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Invariant sets for the varactor equation

By M. V. BarrtuccerL', J. H. B. Deaxe"™, G. GenTILE?
AND L. MaRrsH'

'Department of Mathematics and Statistics, University of Surrey,
Guildford GU2 7XH, UK
2Dipartimento di Matematica, Universita di Roma Tre, Roma 00146, Italy

The differential equation Z + v+ z* = f(¢) with f(¢) positive, periodic and continuous is
studied. After describing some physical applications of this equation, we construct a
variety of invariant sets for it, thereby partitioning the phase plane into regions in which
solutions grow without bound and also those in which bounded periodic solutions exist.

Keywords: invariant sets; nonlinear circuit dynamics

1. Introduction

We construct invariant sets for the differential equation
T +yi+ " = (), (1.1)

where y>0, u>1 and f(¢) is a continuous, bounded, positive, non-constant,
periodic function with finite period 7 and mean (f) =" [ f(¢)dt. In order that
solutions remain real, when u is not an integer we assume that equation (1.1)
only applies for £>0. It will be convenient to write the bounds on f(¢) as maxcg
f(t)=F* and min;cpf(t) = f* with F>f>0. Since f(t) is non-constant and
continuous, (f) <F*. We re-write the differential equation as

T } (1.2)

g =f(t) —vy—a*.
This equation with constant f(¢) is relatively trivial. The case of non-constant
f(t) arises in at least three different contexts.

(i) A simple electronic circuit, shown in figure 1 and known as the resistor —
inductor — varactor circuit, is described, after linear rescaling (Deane &
Marsh 2004; Marsh in preparation), by equation (1.1) provided that z>0,
V t. The varactor is a particular type of diode, which is a nonlinear electronic
device analogous to a nonlinear spring—one for which Hooke’s law is
modified to read ‘applied force is proportional to z*’, where zis the extension
and typically u€[1.5, 2.5]. We present results for the representative value
u=2 and also for the more general case > 1. The mechanical analogies of
the resistor and the inductor are, respectively, a source of linear damping
and a constant mass. The full model for this circuit, i.e. one in which the
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Figure 1. The resistor-inductor—varactor (R, L, V, respectively) circuit whose dynamics are
described by equation (1.1). The state variables are the varactor voltage, v(t), and the current, (),
which can be transformed into z(t) and 2(¢), respectively.

restriction >0 is removed, possesses a nonlinearity of a different form,
ciexp(cola]), ¢1, ¢ constants, for <0, and has been extensively studied—
see for instance Azzouz et al. (1983) and Matsumoto et al. (1984).

(i) Studies of ship roll and capsize have led to investigations of the behaviour of
the ODE i + yi+ u—u* = F sin wt (Thompson 1997). Substituting u= —
z+1/2 gives i+ yi+ 2> =1/4— F sin wt, which is equation (1.1) with
f(t)=1/4—F sin wt and u=2.

(iii) Stationary wave solutions of a perturbed Korteweg-de Vries (KdV)
equation are described by a special case of equation (1.1) with y=0 and
w=2. Following (Blyuss 2002), we start with a perturbed KdV equation
u, + cuz + Buze= f(u, 6 — V1), where f(u, £—Vr) is taken to be
focosw(§—Vr), and subscripts refer to partial differentiation. The
standard transformation to a moving frame, £ — £ — V7, 7/ 7, results
in Bugy —vu+ u? /2= fy cos wE'+ C in the steady state (up=0), with
v="V=xc and C a constant of integration. Finally, letting u=28z+v
and re-naming £’ as ¢, we again obtain equation (1.1) with
f(t)= (v*+ 2C+ 2f; cos wt) /48%), y=0 and u=2.

2. Invariant sets, u=2

We define an invariant set, S CR?, as a subset of the phase plane such that
solutions starting from an initial condition in S remain in S for all time. We use
the term ‘absorbing set’ for an invariant set of finite area, with the intention that
any bounded limit cycle solutions of equation (1.1) can be shown to lie within
such a set, and two such sets, A; and A,, are constructed.

In order to construct invariant sets for equation (1.1) we need to prove certain
inequalities. To this end, we first assume that y=0, u=2 and f(¢{)=A4, a
constant. Then, with y= &, equation (1.1) becomes

dy

2
- =A 2.1
vt , (2.1)
which can be integrated to give
o 2 1 \* 3
e = +§(1‘0—x) :1:+§:1:0 +Z:E0—3A , (2.2)

where 1y, Yo are the initial conditions. This elliptic curve plays an important role
in the construction of an invariant set, 3, of initial conditions for solutions all of
which eventually grow without bound.
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Figure 2. The invariant set B, whose complement, B¢, is inside the thick curve ABCD, where B is
(=F, 0), Cis (zc, 0) and A and D are at infinity. Points on the boundary ABCD belong to B.
The thin curves are various numerical solutions to equation (1.1), with y=0.01, u=2, and
f()=(54+3sin t)/2 so F=2, f=1. As expected, all the solutions that start in B remain in B.

Depending on the parameters appearing in equation (2.2), the expression for e
can have one, two or three real roots; when there are two, one of these must be a
pair of repeated roots, and the condition for this is easily seen from equation (2.2)
to be 7y =42v/A, 35,=0. When this is satisfied, the curve y(z) is known as the
separatrix since it separates the two qualitatively different types of behaviour
(solutions that grow without bound, and those that are bounded and periodic)
displayed by equation (2.1).

(a) Construction of set B

We now construct B, shown in figure 2, whose boundary consists of three
curves, AB, BC and CD, where points A and D are at infinity. The technique
used for all boundaries is essentially as follows. We define the two-dimensional
vector fields

o(t) = (v, f(t) —2° —vy), ér=(y,F°—2"—vyy) and ¢; = (y,f* —2°—vy).

The importance of the second and third fields is that, for any initial condition
(z,y)=(z(t), y(to)), the direction of ¢(t) is such that ¢(t)=pu,@p+ puo¢s where
W1, Mo are non-negative scalars which sum to one. (Put loosely, ¢(t) ‘lies between’
¢ and ¢p). This simple observation allows us to project the three-dimensional
system equation (1.2) onto the z, y phase plane.

If a given curve in the plane is defined by G(z, y) =0, then two normals to it are
n= 1 (0G/0x, 0G/dy). The choice of sign determines whether the normal is
inward or outward pointing. To prove that the flow is always in a particular
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direction across a curve defined by G, we then only have to show that n-¢, which
is proportional to the cosine of the angle between the normal to the curve and the
vector field, ¢, is of a given sign at all points on the curve. Hence it will be
unnecessary to normalize either n or ¢, as only the sign of the dot product is
important.

(i) Boundary AB

Lemma 2.1. Let curve AB be defined by Gag(z, y)=1y"—3*(2F—2)(z+ F)*=0
for z€(— oo, —F| with y>0. Then ¢(t) is into AB in the direction of decreasing
y, along its entire length and for all time, provided that 12S2/3.

Proof. Since y>0, curve AB is y=—A(z+ F)V2F —z>0 for 2€(—w,—F].
The required normal to AB, pointing in the direction of negative vy, is
n=(—23)1%(2"— F?),—2y). At any point (z, ), the y-component of ¢ is greater
than that of ¢ so to show that for all time the flow is through AB in the
direction of negative y, we should prove that n-¢ >0 for z&€ (—o,—F]. The fact
that n-¢;>0 then automatically follows, and hence positivity of the dot product
for all time. Now,

ngp = y[(2—32) (2> —F?) + 2yy| >0 for z € (—»,—F],
since y>0, provided that (2—34%)>0. [

In order to make B as large as possible we should maximize the area between
AB and the z-axis and hence take A= /2/3.

(ii) Boundary BC

Lemma 2.2. Let curve BC be defined by Gpo(z,y) = 1* —(2/3)(2c —z)(z+ F)?
=0 for €[ — F,xc] with y<0. Then ¢(t) is into BC in the direction of decreasing
y, along its entire length and for all time, provided that

8F
1+ 1+

3
1> 2F + =47
4 Y

Proof. The required normal must be directed towards negative y and is
therefore n= ((2/3)(z+ F)(3x+ F —21¢),2y). For the same reason used in the
construction of AB, we need only prove that n-¢ >0 for x&€[— F,z¢|. This dot
product is —(2/3)y(x+ F)[22c —4F —v+/6(2c —z)] and since y<0, it is non-
negative provided that 2zc —4F > v,/6(2c — ) for z&€[— F,z¢]. Furthermore,
since v >0, the inequality can only make sense if x> 2F. Squaring both sides of

the inequality and solving for zc we find that
8F
L=y /1+—
Y

Since F'>0, the square root is greater than unity, so the second solution has
2o <2F and can therefore be rejected. [ |

3 8F
:13022F+Zy2 1+ /14— :
Y

3
5| or xC£2F+ZVZ
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Since our objective is to make B as large as possible, we should choose the z¢
that minimizes

e 4/6 5
J |ylde = S (e + F)*,
_F 45
and as this is monotonically increasing with > — F, we take the minimal value
3 8F
xC=2F+Zq/2 14+ /14+— (2.3)
Y

(iii) Boundary CD

Lemma 2.3. Let curve CD be defined by Gep(z, y)=v"— (zc—2)[(zc—2)*+
b]=0 for z€(— ,2c) with y=>0. Then ¢(t) is into CD in the direction of
increasing y, along its entire length and for all time, provided that

b (210 —v*) = dac(ad — ),
where zg is defined in lemma 2.2. There always exist real values of b such that
this inequality holds.

Proof. For this curve, the normal we require is in the direction of increasing y
and so n=(3(zc—1z)>+b°, 2y). We need to consider ¢; this time since n-¢;>0
implies n-¢x>0. The dot product is y[u? + dacu+ 2(f* —22) + b* —2vy] where
u=(zc—1)€[0,%). Since y=>0, for the dot product to be non-negative we need

u? + dacu + 2(f —2d) + 0 > 2yy for u>0, (2.4)
and since 7y is also positive, this inequality is only feasible over the required range

of w if (i) 2(f*—22)+ b > 0. With this assumed, we can square both sides of
inequality (2.4), substitute for y in terms of z, and simplify to obtain

ut 4+ 42z —y*) U + 2(62% + 2f* + bP)u? + 4[6* (2z0 — %) + dae(fF —ad)]u
+2(f2—22) + P*]*>0 for u>0. (2.5)

Now, as well as (i), we need all the coefficients of the powers of u in this
inequality to be non-negative; the coefficients of u*, u* v’ are obviously so, and
those of 4* and u are so too, provided (i) 2z¢—y*>0 and (iii) b*(2zc —y*)+
4ac(f* — &) = 0. We now show that the definition of z¢ in equation (2.3) implies
(ii), and that (i) is implied by (iii).

From the definition of z¢ in equation (2.3), we have 2zo =4F + (3/2)y*q with
g=1+ (1+8F/y*)'/?>2; hence, 2z¢> 3%, so (ii) is automatically satisfied.

Dividing (iii) by 2zc>0 gives 2(f>—a2)+ v* > (by)?/(22c) and since the
right-hand side is positive, (iii) implies (i).

In the light of (ii), it now becomes clear that there always exists b large enough
that inequality (2.5) is true; and so the lemma is proved. [ |

In order to maximize the area of B, we should choose the minimal value of b,
which, from (iii), is given by
4 2 _ 2
_ daclac =f7) J; ) (2.6)
21‘0 '

We have therefore proved the following.

b2
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Theorem 2.4. Define B= BagU Bgc U Bep U {(2, y)|z> 2} with
Bys = { (. 9)ly<—(z + F)\22F —2)/3, s<-F},

BBC={(I,y)|y£—(x+F) 2(zc—1x)/3, —FS:L“S:L"C},

Bep = {(9& yly= \/(ic—x)[(fc—x)Q +0], z< xC}v

where xc is given by equation (2.3) and b by equation (2.6). Then 3 is aninvariant set
such that all solutions to equation (2.1) starting within B remain in B for all time.

(b) Dynamics within B

In fact, we can say more about solutions to the differential equation which are
confined to B: all solutions in B eventually enter a subset, B;, which is itself
invariant, and once here, grow without limit. The proof, which is somewhat
lengthy, is contained in lemmas 2.5-2.7, 2.9-2.13.

It is first necessary to split B into seven subsets and these are illustrated
in figure 3. Also shown there are the two parabolas P;: y=(f*—17)/y and Pj:
y=(F?—41%)y, the importance of these being that for y>Pp, §<0; for y<Py,
7> 0; with g being either positive, negative or zero only in the region between P
and Pf

We first define B; and show that it is invariant.

Lemma 2.5. Define

B = {(z,y)|z <& (F*—2%) /[y < y<0},

where £ < — F is the least real root of h(x) = 2z(F* —2*)+ v*(f* — F?)=0. Then
B is invariant.

Proof. First, note that h'(+F/v/3)=0 and that h"(+F//3) =F4v/3F; hence,
z=—F/+/3 is a local minimum of h(z) and so h(z) decreases monotonically from
+ o, for increasing z € (—o,—F/+/3]. Furthermore, h( — F)=v*(f*— F*)<0 and
so there is exactly one real root of h(z), §€(—0 ,—F).

We now consider the three boundaries of B; separately. The boundary P for
<& can be treated by the same technique used for constructing B. The
required normal to P is n=(2z/y, 1) and the appropriate choice for ¢ is ¢y,
giving n-¢=~h(z) >0 for z&€(—x £]. Hence, the flow is through this part of Pp
and is towards negative z, for all time.

Along the boundary z=£, 0>y>(F?—¢£?)/vy, and so & <0; thus, the flow is
through this boundary towards negative x for all time here also.

The remaining boundary is y=0, <&, along which ¢ <0 since £ < — F, and so
the flow is through this boundary in the negative y direction for all time.
Therefore, B; is an invariant set. [ |

We now prove several lemmas that, in combination, enable us to show that all
solutions starting in B end up in B;.

Lemma 2.6. All solutions x(t)=(z(t), y(t)) initially in B, or By enter B, in
finite time.

Proc. R. Soc. A (2006)
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Figure 3. The subsets of B used in the proof of theorem 2.15. Thick, continuous lines are the
boundaries between the named subsets of B; the dashed straight lines are the z and y axes; and the
upper/lower dotted curves are the parabolas P /P, respectively.

Proof. The points O—W are shown in figure 4, which is referred to throughout
this proof. The curve OPQRS is a typical orbit starting in B; and entering B, in
finite time and we now prove that all solutions starting in B; or By behave in this
way.

Consider first any initial point (z(fy), y(%)) in the subset of B, with z<3F/2.
The line z=3F/2 lies to the left of point C, whose z-co-ordinate zo>2F. Hence,
for all z in this region, y>yr, the (strictly positive) y-co-ordinate of point T,
since solutions cannot cross CD, and so z(t)>xz(t)+ (t—1t))yr. Thus, any
solution crosses the line =3F/2 in finite time.

Consider now a solution starting at point P on the line z=3F/2; §= f(t) —yy—
1? < —yy—5F?/4 since, while the solution remains in By, >0 and so z>3F/2.
Solving this linear differential inequality, we obtain y(t)<e™ Y'[yp+5F?/4y]—
5F?/(4y) and so the solution reaches point Q on the z-axis in finite time.

The z-co-ordinate of Q>z>2F and so starting from (, we have
§<—yy—3F?% and so y(t)<3F?(e”"'—1)/y. Hence, the solution must cross
the line y= Y} <0 in finite time, provided that Y; satisfies the condition (a) that
Y;>—3F?/v, so that lim,_, ., y(t) < Y;. Three additional conditions on Y; are
required, these being that (b) Y7 is sufficiently small that the z-co-ordinate
of R>2F, so that § < —yy —3F? remains true while the solution moves from Q to
R; (c) the line y=Y; does not intersect the parabola Pp: y=(F*—217)/y for >0
in By, so ensuring that ¢ <0 everywhere in the subset of By in which y> Y7; and
(d) Y1> Yy, the y-co-ordinate of U, the point at which curve BC and the
parabola Pyintersect for <0. Such a Y; can always be chosen because Q and C
are both to the right of the point = F where P r intersects the z-axis. With these
conditions on Y7, point R is reached in finite time. By the definition of Y7, once R
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Figure 4. Definitions of the subsets of B and the points and lines used in the proof of lemma 2.6.
The parabolas P and P are shown as well as a typical solution (OPQRS) to equation (1.1) with
f(t)=(5+3sin t)/2. Boundaries between subsets of B are shown as thick lines.

has been reached, then line VW must also be crossed in finite time, this being the
vertical line from the point of intersection of BC with y= Y;. This is because
t=y< Y so z(t) decreases at least linearly with time; and, by the definition of
Y1, <0 all along VR—so VR cannot be re-crossed.

From the crossing of VW, < Y] still applies and so x decreases at least
linearly with time until S is reached. The part of B, in the vicinity of S is below P
and so £<0 and > 0; hence the solution must cross P; at some point S and
hence enter B,. Since each of the steps described takes finite time, we conclude
that point S is reached from any point in By or B, in finite time. [ |

We now consider the fate of solutions starting in the rest of B.

Lemma 2.7. A solution initially at point B, (—F, 0) eventually moves further
into Bs.

Proof. Consider the case that x(ty) is point B= (=F,0) € B3 at some time f;
then either (i) f(t)) <F? or (ii) f(ty)=F?. From the differential equation, we
have in case (i) that @(¢)) =0 but §(#) <0 and so the solution moves vertically
away from B in the direction of decreasing y, and so further into Bs. In case (ii),
we have i(t) =0 and §(¢) =0 for tE[ty, t;) where t; is the time at which f(¢;) is
first less than F'?; #; is necessarily finite by the conditions imposed on f(t). Hence,
the solution remains at point B only until t=1¢;, at which time y <0 and the
subsequent behaviour is the same as in case (i). [ |

To proceed further, we need the following definition:
Definition 2.8. A double crossing is said to occur when the solution x(t) crosses

both the lines y= Y, and y=2Y,, in either order. Here, Yy<0 and is sufficiently

Proc. R. Soc. A (2006)
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Figure 5. Magnification of B3 and its surroundings, including part of B°. The point B is = (—F, 0).
The z-axis and two horizontal lines at y= Y;, 2 Yj are also shown, where Y, <0.

small that (1) the intersection of y=2Y, with P for x<0 takes place within B°,
and that (2) Xo>§, with X, the negative root of F*> — X3 =2vY, (see figure 5).

The existence of the k-th double crossing implies that 3 a, b, € R with b.>
such that either y(a) =Yy and y(by) =2Y, (falling) or y(ar) =2Y, and y(by) =Yy
(rising).

Now, by continuity, any pair of successive double crossings must consist either
of a falling double crossing followed by a rising one or vice versa. Then we have
the following.

Lemma 2.9. An infinite sequence of double crossings confined to BsU B,
cannot occur, in either (i) finite or (ii) infinite time.

Proof. First, we consider the sets that solutions leaving B; can enter: by
continuity, these must be B¢, By, B, or Bs. The first two are impossible, B¢ by
definition and Bs because B3 and Bs only meet at point B, and passing through
this in the direction of increasing y is impossible by lemma 2.7.

The other two transitions can take place; B3 to Bg because <0, y <0 along
their common boundary, and Bz to B, because § can have any sign along the
common boundary.

To prove the lemma, first observe that Y= (z,y) € B;U B, we have f*—
? <yy< F?—1? so —f* > —yy—a2? > —F% Now, §= f(t)—yy—2’ so

FP—f>y>f—F°. (2.7)

By hypothesis, (t) € B; U B, for all t>0, so, by equation (2.7), || < F>*—f* =
with v>0.

Consider first case (i), in which infinitely many double crossings occur within
B3 U By during the time interval [0,7'] with 7'>0 finite. Define the sequence of
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crossing times {[;}.en where [,=[ay,by] with a;>b,—1, so that Uiy 10,75
then y(t)€[2Yy, Yy if t €Uyen ;. Hence,

UT>J ]dt>ZJ 9(t |dt>2

kEN kEN

= ly(b) —yla)] =D | Vo] = oo,

keN keN

and since v and T are both finite, the latter by hypothesis, this leads to a
contradiction and so an infinite sequence of double crossings within B3 U B,
cannot occur in finite time.

Now consider case (ii), in which infinitely many double crossings occur during
infinite time. We introduce the sequence { ;. } .y as before but now lim;_,,, b, = .
In order that x(t) remains in B3U B,, we must have lim; ., z(b;) > X, (see
figure 5). From the differential equation we have

bk bk

|, a0t = s =yt = | G0 —vy=a)at. (2:8)
1 1

Now, VEEN, IN=N(k) such that N7<b,<(N+ 1) and, by hypothesis,
lim;_,o, N(k)= o. Furthermore, given positive real constants cand ¢’, we have, by
the continuity of curve BC, that z(t) <—F + ¢| Y| < 0 and so

—z(t)? <—F* + (| Yy|. (2.9)

Using this in equation (2.8) results in

bk bk

b
() =o(b) < Netf) + [ (o= | w0t Nr-E 4 vl - | (o

Nt by
Also from :B—y we have that fb (t)dt= z(b;) —x(b;) is bounded, as is
fNT £)3)dt, since z(by) > X, and SO

y(be) —y(b) S N7((f) = F* + | Yy ) + K,

where Kis a finite constant. Remembering that f(¢) is continuous and periodic and
that f(t)<F? Vt, the coefficient of N7 in the above can be made negative
by choosing | Yy sufficiently small. Hence, finally, we have proved that lim sup;_,«
y(by) < K'— for a constant K’, which is in contradiction with our initial
hypothesis that y(b;) = Y, or 2Y;. Hence, an infinite number of double crossings,
confined to B3 U B, cannot occur either in finite or infinite time. [ |

Lemma 2.10. No solution can remain in By indefinitely.

Proof. From lemma 2.9 we now have the result that an infinite number of
double crossings cannot occur, and so 3 #,< % such that V¢>t,, while z(t) € Bj,
either (i) y(t)<Yp or (ii) y(t)>2Yy—there are no further double crossings after
t=1t,. We can now prove the lemma as follows.

We consider case (i) first. Here, #(t) < Y, for all t>1t, and since Y,<O0,
lim, ., z(t) = —o0. Hence, in case (i), no solution can remain in By indefinitely.
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Turning now to case (i), we have §= f(t) —yy—2* and so, with N €N,

tgy+NT tot+NT
j J(B)dt = y(N7 + 1) — y(to) < N7(f) —vj y(Hdt + N7(=F + /| Yy)),

t t

where the last term on the RHS is obtained from equation (2.9). Since y(t) <0 for
all t>t,, we have

to+NT to+NT

y(t)di = 7” y(t)dt\ — yla(ty + N7)—2(ty)] < 7X1,

O<—'yJ

ty t

where X; is shown in figure 5. Thus,
y(NT + 1) < y(t) + Nr((f) = F* + ¢'| Yol) + v X,

and since | Yy| can be made as small as desired, we have limy_,. y(N7 + ) = —o0.
Hence, in case (ii) too, no solution can remain in B; indefinitely. [ |

Lemma 2.11. All solutions initially in Bs, By with £>§&, or Bg, cross the line
x=E£ in the direction of decreasing x, in finite time.

Proof. Consider first solutions initially in Bs;. By lemma 2.10, solutions here
must eventually leave B;. As shown in the proof of lemma 2.9, solutions leaving
B; can only enter B, or Bg.

To show that all solutions cross the line z=£ in the direction of decreasing z,
consider first a solution that leaves B3 and enters B at a point (zg, 3o) at a time
to. Then we need to prove two facts: (i) y<y, for all t>t,, and (ii) yo<O0.

We prove (i) as follows. While the solution remains in Bg, § <0, so =y < y,
and so the lemma is plainly true for a solution that remains in Bg. The solution
may, however, re-cross P and enter B3 or ,, in both of which ¢ can have either
sign. If the point at which the solution re-crossed Pris (z;, y;) then clearly y; <.
Suppose now a further crossing occurs, from B3 U B4 back into Bg, this time at a
point (2, y2); then yo <y; <y despite the ambiguity of the sign of ¢ in By U B,.
This is because y<0 always, so z decreases at least linearly in time, so 2, <z <y;
but the crossing points are all on Pz and so y» <y; <1y. Hence, we conclude that
y<yg for all t> 1.

The proof of (ii) relies on lemma 2.7. A solution at point B can initially only
move vertically downwards away from B, and hence cannot enter By from point
B. Hence, any solution that enters Bg from Bs does so at y=1,<0. Thereafter,
the argument used in case (i) applies.

Consider now a solution that leaves Bs; and enters B,. According to lemma
2.10, although solutions may oscillate between B3 and B,, they cannot do so
indefinitely and so there must be a last crossing into By, let us say at time .
Thereafter, as before, y<yo=2Y,, whether or not the solution subsequently
remains in B, or moves into Bg.

Hence, we conclude that in all cases, 1=y <y, <0 for all t>1t,, and so all
solutions eventually cross the line z=§. [ |

The previous lemma shows that solutions with z>¢& eventually cross the line
r=¢&. Hence, solutions eventually enter B; (invariant), or B, with z<¢, and we
now deal with the fate of solutions in the latter case.
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Lemma 2.12. All solutions initially in By with <& enter B, in finite time and
remain there.

Proof. We prove this lemma by contradiction: we assume that x € B, with
x<¢& for all t and find an inconsistency. Set t=0 when z=¢§ to simplify notation,
and write y(0)=yo. Then ()< (F?—£%)/y by the assumption that ()
is between Pp and Py Integrating gives

z(t) < at + &, (2.10)
with a=(F?—£%)/y a negative constant. Also, by equation (2.7) we have |j| <
F? — 2= 9 and so integrating from 0 to t gives

—ut + yo < y(t) < vt + y. (2.11)
Now, as long as () remains in By, we must have (f> —2?)/y <y < (F? —2%) /v,
but, by equation (2.10), y < (F?—2?)/y < [F?—(at+ £)?]/v. Hence, in order to
remain in B, for all t>0, y(¢) has to be bounded above by a function that
decreases as — 2, and, from equation (2.11), bounded below by one that goes as
—t. These two requirements are mutually incompatible, and so no solutions can
remain in B, indefinitely. [ ]

Lemma 2.13. All solutions initially in By enter B; in finite time.

Proof. For all x € Bs, z<— F and y=>0. Solving the differential equation from
initial condition z(0)< —F, y(0)>0, we have

nrT

JO §dt = y(nt) —y(0) = n7(f) —y JO y(t)dt—L 22dt,

and, while the solution is in By, —2°< —F?, so
y(nm) < y(0) + nr((f) = F?) + v(F + 2(0)),

where we have used z(n7) < — F. Since, as before, (f)— F?<0, the second term
above ensures that y decreases with time and so the solution eventually crosses
the r-axis at z<—F, and so enters Bg or By; if By, then lemmas 2.11 and 2.12
apply, and in either case B; is entered in finite time. [ |

Lemma 2.14. All solutions in B; grow without limit as t— .

Proof. For all x€B;, :<0 and y<0. Furthermore, by lemma 2.5, B; is
invariant, and so both z and y tend to — « in B;. [ |

Theorem 2.15. All solutions initially in B remain in B, eventually entering By,
where they remain and grow without limit.

Proof. The invariance of B is proved in theorem 2.4. The rest of the theorem is
a direct consequence of lemmas 2.5-2.7, 2.9-2.14. [ |

(¢) SetC

As an easy corollary to theorems 2.4 and 2.15, we can now construct a set C
which is such that any finite area absorbing set A CC.

Corollary 2.16. Any finite area absorbing set A CC, where
C=BN{(z,y)lz=—F}.
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Proof. The boundaries of set C consist of curve BC, the part of curve CD with
r> — F and the line z= — F' between y=0 and y= \/(acc + F)[(zc + F)* + 1%, the

latter being the intersection of this line with CD. Since this line has y=1>0
along its entire length, low must be into C along this boundary. Furthermore, if
A is any absorbing set, then AN B= since, by theorem 2.15, any initial
conditions in B lead to solutions that grow without bound. [ |

We can now visualize how good an approximation set B¢ is to the set of initial
conditions which lead to solutions that do not blow up. We make the following
definition:

Definition 2.17. Let X(xq, yo, lo; t) be the solution of equation (1.1) for given t,
with initial conditions z(ty) = xy, y(to) =1yo, and define

Fiy = {(1’0, Yo)| 1im X (9, yo, to; ?) EBC}-

Then
tf]E[O>T)
Clearly, F = B°. For an illustration of a numerical approximation to this set,
see figure 6.

(d) Absorbing set A,

We now construct a polygonal absorbing set. The underlying method for this
construction is the same as for B, but by contrast to that case, there are now
constraints on the parameters F, f and vy additional to F>f>0 and y>0.

Three preliminary observations are in order. First, any absorbing set must lie
partly above and partly below the z-axis: a set entirely above the z-axis would
always have = y> 0 and no such set whose boundary is a closed curve could be
absorbing over its whole boundary.

Second, where possible, we choose the sides of the absorbing sets to be parallel
to either the z or the y-axis, since this simplifies the proof that the flow is into
that side. On the other hand, a rectangular set is not possible: for instance, the
right-hand vertical boundary above the z-axis would necessarily entail flow out of
the set, since y= 1> 0. The same applies to the left-hand vertical boundary
below the z-axis. Hence, there must be boundaries not parallel to either axis.

Third, as pointed out previously, ¢ can only be zero if = (z, y) € I, where [is
the region between P, and Pp. This suggests the possibility of basing the non-
vertical /horizontal boundaries on scaled versions of these parabolas, and this is
the case for A,;.

Theorem 2.18. Let y*>8F and define the set A, as the closed hezagon
GHIJKL, whose vertices are
F2_ 2
a= (120,
Y

n= (e -rm (S20),
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Figure 6. A numerical approximation to set F (black)—see definition 2.17—for > — F=—2,
showing how it fits within B¢, part of whose boundary is shown as a thick dashed line. Here, y=

0.01, u=2 and f(¢)=(5+3sin t)/2.
I=(F,0),

J = <F’H>7
Y

F2_2 2_F2
PP

K= 2
d Ao Y

)

L = (f,0),
and whose edges are straight lines except that
HI:y 211<H> and KL:y ZAQ<H>.
Y Y
Here
v 8F

= (1=, /1===
4F v ]’

Ay
and Ay is such that
h(dy) = 4f° 2 + 4(F? =) —y' (A, —1)* = 0.

Then at least one A€ (1, 2) exists and the set A, as defined is an absorbing set for
all t.
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y "‘\J\D\/:
y=(F2-f2)ly T

_____________ pf
L X
y>0 AN
y=(f2-F3ly
........................................................................................... N 1

Figure 7. The invariant set A;, whose vertices are GHIJKL. The dashed lines are the parabolas
between which lies region I in which the sign of § is indeterminate; above Pp, § <0 and below Py,
9> 0. The continuous line starting at point P is a numerical solution to equation (1.1), with F=2,
f=1, y=4.01, which can be seen to lie within 4.

Proof. To show that A;, illustrated in figure 7, is an absorbing set, we need to
prove that n-¢(¢)>0 over the entire boundary of A; and for all ¢, with the
appropriate choice for ¢, and where n is the inward normal to the boundary.

This is trivial for the horizontal and vertical portions of the boundary, i.e. GH,
1J, JK and LG. Taking GH as a horizontal example, we have 2> fand n=(0,—1)
is an inward-pointing normal. By the same reasoning as used in the construction
of B, we need to prove that n-¢p=21>—f>>0 for z>f, which is clearly true.
Taking IJ as a vertical example, we have y<0 and an inward-pointing normal is
n=(—1, 0). Then n-¢;=n-¢p=—y>0, also obviously true.

We define HI as the curve Gy(z,y)=y—A (F>—2?)/y=0, from which
the inward normal n=(—2A;z/y, —1). Here, real A;>1 is to be found. The
appropriate choice for ¢ is ¢ and so we need

n-¢p = (F?—2°)(2Xz/y* + , —1)>0 for z € [z, F], (2.12)

where 2y is the z-co-ordinate of H. Now, F?—2*>0 so we require —2/\%:1:/ v+
A1 —12> 0. This is guaranteed for all £& [z, F] if 243 F/y* + 3, —1> 0, which is a
quadratic in A; in which A? has a negative coefficient; hence inequality (2.12) is
satisfied for A € [A7, AT], where AT =+y*(14+/1—8F/y?)/AF. Letting r=8F/
v*>0, s0 for A; to bereal, r€ (0,1], we have A7 =2(1—v1—7)/r=2/(1+1—r),
which is clearly monotonically increasing from 1, at r=0, to 2, at r=1. Hence, for

the smallest possible A; we choose A =v?(1—+/1—8F/y?)/4F, which is
guaranteed to be positive, as, by construction, it must be. Similarly, we define

KL by Gkp(z,9)=y—A(f*—2°)/y=0 and so n=(2X7/y, 1) is the required
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normal, where A,>1 is to be found. The inequality to be satisfied this time is
n-¢; = (f* —2°)(253/v* — Ay + 1) > 0 for zE€ [f, 2], where i is the z-coordinate of
K. The first bracket is clearly non-positive, so

23z — Aoy +v2 <0, (2.13)
guarantees flow through KL in the direction of increasing y. Additionally, we have
yk=1yy=(f>— F?)/v and so Ay (f* —2%) = f* — F?. Eliminating zx between this and
equation (2.13) results in

h(Ay) = 4f* 25 + 4(F2 — )23 —v* (2 —1)* = 0. (2.14)

Now, h(1)=4F>>0 and h(2)=32(F*+f*)—y"; but y*>8F so h(2)<32
(f2—F 2)<0, and so, by the Intermediate Value Theorem, there is at least one
real root of h(Ay) such that A, € (1,2). [ |

3. Absorbing set Ay, u>1

We now construct an absorbing set, A, for all u>1. The condition u>1 is
required for the nonlinear function in the differential equation, 2, to be
Lipschitz, thereby guaranteeing uniqueness of solutions (Hirsch & Smale 1974).
We redefine the vector field and its bounds as

o(t) = (y, f(t) — 2" —vy), oép=(y, F*—1"—vy) and ¢; = (y,f* —2*—ry).

By analogy with the construction of A;, we observe that the set Iin which g
has indefinite sign is now I= {(z, y)|(f* —2*) <yy< (F*—2*)}. We can then
construct a hexagonal absorbing set 4, whose vertices are MNOPQR—see
figure 8. In the course of the construction, we make several assumptions whose
purpose is to make the problem tractable, these being (i) MN, QP are horizontal,
MR and OP are vertical; (ii) the z-co-ordinates of N and Q are zx=F and zq=f
respectively; (iii) the gradients of lines NO and RQ are both —+; and (iv) M lies
on Pp: y=(F*—2")/y and P lies on P;: y=(f*—1")/v. Constraint (iv) arises in
an attempt to make A, as small as possible: for instance, M cannot be below P
because ¢ could then be positive, which would allow flow out of MN. With these
assumptions in place, the co-ordinates of all the vertices of A, can be expressed in
terms of zy, as will be seen from the following.

Theorem 3.1. Let u>1, f*+fy>> (F+F*/y*)* and define the set Ay as the
closed hexagon MNOPQR, whose edges are straight lines and whose vertices are

M = (xM7 ’YA)a
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Q

Figure 8. The invariant set Ay, whose vertices are MNOPQR. The continuous lines starting at
points Sy, Sy and S3 are numerical solutions to equation (1.1), with u=1.67 and f(¢)=(5+ 3sin ¢)/2
(so F¥=4, f*=1), y=3. All the solutions can be seen to be attracted to the same period-1 limit
cycle and both transients and this limit cycle lie within A,. The curves Pp: y=(F*—z")/y and
Py y=(f*—a")/y are shown as dashed lines.

where 4= (F*—a};)/v* and xy is the smallest real root of

Pt gt u
(TwM“'F) + v (o —f) = f* =0, (3.1)
such that 0<xy<f. Then at least one such my exists and the set A, is an
absorbing set for all t and all u>1.

Proof. To show that A,, see figure 8, is an absorbing set, as before, we need to
prove that m-¢(t)>0 over the entire boundary of A, for all ¢, with the
appropriate choice for ¢ and where n is the inward normal to the boundary. This
is trivial for the horizontal and vertical portions of the boundary, i.e. OP, PQ and
RM (see the proof of theorem 2.18).

We define NO as the straight line Gno(z, y) =y—A3(z0—1x) where zg is the
z-coordinate of point O and A3>0, from which the inward normal n=(—213,—1).
The appropriate choice for ¢ is ¢ here, so we need

n-¢p = (0 —xz) (A3 +v) + (2" —F*)>0 forze€[F, ], (3.2)

where zy has been set equal to F: with hindsight, we shall see that this choice
greatly simplifies the construction. Here A3(zo—x)>0 and (z*—F*)>0 if and
only if u>0, so we require (—A3++v)>0, and therefore choose A3=+, which
guarantees that the boundary NO has n-¢(¢)>0. This choice for A3 also
simplifies the construction.

Similarly, we define QR by Gqr(z, y)=y—As(zg—2z), where zy is the
z-coordinate of R and A;>0, and so n=(44, 1) is the required normal. The
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inequality to be obeyed is now m-¢;=2A(ag —z)(A,—v)+ (f*—2*)>0 for
T€ g, f], where zq has been set equal to f, again for simplicity. Here (f*—z*)>0
if u>0 but A4(zgr — ) is non-positive, so we need (A4—7v)<0. In choosing A,=7y
we guarantee that the boundary QR has n-¢(t) >0.

Having determined the constants A3 and A; which guarantee that n-¢(t)>0
over the entire boundary of Ay, we now need to find its vertices. In addition to
aw=1F, zq=fand yo=yr=0, we know the following:

Ym = (F“_%!@/Y =yn =v(ro —F),
yp = (f*—ap) /v = yq = v(w —f),

M = TR,

Io = Tp,

which results in the simultaneous equations
Fr—a =¥ (5o—F) and f*—af = v* (s —f), (3.3)

between which 7o can be eliminated to give equation (3.1). When this can be
solved, it gives all the vertices of MNOPQR in terms of v, u, F, f and zy;. The
conditions under which a solution zy; of equation (3.1) exists satisfying 0 <z <f
and x> F are easily derived. Consider equation (3.3), solved for 7y in terms of

Ty, giving

1o = F + (F*—a)/vy* ... curve (a),

10 = [f* + YQ(f—l’M)]l/# .. curve (b),

respectively. At zyy=f, we have o= F+ (F*—f*)/y* for curve (a) and zo=f
for curve (b), and so (a) is above (b) at amy=f, provided u>1. Therefore, to
guarantee at least one solution of equation (3.3), we need (b) to be above (a) at
=0, and so we must have

L K
A <f ;F ) ,

which is the condition given in the theorem. [ |

(a) Comparison of Ay and A,

We can now compare the restrictions on the parameters imposed in theorems
2.18 and 3.1 when u=2. These are that y>>8F (set A;) and that fy*(y*+ f)>
F*(y*+ F)* (set A,). Let y*=8F so that the second inequality becomes 64F>f

(8F+f)=81F". Solving for fin terms of F gives f= (v/1105/8 —4)F =0.1552F.

Hence we conclude that, subject to F'> >0, if f < (v/1105/8 —4) F, the constraint
on v is weaker for set A;; otherwise, the constraint on v is weaker for set Aj.

4. Conclusions

We have constructed a variety of invariant sets for the differential equation (1.1),
the sets being one for which solutions grow without bound; one which must
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contain any bounded limit cycles, both of these sets requiring no constraints
other than those given in the first paragraph of the paper. We have additionally
found two absorbing sets, both of which require additional parameter constraints
(effectively, large dissipation), one of which is valid for all u>1. We have also
described three areas of physical interest in which the differential equation arises.

We have had little to say here about the dynamics of this equation, since our
aim was to construct some important invariant sets. Numerical results presented
in Deane & Marsh (2004), Marsh (in preparation) indicate the presence of co-
existing periodic attractors but not chaos. There are also some results on
dynamics for large y and p=2 in Gentile et al. (2005), in particular a study of the
analyticity properties of the orbit with the same period as f(¢) that, numerically
at least, appears to be the only bounded periodic solution to equation (1.1) in this
case. Additionally, there are in principle ways to understand which periodic
orbits should occur (Bartuccelli et al. 2004), in particular when the dissipation
and the oscillatory part of f(¢) are both small.

At least two interesting open questions remain. The first concerns the basin of
attraction of periodic solutions, which clearly must lie in B¢, but the construction
of this set does not exclude the possibility that this basin has an infinite ‘tail’ lying
between curves AB and CD as x— — o. The second concerns the rate at which
solutions that grow without bound approach infinity: do they do so in finite or
infinite time? In the unperturbed version of the differential equation (y=0, u=2,
f(t) constant), exact solutions exist and these can be expressed in terms of
Weierstrass elliptic functions, which do indeed blow up in finite time, but it is not
clear whether this property is inherited by solutions to equation (1.1).

References

Azzouz, A., Duhr, R. & Hasler, M. 1983 Transition to chaos in a simple nonlinear circuit driven by
a sinusoidal voltage source. IEEE Trans. Circuits Syst. CAS-30, 913-914. (doi:10.1109/TCS.
1983.1085316)

Bartuccelli, M. V., Berretti, A., Deane, J. H. B., Gentile, G. & Gourley, S. A. 2004 Selection rules
for periodic orbits and scaling laws for a driven damped quartic oscillator. Preprint.

Blyuss, K. B. 2002 Chaotic behaviour of solutions to a perturbed Korteweg-de Vries equation. Rep.
Math. Phys. 49, 29-38. (doi:10.1016/S0034-4877(02)80003-9)

Deane, J. H. B. & Marsh, L. 2004 Nonlinear dynamics of the RL-varactor circuit in the depletion
region. International symposium on nonlinear theory and its applications (NOLTA 2004),
Fukuoka, Japan 2004 pp. 159-162.

Gentile, G., Bartuccelli, M. V. & Deane, J. H. B. 2005 Summation of divergent series and Borel
summability for strongly dissipative equations with periodic or quasi-periodic forcing terms.
J. Math. Phys. 46, 062704+ 21.

Hirsch, M. W. & Smale, S. 1974 Differential equations, dynamical systems and linear algebra.
New York: Academic Press.

Marsh, L. In preparation. Nonlinear dynamics of the RL-diode circuit. Ph.D. thesis.

Matsumoto, T., Chua, L. O. & Tanaka, S. 1984 Simplest chaotic nonautonomous circuit. Phys.
Rev. A 30, 1155-1157. (doi:10.1103 /PhysRevA.30.1155)

Thompson, J. M. T. 1997 Designing against capsize in beam seas: recent advances and new
insights. Appl. Mech. Rev. 50, 307-325.

Proc. R. Soc. A (2006)


http://dx.doi.org/doi:10.1109/TCS.1983.1085316
http://dx.doi.org/doi:10.1109/TCS.1983.1085316
http://dx.doi.org/doi:10.1016/S0034-4877(02)80003-9
http://dx.doi.org/doi:10.1103/PhysRevA.30.1155
http://rspa.royalsocietypublishing.org/

	Invariant sets for the varactor equation
	Introduction
	Invariant sets, mu=2
	Construction of set B
	Dynamics within B
	Set C
	Absorbing set A1

	Absorbing set A2,mu1
	Comparison of A1 and A2

	Conclusions
	References


