the extremal functions
uµ(x) for small, positive µ (corresponding to large δ).

Lemma 3.8. The extremals uµ(x) possess the expansions

uµ(x) = −2πK0(µ−1/2|x|) + G0(x) + µ + Cµ + Vµ(x), (3.21)

where G0(x) is a fundamental solution of the Laplacian

∆xG0 = −4π2δ(x) + 1, ∂nG0|∂([−π,π]2) = 0,

∫
T2

G0(x) dx = 0, (3.22)

K0 is the zero-order Bessel K function,

Cµ := − µ

2π

∫
R2\µ−1/2[−π,π]2

K0(x) dx

is an exponentially small (with respect to µ → 0+) constant and the exponen-
tially small function Vµ(x) solves the following fourth-order elliptic equation in
T = [−π, π]2 with non-homogeneous boundary conditions:

∆(1 − µ∆)Vµ = 0, ∂nVµ|∂T = 2π∂nK0(µ−1/2|x|)|∂nT ,

∂n∆xVµ|∂T = 2π∂n∆xK0(µ−1/2|x|)|∂nT ,

∫
T2

Vµ(x) dx = 0.

⎫⎬⎭ (3.23)
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Proof. According to remark 2.6, the function Vµ(x) solves the fourth-order elliptic
equation (2.14) with periodic boundary conditions. Moreover, owing to the symme-
try, the periodic boundary conditions can be replaced by homogeneous Neumann
ones. Now, let G0 be the fundamental solution of the Laplacian in a square defined
by (3.22) (the solution of this equation exists since the right-hand side has zero
mean). Then, using the fact that

(1 − µ∆x)K0(µ−1/2|x|) = +2πµδ(x) (3.24)

we end up with

∆x(1 − ∆x)[2πK0(µ−1/2|x|) + G0(x)] = −4π2δ(x) + 1

and, therefore, using also the obvious fact that ∂n∆xG0(x)|∂T = 0, we see that the
remainder Vµ should indeed satisfy (3.23). The solvability condition

(1 − µ∆x)K0(µ−1/2|x|)|∂T = 0

for that equation is satisfied in the light of (3.24). Thus, decomposition (3.21) is
verified up to a constant (we recall that the function uµ(x) must have zero mean).
In order to find this constant we note that, by definition, the functions G0(x) and
Vµ(x) have zero means, so only the function K0 has non-zero mean and, hence, the
constant is determined by

C =
1
2π

∫
T2

K0(µ−1/2|x|) dx

= − µ

2π

∫
µ−1/2T2

K0(|x|) dx

=
µ

2π

( ∫
R2

K0(|x|) dx −
∫

R2\µ−1/2T

K0(|x|) dx

)
= µ + Cµ.

The constant Cµ is indeed exponentially small as µ → 0+ since the function K0(z)
is exponentially decaying as z → ∞.

Recall that

G0(x) = 2π log
1
|x| + ‘smooth remainder’;

therefore, the leading term of uµ(x) up to smooth zero-order terms in µ is radially
symmetric and is given by

uµ(x) = 2π

(
log

1
|x| − K0(µ−1/2|x|)

)
+ ‘smooth, order zero remainder’. (3.25)

Thus, uµ(x) consists of a radially symmetric spike near x = 0 corrected by lower-
order terms. Figure 1 shows a contour plot of uµ(x) for µ ≈ 0.12211, which corre-
sponds to δ = δ∗ (see theorem 3.7).
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Figure 1. A contour plot of uµ(x, y) for δ = δ∗ ≈ 3.92888 (µ ≈ 0.12211). Darker areas
are higher. The spike becomes almost perfectly radially symmetric, even for this relatively
small value of δ.

Remark 3.9. Passing to the limit µ → 0 (for |x| �= 0) in (3.22) and using lattice
sum formula (1.11) for the extremals, we see that (at least formally)

G0(x) =
∑′ eik·x

k2 . (3.26)

It can be shown that the sign-alternating sum on the right-hand side is convergent
(if the proper order of summation is chosen) for every x �= 0, and the equality
holds; see [4,14]. In addition, using the known asymptotic expansion for the Bessel
K-function near zero

K0(z) = − log z + log 2 − γ + O(z2),

see [33], together with (3.21) and (3.7), one can show that the integration constant
β can be expressed in terms of G0 as

β = 2πγ − 2π log 2 + lim
x→0

(
G0(x) − 2π log

1
|x|

)
= 2π(γ − log 2) + lim

x→0

( ∑′ eik·x

k2 − 2π log
1
|x|

)
. (3.27)

Recall also that the fundamental solution G0(x) can be explicitly written in terms
of integrals of some elliptic functions (e.g. using the bi-conformal map between the
square and the unit circle) and the values of G0(x) can be explicitly found for some
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x by using identities for elliptic functions. For instance,

G0((π, π)) =
∑

(k1,k2)∈Z2−{0}

(−1)k1+k2

k2
1 + k2

2
= −π log 2;

see [13,14]. However, we have failed to find limit (3.27) in this way, so our compu-
tation of the integration constant β (see the appendix) will be based on different
arguments.

4. Alternative approaches to the critical Sobolev inequality

In this section, we discuss the possibility of obtaining (3.19) with sharp constant
1/4π (at least in the leading term log δ) using the standard strategies for proving
the critical Sobolev inequality. In fact, we will analyse two such strategies. The first
is based on the embedding of H1+ε to C for every ε > 0,

‖u‖2
C(T2) � C

ε
‖u‖2

H1+ε , (4.1)

where C is independent of ε → 0, the interpolation ‖u‖H1+ε � C‖u‖1−ε
H1 ‖u‖ε

H2 and
the proper choice of ε (ε ∼ (log δ)−1).

The second strategy consists of splitting the function u into lower and higher
Fourier modes,

u(x) =
∑′

ukeik·x =
∑′

|k|�N
ukeik·x +

∑′

|k|>N
ukeik·x, (4.2)

with a properly chosen N ∼ δ, and estimating the lower and higher Fourier modes
using the H1- and H2-norms, respectively.

As we will see, the first scheme is rough and can give only the e-times larger
constant e/4π in the leading term (even if the best constants in the intermediate
inequalities are chosen). By contrast, the second scheme is much sharper and allows
correct retrieval not only of the leading term, but also of the double-logarithmic
correction.

We start with the first approach (following [2]). To proceed, we first need the
sharp constant in L∞-embedding (4.1).

Lemma 4.1. Let ε > 0 be arbitrary. Then, for every u ∈ H1+ε(T2) with zero mean,
the following inequality holds:

‖u‖2
C(T2) � C(ε)‖(−∆x)(1+ε)/2u‖2

L2(T2), C(ε) :=
1

4π2

∑′ 1
|k|2(1+ε) . (4.3)

The constant C(ε) = 1/4πε + Oε→0(1) is sharp and the exact extremals are given
by

Uε(x) :=
∑′ eik·x

|k|2(1+ε) (4.4)

(up to scalings and shifts).
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Proof. Indeed,

‖u‖2
C(T2) � 1

4π2

( ∑′
|uk|

)2

=
1

4π2

(
1

|k|1+ε
· (|k|1+ε|uk|)

)2

� 1
4π2

∑′ 1
|k|2(1+ε)

∑′
|k|2(1+ε)|uk|2

= C(ε)‖(−∆)(1+ε)/2u‖2
L2

and the equalities here hold if uk = C/|k|2(1+ε), which gives (4.4).
The leading term in the asymptotic expansions of C(ε) can easily be found,

say, by replacing the sum with the corresponding integrals (see lemma A.1 in the
appendix).

Remark 4.2. The lattice sum for C(ε) can be computed in a closed form through
the Riemann zeta and Dirichlet beta functions using the Hardy formula∑′ 1

|k|2(1+ε) = 4ζ(1 + ε)β(1 + ε), β(z) :=
∞∑

n=0

(−1)n

(2n + 1)z
; (4.5)

see [35]. This formula, together with the asymptotic expansions of ζ(1 + ε) and
β(1 + ε), will be required in the appendix in order to compute the integration
constant β.

We now recall that the sharp constant in the interpolation inequality

‖(−∆)(1+ε)/2u‖L2 � ‖∇u‖1−ε
L2 ‖∆xu‖ε

L2 (4.6)

is unity and the exact extremals are the eigenfunctions of the Laplacian

Uk(x) = eik·x, k ∈ Z
2 − {0}; (4.7)

see [31] for the details. Thus, combining (4.3) and (4.6), we may write that

‖u‖2
C(T2) � inf

ε∈(0,1]
{C(ε)‖∇u‖2(1−ε)

L2 ‖∆u‖ε
L2}

= ‖∇u‖2 inf
ε∈(0,1]

{C(ε)δε}

=
1
4π

‖∇u‖2
L2 min

ε∈(0,1]
{eε log δ(ε−1 + Oε→0(1))}

=
1
4π

‖∇u‖2
L2(e log δ + Oδ→∞(1)) (4.8)

(the last minimum being achieved for ε ∼ (log δ)−1 if δ is large). Thus, the above
described approach is not sharp and gives an e-times larger constant for the leading
term on the right-hand side of the inequality considered.

This result is not, in fact, surprising if we compare the extremals uµ(x) for the
critical Sobolev inequality with extremals (4.7) for the interpolation inequality used
in the above arguments. Indeed, the first are delta-like spikes situated near zero, but
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the others are well-distributed rapidly oscillating functions. Thus, we are applying
the interpolation inequality to functions which are very far from the extremals and,
for this reason, we may expect that on the extremals, this inequality holds with
constant better than unity (see [10]).

By contrast, extremals (4.4) look very similar to uµ(x): both of them are delta-like
spikes with height proportional to log(1/µ) (if we take the optimal ε ∼ log(1/µ)).
Therefore, one may expect that the sharpness of the above scheme is lost mainly
due to usage of the interpolation and that it is probably possible to retrieve the
sharp constant by using only the first inequality (4.3),

‖u‖2
C(T2) � inf

ε∈(0,1]
{C(ε)‖(−∆)(1+ε)/2u‖2

L2}, (4.9)

and then computing the infimum in the right-hand side in some ‘more clever’ way.
However, surprisingly, this expectation is wrong and approximately the same

‘degree of sharpness’ is lost under the usage of the first, (4.3), and the second, (4.6),
inequalities. In order to see this, we compute the leading terms of the asymp-
totic expansions in µ for the left- and right-hand sides of (4.9) on the conditional
extremals uµ(x) of the critical Sobolev inequality considered.

Lemma 4.3. Let

A(µ) := ‖uµ‖2
C(T2), B(µ) := inf

ε∈(0,1]
{C(ε)‖(−∆)(1+ε)/2uµ‖2

L2}, (4.10)

where the functions uµ(x) are given by (1.11). Then, the expansions

A(µ) = π2 log2 1
µ

+ O

(
log

1
µ

)
, B(µ) = π2α log2 1

µ
+ O

(
log

1
µ

)
(4.11)

hold as µ → 0+. The constant α > 1 is given by

α :=
eW (−2 exp(−2))+2 − 1

(W (−2 exp(−2)) + 2)2
∼ 1.544, (4.12)

where W (z) is the principal branch of Lambert’s W -function; see [11].

Proof. The asymptotic expansion for the function A(µ) follows from (3.7) and we
need only study the function B(µ). To this end, we introduce a function

h(µ, ε) :=
1

4π2 ‖(−∆x)(1+ε)/2uµ‖2
L2

=
∑′ 1

|k|2(1−ε)(1 + µk2)
. (4.13)

Note that the infimum on the right-hand side of (4.10) is achieved for small ε when µ
is small. We may assume, without loss of generality, that ε < 1/2. Then, applying
estimate (A 1) (see the appendix) we see that the one-dimensional integrals are
uniformly bounded as ε → 0 and µ → 0 and we may write that

f(µ, ε) =
∫

|x|>1

dx

|x|2(1−ε)(1 + µ|x|2) + Oµ,ε(1)

= 2πµ−ε

∫
r�µ1/2

dr

r2(1−ε)(1 + r2)
+ Oµ,ε(1)
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= 2πµε

( ∫ ∞

0

dr

r2(1−ε)(1 + r2)
−

∫
r�µ1/2

dr

r2(1−ε)(1 + r2)

)
+ Oµ,ε(1)

= 2πµ−ε

(
π

2 sin(πε)
− µε

ε

)
+ Oµ,δ(1)

= π
µ−ε(πε/ sin(πε)) − 1

ε
+ Oµ,ε(1),

where we have used the fact that the first integral in the middle line can be found
explicitly and the second one can be computed up to the bounded terms using the
expansions

1
1 + x2 = 1 +

∞∑
n=1

(−1)nx2n.

Now, recalling that C(ε) = 1/4πε + Oε(1), we end up with

B(µ) = π2 max
ε∈(0,1]

{(
1
ε

+ Oε(1)
)(

µ−ε(πε/ sin(πε)) − 1
ε

+ Oµ,ε(1)
)}

.

It is not difficult to see that the leading term as µ → 0 in the minimizing problem
is given by

π2 min
ε∈[0,1]

{
µ−ε − 1

ε2

}
= π2 min

ε∈[0,1]

{
exp(ε log(µ−1)) − 1

ε2

}
= π2 log2 1

µ
min
γ>0

{
eγ − 1

γ2

}
(4.14)

and the remainder term will be of the order log(1/µ) as µ → 0. It only remains to
note that the minimum on the right-hand side of (4.14) can be found explicitly in
terms of the Lambert W function and coincides with (4.12). Lemma 4.3 is proved.

Remark 4.4. Thus, since the right-hand side of (3.19) computed on the extremals
uµ(x) gives the same leading term in the asymptotic expansions as the function
A(µ), we see that it is impossible to obtain (3.19) with a constant better than α/4π
if inequality (4.9) is used (no matter how sharply we further estimate the right-hand
side of (4.9)).

We now return to the second of the methods described above. To this end, we
estimate the first and the second term on the right-hand side of (4.2) as follows:∑′

|k|�N
|uk| =

∑′

|k|�N
|k|−1|k||uk|

�
( ∑′

|k|�N
|k|−2

)1/2( ∑′

|k|�N
k2|uk|2

)1/2

� 1
2π

‖∇u‖L2

( ∑′

|k|�N
|k|−2

)1/2
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and ∑′

|k|>N
|uk| =

∑′

|k|>N
|k|−2k2|uk|

�
( ∑′

|k|>N
|k|−4

)1/2( ∑′

|k|>N
k2|uk|2

)1/2

� 1
2π

‖∆u‖L2

( ∑′

|k|>N
|k|−4

)1/2

,

which together with (4.2) lead to the estimate

‖u‖2
C(T2) � 1

4π2 ‖∇u‖2 min
N>0

(( ∑′

|k|�N

1
|k|2

)1/2

+ δ1/2
( ∑′

|k|>N

1
|k|4

)1/2)2

,

(4.15)
with δ = ‖∆u‖2

L2/‖∇u‖2
L2 . The following lemma gives the asymptotic behaviour of

the right-hand side of this inequality as δ → ∞.

Lemma 4.5. Let P (δ) be the value of the minimum on the right-hand side of (4.15).
Then, this function possesses the expansion

P (δ) =
1
4π

(
log δ + log log δ +

β + π

π

)
+

1 + log 2
4π

+ o(1) (4.16)

as δ → ∞.

Proof. As shown in the appendix (see lemma A.4),∑′

|k|�N

1
|k|2 = 2π log N + β + O(N−1)

as N → ∞. On the other hand, as is not difficult to show, using, say, lemma A.1,∑′

|k|>N

1
|k|4 =

∫
|x|>N

dx

|x|4 + O(N−3) = πN−2 + O(N−3). (4.17)

Then, using the obvious fact that the minimum on the right-hand side of (4.15)
should be achieved for N ‘close’ to δ (C−1

γ δ1−γ � Nmin � Cγδ1+γ for all γ > 0),
we see that

P (δ) =
1
2π

min
N>0

(log1/2(kN) + 1√
2
N−1δ1/2)2 + o(1), k := eβ/2π (4.18)

as δ → ∞. Differentiating the expression on the right-hand side, we see that the
minimum is achieved at

N(δ) :=
1
k

exp
(

− 1
2W−1

(
−1
k2d

))
,

where W−1(z) is, again, the −1-branch of the Lambert W -function. Using expan-
sion (3.18) for the Lambert W -function, we arrive at

Nmin(δ) = δ1/2
√

log(k2d)
(

1 + O

(
log log δ

log δ

))
.
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Inserting this expression into the right-hand side of (4.18) we end up with (4.16)
(after some straightforward computations) and complete the proof of the lemma.

Remark 4.6. Thus, in contrast to the first method, the second gives two correct
terms in the asymptotic expansion of the function Θ(δ) and the error appears only in
the third term (wrong additional constant (1+log 2)/4π; compare (1.13) and (4.16))
and we conclude that the second method is sharper and clearly preferable for the
elementary proof of inequalities of this type, at least in the case of tori.

5. The algebraic case

In this section, we apply the method developed above to the simpler case of algebraic
interpolation inequalities of the form (1.2) on the torus. We are able to treat the
case of tori of arbitrary dimension d; however, in order to avoid the computation
of the analogues of the integration constant β (which is difficult and requires more
refined analysis), we restrict ourselves to the case where one of the interpolation
spaces is L2. So, we want to analyse the interpolation inequality

‖u‖2
C(Td) � cd(n)‖u‖2−d/n

L2 ‖(−∆x)n/2u‖d/n
L2 , n > 1

2d, (5.1)

for (2π)d-periodic functions with zero mean. Following the above described scheme,
we replace inequality (5.1) by the refined one

‖u‖2
C(Td) � ‖u‖2

L2Θd,n(δ), δ :=
‖(−∆x)n/2‖2

L2

‖u‖2
L2

� 1, (5.2)

where

Θd,n(δ) := sup
{

‖u‖2
L∞ , u ∈ Hn(Td),

‖u‖L2 = 1, ‖(−∆x)n/2u‖2
L2 = δ,

∫
Td

u(x) dx = 0
}

. (5.3)

First of all we note that, arguing as in lemma 2.1, we may prove that the maxi-
mizer uδ(x) for (5.3) exists. So, we may apply the Lagrange multipliers technique,
analogously to theorem 2.3, and obtain the following result.

Lemma 5.1. The conditional extremals for (5.2) are given by

uµ(x) =
∑′ eik·x

1 + µ|k|2n
, µ ∈ (−∞,−1] ∪ (0, +∞], (5.4)

(where
∑′ now means the sum over the lattice k ∈ Z

d, excepting k = 0) and,
therefore, the desired function Θd,n(δ) possesses the parametric description

Θd,n(µ) :=
1

(2π)d

(
∑′ 1/(1 + µ|k|2n))2∑′ 1/(1 + µ|k|2n)2

,

δ(µ) =
∑′ |k|2n/(1 + µ|k|2n)∑′ 1/(1 + µ|k|2n)2

,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.5)
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where µ ∈ (−∞,−1] ∪ (0, +∞]. In addition, for every δ � 1 there exists a unique
µ = µ(δ) belonging to that interval (see remark 2.4 concerning the limit values
µ = −1 and µ = ∞).

The proof of this lemma is analogous to theorem 2.3 and, therefore, is omitted.
Furthermore, analogously to (3.7), (3.8) and (3.3), we may find the asymptotic

expansions up to exponential terms for all sums involving the parametric definition
of the function Θn.

Lemma 5.2. Let n ∈ N and 2n − d > 0. Then, the expansions

f(µ) :=
∑′ 1

1 + µ|k|2n

=
πω(d)

2n sin(πd/2n)
µ−d/2n − 1 + O

(
exp

(
−Cn

µd/2n

))
,

g(µ) :=
∑′ 1

(1 + µ|k|2n)2

=
1
4

π(2n − d)ω(d)
n2 sin(πd/2n)

µ−d/2n − 1 + O

(
exp

(
−Cn

µd/2n

))
,

h(µ) :=
∑′ |k|2n

(1 + µ|k|2n)2

=
1
4

πdω(d)
n2 sin(πd/2n)

µ−1−(d/2n) + O

(
exp

(
−Cn

µd/2n

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

hold as µ → 0. Here, ω(d) := 2πd/2/Γ (d/2) is the volume of the (d−1)-dimensional
unit sphere and Cn is a positive constant depending on n.

Proof. Expansions (5.6) can be obtained from the Poisson summation formula,
analogously to lemma 3.1 but more simply since we do not need to analyse the
leading exponentially decaying term here, so we need not find the Fourier trans-
forms explicitly and may just use the fact that the full sums (including the term
with k = 0) are exponentially close to the corresponding integrals. Note also that,
in contrast to § 3, we do not have singularities at k = 0 in any sums, so the addi-
tional integration constant does not appear and the verification of (5.6) is reduced
to computing the multi-dimensional integrals associated with the sums. In turn,
the integrals can be straightforwardly computed using hyperspherical coordinates
(recall that all the integrals are radially symmetric) and the well-known formulae∫ ∞

0

xm

(1 + xk)l
dx =

1
k

B

(
m + 1

k
, l − m + 1

k

)
,

B(x, y) :=
Γ (x)Γ (y)
Γ (x + y)

, Γ (x)Γ (1 − x) =
π

sin πx
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.7)

For brevity, we omit the computation of these integrals. Thus, the lemma is proved.

Remark 5.3. It is not difficult to see that the positive constant Cn in expan-
sions (5.6) decays as n → ∞: Cn ∼ C/n. Indeed, the analytic function z →
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1/(1 + z2n) has simple poles at

zk := − sin(πk/2n) + i cos(πk/2n)

and at least one of them is at distance ∼ π/2n from the real axis. This explains
why expansions (5.6) start to work only for extremely small µ (hence, extremely
large δ) if n is large enough (see examples below).

The next lemma is the analogue of lemma 3.6 for this case.

Lemma 5.4. Let n ∈ N and 2n − d > 0. Then, the function Θd,n(δ) possesses the
expansion

Θd,n(δ) =
1

(2π)d

(
πω(d)

sin(πd/2n)dd/2n(2n − d)1−d/2n
δd/2n

− 2n

2n − d
− 2d1+d/2nn2 sin(πd/2n)

πω(d)(2n − d)2+d/2n
δ−d/2n

)
+ O(δ−d/n) (5.8)

as δ → ∞.

The proof of this statement is based on expansions (5.6) and consists of straight-
forward calculations, which are left to the reader.

We are now ready to state the improved version of (5.1) with a remainder term,
which can be considered as the main result of this section.

Theorem 5.5. Let n ∈ N and 2n − d > 0. Then,

‖u‖2
C(Td) � cd(n)‖u‖2−d/n

L2 ‖(−∆x)n/2u‖d/n
L2 − Kd(n)‖u‖2

L2 (5.9)

holds for all (2π)d-periodic functions with zero mean, where

cd(n) :=
1

(2π)d

πω(d)
sin(πd/2n)dd/2n(2n − d)1−d/2n

and the constant Kd(n) � 2n/(2π)d(2n − d) can be found from

Kd(n) := sup
δ�1

{cd(n)δd/2n − Θd,n(δ)}. (5.10)

Proof. The finiteness of supremum (5.10) is guaranteed by expansions (5.8) cou-
pled with the continuity of the function Θd,n. The validity of (5.9) then follows
immediately from the definitions of Θd,n and Kd(n). The inequality Kd(n) �
2n/(2π)d(2n − d) follows from the fact that, according to (5.8), the limit of the
right-hand side of (5.10) as δ → ∞ is exactly 2n/(2π)d(2n − d).

Remark 5.6. We emphasize that the first constant cd(n) in (5.9) coincides with the
analogous constant (1.3) for the case of the whole of R

d for all admissible d, n ∈ N.
Thus, in the improved form (5.9) of the interpolation inequality, the difference
between the two alternative cases discussed in the introduction is now transformed
to the question of whether or not the second constant Kd(n) is non-negative.

If Kd(n) > 0 (as we will see below, this is true for the one-dimensional case,
d = 1, as well as for the multi-dimensional case if n is not large), the second term
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in (5.9) is negative and can be treated as a remainder Brézis–Lieb-type term in the
usual interpolation inequality (5.1). In particular, this term can simply be omitted,
which shows that, in such a case, the best constant in (5.1) in the space periodic case
coincides with the analogous constant for R

d. In addition, if Kd(n) is strictly less
than 2n/(2π)d(2n − d), we may conclude that there exist exact extremals for (5.9)
(this follows from the fact that the third term in (5.8) is strictly negative).

By contrast, if Kd(n) < 0, the lower-order term in (5.8) becomes positive and
cannot be removed without increasing the first constant cd(n). Thus, according to
theorem 5.5, adding the positive lower-order corrector to classical inequality (5.1)
allows us to not increase the constant in the leading term (which remains the same
as in the case of R

d). This improvement may be essential in practice since, in many
applications to PDEs, inequalities (5.1) are used in order to estimate the higher -
order norm in situations where the lower-order norm is already estimated (say, via
the energy inequality; see [30]). In that case, only the constant in the leading term
is truly essential and the approach with the corrector term allows us not only to
decrease it, but also gives its exact analytical value.

Remark 5.7. Note that the possibility of keeping the leading constant the same as
in R

d in the case of bounded domains, just by adding the lower-order corrector, is
not an obvious fact and it is specific to the domains without boundary or those with
Dirichlet boundary conditions. Indeed, let us consider the case where Ω = [−π, π]d

with, say, Neumann boundary conditions. Then, because of the symmetries, the
functions uµ(x − {π}d) (our extremals, but shifted to the ‘corner’ of the hypercube
Ω) will satisfy the boundary conditions. However, only ‘one quarter’ of the functions
are now in the domain Ω, so the C-norms of the functions remain unchanged, but
all Hs-norms are halved. Thus, the leading constant cd(n) in (5.9) must be at least
four times larger than for R

d; see also [25] for the case of domains with cusps where
not only the coefficient, but also the form of the leading term in the asymptotic
expansions, will be different.

We conclude this subsection by considering the low-dimensional cases including
the numerical analysis of the constant Kd(n) for small n and d.

5.1. The one-dimensional case d = 1

A comprehensive analysis of (5.1) was given in [20]. In particular, as proved there,
the best constant in the one-dimensional case of (5.1) is exactly c1(n) for all n � 1
and the exact extremals do not exist. We use this information in order to verify
that the constant K1(n) is strictly positive.

Lemma 5.8. Let d = 1 and n � 1. Then, the best constant K1(n) in the remainder
term is strictly positive.

Proof. The negativity of K1(n) would contradict the fact that the best constant
in (5.1) is c1(n), as proved in [20], so we need only exclude the case K1(n) = 0.

Assume now that K1(n) = 0. Then, again, in the light of (5.8), the zero supremum
in (5.10) must be a maximum achieved at some point δ = δ∗ < ∞. Consequently, the
associated conditional extremal uµ(δ∗)(x) is an exact extremum function for (5.1),
which contradicts the result of [20]. Thus, K1(n) > 0 and the lemma is proved.
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Figure 2. Plots of Θ1,n(δ) − c1(n)δ1/n against δ in the one-dimensional case for (a) n = 1,
where the dotted line corresponds to −π, (b) n = 2, where the dotted line corresponds to
−2/3π, and (c) n = 3, where the dotted line corresponds to −3/5π.

Remark 5.9. Recall that, in the one-dimensional case, each of the functions f(µ),
g(µ) and h(µ) can be written in closed form through the logarithmic derivatives of
the Euler Γ -function using the famous identity

d
dx

log Γ (x) + γ =
∞∑

k=0

(
1

k + 1
− 1

k + x

)
and by expanding the function 1/(1 + µk2n) as a sum of elementary fractions.
Although this formula is not very helpful for asymptotic analysis, it may be used for
high precision numerics since effective ways to compute the logarithmic derivatives
for the gamma functions are known and incorporated in the algebraic manipulation
software (e.g. Maple).

We now present some numerical results for n not large.
Let n = 1 or n = 2. Then, as can be seen in figure 2, the function

F (δ) := Θn(δ) − c1(n)δ1/(2n) +
n

π(2n − 1)
(5.11)

is monotone increasing and is negative for all δ � 0 (for large δ this property is
obvious since the third term in (5.8) is negative and tends to zero, and for δ not
large the numerics are reliable). Thus, we see that K1(1) = 1/π, K1(2) = 2/3π and,
therefore, the inequalities

‖u‖2
C(T1) � ‖u‖L2‖u′‖L2 − 1

π
‖u‖2

L2 ,

‖u‖2
C(T1) �

√
2

4
√

27
‖u‖3/2

L2 ‖u′′‖1/2
L2 − 2

3π
‖u‖2

L2

hold and exact extremals for this inequality do not exist. Note also that, in contrast
to the case n = 1, the graph of F (δ) becomes non-concave and we may expect that
a local maximum for small δ will appear for larger n. Indeed, for n = 3, in figure 2,
we see two local maxima for the function, one of which becomes larger than zero.

Therefore, K1(3) < 3/5π ∼ 0.19099 and, in contrast to (5.1), exact extremals
for the improved version (5.9) exist. In addition, according to our computations,
K1(3) ∼ 0.181232 and is achieved at δ = 1.43404.
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Figure 3. Plots of Θ2,n(δ) − c2(n)δ1/n against δ in the two-dimensional case for (a) n = 2,
where the dotted line corresponds to −(2π2)−1, and (b) n = 3, where the dotted line
corresponds to −3/8π2.

We have observed the analogous phenomenon for all larger n, so the conjecture
that K1(n) < n/π(2n − 1) for all n � 3, and probably tends to zero as n → ∞,
looks reasonable.

Remark 5.10. Thus, even in the simplest one-dimensional case, our method allows
not only the reproduction of known results, but also gives some interesting new
information about remainders of the Brézis–Lieb type.

5.2. The two-dimensional case d = 2

In contrast to the one-dimensional case, the situation here is essentially less
understood and, to the best of our knowledge, the exact value of c2(n) was not
known even for n = 2 (note that the inequality c2(2) < 1/π was established in [22]
although, as we will see, c2(2) = 1

4 ). We also mention that the analogous problem
on the two-dimensional sphere S

2 has been studied by Ilyin [21] and it was found
that for n � 8 the corresponding constant becomes strictly larger than the analo-
gous constant for R

2 and can be found only numerically. As we will see, the same
phenomenon also occurs on the torus for n > 9.

We now present our numerical study of the constant K2(n). Let n = 2 (the least
possible value in the two-dimensional case). As figures 3 and 4 show, the function
F (δ) := Θn(δ)−c2(n)δ1/n+n/4π2(n−1) remains negative (although not monotone
increasing; again, the negativity of the third term in (5.8) guarantees negativity for
large δ and we need only check it for δ not large, where the numerics are reliable).
Thus, K2(2) = n/4π2(n − 1) and

‖u‖2
C(T2) � 1

4
‖u‖L2‖∆xu‖L2 − 1

2π2 ‖u‖2
L2 (5.12)

holds for all 2π × 2π-periodic functions with zero mean (and there are no exact
extremals for the inequality).

Now, let n = 3. Then, as we see from figure 3, the function F is positive for 1.98 �
δ � 13.2, therefore K2(3) < 3/8π2, but still remains positive. Thus, analogously to
the one-dimensional case, exact extremals appear for (5.12) at n = 3 and we may
compute the sharp value of K2(3) only numerically.



Sobolev and Gagliardo–Nirenberg inequalities on a torus 473

0 5.0 10.0 15.0 20.0
−0.06

−0.04

−0.02

0

20 22 24

−0.028499

−0.028498

−0.028497

(a)

0 5.0 10.0 15.0 20.0

−0.06

−0.04

−0.02

0

22 24 26
−0.02816

−0.02815

−0.02814

(b)

25.0

   
 2

,9
( 

  )
 −

 c
2(

9)
   

1/
9

Θ
δ

δ
   

 2
,1

0(
   

) 
− 

c 1(
10

) 
  1/

10
Θ

δ
δ

log10 δ

log10 δ

Figure 4. Plots of Θ2,n(δ)− c2(n)δ1/n against δ in the two-dimensional case, for (a) n = 9,
where the dotted line corresponds to −9/32π2, and (b) n = 10, where the dotted line
corresponds to −5/18π2.

As our computations show, the positive maximum of F will only grow when n
grows, so we expect that this phenomenon holds for all n � 3. In addition, we see
that the coefficient K2(n) remains positive until n � 9, but for n = 10 the value
K2(10) becomes strictly negative. This means that (5.9) no longer holds for K2 = 0
and we need a positive lower-order corrector in order to be able to use the sharp
constant c2(n) in the leading term.
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Figure 5. Plot of Θ3,n(δ) − c3(n)δ3/2n against δ in the three-dimensional case for
(a) n = 2, where the dotted line corresponds to −(2π3)−1.

Remark 5.11. Thus, using our approach, one can not only verify the new inequal-
ity (5.12), where all the constants are the best possible, but also prove that the
constant c2(n) can be chosen in an optimal way (coinciding with the analogous
constant for R

2) for all n � 2, if a (possibly positive) lower-order corrector is
added. The lower-order corrector indeed becomes positive for large n (n � 10) but
remains negative otherwise.

5.3. The three-dimensional case d = 3

In the case n = 2, the numerics show that K3(2) < 1/2π3, but remains positive;
see figure 5(a), in which we have plotted F (δ) := Θ(δ) − (

√
2 4
√

3/6π)δ3/4. We find
that K3 ∼ 0.996/2π3 ∼ 0.01605, achieved at δ = 25.6, which gives the exact
extremals for (5.9).

Analogously to the two-dimensional case, the function F becomes more oscilla-
tory when n grows and, for n � 6, it crosses the x-axis and the second constant
K3(6) < 0 becomes strictly negative; see figure 5(c). Actually, K3(6) is very close
to zero (K3(6) ∼ −10−5) but is already strictly negative.

6. The large n limit

As we have seen in the previous section, asymptotic expansions (5.8) and (5.6),
which do not contain any oscillatory terms, start to work only for extremely large δ
(extremely small µ) if n is large enough. In contrast to this, as the numerics show,
the difference between Θk,n(δ) and the leading term of its expansions

Fd,n(δ) := Θd,n(δ) − cd(n)δ1/2n (6.1)

is highly oscillatory when δ is not extremely large (and the values of the second
constant Kd(n) in (5.9) are determined exactly by this transient part if n is large).
The aim of this section is to clarify the nature of this oscillation by studying the
large n limit (n → ∞) of the properly scaled function (6.1). As we know, there is an
essential difference between the one-dimensional and multi-dimensional cases (since,
in particular, K1(n) is always positive in one-dimensional and may be negative in
the multi-dimensional case), so we will consider these two cases separately.
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Figure 5. Plots of Θ3,n(δ)−c3(n)δ3/2n against δ in the three-dimensional case for (b) n = 3,
where the dotted line corresponds to −(4π3)−1, and (c) n = 6, where the dotted line
corresponds to −(6π3)−1.

6.1. The one-dimensional case: regular oscillations

We introduce a scaled parameter z such that µ := z−2n and write function Fd,n

as

F1,n(z) :=
1
2π

f(z−2n)2

g(z−2n)
− c1(n)

(
h(z−2n)
g(z−2n)

)1/2n

(6.2)

and pass to the pointwise limit n → ∞ in every term of this formula. Clearly,

c1(n) =
1
π

(
1 +

log(2n − 1)
2n

+ O(1/n)
)

and lim
n→∞

c1(n) =
1
π

. (6.3)

The following lemma gives the pointwise limit of the other terms in (6.2).



476 M. Bartuccelli, J. Deane and S. Zelik

Lemma 6.1. The pointwise limit

δ∞(z) := lim
n→∞

(
h(z−2n)
g(z−2n)

)1/2n

, z � 1, (6.4)

as n → ∞ is a continuous piecewise smooth function given by

δ∞(z) =

{
l, z ∈ [l,

√
l(l + 1)], l ∈ N,

z2/(l + 1), z ∈ [
√

l(l + 1), l + 1], l ∈ N,
(6.5)

and the limit n → ∞ of the first term on the right-hand side of (6.2) is a piecewise
constant function given by

θ∞(z) := lim
n→∞

f(z−2n)2

g(z−2n)
= 2[z] (6.6)

for all non-integer z (here [z] stands for the integer part of z).

Proof. We first check (6.5). Clearly, limn→∞(g(z−2n))1/2n = 1, so we need only
find the limit of ( ∑

k∈Z

k2n

(1 + (k/z)2n)2

)1/2n

. (6.7)

Let z ∈ (l, l + 1). Then, for k � l, the kth term is approximately k2n and the
largest term corresponds to k = l. For k � l + 1, the denominator becomes large.
Neglecting the term 1, we see that the kth term is close to (z2/k)2n and the largest
term corresponds to k = l + 1. Thus,

lim
n→∞

( ∑
k∈Z

k2n

(1 + (k/z)2n)2

)1/2n

= max{l, z2/(l + 1)}, z ∈ (l, l + 1),

which gives (6.4).
In order to verify (6.6) for z ∈ (l, l + 1), it is enough to note that in both sums

(for f and for g) the kth term tends to one or to zero if k � l or k � l + 1,
respectively (actually, the limit value is slightly different for integer points, but this
is not important for our purposes). Thus, the lemma is proved.

Corollary 6.2. Let z ∈ (l, l + 1), l ∈ N. Then,

F1,∞(z) := lim
n→∞

F1,n(z) =
1
π

{
0, z ∈ (l,

√
l(l + 1)),

l − z2/(l + 1), z ∈ [
√

l(l + 1), l + 1),
(6.8)

and, therefore,

max{F1,∞(z)} = 0, inf{F1,∞(z)} = − 1
π

and the infimums are achieved as z → l−, l = 2, 3, . . . .

Corollary 6.3. The second constant K1(n) in (5.9) satisfies

lim
n→∞

K1(n) = 0. (6.9)
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Figure 6. Plots of F1,n(z) for n = 10, 100 and as n → ∞.

From the previous section, we know that K1(n) � 0 and the limit (6.8) then
shows that the limit of K1(n) must be equal to zero.

The results of our numerical simulations for n = 10, 100 and the infinite limit
are shown in figure 6. We see that, even for the case n = 10, the limit function
F1,∞(z) allows prediction of the positions of first maxima and minima of F1,5(z).
For n = 100, we already see similar oscillations on the whole interval z ∈ [1, 10]
(which covers the interval δ � 1050 in the unscaled variables) and for larger n we
also see quantitative agreement with the limit case. Thus, the limit function F1,∞(z)
encapsulates the nature of regular oscillations of F1,n(z) for large n.

6.2. The multi-dimensional case: irregular oscillations

We now turn to the multi-dimensional case. In order to avoid technicalities, we
concentrate only on the two-dimensional case, although the situation is similar for
d > 2. In fact, the pointwise limit of the function F2,n(δ) as n → ∞ can be found
analogously to the one-dimensional case, but the behaviour of the limit function
will be much more irregular than in the one-dimensional case, for number-theoretic
reasons. We introduce a slightly different scaling of the parameter µ, namely, that
µ = z−n, and consider the function

F2,n(z) :=
1

4π2

f(z−n)2

g(z−n)
− c2(n)

(
h(z−n)
g(z−n)

)1/n

. (6.10)

As in the one dimensional case, we find the pointwise limit of every term on the
right-hand side of (6.10). First of all, clearly,

lim
n→∞

c2(n) =
1
4π

and the limits of the other terms are given by the following lemma.

Lemma 6.4. Let l1 and l2 be two successive natural numbers that can be represented
as the sum of two squares of integers and let z ∈ (l1, l2). Then,

δ∞(z) := lim
n→∞

(
h(z−n)
g(z−n)

)1/n

=

{
l1, z ∈ (l1,

√
l1l2],

z2/l2, z ∈ [
√

l1l2, l2).
(6.11)
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Figure 7. Plots of F2,n(z) for n = 10, 25, 100 and as n → ∞.

Analogously, the limit n → ∞ of the first term on the right-hand side of (6.10) is
a piecewise constant function given by

θ∞(z) := lim
n→∞

f(z−n)2

g(z−n)
= R2(l1), (6.12)

where R2(z) is the number of integer points k ∈ Z
2 such that |k2| � z, excluding

zero.

The proof of this lemma repeats almost word for word the proof of lemma 6.1
(replacing ‘subsequent integers’ by ‘successive integers which can be represented as
a sum of two squares’) and for this reason is omitted.

Corollary 6.5. Let l1 and l2 be two subsequent integers that can be represented
as a sum of two squares and let z ∈ (l1, l2). Then,

F2,∞(z) := lim
n→∞

F2,n(z) =
1

4π2

{
R2(l1) − πl1, z ∈ (l1,

√
l1l2],

R2(l1) − πz2/l2, z ∈ [
√

l1l2, l2).
(6.13)

Thus, in contrast to the one-dimensional case, the limit function F2,∞(z) con-
tains the function R2(l1) (the number of integer points in a disc of radius

√
z).

In addition, the leading term in the expansion of that function is exactly πz. It is
known that the remainder R2(l1) − πl1 is unbounded both from below and from
above, is approximately of order l

1/4
1 and demonstrates very irregular oscillatory

behaviour for large l1 (see [17]). This explains, in particular, why K2(n) becomes
negative for sufficiently large n as well as suggesting that

lim
n→∞

K2(n) = −∞.

We present the results of our numerical simulations for n = 10, 25, 100 and n = ∞
in figure 7.

We see from figure 7 that, even for n = 10 (when the graph first crosses the x-
axis and K2(n) becomes strictly negative), the limit function F2,∞(z) predicts the
positions of maxima and minima of F2,10(z) and the correspondence with F2,∞(z)
grows as n increases. Thus, we see that the irregular oscillations of F2,n(z) for large
n can be explained by taking the limit n → ∞, and by the irregularity of the
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second term in the asymptotic expansion for the number of integer points in a ball
of radius z.

Appendix A. Exact formula for the integration constant β

The aim of this appendix is to find analytically the value of the integration constant
β occurring in asymptotics (3.7) and (3.8). We start by recalling the standard
technique of estimating sums by integrals, adapted to the two-dimensional case.

Lemma A.1. Let the function R : R+ → R+ be monotone decreasing. Then,∫
Ω

R(|x|) dx − 4
∫ ∞

1
R(x) dx − 4R(1)

�
∑′

R(|k|) �
∫

Ω

R(|x|) dx + 4
∫ ∞

1
R(x) dx + 4R(1) + 4R(

√
2), (A 1)

where Ω := {(x, y) ∈ R
2, max{|x|, |y|} � 1}.

Proof. We use the obvious estimate∫
C(k1−1,k2−1)

R(|x|) dx � R(|k|) �
∫

Ck1,k2

R(|x|) dx,

where the right-hand estimate holds for all ki � 0 (and Ck := [k1, k1 +1]× [k2, k2 +
1]), and, for the validity of the left estimate, we need ki � 1. Thus,∑′

ki�0
R(|k|) �

∫
Ω+

R(|k|) dx (A 2)

(with Ω+ := Ω ∩ {x � 0, y � 0}) and∑′
R(|k|) �

∫
Ω

R(|k|) dx − 4
∞∑

k=1

R(k) �
∫

Ω

R(|x|) dx − 4
∫ ∞

1
R(k) dk − 4R(1),

where we have used that
∞∑

k=2

R(k) �
∫ ∞

1
R(x) dx.

On the other hand, ∑
ki�1,k �=(1,1)

R(|k|) �
∫

Ω+

R(|x|) dx,

which together with (A 2) gives the left-hand side of (A 1) and completes the proof
of the lemma.

The next lemma gives the formula for β in terms of a two-dimensional extension
of the Euler constant.

Lemma A.2. The integration constant β is the following two-dimensional analogue
of the Euler–Mascheroni constant:

β = lim
N→∞

( ∑′

|k|�N

1
k2 − 2π log N

)
. (A 3)
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Proof. We write out the function f in the form

f(µ) = lim
N→∞

( ∑′

|k|�N

1
k2 −

∑′

|k|�N

µ

1 + µk2

)
:= lim

N→∞

( ∑′

|k|�N

1
k2 − ϕN (µ)

)
and find the asymptotic behaviour for ϕN (µ) by replacing the sum with the corre-
sponding integral using the analogue of (A 1). Indeed, the one-dimensional integrals
are of order µ1/2 uniformly with respect to N and the sum of all terms for which
N − C � |k| � N + C is also of the order µ1/2 uniformly with respect to N ; there
are at most cN such terms and the sum does not exceed c(µN/(1 + µN2)) ∼ µ1/2.
Thus,

fN (µ) =
∫

BN (0)

µ

1 + µ|x|2 dx + O(µ1/2) = π log(1 + µN2) + O(µ1/2) (A 4)

and the remainder is uniformly small with respect to N as µ → 0. This gives that

lim
N→∞

(2π log N − fN (µ)) = −π lim
N→∞

log
(

µ +
1

N2

)
+ O(µ1/2)

= π log
1
µ

+ O(µ1/2). (A 5)

Since, by definition, the integration constant β satisfies

β = lim
µ→0

(
f(µ) − π log

1
µ

)
,

equality (A 5) gives that

f(µ) − π log
1
µ

= lim
N→∞

(2π log N − fN (µ)) + O(µ1/2) = β + O(µ1/2)

and passing to the limit µ → 0, we deduce (A 3). Lemma A.2 is proved.

Remark A.3. Actually, many constants of type (A 3) are explicitly known (e.g. the
so-called Madelung constants, etc.; see [13] and references therein). However, we
failed to find the formula for constant (A 3) in the literature, so we will prove the
analytic expression for it in terms of the usual Euler constant and the Gamma
function in the next lemma, based on the Hardy formula for lattice sums.

Lemma A.4. The constant β can be expressed in terms of the classical Euler–
Mascheroni constant γ as

β = πγ + 4β′(1), (A 6)

with β′(1) = 1
4π(γ + 2 log 2 + 3 log π − 4 log Γ ( 1

4 )) ∼ 0.19290 (here β(z) and Γ (z)
are the Dirichlet beta and gamma functions, respectively).

Proof. We use the explicit formula (4.5) for the lattice sums∑′ 1
k2(1+ε) = 4ζ(1 + ε)β(1 + ε) = 4

(
1
ε

+ γ + O(ε)
)(

π

4
+ β′(1)ε + O(ε2)

)
=

π

ε
+ πγ + 4β′(1) + O(ε), (A 7)
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where ζ(x) is the Riemann zeta function. We also introduce the notation

ψN :=
∑′

|k|�N

1
k2 , ψN (ε) :=

∑′

|k|�N

1
k2(1+ε) , ψ(ε) :=

∑′ 1
k2(1+ε)

and compute the expansions for

ψ(ε) − ψN (ε) =
∑

|k|�N

1
k2(1+ε)

for small ε and large N . As before, it is not difficult to see that replacing the sum
by the integral works and gives that

ψ(ε) − ψN (ε) =
∫

|x|>N

dx

|x|2(1+ε) + O(N−1) =
π

ε
N−2ε + O(N−1) (A 8)

uniformly with respect to ε → 0. Thus,

lim
ε→0

(
ψ(ε) − ψN (ε) − π

ε

)
=

π

ε
[N−2ε − 1] + O(N−1) = −2π log N + O(N−1).

Using also the fact that, for every finite N , limε→0 ψN (ε) = ψN , we obtain that

ψN − 2π log N = lim
ε→0

(
ψ(ε) − π

ε

)
+ O(N−1)

and, due to (A 7),
β = lim

ε→0

(
ψ(ε) − π

ε

)
= πγ + 4β′(1).

Thus, using the known expression for the derivative of the β-function at s = 1, we
derive the desired formula (A 6) and this completes the proof of the lemma.
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