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a b s t r a c t

In this paper we consider a resonant injection-locked frequency divider which is of interest
in electronics, and we investigate the frequency locking phenomenon when varying the
amplitude and frequency of the injected signal.We study both analytically and numerically
the structure of the Arnol’d tongues in the frequency–amplitude plane. In particular, we
provide exact analytical formulae for the widths of the tongues, which correspond to the
plateaux of the devil’s staircase picture. The results account for numerical and experimental
findings presented in the literature for special driving terms and, additionally, extend the
analysis to a more general setting.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The locking of oscillators onto subharmonics of the driving frequency (known as frequency locking or frequency
demultiplication) has been well known in electronics since the work of van der Pol and van der Mark [1]; see also [2]. In the
frequency–amplitude plane, locking occurs in distorted wedge-shaped regions (Arnol’d tongues) with apices corresponding
to rational values on the (scaled) frequency axis. If one plots the ratio of the driving frequency to the output frequency versus
the driving frequency, one obtains a so-called devil’s staircase, i.e. a self-similar fractal object, where the qualitative structure
is replicated at higher levels of resolution, with plateaux corresponding to rational values of the ratio.
The frequency locking phenomenon, the existence of the Arnol’d tongues, and the devil’s staircase structure have been

proved rigorously in some mathematical models, such as the circle map [3], and studied numerically or experimentally for
several electronic circuits, such as the van der Pol equation [4,5], the Josephson junction [6–8], the Chua circuit [9] among
others.
In this paper we are interested in studying both analytically and numerically an electronic circuit, namely a resonant

injection-locked frequency divider (ILFD), first considered in [10]. In [11] a differential equation was introduced to describe
the circuit and it was shown that the numerical integration of the equation reliably reproduces the experimental data.
In [12], the differential equation describing the ILFD was studied with the purpose of explaining analytically the

appearance of frequency locking. In particular, the full differential equation in question was shown to be of the form
u′′ + u′h(u) + k(u) + µΨ (u, u′, t) = 0, where h(u) and k(u) are even and odd functions of u, respectively, the prime
denotes differentiation with respect to t , and µ is the amplitude of the perturbation Ψ , which is taken to be periodic in
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t , with frequency ω, i.e. Ψ (u, u′, t) = Ψ (u, u′, t + 2π/ω). If the drive is purely sinusoidal, as in [11], the Fourier series
expansion of Ψ (u, u′, t),

Ψ (u, u′, t) =
∑
ν∈Z

eiνωtΨν(u, u′),

contains only the first harmonic ν = ±1 (i.e. Ψν(u, u′) = 0 for |ν| > 1).
When µ = 0, the system is unperturbed, and the differential equation is of a particular form known as the Liénard

equation [13,4]; the best known example of this type is the van der Pol equation. Under suitable assumptions on h and k,
the Liénard equation admits a globally-attracting limit cycle.
The phenomenon of frequency locking manifests itself in the ILFD when the ratio of the driving frequency ω to the

output frequency Ω is plotted against ω (to be more precise Ω is the frequency of the leading term of the output signal;
see the comments in [12] for details). When ω is close to a rational multiple ρ = p/q of the frequencyΩ0 of the limit cycle
of the unperturbed system, then Ω is fixed such that ω = ρΩ . Therefore the plot has a devil’s staircase structure [10],
with plateaux corresponding to rational values of the ratio ω/Ω . If ω/Ω = p/q one says that there is a resonance (or
synchronisation) of order p : q. For purely sinusoidal perturbations Ψ , such as those considered explicitly in [10,11], the
main plateaux correspond to even values of ρ (a physical argument was given in [14]). The perturbation theory approach
taken in [12] successfully explains the experimental observations, by computing quantitatively theway inwhich thewidths
of the plateaux depend on the amplitude of the perturbation µ, assumed small.
In an alternative visualisation of the situation, a two-dimensional plot showing where locking takes place is constructed

in the (ω, µ) plane. The Arnol’d tongues have widths and centre-lines which vary as some (explicitly computable) integer
power of µ [12]. The experimentally-observed dominance of tongues for which the ratio ω/Ω0 is close to an even integer
can be explained by the fact that only these tongues have awidth of orderµ: all other tongues grow inwidth as some higher
power of µ. Specifically, if ρ ∈ Q and 1ω(ρ) = {ω : ω/Ω = ρ} is the width of the corresponding locking interval at fixed
µ, it was proved that, for sinusoidal perturbations,

1ω(2n/k) = O(µk), 1ω((2n− 1)/k) = O(µ2k) (1.1)

for all k, n ∈ N such that 2n/k and (2n + 1)/k are irreducible fractions. The centre-lines are vertical for ρ = 2n and bend
away from the vertical by a distance of order µ2 for all other values of ρ. In [12] we also stressed that the property (1.1)
strongly depends on the particular form of the drive, more precisely on the fact that, as in [10,11], the driving was taken to
contain only the first harmonics.
More generally, one can express1ω(ρ) as a power series (perturbation series) in µ,

1ω(ρ) =

∞∑
k=1

µk∆kω(ρ). (1.2)

If k0 ∈ N is the first integer such that1ωk0(ρ) 6= 0 then from (1.2) one obtains1ω(ρ) = µ
k0∆k0ω(ρ)+ O(µ

k0+1).
The convergence of the perturbation series forµ small enough – yielding analyticity inµ in a neighbourhood of the origin

– was discussed and proved in [12]; see also [15]. Hence, keeping only the lowest order terms means that in (1.1) we are
looking at the leading contributions, without making any uncontrolled truncation. The coefficients∆kω(ρ) are given in the
form of suitable integrals. However, it is not possible to reduce this computation to the integration of elementary functions,
because the integrands involve functionswhich are known only numerically. Thus, the computation of the integrals requires
some work, which we also discuss in this paper.
A first order analysis of the locking intervals (in the same spirit as in [12]) is also performed in [16], where only sinusoidal

perturbations are considered; in particular no prediction is made for resonances p : qwith p/q 6∈ 2N, as this would require a
higher order analysis. More general perturbations are considered in [17], where a different approach is followed. However,
this involves approximations which, ultimately, correspond to a first order analysis. By contrast, the analysis performed
in [15] and further developed here allows us to go to arbitrary perturbation orders, with a control on the remainder. Thus, not
only one can find an exact analytical expression for the leading order of the locking interval of any resonance, but in principle
one can also compute any locking interval within any desired accuracy. In [18], the lack of accurate analytical methods to
predict the locking range was deplored: in our opinion our analysis, whichmakes no approximation, fills this gap. Of course,
for practical purposes, the computation of the locking interval for any given resonance requires evaluating numerically
some integrals (which become increasingly complicated as the perturbation order increases). It would be desirable to have
a formula for the locking interval in terms of the parameters α and β of the system, were one to exist; we point out that
in [16] an asymptotic formula is given in the limit of α = ∞ and β large.
In further detail, the motivation for the current paper, which completes the analysis of [12] and also concentrates on

numerics related to the ILFD problem, is as follows:

1. To compute the coefficients of the powers of µ explicitly, at least for the lowest perturbation orders, so as to give a
quantitative expression for the width of the tongues, for more general perturbations than those considered in [12].

2. To investigate numerically how large µ can be for the analysis, which is carried out under the assumption that µ � 1,
to break down.
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3. To compute numerically the Arnol’d tongue diagram in the (ω, µ) plane in the case that the periodic part of the
perturbation contains only one frequency, ω. This allows us to obtain information for values of µ where perturbation
theory does not apply. On the other hand, for smaller values ofµ, the analytical results provide a check on the reliability
of the numerical analysis.

4. The same as 3, but in the case that the perturbation contains all integer multiples of ω: it was argued in [12] that the
width of all tongues would then be proportional to µ and all the centre-lines would be vertical. In particular we want to
determine the constant of proportionality, i.e. the coefficient ∆1ω(ρ) in (1.2), and show that the higher the values of p
and q in ρ = p/q, the lower the constant.

The rest of the paper is organised as follows. In Section 2, we summarise definitions and lemmas from [12] which are
needed in the remainder of the paper, and extend the analysis to more general analytical driving, possibly containing all
harmonics. In Section 3 we concentrate on analytical results concerning the Arnol’d tongues, by gathering together all
information which can be obtained to any order of perturbation theory. In Section 4, we describe the algorithms used to
carry out the computations of the integrals appearing in the theory. In Section 5 we give and discuss the numerical results:
after checking that they agree with the theory where the latter applies (small µ), we investigate how large µ can be for the
theoretical predictions to be reliably used. Finally in Section 6 we draw some conclusions.

2. Preliminary analytical results

We recall the results of [12], and extend them tomore general perturbations. Numbered lemmaswhichwe refer to in this
paper are taken directly from [12], and all proofs are given there too. Reference to [12] is given only for proofs and technical
details, the discussion below being quite self-contained.
The system of ordinary differential equations that describes the ILFD can be put into the form

u′′ + u′ h(u)+ k(u)+ µΨ (u, u′, t) = 0, (2.1)

with

h(u) := 1− β + 3βu2, k(u) := u
(
α − β + βu2

)
, (2.2)

and

Ψ (u, u′, t) := u′
(
3u2 − 1

)
f (ωt)+ u

(
u2 − 1

) (
f (ωt)+ ωf ′(ωt)

)
, (2.3)

where here and henceforth f ′ denotes the derivative of f with respect to its argument. The case f (t) = sin t (and hence
f ′(t) = cos t) was explicitly considered in [12]. More generally one can consider any analytic 2π-periodic function

f (t) =
∞∑
ν=1

f̂ν sin νt, |f̂ν | ≤ Φ e−ξ |ν|, (2.4)

where the bound on the Fourier coefficients f̂ν – for suitable positive constants Φ and ξ – follows from the analyticity
assumption on f . For simplicity we confine ourselves to odd functions: considering functions whose Fourier expansion
contains also cosines would overwhelm the analysis without shedding further light on the results.
For µ = 0, (2.1) reduces to the Liénard equation [19,13]

u′′ + u′ h(u)+ k(u) = 0, (2.5)

which we refer to as the ‘unperturbed equation’. In order for it to have a globally-attracting limit cycle encircling the
origin [13,20] we require that α > β > 1 (this corresponds to the region of the parameter plane called design area in [18]).
In that case, we designate u0(t) the solution to (2.5) corresponding to the limit cycle. Let T0 be the period of u0(t) and let
Ω0 = 2π/T0 be the corresponding frequency:Ω0 depends solely on α and β .
The unperturbed equation is autonomous, hence it clearly has the property that if u0(t) is a solution, then so is u0(t + T )

for any constant T . Consequently, we can fix the origin of time so that u0(0) = U0 > 0 and u′0(0) = 0. This has the effect of
shifting the third argument of Ψ by some time t0, so Ψ (u, u′, t) becomes Ψ (u, u′, t + t0) in (2.1).
We also note that the symmetry properties of h(u) and k(u) guarantee that u0(t) has the property

u0(t + T0/2) = −u0(t) ∀t ∈ R, (2.6)

which in turn yields that the Fourier expansion of u0(t) contains only odd harmonics (Lemma 2.1).
It is convenient to rescale time by defining τ = ωt so that Ψ now has period 2π in its third argument. After rescaling,

the differential equation becomes

ü+
1
ω
u̇ h(u)+

1
ω2
k(u)+ µΨ̄ (u, u̇, τ + τ0) = 0, (2.7)
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where a dot denotes differentiation with respect to τ , τ0 = ωt0, and we have defined

Ψ̄ (u, u̇, τ ) =
1
ω2

[
ωu̇
(
3u2 − 1

)
f (τ )+ u

(
u2 − 1

) (
f (τ )+ ωf ′(τ )

)]
. (2.8)

We have shown in [12] that ifω is ‘close’ to pΩ0/q, where p, q ∈ N are relatively prime, then the frequencyΩ of the solution
exactly equals qω/p: the system is said to be locked into the p : q resonance. How close ω has to be to pΩ0/q depends on µ
and on the resonance itself — quantitative investigation of this ‘closeness’ is the aim of the present paper.
Let ρ = p/q ∈ Q. For ω close to ρΩ0 put

1
ω
=

1
ρΩ0
+ ε(µ, τ0), where ε(µ, τ0) =

∞∑
k=1

µkεk(τ0). (2.9)

Unlike [12], for the sake of convenience, here we make explicit the dependence of ε on τ0. The perturbation calculation is
then carried out by substituting the expression (2.9) for ω in (2.7) and expanding in powers of µ. This results in

H(u, u̇, ü, µ) := H0(u, u̇, ü)+
∞∑
k=1

µkHk(u, u̇, τ + τ0) = 0, (2.10)

where

H0(u, u̇, ü) = ü+
u̇ h(u)
ρΩ0

+
k(u)
ρ2Ω20

, (2.11a)

H1(u, u̇, τ ) = ε1(τ0)
(
u̇ h(u)+

2 k(u)
ρΩ0

)
+
u̇
(
3u2 − 1

)
ρΩ0

f (τ )+ u
(
u2 − 1

) ( f (τ )
ρ2Ω20

+
f ′(τ )
ρΩ0

)
, (2.11b)

Hk(u, u̇, τ ) = εk(τ0)

(
u̇ h(u)+

2 k(u)
ρΩ0

)
+

∑
k1+k2=k

εk1(τ0) εk2(τ0) k(u)

+ εk−1(τ0)

[
u̇
(
3u2 − 1

)
f (τ )+ u

(
u2 − 1

) (2f (τ )
ρΩ0

+ f ′(τ )
)]

+

∑
k1+k2=k−1

εk1(τ0) εk2(τ0) u
(
u2 − 1

)
f (τ ), k ≥ 2, (2.11c)

where the last line of (2.11c) is missing for k = 2.
In order to carry out the perturbation calculation to first order, we first write the unperturbed system in the form

u̇ = v, v̇ = −
v h(u)
ρΩ0

−
k(u)
ρ2Ω20

≡ G(u, v) (2.12)

which has a unique 2πρ-periodic solution (u0(τ ), v0(τ )) such that v0(0) = 0. The Wronskian matrix of Eq. (2.12) is

W (τ ) =
(
w11(τ ) w12(τ )
ẇ11(τ ) ẇ12(τ )

)
(2.13)

and satisfies{
Ẇ (τ ) = M(τ )W (τ ),
W (0) = 1, M(τ ) =

(
0 1

∂

∂u
G(u0(τ ), v0(τ ))

∂

∂v
G(u0(τ ), v0(τ ))

)
. (2.14)

Lemma 4.1 then states that a solution to Eq. (2.14) is obtained by setting

w12(τ ) := c2u̇0(τ ), w11(τ ) := c1u̇0(τ )
∫ τ

τ̄

dτ ′
e−F(τ

′)

u̇20(τ ′)
, (2.15)

where F(τ ) is given by

F(τ ) :=
1
ρΩ0

∫ τ

0
dτ ′ h(u0(τ ′)), (2.16)

the constant τ̄ ∈ (0, πρ) is chosen so that ẇ11(0) = 0, while the constants c1 and c2 are such thatW (0) = 1—it is shown
in [12] that this choice can always be made.
By defining r1 := ü0(0), as in [12], and substituting this into (2.12), we find that

r1 = −
U0
(
α − β + βU20

)
ρ2Ω20

. (2.17)

By Remark 4.2 in [12], we have, additionally, that c1 = −r1 and c2 = 1/r1.
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We further define f0 by ρΩ0f0 = 〈h〉, the mean value of h (u0(τ )), so that f0 = F(2πρ)/(2πρ), and we write F(τ ) =
f0τ + F̃(τ ), where F̃(τ ) is a 2πρ-periodic function with zero mean. By Lemma 1.2 one has f0 > 0 (cf. also [19]).
Lemma 4.4 then states that there exist two 2πρ-periodic functions a(τ ) and b(τ ) such that

w11(τ ) = a(τ )+ e−f0τ b(τ ), w12(τ ) = c a(τ ), (2.18)

for a suitable constant c. In order to develop perturbation theory for a 2πp-periodic solution, with p ∈ N, which continues
the unperturbed solution when µ 6= 0, one writes

u(τ ) = u0(τ )+
∞∑
k=1

µkuk(τ ), (2.19)

where u0(τ ) has period 2πρ (and hence frequency 1/ρ). We have shown in [12] that there exist 2πp-periodic functions
uk(τ ) such that the perturbation series (2.19) converges for µ small enough. The functions uk(τ ) are recursively defined
(see Eq. (7.2) of [12]) as

uk(τ ) = w11(τ )ūk + w12(τ )v̄k +
∫ τ

0
dτ ′ eF(τ

′)
[
w12(τ )w11(τ

′)− w11(τ )w12(τ
′)
]
Ψk(τ ), (2.20)

with

Ψk(τ ) :=

[
−

k∑
k′=1

µk
′

Hk′(u(τ ), u̇(τ ), τ + τ0)+ G2(u(τ ), u̇(τ ))

]
k

, (2.21)

where

G2(u, v) := G(u, v)− G(u0(τ ), v0(τ ))− (u− u0(τ ))
∂

∂u
G(u0(τ ), v0(τ ))− (v − v0(τ ))

∂

∂v
G(u0(τ ), v0(τ )) (2.22)

and the notation [·]k means that we expand u(τ ) and u̇(τ ) according to (2.19) and, after taking the Taylor series of the
functions Hk′ , k′ = 1, . . . , k, and G2, we keep the coefficients of all contributions proportional to µk. In (2.20), the initial
conditions ūk must be suitably fixed (again we refer to [12] for details), whereas v̄k can be set equal to zero (cf. Remark 5.1
of [12]).
Considering first order in µ, we obtain the first order compatibility condition that has to be satisfied if u1(τ ) is to be

periodic, i.e. 〈eF̃bΨ1〉 = 0, where Ψ1(τ ) = −H1(u0(τ ), v0(τ ), τ + τ0). Expanding f (τ ) according to (2.4) and using (2.11b),
this gives

ε1(τ0) A+
∞∑
ν=1

f̂ν
3∑
j=1

[
Bj1ν cos ντ0 + Bj2ν sin ντ0

]
= 0, (2.23)

where

A :=
1
2πρ

∫ 2πρ

0
dτ eF̃(τ )b(τ )

[
u̇0(τ ) h(u0(τ ))+

2
ρΩ0

k(u0(τ ))
]
, (2.24)

and

Bi1ν :=
1
2πp

∫ 2πp

0
dτ
Ki(τ )
ρ2Ω20

sin ντ , i = 1, 2, B31ν := νρΩ0B22ν, (2.25a)

Bi2ν :=
1
2πp

∫ 2πp

0
dτ
Ki(τ )
ρ2Ω20

cos ντ , i = 1, 2, B32ν := −νρΩ0B21ν, (2.25b)

with

K1(τ ) = eF̃(τ )b(τ ) ρΩ0 v0(τ )
(
3u20(τ )− 1

)
, K2(τ ) = eF̃(τ )b(τ ) u0(τ )

(
u20(τ )− 1

)
. (2.26)

By setting D1ν = − (B11ν + B21ν + B31ν) and D2ν = − (B12ν + B22ν + B32ν), (2.23) then becomes

ε1(τ0) =
1
A

∞∑
ν=1

f̂ν (D1ν cos ντ0 + D2ν sin ντ0) := D1(τ0). (2.27)

By construction ε1 has zero mean, so that either it is a non-constant function or it identically vanishes. For purposes of
comparison with [12], in the following we shall shorten D11 = D1 and D21 = D2, and also Bij1 = Bij, which are the only
relevant constants when f contains only the first harmonic ν = 1 in (2.4).
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It is shown in Appendix B of [12] that A = −r1ρΩ0; hence, from (2.17),

A =
U0
(
α − β + βU20

)
ρΩ0

, (2.28)

which provides an obvious means to check the numerics — by calculating A from (2.24) and comparing with (2.28).
In [12] it is also shown how to go to higher orders; to any order k ≥ 1 one finds the compatibility condition 〈eF̃bΨk〉 = 0,

where the function Ψk(τ ) is given by (2.21).
The compatibility condition at all orders leads to equations like (2.27), which now read

εk(τ0) = Dk(τ0), k ≥ 1, (2.29)

for suitable functionsDk — strictly speaking in [12] only the case f (t) = sin t is explicitly discussed, but one can easily work
out the general case of f an arbitrary analytical function by following the same strategy. Note that, with respect to [12], here
we have included the factor 1/A in the definition ofDk(τ0).
The width of the plateau corresponding to a given ρ (i.e. to a given resonance p : q such that ρ = p/q) can then be

expressed as follows. First one defines

D(τ0, µ) =

∞∑
k=1

εkDk(τ0), εmax(ρ) := max
0≤τ0≤2π

D(τ0, µ), εmin(ρ) := min
0≤τ0≤2π

D(τ0, µ). (2.30)

Then by setting

ωmin(ρ) :=
ρΩ0

1+ ρΩ0 εmax(ρ)
, ωmax(ρ) :=

ρΩ0

1+ ρΩ0 εmin(ρ)
, (2.31)

the plateau corresponding to ρ is given by

1ω(ρ) := ωmax(ρ)− ωmin(ρ) =
ρ2Ω20 (εmax(ρ)− εmin(ρ))

(1+ ρΩ0 εmin(ρ))(1+ ρΩ0 εmax(ρ))
. (2.32)

In other words, for ω ∈ [ωmin(ρ), ωmax(ρ)], one has locking ω = ρΩ , ifΩ denotes the frequency of the output signal. For
each such value of ω the initial phase τ0 is fixed at a value τ ∗0 such that 1/ω = 1/ρΩ0 + ε(µ, τ

∗

0 ), according to (2.9).
When the function ε1(τ0) in (2.27) does not vanish, then, if one further assumes that the second derivative ofD1 is non-

zero at the stationary points (where the maximum and minimum are attained), the first order approximation is adequate.
In other words, in such a case one can approximate

εmax(ρ) = µ max
0≤τ0≤2π

D1(τ0)+ O(µ2), εmin(ρ) = µ min
0≤τ0≤2π

D1(τ0)+ O(µ2), (2.33)

and hence

ωmin(ρ) = ρΩ0

(
1− ρΩ0µ max

0≤τ0≤2π
D1(τ0)

)
+ O(µ2), (2.34a)

ωmax(ρ) = ρΩ0

(
1− ρΩ0µ min

0≤τ0≤2π
D1(τ0)

)
+ O(µ2), (2.34b)

which gives a plateau of width

1ω(ρ) = µ∆1ω(ρ)+ O(µ2), ∆1ω(ρ) := ρ
2Ω20

(
max
0≤τ0≤2π

D1(τ0)− min
0≤τ0≤2π

D1(τ0)

)
(2.35)

centred ‘around’ the value ωc(ρ) = ρΩ0. Since the function ε1(τ0) has zero mean, this means that the corresponding
Arnol’d tongue in the (ω, µ) plane emanates from the point ωc(ρ) of the ω-axis as a cone with axis along the vertical and
angle θ(ρ) = θ1(ρ)+ θ2(ρ) such that

tan θ1(ρ) = −ρ2Ω20 min
0≤τ0≤2π

D1(τ0), tan θ2(ρ) = ρ2Ω20 max0≤τ0≤2π
D1(τ0). (2.36)

If f contains only one harmonic, say f̂ν = 0 for |ν| > 1 in (2.4), then θ1(ρ) = θ2(ρ), and maxD1(τ0) = A−1
√
D21 + D

2
2. Note

that in such a case the second derivative ofD1 equals±f̂1/Awhen the first derivative vanishes.
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Fig. 1. Fourier coefficients of the functions K1(τ ),×, and K2(τ ),+, for α = 5, β = 4. The odd coefficients turn out to be zero (within the numerical error
of∼10−11), according to (3.2), while all the even coefficients are non-zero and decay exponentially. The dotted lines are only to guide the eye.

3. Arnol’d tongues: Analytical results

3.1. First order contributions

Let us consider the expression in (2.32) for the leading contribution to the width of the plateau when the first order
contribution does not vanish. Then we neglect the high order terms and approximate

1ω(ρ) ≈ µρ2Ω20Q (ρ), where Q (ρ) = max
0≤τ0≤2π

D1(τ0)− min
0≤τ0≤2π

D1(τ0). (3.1)

Note that, to obtainD1(τ0) from (2.27), one must keep only the summands such that f̂ν 6= 0.
By writing Bijν according to (2.25), one uses the fact that the Fourier expansions of the functions Ki contain only even

harmonics (cf. Section 6 in [12]), i.e.

Ki(τ ) =
∑
ν′∈Z
ν′ even

eiν
′τ/ρ K̂iν′ =

∑
ν′∈Z

ei2ν
′τ/ρ K̂i(2ν′). (3.2)

Furthermore, as (2.26) shows, the functions Ki are analytic and hence the corresponding Fourier coefficients K̂iν′ decay
exponentially, i.e. for i = 1, 2 and for all ν ′ ∈ Z one has |K̂iν′ | ≤ Γ e−ξ1|ν

′
| for suitable positive constants Γ and ξ1.

Hence by expanding Ki according to (3.2) and writing

sin ντ =
∑
σ=±1

σ

2i
eiσντ , cos ντ =

∑
σ=±1

1
2
eiσντ , (3.3)

one realises that one can have Bijν 6= 0 only if there exist ν ′ ∈ Z such that K̂iν′ 6= 0 and ν ′q + σνp = 0. If we assume that
the first condition is satisfied for all even ν ′ ∈ Z (numerical analysis ensures that such an assumption is reasonable — see
Fig. 1), then the key condition is that there exist ν ′ ∈ Z such that

2|ν ′|q = |ν|p (3.4)

with p, q relatively prime integers. When this happens one has

Bijν =
1

ρ2Ω20

∑
ν′∈Z, σ=±1
2ν′+σνρ=0

K̂i(2ν′)R̂jσ , i, j = 1, 2, where R̂1σ =
σ

2i
, R̂2σ =

1
2
, (3.5)

and B31ν = νρΩ0B22ν , B32ν = −νρΩ0B21ν . If the function f contains only the first harmonic (so that f̂ν 6= 0 only for |ν| = 1)
then in (3.4) one has to consider only the case |ν| = 1. Thus, as discussed already in [12], one obtains q = 1 and p = 2|ν ′|,
i.e. pmust be even. This means that one finds plateaux of width O(µ) only for resonances p : qwith q = 1 and p ∈ 2N.
On the contrary, if the function f contains all the harmonics, the condition (3.4) has to be considered for all ν ∈ Z, and

one finds easily non-vanishing contributions to (3.5), e.g. by taking |ν ′| = p and |ν| = 2q. Thus, for any resonance p : q one
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has a plateau which to first order is given by (3.1). From (2.23) one obtains

D1(τ0) = −
1

Aρ2Ω20

∑
ν≥1

νρ even

f̂ν
(
K 1(νρ) cos ντ0 + K 2(νρ) sin ντ0

)
, (3.6)

where we have defined

K 1ν :=
∑
σ=±1

[
R̂1σ

(
K̂1(−σν) + K̂2(−σν)

)
+ νρΩ0R̂2σ K̂2(−σν)

]
, (3.7a)

K 2ν :=
∑
σ=±1

[
R̂2σ

(
K̂1(−σν) + K̂2(−σν)

)
− νρΩ0R̂1σ K̂2(−σν)

]
. (3.7b)

Let us define ν0 = min{ν ≥ 1 : νρ even} and ν1 = min{ν > ν0 : νρ even}, and set

K ν(ρ) :=
√
|K 1ν |2 + |K 2ν |2, Q0(ρ) =

2
|A|ρ2Ω20

|f̂ν0 ||K ν0ρ(ρ)|. (3.8)

Then one obtains

Q (ρ) = Q0(ρ)+ O

(
|f̂ν1 ||K ν1ρ(ρ)|

|f̂ν0 ||K ν0ρ(ρ)|

)
(3.9)

which inserted into (3.1) gives

1ω(ρ) ≈
2µρΩ0
|r̄1|

|f̂ν0 ||K ν0ρ(ρ)|, (3.10)

where we have used A = −r̄1/ρΩ0, with the constant r̄1 independent of ρΩ0.
If one keeps the whole sum in (3.6) one finds, always in the first order approximation,

|1ω(ρ)| ≤
2µρΩ0
|r̄1|

max
i=1,2

∞∑
ν=1

|f̂ν ||K i(νρ)(ρ)| ≤
2µρΩ0
|r̄1|

max
i=1,2

∑
ν∈Z

νρ even

(1+ νρΩ0) |f̂ν ||K̂i(νρ)(ρ)|. (3.11)

Since p and q are relatively prime the condition νρ ∈ 2Z can be satisfied only if |ν| ≥ q and |νρ| ≥ p. Therefore for fixed
ρ = p/q one has

|1ω(ρ)| ≤ µC p2q−1e−ξ1pe−ξq, (3.12)
where C is a constant independent of ρ. This shows that all the Arnol’d tongues have width proportional to µ, but the
constant of proportionality decays exponentially with p and q. Therefore, for fixed µ, the union of all the Arnol’d tongues is
O(µ), and hence tends to zero when µ→ 0, as expected from [21].
For instance, if f (t) = sin t+η sin 2t in (2.4), one has∆(2n) = c(2n) µ+O(µ2) and∆(2n−1) = c(2n−1)ηµ+O(µ2),

for suitable constants c(n) independent of µ and η. Therefore, for all integer resonances the plateaux are of the same order
of magnitude — provided, of course, η is large compared with µ.

3.2. Second order contributions

When the first order dominates, the second order gives a correction which can be computed explicitly. When the first
order vanishes, the second order becomes the leading order (if it does not vanish too).
To compute the second order one needs the function D2 appearing in (2.29) for k = 2. The analysis in [12] and (2.29)

shows that

〈eF̃bΨ2〉 = Aε2(τ0)+ 〈eF̃bΞ2(·; τ0)〉 H⇒ D2(τ0) = −
1
A
〈eF̃bΞ2(·; τ0)〉, (3.13)

where, by (2.11) and (2.21) with k = 2, one can write

Ξ2(τ ; τ0) = Ξ̃2(τ ; τ0)+ Ξ 2(τ ; τ0), (3.14a)

Ξ̃2(τ ; τ0) = −ε
2
1(τ0)

[
(α − β) u0(τ )+ βu30(τ )

]
− ε1(τ0)v0(τ )

(
3u20(τ )− 1

)
f (τ + τ0)

− ε1(τ0)
(
u30(τ )− u0(τ )

) ( 2
ρΩ0

f (τ + τ0)+ f ′(τ + τ0)
)
, (3.14b)

Ξ 2(τ ; τ0) = −u1(τ )
∂H1
∂u0

(u0(τ ), v0(τ ), τ + τ0)− u̇1(τ )
∂H1
∂ u̇0

(u0(τ ), v0(τ ), τ + τ0)

+
1
2
u21(τ )

∂2G
∂u2

(u0(τ ), v0(τ ))+ u1(τ )u̇1(τ )
∂2G
∂u∂v

(u0(τ ), v0(τ )), (3.14c)

with H1(u, v, τ ) and G(u, v) given in (2.11b) and (2.12), respectively (we have explicitly used that G(u, v) is linear in v).
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Thus, to compute (3.13) one first needs the first order solution (u1, v1), with v1(τ ) = u̇1(τ ). For k = 1 Eq. (2.20) gives

u1(τ ) = c a(τ ) (Q2(τ )−Q2(0)−Q1(0))− c b(τ )Q1(τ ), (3.15)

where the functionsQ1 andQ2 can be read from Eqs. (5.3) and (5.4) of [12], which we rewrite here for convenience,∫ τ

0
dτ ′eF(τ

′)a(τ ′)Ψ1(τ ′) = ef0τQ1(τ )−Q1(0),
∫ τ

0
dτ ′eF̃(τ

′)b(τ ′)Ψ1(τ ′) = Q2(τ )−Q2(0), (3.16)

and we are using that Q0 := 〈eF̃bΨ1〉 = 0 and ū1 = −cQ1(0). Note that the functions u1 and v1 also depend on τ0; more
precisely, by construction one has

u1(τ ) =
∑
ν∈Z
ν odd

∑
ν1∈Z

eiντ/ρeiν1(τ+τ0)Û1νν1 , Û1νν1 ∝ f̂ν1; (3.17)

as easily follows by reasoning as in the proof of Lemma 8.2 in [12], the only difference being that f can contain all harmonics.
In particular, when ε1 vanishes identically, then Ξ̃2 also is identically zero and (3.13) reduces to

D2(τ0) =
1
A
1
2πp

∫ 2πp

0
dτ eF̃(τ )b(τ )

1
ρΩ0

{[(
6u0(τ ) v0(τ )+

1
ρΩ0

(
3u20(τ )− 1

))
f (τ + τ0)

+
(
3u20(τ )− 1

)
f ′(τ + τ0)

]
u1(τ )+

(
3u20(τ )− 1

)
f (τ + τ0) v1(τ )

+
1
2

(
v0(τ )h′′(u0(τ ))+

k′′(u0(τ ))
ρΩ0

)
u21(τ )+ h

′(u0(τ )) u1(τ ) v1(τ )
}
, (3.18)

where h′(u) = 6βu, h′′(u) = 6β , and k′′(u) = 6βu (here, as well as for f , the prime denotes derivative with respect to the
argument).
By using the expansion (3.17) for u1, one finds that the function

D2(τ0) =
∑
ν∈Z

eiντ0D2,ν = D2,0 +
∑
ν∈Z
ν 6=0

eiντ0D2,ν (3.19)

can be written in the form

D2(τ0) =
1
2πp

∑
ν′∈Z
ν′ even

∑
ν1,ν2∈Z

∫ 2πp

0
dτ eiν

′τ/ρei(ν1+ν2)(τ+τ0)K̂ν′ν1ν2 , K̂ν′ν1ν2 ∝ e
−ξ1|ν

′
| f̂ν1 f̂ν2 , (3.20)

for suitable coefficients K̂ν′ν1ν2 . Then one sees that only the coefficients K̂(2ν′)ν1ν2 with

2|ν ′|q = |ν1 + ν2|p, f̂ν1 f̂ν2 6= 0, (3.21)

contribute to (3.20). The term with ν1 + ν2 = ν ′ = 0 gives the mean D2,0 of D2, and requires no condition on ρ. This
explains why the boundaries of the locking region are either O(µ) – when the first order dominates – or O(µ2) — in all the
other cases. However, the width of the plateau arises from the variations of D2, hence it is related to the terms in (3.20)
with ν 6= 0 such that (3.21) is satisfied. If there are any of such terms, then the function D2 is not identically constant, and
therefore, in such a case, one has

1ω(ρ) = µ2∆2ω(ρ)+ O(µ3), ∆2ω(ρ) := ρ
2Ω20

(
max
0≤τ0≤2π

D2(τ0)− min
0≤τ0≤2π

D2(τ0)

)
(3.22)

which replaces (2.35) when the first order vanishes. For instance if f contains only the first harmonic then (3.21) is satisfied
for q = 1, p ∈ N and ν1 = ν2 = ±1, which shows that the plateaux corresponding to odd ρ are of order µ2 — see [12] for
further details.

3.3. Higher order contributions

If one wants to determine the higher order contributions, the analysis above can be easily extended, even if it becomes
much more complicated from the computational point of view. In general, if one writes

1ω(ρ) =

∞∑
k=1

µk∆kω(ρ), (3.23)
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one finds

∆kω(ρ) =
∑
ν∈Z

∑
ν1,...,νk∈Z

|ν1+···+νk |p=2νq

∆kω(ρ; ν1, . . . , νk), ∆kω(ρ; ν1, . . . , νk) ∝ e−2ξ1|ν|/ρ
k∏
i=1

f̂νi , (3.24)

so that, in order to single out the leading contribution to the width of the plateau, one has to compare the size of the
perturbation parameter µwith the amplitudes of the harmonics f̂ν of the drive.
Note that to all orders k the coefficients∆kω(ρ) decay exponentially in both p and q. Thus, every time the first order does

not vanish it dominates, provided µ is small enough. If on the contrary ∆k′ω(ρ) = 0 for all 1 ≤ k′ < k and ∆kω(ρ) 6= 0
then one has1ω(ρ) = O(µk) for µ small enough.

4. Numerical computations

4.1. Numerical solution of the ODE

Since in general no closed-form solution to (2.7) withµ = 0 exists for β 6= 0, it is clear that this equation must be solved
numerically. Furthermore, in order to approximate u0(τ ) and u̇0(τ ), the ODEmust be solved for a sufficiently long time that
the transient has, for practical purposes, decayed to zero. An effective initial procedure was found to be (i) solve the ODE
from τ = −τ1 to τ = 0, where τ1 is large, using any standard method, for example, the Runge–Kutta fourth order method;
(ii) solve for a further small time τ2 which is such that u̇0(τ2) = 0 and u0(τ2) > 0, again using the Runge–Kutta method,
and additionally using bisection to find τ2 such that the first condition is met; (iii) solve from τ = τ2 to τ3, where τ3 is the
smallest value of τ which is greater than τ2 and for which, again, u̇0(τ3) = 0 and u0(τ3) > 0. Then an estimate of the period
of u0(τ ), T0, is τ3 − τ2 and an estimate of U0 is u0(τ2) ≈ u0(τ3).
In practice, these estimates can then be somewhat improved by solving the ODE assuming that a power series for u0(τ )

exists, and computing this series around τ = 0, using the initial conditions u0(0) = U0, as estimated above, and u̇0(0) = 0.
We can shift the origin of time from τ3 to zero because the ODE is autonomous. Typically, several power series need to be
computed to cover the range τ = 0 to T0, but the method has at least two advantages over Runge–Kutta. The first is that the
error can be estimated by implementing a test on the coefficients of the power series, as set out in [22]; the second is that
the Newton–Raphson method can be used directly on the power series for the solution around T0 to find the value of τ for
which u̇0(τ ) = 0, and hence to estimate T0. For the values of the parameters used in the simulations reported below, it was
found that using power series of degree 30 was adequate.
Once accurate values of U0 and T0 have been computed, it is a simple matter to calculate a table of values of u0(τ ) and

u̇0(τ ) at τ = ih, i = 0 . . .M − 1 for someM ∈ N and for h = T0/M > 0 a given time-step.

4.2. Interpolation

A discussion of a suitable interpolation method is now in order.
In what follows, we will need to integrate functions of u0(τ ), u̇0(τ ) and to do this we use an interpolation scheme from

which such integrals can be computed directly.
We start by discussing a scheme for interpolating from the values of u0(τ ), u̇0(τ ) at discrete times ih, i = 0 . . .M − 1,

produced by the numerical ODE solver.
Since u0(τ ) is periodic, the interpolation scheme should reflect this — standard methods based on the Lagrange formula

or Chebyshev polynomial interpolation are therefore not suitable. Instead, interpolation based on the function

IK (τ ) =
sin Kπτ
K sinπτ

, (4.1)

where K is an odd, positive integer, is used. This function is equivalent to a truncated Fourier series (see Appendix) and has
the properties that (i) IK (τ + 1) = IK (τ ), so it is periodic (if K is even, the period is not 1 but 2); and (ii)

lim
τ→n n∈Z

IK (τ ) = 1 and IK
(m
K

)
= 0, m ∈ Z, m not a multiple of K .

Now let x(τ ) = x(τ + T0) be a periodic function of τ with period T0 and set xj = x(jT0/K) for j = 0 . . . K − 1. Then, defining

x̂(τ ) :=
K−1∑
j=0

xjIK (τ/T0 − j/K), (4.2)

we have, in the light of (i) and (ii) above, that x̂(kT0/K) = xk = x(kT0/K) for k ∈ Z. Hence, x̂(τ ) can be used to interpolate
x(τ ) given the values of x(τ ) on a uniformly spaced discrete set of values of τ . In Appendix we show that the error in the
interpolation scheme described is O

(
e−C2K

)
, for some positive constant C2.
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In practice, for τ close to an integer, IK (τ ) is best computed from a series expansion. Letting δ = τ − [τ ], with [τ ] being
the nearest integer to τ , we then use

IK (δ) = 1−
1
6
(K 2 − 1)

[
(πδ)2 −

1
60
(3K 2 − 7)(πδ)4 +

1
2520

(3K 4 − 18K 2 + 31)(πδ)6
]
+ O(δ8) (4.3)

whenever |δ| < εI . Since the computations are carried out to approximately 16 significant figures, we allow a margin of
safety by choosing εI = 10−4.
The use of IK (τ ) for interpolation has other advantages, amongst them that x̂(τ ) can be integrated in closed form, and so,

by implication, the integral of x(τ ) for all τ can be approximated. By defining

J ′K (T ) =
∫ T

0
dτ
sin Kπτ
sinπτ

it is easy to show that

J ′K+2(T ) = J
′

K (T )+ 2
∫ T

0
dτ cos(K + 1)πτ = J ′K (T )+

2
(K + 1)π

sin(K + 1)πT .

Now, since K > 0 is odd and J ′1(T ) = T , we have

J ′K (T ) = T +
1
π

(K−1)/2∑
i=1

1
i
sin 2iπT .

Defining now JK (T ) :=
∫ T
0 dτ IK (τ ) = J

′

K (T )/K , we have

JK (T ) =
T
K
+
1
Kπ

(K−1)/2∑
i=1

1
i
sin 2iπT . (4.4)

Next define X̂(T ) =
∫ T
0 dτ x̂(τ ). Integrating (4.2) term-by-term, we obtain

X̂(T ) = T0
K−1∑
i=0

xi

{
JK

(
T
T0
−
i
K

)
+ JK

(
i
K

)}
, (4.5)

where we have used the fact that JK (τ ) is an odd function of τ . In what follows, we therefore use X̂(T ) to approximate∫ T
0 dτ x(τ ).
In a similar manner, defining EK (ζ , T ) :=

∫ T
0 dτ e

−ζ τ IK (τ ), for constant ζ , it can be shown that

EK (ζ , T ) =
1− e−ζT

ζK
+
2
K

(K−1)/2∑
i=1

ζ + e−ζT (2iπ sin 2iπT − ζ cos 2iπT )
ζ 2 + 4π2i2

. (4.6)

Hence, X̂e(ζ , T ) :=
∫ T
0 dτ e

−ζ τ x(τ ) is given by

X̂e(ζ , T ) = T0
K−1∑
i=0

xi e−ζ i/K
{
EK

(
T
T0
−
i
K

)
− EK

(
−
i
K

)}
. (4.7)

4.3. Calculation of a(τ ), b(τ )

Before we can computew11(τ ), we need to find the unperturbed limit cycle, its period, T0, the periodic function F̃(τ ) and
themean of F(τ ), f0. These are all straightforward:we solve the unperturbed Eq. (2.5) numerically as described in Section 4.1,
obtaining U0, T0 and the solution and its derivative over one period. Since u0(τ ) is periodic, so is h(u0(τ )), and so we can use
Eq. (4.5) to estimate F(τ ) for any τ . From F(τ )we can then obtain f0, and hence F̃(τ ).
Computation of w11(τ ) can now be carried out from Eq. (2.15), but is complicated by the fact that, for τ = iT0/2, i ∈ Z,

the integrand is singular and numerical integration techniques will break down. Singularity in the integrand, which is
periodic, also prevents us from using Eq. (4.5). To discuss this further, let us define two subsets of R as S = ∪i∈Z si with
si = [iT0/2− rc, iT0/2+ rc ], where rc � T0/2 is small and will be defined later; and I = R \ S. We will then use a power
series representation forw11(τ ), τ ∈ S, where the power series converges ‘usefully’ (the error term is less than themaximum
acceptable error) for |τ | ≤ rc , with Romberg integration [23], a standard numerical integration technique, being used for
τ ∈ I .
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It should be pointed out here that we do not need to compute τ̄ explicitly. Instead, we can set the lower limit of the
integral to any convenient value, τl say, provided we add a suitable multiple of u̇0(τ ); so our definition becomes

w11(τ ) = u̇0(τ )k2 + u̇0(τ )
∫ τ

τl

dτ ′c1
e−F(τ

′)

u̇20(τ ′)
, (4.8)

where the constant k2, which depends on τl, will be chosen to ensure continuity.
In practice, we only need to know w11(τ ) over a length of time consisting of two periods of u0(τ ), and so we calculate

it for τ ∈ [0, 2T0]: from Appendix A in [12], we know that w11(τ ) is well-defined even at τ = 0, which we take to be our
value of τl.
We derive the formal power series for w11(τ ) by using the method of Frobenius to solve the differential equation (2.5),

with initial conditions chosen so as to ensure that the solution is on the limit cycle. Thus, u0(0) = U0, u̇0(0) = 0, fromwhich
we obtain the power series in τ for u0(τ ) and hence, using term-by-term differentiation, for u̇0(τ ). The latter is

u̇0(τ ) = U0
(
α − β + βU20

) [
−τ +

(
1− β + 3βU20

) τ 2
2

]
+ O

(
τ 3
)
.

By Remark 1 in [12], c1 = −r1, which is the coefficient of τ in the above series for u̇0(τ ), and so c1 = U0(α − β + βU20 ).
Using the series for u0(τ ) = U0 +

∫ τ
0 dτ

′u̇0(τ ′), and term-by-term integration, we can also find power series for F(τ ),
e−F(τ ) and hence for the integrand e−F(τ )/u̇20(τ ). Integrating this series from 0 to τ term-by-term, and multiplying by the
series for c1u̇0(τ ), we obtain w11(τ ) = 1 −

(
1− β + 3βU20

)
τ/2 +

(
1− 2α + β2(1− 3U20 )

2
)
τ 2/4 + O(τ 3). Finally, we

apply the remaining condition on ẇ11, that is, ẇ11(0) = 0, which forces the choice of k2 in Eq. (4.8) to be such that
−k2U0

(
α − β + βU20

)
−
(
1− β + 3βU20

)
/2 = 0. This gives

wser11 (τ ) ≈ 1+
M∑
j=2

Rjτ j + O
(
τM+1

)
, (4.9)

where 2R2 = α − β + 3βu20, 6R3 = α − β(1 + α − β) + 3β(1 + 3α − 4β)u
2
0 + 15β

2u40 and so on. This is a truncation of
the series actually used for τ ∈ s0. Using computer algebra, it is possible to extend this series to at least the term of order
τ 10, expressing each coefficient of τ as a polynomial in α, β and U0 – that is, without assuming numerical values for these
parameters – although the higher order coefficients become quite complicated.
The series (4.9) can be used to estimatew11(τ ) for τ ∈ sj, j > 0, provided that (i) the value given by the series ismultiplied

by (−1)je−jf0T0/2 and (ii) k2 is chosen so as to ensure continuity across the boundary of sj. The term (−1)j in the correction
factor arises as a result of the property of u0(τ ) in Eq. (2.6), and the exponential factor comes from the definition ofw11(τ ),
Eq. (2.15). Hence,w11(τ ) is estimated as

w11(τ ) = k2u̇0(τ )+ (−1)je−jf0T0/2wser11 (τ − jT0/2)+ O
(
τM+1

)
(4.10)

for τ ∈ sj.
In order to compute b(τ ), we need to know w11(τ ) for τ ∈ [0, 2T0] – see Eq. (4.11) – and hence we calculate w11(τ ) at

equally spaced points 0, h, 2h, . . . , 2T0, in that order, where 2T0/h is an integer. The point τ = 0 is in s0 and so the truncated
series is used here (with k2 = 0). For τ > 0, various different cases exist, and these are illustrated in Fig. 2, in which τ is the
time at whichw11 is to be calculated, and it is assumed that it has already been calculated at τ − h.
• In case A, τ ∈ sj, so the series is used, with the current value of k2.
• In case B, first w11(τ+)/u̇0(τ+), where τ+ = jT0/2 + rc , is calculated from the truncated series. To this is added a
numerical estimate of

∫ τ
τ+
dτ ′c1e−F(τ

′)/u̇20(τ
′), and the result multiplied by u̇0(τ ) to obtain an estimate ofw11(τ ).

• In case C, roughly the reverse happens. Define τ− = jT0/2− rc . Then numerical integration is used to estimatew11(τ−),
from which k2 can be found, by assuming continuity across the boundary τ = τ−. Since the appropriate value of k2 is
now known, the truncated series can be used to estimatew11(τ ).
• In case D, compute as in C, followed by B.
• In case E, straightforward numerical integration alone is used.

In this way,w11(ih) is computed for i = 0, 1, 2, . . . , 2T0/h, and it is now a simple matter to extract a(τ ) and b(τ ) at the
points τ = ih, i = 0, 1, . . . , T0/h, so that their values at any τ can be found by interpolation. From Eq. (2.18), we have that
w11(τ ) = a(τ )+ e−f0τb(τ ) and a(τ ) = γ u̇0(τ ). Since a(τ ) and b(τ ) both have period T0, we have

b(τ ) = ef0τ
w11(τ )− w11(τ + T0)

1− e−f0T0
(4.11)

and, knowing w11(τ ) for τ ∈ [0, 2T0], we can now compute b(τ ) for τ ∈ [0, T0]. Having computed b(τ ), we can use for
instance the method of least squares to estimate the value of γ : that is, we find the value of γ , γ̂ , that minimises

T0/h∑
i=0

[
w11(ih)− e−f0ihb(ih)− γ̂ u̇0(ih)

]2
,
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E

Fig. 2. The cases A–E to be considered when calculating w11(τ ). The subsets sj = [jT0/2− rc , jT0/2+ rc ] and sj+1 are shown as thick line segments. It is
assumed thatw11 is being computed at equally spaced time steps of width h, thatw11(τ − h) has just been calculated, and thatw11(τ ) is now to be found.
How this is done depends on the relationship of τ to τ − h — see text.

which is

γ̂ =

∑
u̇0(ih)

[
w11(ih)− e−f0 ihb(ih)

]∑
u̇20(ih)

, (4.12)

where the sums go from i = 0 to T0/h. This completes the calculation of a(τ ) and b(τ ).

4.4. Illustrative results

Illustrative results are now given for the case α = 5, β = 4 and f (τ ) = sin τ . All the computations were carried out
using double precision arithmetic. For interpolation, K = 151 equally spaced points were used; the series for IK (δ) was
used if |δ| < εI = 10−4. In series (4.9), M = 10. In the definition of sj, rc = 10−2, and the fractional accuracy cho-
sen for Romberg integration was 10−12. With these parameters, and ρ = 2, we find T0 ≈ 3.698939867513906, U0 ≈
0.979106186033891, f0 ≈ 0.757499334158 and γ̂ = −54.855909271256. Having computed a(τ ) and b(τ ), we can then
estimate A, first of all from Eq. (2.24), using Romberg integration: this gives A = 16.0813516305191. Using Eq. (4.5) to
carry out the integration, we obtain A = 16.0813516305189. Furthermore, we have from Eq. (2.28) that A = −r1ρΩ0 =
U0
(
α − β + βU20

)
/(ρΩ0) = 16.0813516307791. These estimates agree with each other to 11 significant figures, thereby

verifying the numerical techniques used to obtain them.
The calculation of B11 . . . B32 and D1, D2, defined after Eq. (2.27), now follows straightforwardly from Eq. (2.25). The only

point to note is that these integrals can be zero, which gives problems in the error control scheme used for numerical
integration. To overcome this, the integration is done in two parts, from 0 to 2πpz and from 2πpz to 2πp, with z
approximately, but not exactly, one half. We then find, for the above parameters, that, when p = 1, D1,D2 ≈ 10−12. On the
other hand, with p = 2, we find D1 ≈ 8.11989 × 10−2 and D2 ≈ −5.20174 × 10−1; for p = 4, D1 = −3.79022 × 10−2,
D2 = 2.74434× 10−1.

5. Numerical results

To extend our analytical results to large values of µwe compute a set of Arnol’d tongues numerically. We make several
comparisons between the theoretical predictions and the computational results, which provide information about the
computational accuracy and the range of validity of some theoretical estimates.

5.1. Arnol’d tongues

We computed the Arnol’d tongues of system (2.1) for the 15 strongest resonances using the algorithms from [24] with
two types of forcing: Harmonic forcing with

f (τ ) = sin τ (5.1)

as considered in [12], and the forcing function

f (τ ) =
λ2 − 1
λ

∞∑
k=1

sin kτ
λk
=

(
λ2 − 1

)
sin τ

λ2 + 1− 2λ cos τ
, λ > 1, (5.2)
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Fig. 3. Some Arnol’d tongues in the (ω/Ω0, µ)-plane for the ILFD for α = 5 and β = 4 with (a) f (τ ) = sin τ and (b) f (τ ) given by (5.2) with λ = 2. For
these parameter values we haveΩ0 = 1.69864489, T0 = 2π/Ω0 = 3.69893987, Aρ = 2.78668166, D1 = 0.00703534 and D2 = −0.0450695.

containing all harmonics. Note that f in (5.2) is smooth and f (τ ) ∈ [−1, 1]; hence, it can be used as a direct replacement for
the sine function in (5.1). The relative strength of the harmonics can be adjusted by varying λ, since one has f̂ν = Φ(λ) λ−|ν|,
withΦ(λ) = (λ2 − 1)/2iλ.
The results of both computations for the parameter values α = 5 and β = 4 are illustrated and compared in Fig. 3.

Note that in this case we have Ω0 = 1.698645 . . . and, hence, ωc(2) = 3.397290 . . . and ωc(4) = 6.794580 . . . As
explained in detail in [24] these tongues are computed by continuation of so-called constant-µ cross sections, starting at
the tips. To facilitate our subsequent computations of the order of contact and opening angles we started with an extremely
small continuation step size to obtain a large number of points very close to the tips for later fitting. For each tongue we
performed 150 continuation steps. The computation of most tongues terminated by either reaching the computational
boundary µ = 3.5 or by exceeding the maximal number of 150 continuation steps. However, the computation of some
tongues, most notably of the 2:1 tongue, seems to end due to limitations of the algorithm we use; see [24] for more details.
We did not pursue a further investigation, because we are mainly interested in the size and location of the 2:1 and 4:1
tongues for moderate µ and in investigating the behaviour at the tips of all tongues, for which we obtained sufficient data.
The bifurcation diagrams shown in Fig. 3 are clearly dominated by the strongest resonances occurring for ρ = 2 and

ρ = 4. A continuation of the frequency-locked subharmonic solutions along the centre-lines ω/Ω0 = 2 and ω/Ω0 = 4
inside these tongues revealed that these solutions remain attracting for µ ≤ 3.5, at least along these centre-lines. On the
other hand, we observe at the left-hand boundary of the 2:1 tongue that this tongue overlaps with other tongues. Hence, in
these overlapping regions we might find multi-stability. On the right-hand side of the 2:1 tongue no such phenomenon is
apparent in these figures.
The small plots on the right of Fig. 3(a) and (b) show enlargements of the tip of the 3:1 tongue illustrating the effect of

forcing with and without all harmonics present, as predicted in Section 3.1. In Fig. 3(a) we observe a high order (quadratic)
contact of the boundaries of the tongue, while in Fig. 3(b) the two boundaries intersect transversally. Note that the slight
shift to the left of ω/Ω0 = 3 is due to the discretisation error of the periodic solutions; see [24] for technical details.
It is remarkable, however, that our computations accurately capture the predicted high order behaviour despite this
approximation error, which is orders of magnitude larger than the width of most tongues close to the tips, that is, for small
values of µ.
To quantify our findings and for comparison with the analytical predictions we developed a simple adaptive nonlinear

fitting algorithm for the width-function 1ω(ρ) to a monomial 1ω(ρ) = aµb with a and b unknown. One might argue
that one could use a linear fit to logarithmic data of the form ln(1ω(ρ)) = ln a + b lnµ to compute estimates for a
and b. However, this leads to biased estimates as we illustrate in Fig. 4, where we compare the results of a nonlinear
fit (solid) with a linear fit (dashed) to the function y = a exp(bx). Only the nonlinear fit is a useful fit to the data as
Fig. 4 (a) clearly illustrates, the linear fit here being biased towards lower function values. There are several reasons why a
linear fit to logarithmic data is inappropriate, the most important ones being that the two least-squares residual functions
‖Y − a exp(bX)‖22 and ‖ ln Y − (ln a + bX)‖

2
2 have different minimisers, and that Y and ln Y do not have the same error

distribution. Another suggestion would be to compute a linear fit to a polynomial pn(µ) = a0 + a1µ + · · · + anµn of



3358 M.V. Bartuccelli et al. / Nonlinear Analysis: Real World Applications 11 (2010) 3344–3362

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3
10-2

10-1

100

101a b

Fig. 4. Comparison of linear (dashed) and nonlinear (solid) fits for a simple test example.

Table 1
Leading contributions to the plateau widths corresponding to the main resonances as they appear in Fig. 3 from left to right. These coefficients were
obtained by fitting the monomial aµb to the numerically computed values for1ω(p/q) over the interval µ ∈ [0, µfit] on Nfit data points.

p : q f (τ ) = sin(τ ) f (τ ) = (λ2−1) sin τ
λ2+1−2λ cos τ

, λ = 2

1ω(p/q) µfit Nfit 1ω(p/q) µfit Nfit

1:4 2.770× 10−7µ8.076 8.763× 10−1 48 5.571× 10−4µ1.001 4.481× 10−3 72
1:3 1.055× 10−5µ6.052 8.971× 10−1 40 2.971× 10−3µ1.001 5.932× 10−3 73
2:5 7.554× 10−5µ5.038 8.294× 10−1 36 7.128× 10−3µ1.001 7.913× 10−3 73
1:2 5.188× 10−4µ4.014 6.529× 10−1 40 1.786× 10−2µ1.001 1.068× 10−2 74
3:5 3.093× 10−8µ10.19 8.839× 10−1 14 1.057× 10−5µ1.001 7.612× 10−4 58
2:3 4.096× 10−3µ3.003 2.662× 10−1 49 4.780× 10−2µ1.001 1.612× 10−2 74
3:4 2.409× 10−6µ8.016 7.462× 10−1 16 5.101× 10−5µ0.9990 7.016× 10−4 55
1:1 4.828× 10−2µ2.000 9.099× 10−2 76 1.467× 10−1µ1.001 3.179× 10−2 76
4:3 9.979× 10−3µ3.001 1.540× 10−1 47 5.016× 10−2µ1.001 1.097× 10−2 70
3:2 1.112× 10−3µ4.014 5.338× 10−1 38 1.688× 10−3µ1.001 1.973× 10−3 61
5:3 5.049× 10−5µ5.971 2.588× 10−1 16 2.854× 10−5µ0.9990 5.950× 10−4 55
2:1 7.556× 10−1µ1.000 9.684× 10−2 80 6.280× 10−1µ1.000 9.024× 10−2 79
5:2 1.595× 10−2µ3.971 2.039× 10−1 35 1.832× 10−4µ0.9990 4.539× 10−4 50
3:1 1.024× 10−1µ1.999 8.960× 10−2 77 1.331× 10−2µ0.9994 2.410× 10−2 73
4:1 7.957× 10−1µ0.9999 9.719× 10−2 80 5.968× 10−1µ0.9999 9.757× 10−2 79

sufficiently high order n. However, we found that this leads to a least-squares problem that is so ill-conditioned that round-
off errors become amplified to order one, that is, the fitted coefficients are essentially meaningless. A way out is to use
orthonormal polynomials as base functions instead of monomials of the form akµk. However, since our nonlinear fit worked
sufficiently well we did not pursue this further.
For our computations we used the weighted least-squares residual function

F(a, b) :=
∥∥W (µ) (1ω(ρ)− aµb)∥∥22 ,

whereweused theweight-functionW (µ) = 1/µ to penalise errors closer to the tipµ = 0. The numerical data is normalised
to the unit square, that is, we compute a fit to 1ω(ρ)/max{1ω(ρ)} and µ/max{µ}. We computed estimates for a and b
by applying Newton’s method to the equations ∂F(a, b)/∂(a, b) = 0 and rescaled the computed coefficients to fit the
original data. The size of the fitting intervalµ ∈ [0, µfit]was computed adaptively. We started with an initial fitting interval
µfit = max{0.1, argmax{1ω(ρ) < 10−4}}, that is, we used either µfit = 0.1 or the largest value of µ such that the width
of the tongue was less than 10−4. The fitting interval was accepted if the least-squares error F(a, b) for the normalised data
was less than 10−3 and reduced successively if the error was larger. Within the fitting interval we excluded points for which
1ω(ρ) was zero within numerical accuracy. Table 1 summarises our results for both forms of forcing. Each row states the
fitted monomial representing the leading order term together with the fitting interval and the number Nfit of data points
this monomial was fitted to. These computations agree extremely well with the theoretical predictions and also verify that
our fitting algorithm is suitable to capture the leading order behaviour accurately.
Hence, our computations of the width of the locking intervals are in alignment with our theoretical results

1ω(p/q) =
{
O(µk) for p even,
O(µ2k) for p odd,

for harmonic forcing (5.1), and with

1ω(p/q) = O(µ)

for general forcing (5.2) containing all harmonics. Furthermore, for the main Arnol’d tongues corresponding to the
resonances 2:1 and 4:1, Eq. (2.27) valid for harmonic forcing reduces to

D1(τ0) =
1
A
(D1 cos τ0 + D2 sin τ0) , (5.3)
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Fig. 5. Tonguewidths |1ω(ρ)| for fixed p and varying q. The black curves are plots of (5.5) using the constants c from the numerical data and the grey curves
are plots of (5.5) using the constants c predicted by the theory. The discrepancies are due to the small values of q and are expected to be asymptotically
zero for large q.

where, for the 2:1 resonance, A = 16.0814, D1 = 8.11989 × 10−2, and D2 = −5.20174 × 10−1; see also Section 4.4. An
easy computation gives

max
0≤τ0≤2π

D1(τ0) = − min
0≤τ0≤2π

D1(τ0) = M, M = 0.0327381. (5.4)

For example, for the boundaries of the tongue corresponding to the 2:1 resonance we find from Table 1 that (tan θ1(2) +
tan θ2(2))/2 ≈ 0.7556/2 = 0.3778 in agreement with (2.32), which gives ρ2Ω20M = 0.37785. Similarly, for the 4:1
resonance we have A = 32.1627, D1 = −3.79022× 10−2, D2 = 2.74434× 10−1, givingM = 8.6137× 10−3. We compute
thatρ2Ω20M = 0.39766, again in agreementwith the result in Table 1 that (tan θ1(4)+tan θ2(4))/2 = 0.7959/2 = 0.39795.
Also for the secondary resonances p : 1, with p odd, the agreement between the numerical results and the analytical

predictions is satisfactory. The second order computation, performed according to the analysis in Section 3.2, gives, for the
1:1 and 3:1 resonances, the values ∆(1) ≈ 4.8246 × 10−2 and ∆(3) ≈ 1.0269 × 10−1, to be compared with the values
4.828× 10−2 and 1.024× 10−1 in Table 1.
For the all-harmonics forcing (5.2), the plateau widths as given in Table 1 are consistent with the scaling law (3.10). If

we fix p to be an odd integer, then ν0ρ = ν0p/q = 2p, hence ν0 = 2q, and we find |f̂ν0 ||K ν0ρ(ρ)| = Φ(λ) λ−2q|K 2p(p/q)|.
If, on the contrary, we fix p to be an even integer then ν0ρ = ν0p/q = p, hence ν0 = q, so that we obtain |f̂ν0q||K ν0ρ(ρ)| =
Φ(λ) λ−q|K p(p/q)|. When inserted into (3.10), this leads to

|1ω(ρ)| ≈

{
cµ/(q22q) for p odd,
cµ/(q2q) for p even, (5.5)

with the constant c = c(p) independent of q. The constant c can be computed using the theory. A comparison between (5.5)
and (3.10) gives c(p) = ln 2Ω0|r̄1|−1Φ(λ) p |K ν0ρ(p/q)|, with ν0ρ = 2q for odd p and ν0ρ = q for even p. For p = 1, 2, 3
we compute c(p) = 0.82, 1.64, 0.11, respectively. These estimates are consistent with our numerical data in Table 1. Fitting
our data to function (5.5) we obtain the numerical estimates c(p) = 0.5867, 1.255, 0.05326, respectively, which is in good
agreement considering the limited numerical accuracy and the fact that (5.5) is valid for q→∞. Fig. 5 shows a comparison
between the theoretically and numerically obtained width functions.

5.2. Width of plateaux as a function of α and β

Of practical importance is the rate at which the width of a given locking interval increases with increasingµ. The locking
regions, i.e. the Arnol’d tongues, are cone-shaped and the vertical angle of the cone, 2θ1(ρ), which is a measure of width
growth rate, depends on the parameters α and β . This angle can be computed from Eq. (2.36) for a given ρ, and typical
results are given in Fig. 6 for ρ = 2 and a variety of values of β , with α ∈ (β, 10].

6. Conclusions

In this paper we have investigated both analytically and numerically the structure of the Arnol’d tongues for a resonant
injection-locked frequency divider (ILFD). This is the natural extension of the analysis performed in [12], where we
analytically proved the experimental and numerical results contained in [10,11] by providing explicit formulae for thewidth
of the plateaux appearing in the devil’s staircase. More precisely, in [12] we found the following result. Denote by ω andΩ
the frequencies of the driving signal and of the output signal of the ILFD, respectively, with µ the driving amplitude. Then,
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been computed numerically from Eq. (2.36).

if for ρ ∈ Q we call 1ω(ρ) = {ω : ω/Ω = ρ} the width of the corresponding locking interval, we showed that 1ω(ρ)
satisfies1ω(2n/k) = O(µk) and1ω((2n − 1)/k) = O(µ2k) for all k, n ∈ N such that 2n/k and (2n − 1)/k are irreducible
fractions. In particular this implies that the largest plateaux correspond to even integer values of the ratio ω/Ω .
In this paper we have extended the above results: we studied the system of ordinary differential equations (2.1)–(2.3),

which describe the ILFD, with a more general driving term in the form of any analytical periodic function (we confined
ourselves to functions containing odd harmonics only in order to make the analysis more transparent and yet without
any significant loss of generality). In [12] we used f (t) = sin(t) (one harmonic only), as in [10,11]. Here, we studied the
locking intervals1ω(ρ) by using in (2.3) a 2π-periodic function of the form f (t) =

∑
∞

ν=1 f̂ν sin νt , with |f̂ν | ≤ Φ e
−ξ |ν| (by

analyticity). We found that, for any ρ = p/q ∈ Q, with p, q relatively prime integers, the key condition for the existence of
the locking ω = ρΩ (and hence of a plateau), is that there exists ν such that f̂ν 6= 0 and 2|ν ′|q = |ν|p and some ν ′ ∈ Z. This
condition is certainly satisfied if, for instance, |ν ′| = p and |ν| = 2q, provided f̂2q 6= 0, or |ν ′| = 2p and |ν| = q, provided
f̂q 6= 0. Thus, for any resonance p : q one has a plateau1ω(p/q)which to first order is given by (3.1) and (3.6). In particular,
to leading order, thewidth of the Arnol’d tongues is expressed as1ω1(ρ) ≈ 2µρΩ0|r̄1|−1|f̂ν0 ||K ν0ρ(ρ)|,where ρ = p/q,Ω0
and r̄1 are constants depending on the unperturbed system (but not on the driving) and ν0 ≥ 1 denotes the integer which
provides the leading coefficient in the sum (3.6). Note that the formula reduces to the one obtained in [12] – as it should –
if f (t) = sin(t): in that case f̂ν 6= 0 only for ν = 1, so that q = 1 and p ∈ 2N.
Moreover, by keeping in (3.6) the whole sum, we obtain |1ω(ρ)| ≤ µC p2q−1e−ξ1pe−ξq where C is a constant

independent of p and q, thereby showing that the Arnol’d tongues have width proportional to µ, but with proportionality
constants which decay exponentially with p and q.
We have also computed analytically the contribution of the second order, namely the coefficient of µ2. In this case one

needs to compute the first order solution (u1(τ ), u̇1(τ )), with u1(τ ) given in (3.17), which rather complicates the analysis.
We found that1ω(ρ) = µ2∆2ω(ρ)+ O(µ3),which replaces (3.1) when the first order vanishes. For instance, if f contains
only the first harmonic then the condition for locking onto a p : q resonance becomes: 2|ν ′|q = |ν1 + ν2|p, with f̂ν1 f̂ν2 6= 0,
is satisfied for some ν ′ ∈ Z. This shows that when f (t) = sin t , as in [10–12], the plateaux corresponding to odd ρ are of
order µ2.
Higher order contributions can in principle be computedwith a very similar strategy (see (3.23) and (3.24)); the important

point to notice is that at any order k the coefficients ∆kω(ρ) decay exponentially in both p and q. Naturally, higher order
terms become dominant when all the terms of smaller order vanish.
To complete our investigation,we computed the functionsD1(τ0) andD2(τ0) numerically, fromwhich the tonguewidths

1ω(ρ) and 1ω2(ρ) can be calculated, via Eqs. (3.1) and (3.22) respectively. Some of the techniques required to carry out
this computation are described in Section 3. We then computed a set of Arnol’d tongues, which was sufficiently large for
testing the numerics on the basis of the theoretical predictions. In particular, we computed the width of the tongues for two
types of forcing: (i) only one harmonic and (ii) all harmonics present in the Fourier expansion. Our computational results
are in excellent alignment with the theory as stated above, which supports our belief that the locking charts in Fig. 3 are
accurate. These two charts clearly demonstrate the dominance of the 2:1 and the 4:1 resonances. Furthermore, a comparison
indicates that the location of the tongues is robust under generic perturbations; the differences in the shapes of the tongues
are small.
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Appendix. Error in the interpolation scheme

Starting from Eq. (4.1), we expand the sine functions in terms of complex exponentials to obtain

IK (t) =
1
K

∑
|j|≤(K−1)/2

e2ijπ t . (A.1)

Setting t = τ/T0, so that the scheme can be used to interpolate a periodic function x(t) of arbitrary period T0 in terms of τ ,
we have the Fourier expansion

x(t) =
∑
n∈Z

αne2inπ t .

We interpolate x(t) by

x̂(t) =
K−1∑
j=0

x(j/K)IK (t − j/K) =
∑

|m|≤(K−1)/2

βme2imπ t , (A.2)

where the last inequality follows from Eq. (A.1). In order to determine how well x(t) is approximated by x̂(t), we need to
compare αm with βm. Substituting for x(j/K) and IK (t) in Eq. (A.2) and rearranging, we find

x̂(t) =
∑

|m|≤(K−1)/2

e2imπ t
{∑
n∈Z

αn

K

K−1∑
j=0

e2i(n−m)jπ/K
}
,

where the term in braces is equal toβm. The sumover j is equal to [1−e2i(n−m)π ]/[1−e2i(n−m)π/K ]provided that (n−m) 6= pK ,
p ∈ Z, and is equal to K otherwise. Hence,

1
K

K−1∑
j=0

e2i(n−m)jπ/K =
{
0 n−m 6= pK
1 n−m = pK .

Hence

βm =
∑
p∈Z

αm+pK = αm + αm−K + αm+K + · · ·

Now, since x(t) is the solution of an ODE with analytical coefficients, it is itself analytic, and so, for all n, |αn| < C1e−C2|n|,
where C1, C2 are positive real constants. Thus,

|βm − αm| < C1e−C2K

and hence, by choosing K sufficiently large, the interpolation error can be made as small as required.
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