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Bifurcation phenomena and attractive periodic
solutions in the saturating inductor circuit

BY MICHELE V. BARTUCCELLI
1, JONATHAN H. B. DEANE

1

AND GUIDO GENTILE
2,*

1Department of Mathematics, University of Surrey, Guildford GU2 7XH, UK
2Dipartimento di Matematica, Università di Roma Tre, Roma 00146, Italy

In this paper, we investigate bifurcation phenomena, such as those of the periodic
solutions, for the ‘unperturbed’ nonlinear system Gð _xÞ€xCbxZ0, with Gð _xÞZðaC _x2Þ=
ð1C _x2Þ and aO1, bO0, when we add the two competing termsKf ðtÞCg _x, with f(t) a
time-periodic analytic ‘forcing’ function and gO0 the dissipative parameter. The
resulting differential equation Gð _xÞ€xCbxCg _xKf ðtÞZ0 describes approximately an
electronic system known as the saturating inductor circuit. For any periodic orbit of the
unperturbed system, we provide conditions which give rise to the appearance of
subharmonic solutions. Furthermore, we show that other bifurcation phenomena arise as
there is a periodic solution with the same period as the forcing function f(t) which
branches off the origin when the perturbation is switched on. We also show that such a
solution, which encircles the origin, attracts the entire phase space when the dissipative
parameter becomes large enough. We then compute numerically the basins of attraction
of the attractive periodic solutions by choosing specific examples of the forcing function
f(t), which are dictated by experience. We provide evidence showing that all the
dynamics of the saturating inductor circuit is organized by the persistent subharmonic
solutions and by the periodic solution around the origin.

Keywords: nonlinear dynamics; bifurcation theory; subharmonic solutions;
basins of attraction; dissipative systems; electric circuits
*A

Rec
Acc
1. Introduction

One of the most important second-order linear systems in practical applications
is the non-autonomous simple harmonic oscillator, which is described by

L€x CR _xCx=C Z f ðtÞ; ð1:1Þ
where L, R and C are constants. This is the standard linear, second-order,
constant coefficient ODE with non-zero right-hand side. In an electronics
context, the well-known inductor–resistor–capacitor circuit is described exactly
by this differential equation, provided that the inductor (L), resistor (R) and
capacitor (C ) are all independent of x, which in this case would be the charge on
the capacitor. In many cases, this is an excellent approximation. However, a
nonlinear capacitor can easily be implemented in practice, for instance, by using
Proc. R. Soc. A (2007) 463, 2351–2369
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a semiconductor diode, and the resulting nonlinear differential equation has been
studied in detail, in the case where x does not change sign, in Bartuccelli et al.
(2006, 2007). Another practical but rather less studied nonlinear version of
equation (1.1) is one in which R and C are constant but L is a function of _x. Model
Lð _xÞ functions are of course based on practical experience. Practical inductors
consist of a length of wire wound around a core of magnetizable material, real
materials being capable of saturation (so that L is a function of _x, as will become
clear) and possibly also displaying hysteresis (so that L is a function of _x and €x).
Hence, the behaviour of real inductors can depart from the ideal, constant L.
A simple and not very realistic model of saturation was studied in Chua et al.
(1982), where an even, piecewise constant Lð _xÞZL0 if j _xj!X , LZL1 otherwise,
with L0OL1, was used. In a bid for a more faithful model of real inductors, a
comparison between experiment and simulation was reported in Deane (1994),
where both saturation and hysteresis effects were considered. The resulting
system was described by a third-order non-autonomous nonlinear ODE, which
was solved numerically and compared with experiment.

In this paper, we study a model which lies between the two extremes described
earlier: an inductor whose core saturates, this time smoothly, but which does not
display hysteresis.

The rest of the paper is organized as follows. In §2, under appropriate
assumptions and approximations, we derive and rescale the equation that we
study. Such an equation appears as a perturbation of an integrable equation,
whose main properties will be reviewed in §3. We then study the periodic
solutions of the full unperturbed equation. First, in §4, we investigate the
persistence of periodic solutions of the unperturbed system which are ‘in
resonance’ with the forcing term (the so-called subharmonic solutions). Then in
§5, we show that the system is characterized by the presence of another periodic
solution, which has the same period as the forcing and encircles the origin. More
precisely, it branches off the origin in the sense that it reduces to the origin when
the forcing is removed. Therefore, such a solution is different in a profound way
from the subharmonic solutions, because it arises by bifurcation from the stable
equilibrium point and not from the unperturbed periodic solutions. The periodic
solution encircling the origin has a non-empty basin of attraction which becomes
the entire phase space when the dissipative parameter is large enough; this will
be proved in §6. In principle, there could be other solutions relevant for the
dynamics. However, there is strong numerical evidence that the full dynamics is
organized by the periodic solutions that we have studied analytically. In fact, the
numerical simulations performed in §7 suggest that the union of the basins of
attraction of those periodic solutions fills the entire phase space; cf. Bartuccelli
et al. (2001, in press a) for similar situations. Finally in §8, we draw some
conclusions and discuss some open problems and possible lines of future research.
2. The saturating inductor circuit ODE

The circuit under consideration is shown in figure 1 and we now derive the ODE
that describes it, briefly explaining the assumptions that we make. Details of the
electromagnetism and circuit theory required can be found in Kraus (1991).
Kirchhoff’s voltage law states that the sum of the voltages across the components
Proc. R. Soc. A (2007)

http://rspa.royalsocietypublishing.org/


(a) (b)

A

Figure 1. (a) The saturating inductor circuit driven by a voltage source g(ut) is described by the
ODE discussed in this paper. In this diagram, the dependent variable, the capacitor charge, is q(t);
the current, iðtÞZ _qðtÞ; C (capacitance) and R (resistance) are constants and LZLð _qÞZLðiÞ is the
nonlinear inductance. The voltages across the inductor, resistor and capacitor are vL, vR and vC,
respectively. (b) The core of the saturating inductor, with cross-sectional area A and mean
diameter D.
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must equal the applied voltage at all times, and so g(ut)ZvLCvRCvC. The
definition of capacitance states that vCZq(t)/C, where q(t) is the capacitor
charge; also by definition, the current iðtÞZ _qðtÞ; and Ohm’s law allows us to
write vRZi(t)R. Faraday’s law of induction states that vLZdf/dt where f is the
magnetic flux, to be defined. To proceed further, we need to make assumptions
about the geometry of the inductor core. In order that it will display saturation
at relatively low currents, we assume that it is toroidal in shape, with cross-
sectional area A and mean diameter D, and that the inductor itself consists of n
turns of wire around this core. The magnetic flux density is defined by
BZm0(HCM), where m0Z4p!10K7 is the permeability of free space, H is the
applied magnetic field and M is the magnetization. In fact, the quantities B, H
and M are all vectors, but under the assumption that they are all parallel to each
other and normal to the cross-section of the core, we shall see that we need to
consider only their magnitudes. The magnetic flux is then defined by

fZn

ðð
B dAZnm0

ðð
ðH CMÞ dAZnm0AðH CMÞ:

Now, Ampère’s circuital law relates H to i by HZni/pD, and so

df

dt
Z

di

dt

df

di
Z €q

df

di
Z

m0n
2A

pD
€q 1C

dM

dH

� �
: ð2:1Þ
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We now need a model for M(H). In the absence of hysteresis, and with weak
coupling between the magnetic domains, M(H) is usually described by the
Langevin function

MðHÞZMs½cothðH=aÞKa=H �; where lim
H/0

MðHÞZ 0;

and where MsO0 and aO0 are constants which depend on the core material. Now,

dM

dH
Z

Ms

a
1Kcoth2

H

a

� �
C

a2

H 2

� �
hU

H

a

� �
;

where

lim
H/0

dM

dH
Z

Ms

3a
; lim

H/GN

dM

dH
Z 0:

Using this in equation (2.1) and Kirchhoff’s voltage law allows us to write the
differential equation that describes the circuit as

m0n
2A

pD
1CU

n _q

pDa

� �� �
d2q

dt2
CR

dq

dt
C

q

C
Z gðutÞ ð2:2Þ

and all the coefficients are well defined even when _qZ0. We now rescale time by
replacing ut with t, and q by defining unqðtÞZpDalxðtÞ, with l a constant to be
defined, giving

€x 1CUðl _xÞ½ �Cg _xCbx Z f ðtÞ; ð2:3Þ
where

gZ
pDR

m0n
2uA

; bZ
pD

m0n
2u2AC

; f ðtÞZ gðtÞ
m0nulaA

: ð2:4Þ

Finally, we can usefully approximate the function U with an expression that is
qualitatively similar but easier to handle analytically. From the foregoing we
have, for all l, that limy/GN1CUðlyÞZ1 and limy/01CUðlyÞZ1CMs=ð3aÞh
aO1. The simplest rational approximation to 1CU(ly) which has the same
limits (independent of l) is L( y)Z(aCy2)/(1Cy2). Since we are free to choose l,
we find the value lZl0 that minimizes

I ða; lÞZ
ðN
0

1C3ðaK1Þð1Kcoth2ðlyÞC1=ðlyÞ2ÞK aCy2

1Cy2

� �2
dy

Z ðaK1Þ2
ðN
0

3ð1Kcoth2ðlyÞC1=ðlyÞ2ÞK 1

1Cy2

� �2
dy:

Numerical computation gives the value l0z1.99932.
Hence, we set lZl0 and using the resulting approximation for the function U,

the differential equation in its final form is

_x Z y;
aCy2

1Cy2
_y Z f ðtÞKgyKbx: ð2:5Þ

In the rest of the paper, we shall be interested in investigating how the
dynamics of the ‘unperturbed’ system _xZy, ðaCy2Þ=ð1Cy2Þ _yZKbx will be
influenced by the addition of the two competing terms f(t)Kgy under the
assumption that they represent a ‘small’ perturbation. We shall also be able to
investigate cases far from the perturbation regime, at least when the dissipative
parameter is large enough with respect to the forcing term.
Proc. R. Soc. A (2007)
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3. The unperturbed system

Consider theordinarydifferential equation (we setgZ3C fornotational convenience)

_x Z y; _y ZKgðyÞxC 3

b
gðyÞðf ðtÞKCyÞð Þ; ð3:1Þ

where g( y)Zb(1Cy2)/(aCy2), with aO1, f(t)Zf(tC2p) is an analytic periodic
function of time, and 3 (small) and C are two real parameters. Without loss we can
redefine our 3 so as to absorb the positive constant b. For 3Z0, our system is
integrable by quadratures; in fact it has an integral ofmotion, whichwe identify with
its ‘energy’, given by

Eðx; yÞZ 1

b

y2

2
C

aK1

2
logð1Cy2Þ

� �
C

x2

2
: ð3:2Þ

Note that the above system is a particular case of the following class of systems
possessing an integral of motion: _xZy, _yZKgðyÞFðxÞ, the associated integral being
given by ð

y

gðyÞ dyC
ð
FðxÞdx:

The following result is proved in appendix A.

Lemma 3.1. Consider the system (3.1) with 3Z0. Its phase space is filled with
periodic orbits around the origin; the period T0 of these orbits is strictly
decreasing as a function of the energy (3.2), and satisfies the inequalities
2p=

ffiffiffi
b

p
!T0!2p

ffiffiffiffiffiffiffiffi
a=b

p
.

For 3Z0, the system (3.1), in the limits of small and large energy, becomes
‘essentially’ the harmonic oscillator with frequencies uZ

ffiffiffiffiffiffiffiffi
b=a

p
and uZ

ffiffiffi
b

p
,

respectively. We observe that for any fixed value of the energy, we have formally
an infinite number of unperturbed periodic solutions parametrized by a phase
shift t0. This phase shift is irrelevant in the autonomous case (3Z0), but becomes
very important when we add the time-dependent perturbation (3s0), because in
the extended phase space (x, y, t), each ‘initial’ phase will give rise to a different
orbit. Therefore, the unperturbed solution to be continued for 3s0 can be
written in terms of the initial phase, in the form x0(t)ZX0(tKt0), where X0(t) is
an unperturbed solution with the phase appropriately fixed (for instance with
_X0ð0ÞZ0) in order to impose some constraints on the perturbed system (see
below). For practical purposes, it will be more convenient to change the origin of
time, by writing the unperturbed solution as x0(t)ZX0(t) and the periodic
forcing function in the form f(tCt0).

Lemma 3.2. Consider the system (3.1) with 3Z0. The energy function (3.2)
satisfies the identities E(Gx, Gy)ZE(x, y). The solutions x0(t) can be chosen to
be even in t, and satisfy x0(t)ZKx0(tKT0/2), if T0 is the corresponding period.
Furthermore, they possess only odd components in their Fourier series expansion.

Proof. The equation (3.2) shows that the energy function is even in both
variables (x,y), namely E(Gx,Gy)ZE(x,y). Therefore, the solutions ðx0ðtÞ; y0ðtÞÞ
have reflectional symmetry with respect to both axes (x,y). Hence, giving initial
conditions on the x -axis, one obtains solutions x0(t) that are even in time
(similarly if one chooses initial conditions on the y-axis then the solutions are
Proc. R. Soc. A (2007)
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odd in time). Using this property, it follows that any solution of period T0 can
be chosen to be even in time, and moreover it must have the property
x0(t)ZKx0(tKT0/2).

To show the validity of the part concerning the Fourier spectrum, consider the
Fourier series of x0(t), namely

x 0ðtÞZ
X
n2Z

x0ne
inut; ð3:3Þ

where uZ2p/T0. The Fourier coefficients can be written as

T0x0n Z

ðT0

0
dt eKinutx0ðtÞZ

ðT0=2

0
dt eKinutx0ðtÞK

ðT0

T0=2
dt eKinutx 0 tK

T0

2

� �

Z

ðT0=2

0
dt eKinutx0ðtÞKeKinuT0=2

ðT0=2

0
dt 0eKinut 0x0ðt 0Þ

Z ð1KeKinpÞ
ðT0=2

0
dt eKinutx0ðtÞ:

Therefore, if n is an even number (including zero) x0;nZ0, while if n is an odd
number x0;ns0. &

We now investigate the dynamics of the system when 3s0 (and small). In
particular, we are interested in studying which periodic orbits of the unperturbed
system persist under the combined effect of the periodic perturbation f(tCt0)Z
f(tCt0C2p) and the dissipative term C _x; cf. Melnikov (1963), Hale & Táboas
(1978), Chow & Hale (1982), Guckenheimer & Holmes (1990), Gentile et al.
(2007), Bartuccelli et al. (in press a) for related results. Note that in order to
have a periodic solution with period commensurate with 2p, we must impose a
so-called resonance condition given by uZ2p/T0Zp/q. If u satisfies the above
condition, then the perturbed periodic solution will have the period TZpT0,
during which the periodic forcing function f(tCt0) has ‘rotated’ q times. Note
that the phase t02½0; 2pq=pÞ. It is more convenient to consider the system

_x Z y; _y ZKgðyÞxC 3

b
gðyÞðf ðtÞKC _xÞð Þ; _t Z 1; ð3:4Þ

defined in the extended phase space (x, y, t). Then for 3Z0, the motion of the
variables (x, y, t) is in general quasi-periodic and reduces to a periodic motion
whenever T0 becomes commensurate with 2p. Thus, in the extended phase space
(x, y, t), the solution runs on an invariant torus, which is uniquely determined by
the energy E; if uZp/q, we say that the torus is resonant. In general, the non-
resonant tori disappear under the effect of the perturbation, unless the system
belongs to the class that can be analysed by using the KAM theory. In addition,
the resonant tori disappear, but some remnants are left: indeed usually a finite
number of periodic orbits, called subharmonic solutions, lying on the unperturbed
torus, can survive under the effect of the perturbation. If uZp/q, we shall call
q/p the order of the corresponding subharmonic solutions. The subharmonic
solutions will be studied in §4.

Besides the subharmonic solutions, there are other periodic solutions which are
relevant for the dynamics: indeed there is a periodic solution branching off the
origin. This is a feature characteristic of forced systems in the presence of
Proc. R. Soc. A (2007)
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damping (Gentile et al. 2005, 2006; Bartuccelli et al. 2007, in press b). Existence
and properties of such a solution will be studied in §§5 and 6. In particular, we
shall show that this periodic solution becomes a global attractor if the dissipative
parameter is large enough.
4. Subharmonic solutions

We consider the system (3.1) with 3s0 and small, and we look for subharmonic
solutions which are analytic in 3. First, we formally define power series in 3 of
the form

xðtÞZ
XN
kZ0

3kxðkÞðtÞ; yðtÞZ
XN
kZ0

3kyðkÞðtÞ; C Z
XN
kZ0

3kCk ; ð4:1Þ

where, for all k2N, the functions x(k)(t) and y(k)(t) are periodic with period

TZpT0Z2pq, with
ffiffiffiffiffiffiffiffi
b=a

p
!p=q!

ffiffiffi
b

p
. We shall see that the functions x(k)(t) and

y(k)(t) can be determined provided the parameters Ck are chosen to be the
appropriate functions of the initial phase t0.

If we introduce the decompositions (4.1) into (3.1) and denote with W(t), the
Wronskian matrix for the unperturbed linearized system, we obtain

xðkÞðtÞ

yðkÞðtÞ

 !
ZW ðtÞ

~xðkÞ

~yðkÞ

 !
CW ðtÞ

ðt
0
dtWK1ðtÞ

0

F ðkK1ÞðtÞ

 !
; ð4:2Þ

where ð~xðkÞ; ~yðkÞÞ are corrections to the initial conditions, and

F ðkÞðtÞZ
XN
mZ0

X
r1;r22ZC

r1Cr2Zm

1

r1!r2!

vr1

vyr1
vr2

vCr2
Fðy0;C0; tC t0Þ

!
X

k1C/CkmZk

yðk1ÞðtÞ.yðkr1 ÞðtÞCkr1C1
.Ckm ; ð4:3Þ

where Fðy;C ; tC t0ÞZgðyÞ f ðtC t0ÞKCyð Þ. Note that by construction F (k)(t)

depends only on the coefficients y(k
0)(t) and C ðk 0Þ with k 0%k.

We shall denote by (x0, y0) the solution of the unperturbed system _x0Zy0,
_y0ZKgðy0Þx0, with x0 even (hence y0 odd): this is possible by lemma 3.1. The
Wronskian matrix appearing in (4.2) is a solution of the unperturbed linear
system

_W ðtÞZMðtÞW ; MðtÞZ
0 1

Kgðy0Þ Kðvgðy0Þ=vyÞx0

 !
; ð4:4Þ

so that the matrix W(t) can be written as

W ðtÞZ
c1vx0=vE c2 _x0

c1vy0=vE c2 _y0

 !
; ð4:5Þ

where c1 and c2 are suitable constants such that W(0)Z1 (one can easily check
that c1c2ZKa).
Proc. R. Soc. A (2007)
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By making explicit the dependence of the unperturbed periodic solutions on E,
we can write

x 0ðtÞZ x 0ðuðEÞt;EÞZ
X
n

xnðEÞeinuðEÞt; ð4:6Þ

so that we can write

vx0
vE

Z
vuðEÞ
vE

thðtÞCbðtÞ; _x0ðtÞZuðEÞhðtÞ;

where

hðtÞZ
X
n

inx nðEÞeinuðEÞt; bðtÞZ
X
n

vx nðEÞ
vE

einuðEÞt:

Note in particular that h(t) and b(t) are, respectively, odd and even in t, so that
vx0=vE is even in time. Hence we have

vx 0

vE
Zmt _x0 CbðtÞ; mZ

1

uðEÞ
vuðEÞ
vE

;

where ms0 because the system is anysochronous and the derivative of the period
dT0(E )/dE!0 as shown in lemma 3.1; also the functions hðtÞ; bðtÞ; _x0ðtÞ are
periodic with period T0. Note that the lower two components of the Wronskian
matrix are the time derivatives of the upper two. Hence we can express the
Wronskian matrix as follows

W ðtÞZ
c1 mt _x0ðtÞCbðtÞð Þ c2 _x0ðtÞ

c1 m _x0ðtÞCmt€x 0ðtÞC _bðtÞ
� �

c2€x 0ðtÞ

 !
: ð4:7Þ

By introducing (4.7) in (4.2) and using that

detW ðtÞZc1c2 _y0
vx0
vE

K _x0
vy0
vE

� �
ZK

c1c2
Gðy0Þ

x0
vx0
vE

Cy0Gðy0Þ
vy0
vE

� �
ZK

c1c2
Gðy0Þ

;

we obtain for all kR1

xðkÞðtÞZ c1ðm _x0ðtÞtCbðtÞÞ~xðkÞCc2 _x0ðtÞ~yðkÞ Cðm _x0ðtÞtCbðtÞÞ

!

ðt
0
dtGðy0ðtÞÞ _x0ðtÞF ðkK1ÞðtÞK _x0ðtÞ

ðt
0
dtGðy0ðtÞÞðm _x0ðtÞt

CbðtÞÞF ðkK1ÞðtÞ;

where GðyÞZðaCy2Þ=ðbð1Cy2ÞÞ; a similar expression can be written for the

component yðkÞðtÞZ _xðkÞðtÞ. After some manipulation, we obtain

xðkÞðtÞZ c1ðmt _x0ðtÞ~xðkÞCbðtÞ~xðkÞÞCc2 _x0ðtÞ~yðkÞ CbðtÞ

!

ðt
0
dtGðy0ðtÞÞ _x0ðtÞFðkK1ÞðtÞK _x0ðtÞ

ðt
0
dtGðy0ðtÞÞbðtÞF ðkK1ÞðtÞ

Cm _x0ðtÞ
ðt
0
dt

ðt
0
dt0Gðy0ðt0ÞÞ _x0ðt0ÞF ðkK1Þðt0Þ:
Proc. R. Soc. A (2007)
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For notational convenience, let us put FðkK1ÞðtÞZGðy0ðtÞÞ _x0ðtÞF ðkK1ÞðtÞ, FðkK1Þ

ðtÞZ
Ð t
0 dtF

ðkK1ÞðtÞ and JðkK1ÞðtÞZGðy0ðtÞÞbðtÞFðkK1ÞðtÞ. Then we obtain a
periodic solution of period TZpT0Z2pq if, to any order k2N, one has

hFðkK1Þid 1

T

ðT
0
dtFðkK1ÞðtÞZ 0; c1~x

ðkÞ Z
hJðkK1Þi

m
K hF ðkK1Þi; ð4:8Þ

where, given any T-periodic function H we denote its mean by hHi. In addition,
recall that ms0 and c1s0.

The parameters ~yðkÞ are left undetermined, and we can fix them arbitrarily, as
the initial phase t0 is still a free parameter. For instance, we can set ~yðkÞZ0 for all
k2N or else we can define ~yðkÞZ ~yðkÞðt0Þ for k2N, with the values ~yðkÞðt0Þ to be
fixed in the way which turns out to be most convenient (Gentile et al. 2007).

Thus, under the restrictions (4.8), we have that for all kR1

xðkÞðtÞZc1bðtÞ~xðkÞ Cc2 _x0ðtÞ~yðkÞ CbðtÞ
ðt
0
dtFðkK1ÞðtÞC

ðt
0
dt JðkK1ÞðtÞK hJðkK1Þi
� 	

Cm _x0ðtÞ
ðt
0
dt FðkK1ÞðtÞK hF ðkK1Þi
� 	

ð4:9Þ

is a periodic function of time. Hence, we must prove that the first condition in
(4.8) can be fulfilled at all orders kR1; the second condition just gives a
prescription how to fix the parameters ~xðkÞ.

For kZ1, the condition on the zero average, in terms of the Melnikov integral
(note that Gðy0ðtÞÞgðy0ðtÞÞZ1Þ

Mðt0;C0Þd
ðT
0
dtGðy0ðtÞÞ _x0ðtÞFð0ÞðtÞZ

ðT
0
dt _x0ðtÞKC0 _x0ðtÞC f ðtC t0Þ½ �;

gives M(t0, C0)Z0, and we can choose C0ZC0(t0) so that this holds because

vMðt0;C0ðt0ÞÞ
vC0

ZK

ðT
0
dt½ _x0ðtÞ�2dKDs0;

for all t02[0, 2pq/p).
For kZ2, the condition reads (recall that _x0Zy0)

C1 Z
1

D
Gð1ÞðC0; x0; x

ð1Þ; y0; y
ð1Þ; t0ÞZ

1

D

ðT
0
dtGðy0ðtÞÞ _x0ðtÞ

! KC0y
ð1ÞðtÞ _x0ðtÞg 0ðy0ðtÞÞxð1ÞðtÞ _x0ðtÞyð1ÞðtÞ

h
K
g 00ðy0ðtÞÞ

2
x 0ðtÞ _x0ðtÞðyð1ÞÞ2ðtÞCg 0ðy0ðtÞÞ _x0ðtÞyð1ÞðtÞf ðtC t0Þ

�
;

where the primes denote differentiation with respect to y. For higher values of k,
in order to satisfy the first condition in (4.8), we must choose

Ck Z
1

D
GðkÞðC0;.;CkK1; x0;.; xðkÞ; y0;.; yðkÞ; t0Þ; ð4:10Þ

where G(k) can be proved, by induction, to be a well-defined periodic function

depending on the coefficients C0;.;CkK1; x0;.; xðkÞ; y0;.; yðkÞ. Therefore, we
conclude that if we set C0ZC0(t0) and, for all kR1, we choose ~yðkÞZyðkÞðt0Þ, ~xðkÞ
according to the second condition in (4.8) and CkZCk(t0) according to (4.10), we
obtain that in the series expansions (4.1) the coefficients x(k)(t) and y(k)(t) are
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well-defined periodic functions of period T. All of this of course makes sense if the
series expansions (4.1) converge; this can be seen by showing that the coefficients

admit bounds of the form jx(k)(t)j!dk for some positive constant d; hence by

taking 3 small enough and CZC(3, t0) as a function of t0 according to (4.10), it
follows that the series converges to a periodic function with period TZT0p,
analytic in t and 3. The strategy for showing the convergence of the series is
essentially the same as that explained in Gallavotti & Gentile (2002) and Gentile
et al. (2007), and all the details can be found in these references. Hence, the
formal power series converges for j3j!30ZdK1. For fixed 32(K30, 30), we shall
find the range allowed for C by computing the supremum and the infimum, for
t02[0, 2p), of the function t0/C(3, t0). The bifurcation curves will be defined in
terms of the function C(3, t0) as

g1ð3ÞZ 3 sup
t 02½0;2pÞ

Cð3; t0Þ; g2ð3ÞZ 3 inf
t 02½0;2pÞ

Cð3; t0Þ: ð4:11Þ

These bifurcation curves divide the parameter plane (3, g) into two disjoint sets
such that only inside the region delimited by the bifurcation curves are there
subharmonic solutions; the region of existence contain the real 3-axis. For more
details on this point see Gentile et al. (2007).

We are now in a position to summarize the above discussion by stating
theorem 4.1 which is an adaptation of theorem 5 of Gentile et al. (2007).

Theorem 4.1. Consider the system (3.1). For all p, q relatively prime positive
integers such that

ffiffiffiffiffiffiffiffi
b=a

p
!p=q!

ffiffiffi
b

p
, there exist 30O0 and two continuous

functions g1(3) and g2(3), with g2(0)Zg2(0), g1(3)R0Rg2(3) for 3O0 and
g1(3)%0%g2(3) for 3!0, such that (3.1) has at least one subharmonic solution of
order q/p for g2(3)%3C%g1(3) when 32(0, 30) and for g1(3)%3C%g2(3) when
32(K30, 0).

The above theorem applies for any analytic 2p-periodic forcing function of
time; so, provided the integers p, q are relatively prime, it follows that generically
any resonant torus of the system (3.1) possesses subharmonic solutions of order
q/p. Naturally if we choose a particular forcing function with special properties,
then in turn this will influence the set of possible subharmonic solutions. For
example, if we take the function f(t)Zsin t, then for dissipation large enough—
that is for gZO(3)—the only existing subharmonic solutions are those with
frequency uZ1/(2kC1) with k any positive integer. This can be seen as follows.
The solutions of the unperturbed system have odd components only in their
Fourier representation; moreover we know that to first order the Melnikov
condition M(t0, C0)Z0 must be satisfied. Hence we can choose

C0ðt0ÞZ
ÐT
0 dt _x0ðtÞf ðtC t0ÞÐT

0 dt½ _x0ðtÞ�2
; ð4:12Þ

which is well defined because the denominator is non-zero; hence by computing
the integral in the numerator of (4.12) by using the Fourier representations of _x0
and f(t)Zsin t and by taking the zero Fourier component of their product, one
can see that the only possible frequencies are of the type uZ1/(2kC1); see
Bartuccelli et al. (in press) for details. We are implicitly assuming that the
integral

ÐT
0 dt _x0ðtÞf ðtC t0Þ is non-zero; this must be checked (either analytically

or numerically), because if it happens to be zero then we have to go to higher
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orders until we find a kO1 such that

Ck Z
1ÐT

0 dt½ _x0ðtÞ�2
GðkÞðC0;.;CkK1; x0;.; xðkÞ; y0;.; yðkÞ; t0Þs0: ð4:13Þ

Other subharmonic solutions appear only for much smaller values of the
dissipative parameter, that is for gZO(3p), with pO1. Again we refer to Gentile
et al. (2007) and Bartuccelli et al. (in press a) for further details.

The subharmonic solutions turn out to be attractive. The numerical
simulations performed in §7 give evidence that, at least for small values of the
perturbation parameter 3, all trajectories in phase space are eventually attracted
either to some subharmonic solution or to the periodic solution, which will be
investigated in §5. Note that this situation is different from the kind of problem
studied in Stoker (1950): first of all our unperturbed system is strongly nonlinear;
moreover, the limit cycles described by the attractive periodic solutions are
generated by the perturbation itself, so that the problem does not consist in
studying the persistence of the self-sustained limit cycle.
5. Periodic solution branching off the origin

In this section, we wish to investigate the periodic solution which originates from
the zero solution in the presence of the periodic forcing function f(t)Zf(tC2p).
For this it is more convenient to write our system as follows:

_x Z y; _y ZKgðyÞxKggðyÞ _xC3gðyÞf ðtÞ; ð5:1Þ
where gðyÞZbð1Cy2Þ=ðaCy2Þ, and again the constant b has been absorbed into
the constants 3 and g.

The following result will be proved.

Theorem 5.1. Consider the system (5.1), and assume that Q0Zminn2N

jn2Ka=bjs0. There exists 30fmax{g, Q0} such that for j3j!30, the system
(5.1) admits a periodic solution x0(t) with the same period as the forcing, which
describes a closed curve C of diameter O(3/30) around the origin. Moreover, for
any value of 3 there exists g0O0 such that for gOg0, the periodic solution x0(t)
describes a global attractor.

The idea is to expand the periodic solution around the origin and then to use a
similar strategy to the one of §4. Thus we have

xðtÞZ
XN
kZ1

3kxðkÞðtÞ; yðtÞZ
XN
kZ1

3kyðkÞðtÞ; gðyÞZ
XN
kZ0

1

k!

dkg

dyk
ð0Þyk; ð5:2Þ

note that the dissipative parameter g is now included in the ‘unperturbed’
system and therefore it is (in general) not necessarily small. We now introduce
the decompositions (5.2) into (5.1) and we perform a similar analysis to that
of §5. To first order in 3, we obtain (remember that the zero-order solution is
the origin)

€x ð1ÞCgð0Þ xð1ÞCg _xð1Þ
� 	

Kgð0Þf ðtÞZ 0; ð5:3Þ

where g(0)Zb/a. This equation is linear non-homogeneous and its time-
asymptotic solution (obtained by setting to zero the transient non-periodic
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part which decays exponentially in time) has Fourier coefficients

x ð1Þn Z
gð0Þfn

gð0Þð1C ignÞKn2
: ð5:4Þ

In particular it has the same period as f. Note that the first-order solution x(1)(t)
has the same average as the forcing function f(t) (as it should). It is now
instructive to compute the second order in 3 and then the kth order, because at
second order one can already see the general properties of the structure of
the solution at any order. By equating powers of 32, we obtain

€x ð2ÞCgð0Þ xð2ÞCg _xð2Þ
� 	

Kg 0ð0Þ _xð1Þf ðtÞKxð1Þ _xð1ÞKgð _xð1ÞÞ2
� 	

Z 0; ð5:5Þ

which can be easily solved in Fourier space.
By inspecting the structure of equation (5.1), one can see that at any order k

the linearized part is the same—compare for instance (5.3) with (5.5)—and the
perturbation is formed of terms that are periodic functions having the same
period as the forcing term f(t); hence the structure of the equation at order k has
the form

€x ðkÞCgð0ÞðxðkÞCg _xðkÞÞZPðkÞðxð1Þ;.; xðkK1Þ; yð1Þ;.; yðkK1Þ;gÞ; ð5:6Þ
where the function P (k) is a periodic function having the same period as the
forcing term f(t); hence, by writing

xðkÞðtÞZ
X
n2Z

x ðkÞn eint;

PðkÞðxð1ÞðtÞ;.; xðkK1ÞðtÞ; yð1ÞðtÞ;.; yðkK1ÞðtÞ;gÞZ
X
n2Z

PðkÞ
n eint; ð5:7Þ

we find that the Fourier coefficients x
ðkÞ
n are given by

x ðkÞn Z
gð0ÞPðkÞ

n

gð0Þð1C ignÞKn2
; ð5:8Þ

according to (5.6). Note that P
ðkÞ
n depends on the coefficients x

ðk 0Þ
n0 , with k0!k and

n02Z, so that it is a well-defined periodic function (as can be checked by
induction). The explicit expression for P

ðkÞ
n can be found in appendix B.

The convergence of the perturbation series (5.2) can be discussed as in the
references Gallavotti & Gentile (2002) and Gentile et al. (2007) quoted in §4.
The presence of the factor g appearing in the denominator of (5.8) implies that
the corresponding radius of convergence in 3 grows linearly in g. More precisely,
by iterating (5.8) for every k down to kZ1, one finds that, uniformly in t,

jxðkÞðtÞj%AðB=QðgÞÞkK1, where A and B are constants which depend upon
the functions g( y) and f(t), but not on g, and Q(g)Zmax{g(0)g, Q0},

with Q0Zminn2Njgð0ÞKn2j; cf. appendix B. Therefore by looking at the power
series expansion (5.2), one sees that by choosing 3 judiciously the series
converges. The radius of convergence becomes smaller with decreasing g up to a
threshold value proportional to 1=Q0Z1=minn2Njn2Kb=aj, below which it
remains constant. For gZ0, we can choose Q0/B as the radius of convergence of
the power series, provided n2Kb/as0 (absence of resonances). Moreover, under
this hypothesis, for any fixed 3—not necessarily small—we have that for g large
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enough, say for gOg0, there is a periodic solution x0(t) encircling the origin with
the same period as the forcing. We shall see in §6 that there exists g1Rg0 such
that for gOg1 the solution x0(t) describes a global attractor.
6. Global attraction to the periodic solution encircling the origin

In this section, we wish to prove that if the dissipative parameter gO0 is large
enough, then every initial condition will evolve so as to tend asymptotically to
the periodic solution encircling the origin, whose existence was proved in §5. We
start with the perturbed equation in the form

Gð _xÞ€x CxCg _xKf ðtÞZ 0; ð6:1Þ
where GðyÞZðaCy2Þ=ðbð1Cy2ÞÞ, and the parameter 3 (arbitrary, cf. the
comments at the end of §5) has been absorbed into the forcing function f(t). The
strategy we follow is to split the solution x(t)Zx0(t)Cx(t), where x 0(t) satisfies
(6.1). Thus we must prove that x(t)/0 as time goes to infinity. By introducing
x(t)Zx 0(t)Cx(t) into (6.1) and simplifying the terms satisfied by the periodic
solution, we obtain the equation

Gð _x0 C _xÞð€x 0C€xÞKGð _x0Þ€x 0 Cg _xCxZ 0: ð6:2Þ
We write it as

_xZ y; _y ZKgð _x0C _xÞKxKg _xK Gð _x0C _xÞKGð _x0Þ
� �

€x 0


 �
; ð6:3Þ

where as usual gð _x0C _xÞZ1=Gð _x0C _xÞÞ. Hence, we have to prove the following
result.

Lemma 6.1. Consider the equation (6.3) with x0(t), the periodic solution
encircling the origin. Then if the dissipative parameter gO0 is large enough, all
trajectories in phase space converge towards the origin asymptotically in time.

Proof. By using the Liouville-like transformation (Bartuccelli et al. 2004)

tZ

ðt
0
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð _x0 C _xÞ

q
;

we first remove the time dependence from the coefficient of x. We obtain _xZ
ffiffiffi
g

p
x0

and €xZgx00Cx0g 0=2, where the prime denotes the derivative with respect to the
variable t. Substituting and simplifying we get

x0 Z y; y 0 ZKxK g
ffiffiffi
g

p
C

g 0

2g

� �
x0K Gð _x0C _xÞKGð _x0Þ

� �
€x 0: ð6:4Þ

By defining the Hamiltonian for the harmonic oscillator byHZ(x2Cy2)/2, one can

see thatH0ZKGy2KFy, where GZg
ffiffiffi
g

p
Cg 0=ð2gÞ andFZðGð _x0C _xÞKGð _x0ÞÞ€x 0.

Now one can see that we can estimate jGð _x0C _xÞKGð _x0Þj%Ljyj with L a positive
constant of order 1/g. The last property follows, when explicitly estimating L,
from the fact that x0; _x0; €x 0 are of order 1/g (see (5.4)). Then one finds
H 0%Ky2(GKL/G)%0 for every (x,y). Moreover, H 0Z0 only on the y-axis
provided that g is large enough. Hence, we are in the hypotheses of the theorem
of Barbashin–Krasovsky (Krasovsky 1963) and therefore we can conclude that if
g is large enough so as to have g

ffiffiffi
g

p
Cg 0=2gO0 and GKL/GO0, it follows that

the origin is asymptotically stable and attracts all the solutions for every initial
condition in phase space. This completes the proof of the lemma. &
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Figure 2. Numerical confirmation of theorems 4.1 and 5.1 for f(t)ZA sin t, aZ40, bZ1, AZ1.2,
gZ0.003 and 3Z1. (a–c) Periodic solutions with periods 2pn, with (a) nZ1, (b) nZ3 and (c) nZ5.
Note that only the solutions corresponding to nZ3, 5 are subharmonic solutions; note also the
different scales. The filled circles show the Poincaré section where f(t)Z0, _fO0. (d– f ) the basins of
attraction of each of the periodic solutions.

M. V. Bartuccelli et al.2364

 on August 15, 2011rspa.royalsocietypublishing.orgDownloaded from 
7. Numerical simulations

We now report on some numerical computations which illustrate theorems 4.1 and
5.1 by considering a special case of equation (2.5) with f(t)ZA sin t, and choosing
AZ1.2, aZ40, bZ1 and gZ0.003. Note that (2.5) corresponds to (3.1) with 3Z1.
Technically theorems 4.1 and 5.1, for fixed g, have been proved for values of 3
relatively small so as to be sure of the convergence of the power series that arise.
However, it is very time consuming to obtain basin of attraction pictures for small
values of the dissipative parameter gZ3C. Hence, we have compromised by
verifying, within the limitations of finite precision and time numerical
computations, that only attracting periodic solutions having periods 2pn for
nZ1, 3 and 5 exist, for (3.1) with 3Z1, 3Z0.1 and 3Z0.01. Only in the case 3Z1,
we have computed the actual basins of attraction of each of these solutions,
figure 2. The figure shows solutions with periods 2pn for figure 2a, nZ1; figure 2b,
nZ3 and figure 2c, nZ5. Below there are the corresponding basins of attraction.
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These were computed in the obvious way—by numerically integrating the
differential equation starting from a set of initial conditions on a 200!200 grid,
and in each case, after allowing the transient to decay sufficiently, deciding which
solution has been reached. Of the 40 000 pixels in the figure, 17 335 correspond to
the nZ1 solution, 18 718 to nZ3 and 3947 to nZ5. Hence, all 40 000 initial
conditions considered lead to one of only these three solutions.

This is in accordance with the analytical results of §§4 to 6. Lemma 3.1 implies
that subharmonic solutions are possible corresponding only to orders q/p with
q=p2ð1;

ffiffiffi
a

p
ÞZð1;

ffiffiffiffiffi
40

p
Þ. Furthermore, in the light of the discussion after theorem

4.1, one has pZ1, and q is an odd integer owing to lemma 3.2, so for these
parameters, q can only be 3 or 5. We also need to check that g is below the
maximum of C0(t0) as defined in equation (4.12). For f(t)ZA sin t, one finds
C0(t0)ZR(q)cos t0, withR(q) a constant depending on q. Carrying out the implied
integrations numerically, we find that R(3)z–0.02113 and R(5)z0.05174, while
(for 3Z1) one has CZgZ0.003. A similar scenario has been checked to arise for
gZ0.015 (and the same values of the other parameters).

Besides these subharmonic solutions, there is also theperiodic solutionbranching
off the origin. Note that in the case investigated, one has Q0Zminn2Njn2Kb=aj
Z39=40s0, so that we are far from resonances, and theorem 5.1 applies.

The numerical results show that these three periodic solutions attract almost
all trajectories (at least for initial data not too far from the origin).
8. Discussion and conclusion

In this paper, we have discussed various properties of the solutions of a nonlinear
ODE with periodic forcing, in which the nonlinearity consists, in a mechanical
analogy, of a velocity-dependent mass, the restoring force and dissipation being
linear. The ODE arises as a model of an electronic circuit containing an inductor
whose core saturates. The importance of this circuit is that it is very simple,
consisting of only three electronic components, and yet for certain values of the
parameters can display chaotic behaviour. Previous studies made use of various
simplified models of the saturating inductor: for instance, by using a piecewise
constant approximation to the function g( y) and neglecting hysteresis effects
(Chua et al. 1982); or by using a more realistic model including hysteresis effects
(so that g depends on y and _y) (Deane 1994). The latter results in a third-order
non-autonomous ODE (Deane 1994). The ODE studied in this paper is in
between these two models, as it still neglects hysteresis but uses a smooth—more
realistic—function for the magnetization.

In our analysis, we considered first the unperturbed version of the system in
which dissipation and forcing were absent, and showed that here, only periodic
solutions are displayed and their period is a monotonically decreasing function of
the energy. When the perturbation is present, we have proved the existence
of subharmonic solutions—that is solutions whose periods are rational multiples
of the period of the forcing—and additionally, of a periodic solution with the
same period as the forcing, the latter becoming a global attractor in the presence
of sufficient dissipation. Numerical computations have been carried out
to illustrate this behaviour and show the relevance of these solutions for
the dynamics.
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The main limitation in our model is the fact that we neglect hysteresis. On the
other hand, as mentioned earlier, taking it into account leads to a much more
complicated system, and application of the analysis techniques used here, at best,
would require non-trivial generalization. It would be interesting to investigate in
a real circuit whether hysteresis can be really neglected for certain inductor core
materials. In general, the results presented in Deane (1994) show that hysteresis
produces a distortion of the periodic solutions studied in this paper. Moreover,
for larger values of the perturbation parameter new bifurcation phenomena
appear (such as period doublings) and also chaos.

An analytical description of this behaviour would be highly desirable, but
would require dealing with a non-perturbative regime: the mathematics becomes
much more involved and new ideas are necessary. Note that our system, in the
absence of perturbation (3Z0), does not possess homoclinic or heteroclinic orbits:
indeed, all the unperturbed solutions are periodic. This situation is different from
that of pendulum-like systems, where Smale horseshoes transient chaos can
manifest itself through homoclinic tangles (Holmes & Marsden 1981/82;
Greenspan & Holmes 1984; Guckenheimer & Holmes 1990).

It is a pleasure to acknowledge fruitful discussions with Alexei Ivanov.
Appendix A. Proof of lemma 3.1

In this appendix, we prove lemma 3.1, namely that the periodic orbits of the
system Gð _xÞ€xCxZ0 have decreasing period T0ZT0(E ) as a function of the

energy E and 2p=
ffiffiffi
b

p
%T0ðEÞ%2p

ffiffiffiffiffiffiffiffi
a=b

p
, for aO1. In fact let

V ðyÞZ 1

b

y2

2
C

aK1

2
logð1Cy2Þ

� �
;

so that we can set EZx2/2CV( y). Then by using the symmetry in x and y
of our system, we obtain that the period as a function of the energy is
given by ffiffiffi

2
p

T0ðEÞ
4

ZTðEÞZ
ðyE
0

V 0ðyÞdy
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKV ðyÞ

p ;

where of course we must have EZV( yE). We wish to show that the derivative
dT(E )/dE!0 for all EO0. We have

dTðEÞ
dE

Z lim
3/0

K
1

2

ðyE
0

V 0ðyÞ
y

ðEKV ðyÞC i3ÞK3=2dyC
V 0ðyÞy 0E

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKV ðyÞC i3

p ����
yZyE

 !

Z lim
3/0

K
1

2E

ðyE
0

V 0ðyÞdy
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKV ðyÞC i3

p K
1

2E

ðyE
0

V 0ðyÞV ðyÞ
yðEKV ðyÞC i3Þ3=2

dy

 

C
V 0ðyÞy 0E

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKV ðyÞC i3

p ����
yZyE

!
ZK

T

2E
C

1

2E

ðyE
0

2V ðyÞ
y

� �0 dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKV ðyÞ

p
C lim

3/0
K

1

2E

2V ðyÞ
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKV ðyÞC i3

p ����yZyE

0

C
V 0ðyÞy 0E

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKV ðyÞC i3

p ����
yZyE

 !
;
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where the prime denotes derivative with respect to y (except for
y 0
EZdyE=dE), and we have used that V 0ðyEÞy 0

EZ1 and

V 0ðyÞV ðyÞ
y

ðEKV ðyÞÞK3=2 Z
2V ðyÞ

y
ðEKV ðyÞÞK1=2
h i0

:

By computing the integrated terms and simplifying, we finally obtain

dTðEÞ
dE

ZK
1

2E

ðyE
0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKV ðyÞ

p 2V ðyÞKyV 0ðyÞ
y2

� �
:

Hence, if we show that the function

f ðyÞZ 2V ðyÞKyV 0ðyÞZ ðaK1Þ
b

logð1Cy2ÞK y2

1Cy2

� �
;

is positive for positive y, then it follows that dT(E )/dE!0. However, this can
be seen by computing its derivative

f 0ðyÞZ ðaK1Þ
b

2y3

ð1Cy2Þ2
O0;

for every yO0. Also f(0)Z0 and therefore dT(E )/dE!0. What remains to

show is that the period goes to the two limits 2p
ffiffiffiffiffiffiffiffi
a=b

p
and 2p=

ffiffiffi
b

p
as the

energy goes to zero and infinity, respectively. Let us start by showing that the
period T0ðEÞ/2p

ffiffiffiffiffiffiffiffi
a=b

p
as the energy E/0. We know that

T0ðEÞZ 4ffiffiffi
2

p
ðyE
0

aCy2

bð1Cy2Þ
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EKV ðyÞ
p :

By putting zZy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ð2bEÞ

p
, we obtain

lim
E/0

T0ðEÞZ lim
E/0

4ffiffiffi
2

p
ðyE
0

aCy2

bð1Cy2Þ
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EKV ðyÞ
p

Z lim
E/0

4ffiffiffiffiffiffi
ab

p
ð1COðEÞ

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2 COðEz4Þ

p a2 C2Ebz2

aC2Ebz2

� �
:

Because the integrands are summable functions, by using Lebesgue’s
dominated convergence theorem (Browder 1996), we can take the limit inside
the integral; the result then follows by first taking the limit and then
computing the integral.

We now show that T0ðEÞ/2p=
ffiffiffi
b

p
as the energy tends to infinity. By putting

yZz
ffiffiffiffiffiffiffiffiffi
2bE

p
, we obtain

lim
E/N

T0ðEÞZ lim
E/N

4ffiffiffi
b

p
ð1CO log E

Eð Þ
0

aC2bEz2

1C2bEz2

� �
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Kz2KG
p

Z
4ffiffiffi
b

p lim
E/N

ð1
0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2KG

p C
4ffiffiffi
b

p lim
E/N

ð1CO log E
Eð Þ

1

dz

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2KGK1

p ;

where bEGZðaK1Þlogð1C2bEz2Þ. Again, as above, we use Lebesgue’s
dominated convergence theorem in order to take the limit inside the integrals;
we then make the computations and the result follows.
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Appendix B. Estimates for large dissipation

In this appendix, we wish to show by induction that for large g, the coefficients
(5.8) satisfy the asymptotics

x ðkÞn fð1=gÞk ; ns0; x
ðkÞ
0 fð1=gÞkK1:

By using (5.4), we first observe that for kZ1 we obtain x
ð1Þ
n f1=g for ns0 and

x
ð1Þ
0 f1. Hence y

ð1Þ
n f1=g for ns0 and y

ð1Þ
0 Z0. Let us define the quantity

SnZ1CignKn2; for large g, Sn can be bounded from below fg for any ns0,

while S0Z1. Assume now that, for any k0!k, x
ðk 0Þ
n fð1=gÞk 0 if ns0 and

x
ðk 0Þ
0 fð1=gÞk 0K1. Then

x ðkÞ
n Z

1

Sn

Xk
pZ0

K
X

k1C/CkpCk 0Zk
n1C/CnpCn0Zn

gðpÞð0Þ
p!

yðk1Þ
n1

.y
ðkpÞ
np x ðk0Þn0

Cg
gðpÞð0Þ
p!

yðk1Þn1
/y

ðkpÞ
np yðk0Þn0

 !8>>><
>>>:

C
X

k1C/CkpC1ZkK1
n1C/CnpCn0Zn

gðpÞð0Þ
p!

yðk1Þ
n1

/y
ðkpÞ
np fn0

9>>>=
>>>;
: ðB1Þ

By the inductive hypothesis each y
ðkiÞ
ni is proportional to ð1=gÞki , while, in general,

x
ðk0Þ
n0 fð1=gÞk 0K1, because one can have n0Z0. Since Snfg for ns0, then for

ns0—aside from some constants involving the coefficients gðpÞð0Þ=p! and fn0—we

have x
ðkÞ
n fð1=gÞk. For nZ0, the only difference is that S0Z1 while the remaining

estimates are the same and therefore we obtain x
ðkÞ
0 fð1=gÞkK1.
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