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Invariant sets for the varactor equation

BY M. V. BARTUCCELLI
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1,*, G. GENTILE
2

AND L. MARSH
1

1Department of Mathematics and Statistics, University of Surrey,
Guildford GU2 7XH, UK

2Dipartimento di Matematica, Università di Roma Tre, Roma 00146, Italy

The differential equation €xCg _xCxmZ f ðtÞ with f (t) positive, periodic and continuous is
studied. After describing some physical applications of this equation, we construct a
variety of invariant sets for it, thereby partitioning the phase plane into regions in which
solutions grow without bound and also those in which bounded periodic solutions exist.

Keywords: invariant sets; nonlinear circuit dynamics
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Rec
Acc
1. Introduction

We construct invariant sets for the differential equation

€x Cg _xCxm Z f ðtÞ; ð1:1Þ
where gO0, mO1 and f (t) is a continuous, bounded, positive, non-constant,
periodic function with finite period t and mean hf iZtK1

Ð t
0 f ðtÞdt. In order that

solutions remain real, when m is not an integer we assume that equation (1.1)
only applies for xR0. It will be convenient to write the bounds on f (t) as maxt2R

f ðtÞZFm and mint2Rf ðtÞZ f m with FOfO0. Since f (t) is non-constant and
continuous, h f i!F m. We re-write the differential equation as

_x Z y;

_y Z f ðtÞKgyKxm:

)
ð1:2Þ

This equation with constant f (t) is relatively trivial. The case of non-constant
f (t) arises in at least three different contexts.

(i) A simple electronic circuit, shown in figure 1 and known as the resistor –
inductor – varactor circuit, is described, after linear rescaling (Deane &
Marsh 2004; Marsh in preparation), by equation (1.1) provided that xO0,
ct. The varactor is a particular type of diode, which is a nonlinear electronic
device analogous to a nonlinear spring—one for which Hooke’s law is
modified to read ‘applied force is proportional to x m’, where x is the extension
and typically m2[1.5, 2.5]. We present results for the representative value
mZ2 and also for the more general case mO1. The mechanical analogies of
the resistor and the inductor are, respectively, a source of linear damping
and a constant mass. The full model for this circuit, i.e. one in which the
Proc. R. Soc. A (2006) 462, 439–457

doi:10.1098/rspa.2005.1569
Published online 6 December 2005
uthor for correspondence (j.deane@eim.surrey.ac.uk).

eived 3 March 2005
epted 16 August 2005 439 q 2005 The Royal Society

http://rspa.royalsocietypublishing.org/


<

R L

V

i (t)

v (t)f (t)

Figure 1. The resistor–inductor–varactor (R, L, V, respectively) circuit whose dynamics are
described by equation (1.1). The state variables are the varactor voltage, v(t), and the current, i(t),
which can be transformed into x (t) and _xðtÞ, respectively.
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restriction xO0 is removed, possesses a nonlinearity of a different form,
c1exp(c2jxj), c1, c2 constants, for x%0, and has been extensively studied—
see for instance Azzouz et al. (1983) and Matsumoto et al. (1984).

(ii) Studies of ship roll and capsize have led to investigations of the behaviour of
the ODE €uCg _uCuKu2ZF sin ut (Thompson 1997). Substituting uZK
xC1=2 gives €xCg _xCx2Z1=4KF sin ut, which is equation (1.1) with
f ðtÞZ1=4KF sin ut and mZ2.

(iii) Stationary wave solutions of a perturbed Korteweg-de Vries (KdV)
equation are described by a special case of equation (1.1) with gZ0 and
mZ2. Following (Blyuss 2002), we start with a perturbed KdV equation
utCcuxCbuxxxZ f ðu; xKVtÞx, where f (u, xKVt) is taken to be
f0 cos uðxKVtÞ, and subscripts refer to partial differentiation. The
standard transformation to a moving frame, x01xKVt; t01t, results
in bux0x0KvuCu2=2Z f0 cos ux

0CC in the steady state ðut0Z0Þ, with
vZVGc and C a constant of integration. Finally, letting uZ2bxCv
and re-naming x 0 as t, we again obtain equation (1.1) with
f ðtÞZðv2C2CC2f0 cos utÞ=4b2Þ, gZ0 and mZ2.
2. Invariant sets, mZ2

We define an invariant set, S3R
2, as a subset of the phase plane such that

solutions starting from an initial condition in S remain in S for all time. We use
the term ‘absorbing set’ for an invariant set of finite area, with the intention that
any bounded limit cycle solutions of equation (1.1) can be shown to lie within
such a set, and two such sets, A1 and A2, are constructed.

In order to construct invariant sets for equation (1.1) we need to prove certain
inequalities. To this end, we first assume that gZ0, mZ2 and f (t)ZA, a
constant. Then, with yZ _x, equation (1.1) becomes

y
dy

dx
Cx2 ZA; ð2:1Þ

which can be integrated to give

y2 Z y20 C
2

3
ðx0KxÞ xC

1

2
x0

� �2

C
3

4
x0K3A

� �
; ð2:2Þ

where x0, y0 are the initial conditions. This elliptic curve plays an important role
in the construction of an invariant set, B, of initial conditions for solutions all of
which eventually grow without bound.
Proc. R. Soc. A (2006)
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Figure 2. The invariant set B, whose complement, B c, is inside the thick curve ABCD, where B is
(KF, 0), C is (xC, 0) and A and D are at infinity. Points on the boundary ABCD belong to B.
The thin curves are various numerical solutions to equation (1.1), with gZ0.01, mZ2, and
f (t)Z(5C3 sin t)/2 so FZ2, fZ1. As expected, all the solutions that start in B remain in B.
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Depending on the parameters appearing in equation (2.2), the expression for y2

can have one, two or three real roots; when there are two, one of these must be a
pair of repeated roots, and the condition for this is easily seen from equation (2.2)
to be x0ZG2

ffiffiffiffi
A

p
, y0Z0. When this is satisfied, the curve y(x) is known as the

separatrix since it separates the two qualitatively different types of behaviour
(solutions that grow without bound, and those that are bounded and periodic)
displayed by equation (2.1).
(a ) Construction of set B
We now construct B, shown in figure 2, whose boundary consists of three

curves, AB, BC and CD, where points A and D are at infinity. The technique
used for all boundaries is essentially as follows. We define the two-dimensional
vector fields

fðtÞZ ðy; f ðtÞKx2KgyÞ; fF Z ðy;F2Kx2KgyÞ and ff Z ðy; f 2Kx2KgyÞ:

The importance of the second and third fields is that, for any initial condition
(x,y)Z(x (t0), y(t0)), the direction of f(t) is such that f(t)Zm1fFCm2ff, where
m1, m2 are non-negative scalars which sum to one. (Put loosely, f(t) ‘lies between’
ff and fF). This simple observation allows us to project the three-dimensional
system equation (1.2) onto the x, y phase plane.

If a given curve in the plane is defined by G(x,y)Z0, then two normals to it are
nZG(vG/vx, vG/vy). The choice of sign determines whether the normal is
inward or outward pointing. To prove that the flow is always in a particular
Proc. R. Soc. A (2006)
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direction across a curve defined by G, we then only have to show that n$f, which
is proportional to the cosine of the angle between the normal to the curve and the
vector field, f, is of a given sign at all points on the curve. Hence it will be
unnecessary to normalize either n or f, as only the sign of the dot product is
important.
(i) Boundary AB

Lemma 2.1. Let curve AB be defined by GAB(x, y)Zy2Kl2(2FKx)(xCF )2Z0
for x2(KN, KF ] with yR0. Then f(t) is into AB in the direction of decreasing
y, along its entire length and for all time, provided that l2%2/3.

Proof. Since yR0, curve AB is yZKlðxCFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FKx

p
R0 for x2(KN,KF ].

The required normal to AB, pointing in the direction of negative y, is
nZ(K3l2(x2KF 2),K2y). At any point (x, y), the y-component of fF is greater
than that of ff, so to show that for all time the flow is through AB in the
direction of negative y, we should prove that n$fFR0 for x2(KN,KF ]. The fact
that n$ffR0 then automatically follows, and hence positivity of the dot product
for all time. Now,

n$fF Z y½ð2K3l2Þðx2KF2ÞC2gy�R0 for x2ðKN;KF �;

since yR0, provided that (2K3l2)R0. &

In order to make B as large as possible we should maximize the area between
AB and the x-axis and hence take lZ

ffiffiffiffiffiffiffiffi
2=3

p
.

(ii) Boundary BC

Lemma 2.2. Let curve BC be defined by GBCðx; yÞZy2Kð2=3ÞðxCKxÞðxCFÞ2
Z0 for x2[KF,xC] with y%0. Then f(t) is into BC in the direction of decreasing
y, along its entire length and for all time, provided that

xCR2FC
3

4
g2 1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

8F

g2

s" #
:

Proof. The required normal must be directed towards negative y and is
therefore nZðð2=3ÞðxCFÞð3xCFK2xCÞ; 2yÞ. For the same reason used in the
construction of AB, we need only prove that n$fFR0 for x2[KF,xC]. This dot

product is Kð2=3ÞyðxCFÞ½2xCK4FKg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðxCKxÞ

p
� and since y%0, it is non-

negative provided that 2xCK4FRg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðxCKxÞ

p
for x2[KF,xC]. Furthermore,

since gO0, the inequality can only make sense if xCO2F. Squaring both sides of
the inequality and solving for xC we find that

xCR2FC
3

4
g2 1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

8F

g2

s" #
or xC%2FC

3

4
g2 1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

8F

g2

s" #
:

Since FO0, the square root is greater than unity, so the second solution has
xC!2F and can therefore be rejected. &
Proc. R. Soc. A (2006)
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Since our objective is to make B as large as possible, we should choose the xC
that minimizes ðxC

KF
jyjdx Z 4

ffiffiffi
6

p

45
ðxCCFÞ5=2;

and as this is monotonically increasing with xCOKF, we take the minimal value

xC Z 2FC
3

4
g2 1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

8F

g2

s" #
: ð2:3Þ

(iii) Boundary CD

Lemma 2.3. Let curve CD be defined by GCD(x, y)Zy2K(xCKx)[(xCKx)2C
b2 ]Z0 for x2(KN,xC) with yR0. Then f(t) is into CD in the direction of
increasing y, along its entire length and for all time, provided that

b2ð2xCKg2ÞR4xCðx2CKf 2Þ;
where xC is defined in lemma 2.2. There always exist real values of b such that
this inequality holds.

Proof. For this curve, the normal we require is in the direction of increasing y
and so nZ(3(xCKx)2Cb2, 2y). We need to consider ff this time since n$ffR0
implies n$fFR0. The dot product is y½u2C4xCuC2ðf 2Kx2CÞCb2K2gy� where
uZ(xCKx)2[0,N). Since yR0, for the dot product to be non-negative we need

u2 C4xCuC2ðf 2Kx2CÞCb2R2gy for uR0; ð2:4Þ
and since g is also positive, this inequality is only feasible over the required range

of u if (i) 2ðf 2Kx2CÞCb2R0. With this assumed, we can square both sides of
inequality (2.4), substitute for y in terms of x, and simplify to obtain

u4 C4ð2xCKg2Þu3 C2ð6x2CC2f 2Cb2Þu2C4½b2ð2xCKg2ÞC4xCðf 2Kx2CÞ�u
C ½2ðf 2Kx2CÞCb2�2R0 for uR0: ð2:5Þ

Now, as well as (i), we need all the coefficients of the powers of u in this
inequality to be non-negative; the coefficients of u4, u2 u0 are obviously so, and
those of u3 and u are so too, provided (ii) 2xCKg2R0 and (iii) b2ð2xCKg2ÞC
4xCðf 2Kx2CÞR0. We now show that the definition of xC in equation (2.3) implies
(ii), and that (i) is implied by (iii).

From the definition of xC in equation (2.3), we have 2xCZ4FCð3=2Þg2q with
qZ1C(1C8F/g2)1/2O2; hence, 2xCO3g2, so (ii) is automatically satisfied.

Dividing (iii) by 2xCO0 gives 2ðf 2Kx2CÞCb2RðbgÞ2=ð2xCÞ and since the
right-hand side is positive, (iii) implies (i).

In the light of (ii), it now becomes clear that there always exists b large enough
that inequality (2.5) is true; and so the lemma is proved. &

In order to maximize the area of B, we should choose the minimal value of b,
which, from (iii), is given by

b2 Z
4xCðx2CKf 2Þ
2xCKg2

: ð2:6Þ

We have therefore proved the following.
Proc. R. Soc. A (2006)
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Theorem 2.4. Define BZBABgBBCgBCDgfðx; yÞjxRxCg with

BAB Z ðx; yÞjy%KðxCFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2FKxÞ=3

p
; x%KF

n o
;

BBC Z ðx; yÞjy%KðxCFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxCKxÞ=3

p
; KF%x%xC

n o
;

BCD Z ðx; yÞjyR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxCKxÞ ðxCKxÞ2 Cb2

� �q
; x%xC

� 	
;

where xC is given by equation (2.3) and b by equation (2.6).ThenB is an invariant set
such that all solutions to equation (2.1) starting within B remain in B for all time.
(b ) Dynamics within B
In fact, we can say more about solutions to the differential equation which are

confined to B: all solutions in B eventually enter a subset, B7, which is itself
invariant, and once here, grow without limit. The proof, which is somewhat
lengthy, is contained in lemmas 2.5–2.7, 2.9–2.13.

It is first necessary to split B into seven subsets and these are illustrated
in figure 3. Also shown there are the two parabolas Pf : yZ(f 2Kx2)/g and PF :
yZ(F 2Kx2)g, the importance of these being that for yOPF, _y!0; for y!Pf,
_yO0; with _y being either positive, negative or zero only in the region between PF

and Pf .
We first define B7 and show that it is invariant.

Lemma 2.5. Define

B7 Z fðx; yÞjx%x; ðF2Kx2Þ=g%y%0g;
where x!KF is the least real root of hðxÞZ2xðF2Kx2ÞCg2ðf 2KF2ÞZ0. Then
B7 is invariant.

Proof. First, note that h 0ðGF=
ffiffiffi
3

p
ÞZ0 and that h 00ðGF=

ffiffiffi
3

p
ÞZH4

ffiffiffi
3

p
F; hence,

xZKF=
ffiffiffi
3

p
is a local minimum of h(x) and so h(x) decreases monotonically from

CN, for increasing x2ðKN;KF=
ffiffiffi
3

p
�. Furthermore, h(KF)Zg2(f 2KF 2)!0 and

so there is exactly one real root of h(x), x2(KN,KF ).
We now consider the three boundaries of B7 separately. The boundary PF for

x%x can be treated by the same technique used for constructing B. The
required normal to PF is nZ(2x/g, 1) and the appropriate choice for f is ff,
giving n$ffZh(x)R0 for x2(KN,x ]. Hence, the flow is through this part of PF

and is towards negative x, for all time.
Along the boundary xZx, 0RyR(F 2Kx2)/g, and so _x%0; thus, the flow is

through this boundary towards negative x for all time here also.
The remaining boundary is yZ0, x%x, along which _y!0 since x!KF, and so

the flow is through this boundary in the negative y direction for all time.
Therefore, B7 is an invariant set. &

We now prove several lemmas that, in combination, enable us to show that all
solutions starting in B end up in B7.

Lemma 2.6. All solutions x(t)Z(x(t), y(t)) initially in B1 or B2 enter B4 in
finite time.
Proc. R. Soc. A (2006)
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Figure 3. The subsets of B used in the proof of theorem 2.15. Thick, continuous lines are the
boundaries between the named subsets of B; the dashed straight lines are the x and y axes; and the
upper/lower dotted curves are the parabolas PF/Pf, respectively.
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Proof. The points O–W are shown in figure 4, which is referred to throughout
this proof. The curve OPQRS is a typical orbit starting in B1 and entering B4 in
finite time and we now prove that all solutions starting in B1 or B2 behave in this
way.

Consider first any initial point (x(t0),y(t0)) in the subset of B1 with x%3F/2.
The line xZ3F/2 lies to the left of point C, whose x-co-ordinate xCO2F. Hence,
for all x in this region, yRyT, the (strictly positive) y-co-ordinate of point T,
since solutions cannot cross CD, and so x (t)Rx (t0)C(tKt0)yT. Thus, any
solution crosses the line xZ3F/2 in finite time.

Consider now a solution starting at point P on the line xZ3F/2; _yZ f ðtÞKgyK
x2%KgyK5F2=4 since, while the solution remains in B1, yR0 and so xR3F/2.
Solving this linear differential inequality, we obtain y(t)%eKgt[yPC5F 2/4g]K
5F 2/(4g) and so the solution reaches point Q on the x-axis in finite time.

The x-co-ordinate of QOxCO2F and so starting from Q, we have
_y%KgyK3F 2, and so y(t)%3F 2(eKgtK1)/g. Hence, the solution must cross
the line yZY1!0 in finite time, provided that Y1 satisfies the condition (a) that
Y1OK3F 2/g, so that limt/Ny(t)!Y1. Three additional conditions on Y1 are
required, these being that (b) Y1 is sufficiently small that the x -co-ordinate
of RR2F, so that _y%KgyK3F2 remains true while the solution moves from Q to
R; (c) the line yZY1 does not intersect the parabola PF : yZ(F 2Kx2)/g for xO0
in B2, so ensuring that _y!0 everywhere in the subset of B2 in which yRY1; and
(d) Y1OYU, the y-co-ordinate of U, the point at which curve BC and the
parabola Pf intersect for x!0. Such a Y1 can always be chosen because Q and C
are both to the right of the point xZF where PF intersects the x -axis. With these
conditions on Y1, point R is reached in finite time. By the definition of Y1, once R
Proc. R. Soc. A (2006)
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Figure 4. Definitions of the subsets of B and the points and lines used in the proof of lemma 2.6.
The parabolas PF and Pf are shown as well as a typical solution (OPQRS) to equation (1.1) with
f (t)Z(5C3 sin t)/2. Boundaries between subsets of B are shown as thick lines.
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has been reached, then line VW must also be crossed in finite time, this being the
vertical line from the point of intersection of BC with yZY1. This is because
_xZy%Y1 so x (t) decreases at least linearly with time; and, by the definition of
Y1, _y!0 all along VR—so VR cannot be re-crossed.

From the crossing of VW, _x%Y1 still applies and so x decreases at least
linearly with time until S is reached. The part of B2 in the vicinity of S is below Pf

and so _x!0 and _yR0; hence the solution must cross Pf at some point S and
hence enter B4. Since each of the steps described takes finite time, we conclude
that point S is reached from any point in B1 or B2 in finite time. &

We now consider the fate of solutions starting in the rest of B.
Lemma 2.7. A solution initially at point B, (KF, 0) eventually moves further

into B3.

Proof. Consider the case that x(t0) is point BZðKF ; 0Þ2B3 at some time t0;
then either (i) f (t0)!F 2 or (ii) f (t0)hF 2. From the differential equation, we
have in case (i) that _xðt0ÞZ0 but _yðt0Þ!0 and so the solution moves vertically
away from B in the direction of decreasing y, and so further into B3. In case (ii),
we have _xðtÞZ0 and _yðtÞZ0 for t2[t0, t1) where t1 is the time at which f (t1) is
first less than F 2; t1 is necessarily finite by the conditions imposed on f (t). Hence,
the solution remains at point B only until tZt1, at which time _y!0 and the
subsequent behaviour is the same as in case (i). &

To proceed further, we need the following definition:

Definition 2.8. A double crossing is said to occur when the solution x(t) crosses
both the lines yZY0 and yZ2Y0, in either order. Here, Y0!0 and is sufficiently
Proc. R. Soc. A (2006)
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Figure 5. Magnification of B3 and its surroundings, including part of B c. The point B is xZ(KF, 0).
The x-axis and two horizontal lines at yZY0, 2Y0 are also shown, where Y0!0.
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small that (1) the intersection of yZ2Y0 with Pf for x!0 takes place within B c,
and that (2) X0Ox, with X0 the negative root of F2KX2

0Z2gY0 (see figure 5).
The existence of the k-th double crossing implies that d ak, bk2R with bkOak

such that either y(ak)ZY0 and y(bk)Z2Y0 (falling) or y(ak)Z2Y0 and y(bk)ZY0

(rising).

Now, by continuity, any pair of successive double crossings must consist either
of a falling double crossing followed by a rising one or vice versa. Then we have
the following.

Lemma 2.9. An infinite sequence of double crossings confined to B3gB4

cannot occur, in either (i) finite or (ii) infinite time.

Proof. First, we consider the sets that solutions leaving B3 can enter: by
continuity, these must be B c, B5, B4 or B6. The first two are impossible, B c by
definition and B5 because B3 and B5 only meet at point B, and passing through
this in the direction of increasing y is impossible by lemma 2.7.

The other two transitions can take place; B3 to B6 because _x!0, _y%0 along
their common boundary, and B3 to B4 because _y can have any sign along the
common boundary.

To prove the lemma, first observe that cxZðx; yÞ2B3gB4 we have f 2K
x2%gy%F2Kx2 soKf 2RKgyKx2RKF2. Now, _yZ f ðtÞKgyKx2 so

F2Kf 2R _yR f 2KF2: ð2:7Þ
By hypothesis, xðtÞ2B3gB4 for all tR0, so, by equation (2.7), j _yj%F2Kf 2 hv
with vO0.

Consider first case (i), in which infinitely many double crossings occur within
B3gB4 during the time interval [0,T ] with TO0 finite. Define the sequence of
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crossing times fIkgk2N where IkZ[ak ,bk] with akRbkK1, so thatgk2NIk4½0;T �;
then y(t)2[2Y0,Y0] if t2gk2NIk. Hence,

vTR

ðT
0
j _yðtÞj dtR

X
k2N

ð
Ik

j _yðtÞj dtR
X
k2N






ð
Ik

_yðtÞ dt






Z
X
k2N

jyðbkÞKyðakÞjZ
X
k2N

jY0jZN;

and since v and T are both finite, the latter by hypothesis, this leads to a
contradiction and so an infinite sequence of double crossings within B3gB4

cannot occur in finite time.
Now consider case (ii), in which infinitely many double crossings occur during

infinite time.We introduce the sequence fIkgk2N as before but now limk/NbkZN.
In order that x(t) remains in B3gB4, we must have limk/NxðbkÞOX0 (see
figure 5). From the differential equation we haveðbk

b1

_yðtÞdt Z yðbkÞKyðb1ÞZ
ðbk
b1

ðf ðtÞKgyKx2Þdt: ð2:8Þ

Now, ck2N, dNZN(k) such that Nt%bk%ðNC1Þt and, by hypothesis,
limk/NNðkÞZN. Furthermore, given positive real constants c and c 0, we have, by
the continuity of curve BC, that xðtÞ!KFCcjY0j!0 and so

KxðtÞ2!KF2Cc 0jY0j: ð2:9Þ

Using this in equation (2.8) results in

yðbkÞKyðb1Þ%Nthf iC
ðbk
Nt

f ðtÞdtKg

ðbk
b1

yðtÞdtCNtðKF2 Cc 0jY0jÞK
ðbk
Nt

xðtÞ2dt:

Also, from _xZy we have that
Ð bk
b1
yðtÞdtZxðbkÞKxðb1Þ is bounded, as isÐ bk

Ntðf ðtÞKxðtÞ2Þdt, since x (bk)RX0, and so

yðbkÞKyðb1Þ%Ntðhf iKF2 Cc 0jY0jÞCK ;

whereK is a finite constant. Remembering that f (t) is continuous and periodic and
that f (t)%F 2, ct, the coefficient of Nt in the above can be made negative
by choosing jY0j sufficiently small. Hence, finally, we have proved that lim supk/N

yðbkÞ!K 0KN for a constant K 0, which is in contradiction with our initial
hypothesis that y(bk)ZY0 or 2Y0. Hence, an infinite number of double crossings,
confined to B3gB4, cannot occur either in finite or infinite time. &

Lemma 2.10. No solution can remain in B3 indefinitely.

Proof. From lemma 2.9 we now have the result that an infinite number of
double crossings cannot occur, and so d t0!N such that ctOt0, while xðtÞ2B3,
either (i) y(t)!Y0 or (ii) y(t)O2Y0—there are no further double crossings after
tZt0. We can now prove the lemma as follows.

We consider case (i) first. Here, _xðtÞ!Y0 for all tOt0, and since Y0!0,
limt/NxðtÞZKN. Hence, in case (i), no solution can remain in B3 indefinitely.
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Turning now to case (ii), we have _yZ f ðtÞKgyKx2 and so, with N2N,ðt0CNt

t0

_yðtÞdt Z yðNtC t0ÞKyðt0Þ%Nthf iKg

ðt0CNt

t0

yðtÞdtCNtðKF2Cc 0jY0jÞ;

where the last term on the RHS is obtained from equation (2.9). Since y(t)!0 for
all tOt0, we have

0!Kg

ðt0CNt

t0

yðtÞdt Zg






ðt0CNt

t0

yðtÞdt




Zgjxðt0CNtÞKxðt0Þj%gX1;

where X1 is shown in figure 5. Thus,

yðNtC t0Þ%yðt0ÞCNtðhf iKF2Cc 0jY0jÞCgX1;

and since jY0j can be made as small as desired, we have limN/NyðNtC t0ÞZKN.
Hence, in case (ii) too, no solution can remain in B3 indefinitely. &

Lemma 2.11. All solutions initially in B3, B4 with xOx, or B6, cross the line
xZx in the direction of decreasing x, in finite time.

Proof. Consider first solutions initially in B3. By lemma 2.10, solutions here
must eventually leave B3. As shown in the proof of lemma 2.9, solutions leaving
B3 can only enter B4 or B6.

To show that all solutions cross the line xZx in the direction of decreasing x,
consider first a solution that leaves B3 and enters B6 at a point (x0, y0) at a time
t0. Then we need to prove two facts: (i) y!y0 for all tOt0, and (ii) y0!0.

We prove (i) as follows. While the solution remains in B6, _y!0, so _xZy!y0,
and so the lemma is plainly true for a solution that remains in B6. The solution
may, however, re-cross PF and enter B3 or B4, in both of which _y can have either
sign. If the point at which the solution re-crossed PF is (x1, y1) then clearly y1!y0.
Suppose now a further crossing occurs, from B3gB4 back into B6, this time at a
point (x2, y2); then y2!y1!y0 despite the ambiguity of the sign of _y in B3gB4.
This is because y!0 always, so x decreases at least linearly in time, so x2!x1!x0;
but the crossing points are all on PF and so y2!y1!y0. Hence, we conclude that
y!y0 for all tOt0.

The proof of (ii) relies on lemma 2.7. A solution at point B can initially only
move vertically downwards away from B, and hence cannot enter B6 from point
B. Hence, any solution that enters B6 from B3 does so at yZy0!0. Thereafter,
the argument used in case (i) applies.

Consider now a solution that leaves B3 and enters B4. According to lemma
2.10, although solutions may oscillate between B3 and B4, they cannot do so
indefinitely and so there must be a last crossing into B4, let us say at time t0.
Thereafter, as before, y!y0Z2Y0, whether or not the solution subsequently
remains in B4 or moves into B6.

Hence, we conclude that in all cases, _xZy!y0!0 for all tOt0, and so all
solutions eventually cross the line xZx. &

The previous lemma shows that solutions with xOx eventually cross the line
xZx. Hence, solutions eventually enter B7 (invariant), or B4 with x!x, and we
now deal with the fate of solutions in the latter case.
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Lemma 2.12. All solutions initially in B4 with x%x enter B7 in finite time and
remain there.

Proof. We prove this lemma by contradiction: we assume that x2B4 with
x%x for all t and find an inconsistency. Set tZ0 when xZx to simplify notation,
and write y(0)Zy0. Then _xðtÞ%ðF2Kx2Þ=g by the assumption that x(t)
is between PF and Pf. Integrating gives

xðtÞ%atCx; ð2:10Þ
with aZ(F 2Kx2)/g a negative constant. Also, by equation (2.7) we have j _yj%
F2Kf 2Zv and so integrating from 0 to t gives

KvtCy0%yðtÞ%vtCy0: ð2:11Þ
Now, as long as x(t) remains in B4, we must have ðf 2Kx2Þ=g%y%ðF2Kx2Þ=g,
but, by equation (2.10), y%ðF2Kx2Þ=g% ½F2KðatCxÞ2�=g. Hence, in order to
remain in B4 for all tO0, y(t) has to be bounded above by a function that
decreases as Kt2, and, from equation (2.11), bounded below by one that goes as
Kt. These two requirements are mutually incompatible, and so no solutions can
remain in B4 indefinitely. &

Lemma 2.13. All solutions initially in B5 enter B7 in finite time.

Proof. For all x2B5, x!KF and yR0. Solving the differential equation from
initial condition x (0)!KF, y(0)R0, we haveðnt

0
_y dt Z yðntÞKyð0ÞZnthf iKg

ðnt
0

yðtÞdtK
ðnt
0

x2dt;

and, while the solution is in B5, Kx2!KF 2, so

yðntÞ!yð0ÞCntðhf iKF2ÞCgðFCxð0ÞÞ;
where we have used x (nt)!KF. Since, as before, hf iKF 2!0, the second term
above ensures that y decreases with time and so the solution eventually crosses
the x-axis at x!KF, and so enters B6 or B7; if B6, then lemmas 2.11 and 2.12
apply, and in either case B7 is entered in finite time. &

Lemma 2.14. All solutions in B7 grow without limit as t/N.

Proof. For all x2B7, _x!0 and _y!0. Furthermore, by lemma 2.5, B7 is
invariant, and so both x and y tend to KN in B7. &

Theorem 2.15. All solutions initially in B remain in B, eventually entering B7,
where they remain and grow without limit.

Proof. The invariance of B is proved in theorem 2.4. The rest of the theorem is
a direct consequence of lemmas 2.5–2.7, 2.9–2.14. &
(c ) Set C
As an easy corollary to theorems 2.4 and 2.15, we can now construct a set C

which is such that any finite area absorbing set A3C.
Corollary 2.16. Any finite area absorbing set A3C, where

CZB chfðx; yÞjxRKFg:
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Proof. The boundaries of set C consist of curve BC, the part of curve CD with

xRKF and the line xZKF between yZ0 and yZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxCCFÞ½ðxCCFÞ2Cb2�

q
, the

latter being the intersection of this line with CD. Since this line has yZ _xR0
along its entire length, flow must be into C along this boundary. Furthermore, if
A is any absorbing set, then AhBZ0/ since, by theorem 2.15, any initial
conditions in B lead to solutions that grow without bound. &

We can now visualize how good an approximation set B c is to the set of initial
conditions which lead to solutions that do not blow up. We make the following
definition:

Definition 2.17. Let X(x0, y0, t0; t) be the solution of equation (1.1) for given t0,
with initial conditions x (t0)Zx0, y(t0)Zy0, and define

F t0 Z ðx0; y0Þj lim
t/N

Xðx0; y0; t0; tÞ2Bc
n o

:

Then
F Z g

t02½0;tÞ
F t0 :

Clearly, F4Bc. For an illustration of a numerical approximation to this set,
see figure 6.
(d ) Absorbing set A1

We now construct a polygonal absorbing set. The underlying method for this
construction is the same as for B, but by contrast to that case, there are now
constraints on the parameters F, f and g additional to FOfO0 and gO0.

Three preliminary observations are in order. First, any absorbing set must lie
partly above and partly below the x-axis: a set entirely above the x-axis would
always have _xZyO0 and no such set whose boundary is a closed curve could be
absorbing over its whole boundary.

Second, where possible, we choose the sides of the absorbing sets to be parallel
to either the x or the y-axis, since this simplifies the proof that the flow is into
that side. On the other hand, a rectangular set is not possible: for instance, the
right-hand vertical boundary above the x-axis would necessarily entail flow out of
the set, since yZ _xO0. The same applies to the left-hand vertical boundary
below the x-axis. Hence, there must be boundaries not parallel to either axis.

Third, as pointed out previously, _y can only be zero if xZ(x, y)2I, where I is
the region between Pf and PF. This suggests the possibility of basing the non-
vertical/horizontal boundaries on scaled versions of these parabolas, and this is
the case for A1.

Theorem 2.18. Let g2R8F and define the set A1 as the closed hexagon
GHIJKL, whose vertices are

GZ f ;
F2Kf 2

g

� �
;

HZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2Cðf 2KF2Þ=l1

q
;

F2Kf 2

g

� �� �
;
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Figure 6. A numerical approximation to set F (black)—see definition 2.17—for xRKFZK2,
showing how it fits within B c, part of whose boundary is shown as a thick dashed line. Here, gZ
0.01, mZ2 and f (t)Z(5C3 sin t)/2.
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IZ ðF ; 0Þ;

JZ F ;
f 2KF2

g

� �
;

KZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2C

F2Kf 2

l2

s
;
f 2KF2

g

0
@

1
A;

LZ ðf ; 0Þ;
and whose edges are straight lines except that

HI : y Z l1
F2Kx2

g

� �
and KL : y Z l2

f 2Kx2

g

� �
:

Here

l1 Z
g2

4F
1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K

8F

g2

s !
;

and l2 is such that

hðl2ÞZ 4f 2l42C4ðF2Kf 2Þl32Kg4ðl2K1Þ2 Z 0:

Then at least one l22(1, 2) exists and the set A1 as defined is an absorbing set for
all t.
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Figure 7. The invariant set A1, whose vertices are GHIJKL. The dashed lines are the parabolas
between which lies region I in which the sign of _y is indeterminate; above PF, _y!0 and below Pf,
_yO0. The continuous line starting at point P is a numerical solution to equation (1.1), with FZ2,
fZ1, gZ4.01, which can be seen to lie within A1.
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Proof. To show that A1, illustrated in figure 7, is an absorbing set, we need to
prove that n$f(t)R0 over the entire boundary of A1 and for all t, with the
appropriate choice for f, and where n is the inward normal to the boundary.

This is trivial for the horizontal and vertical portions of the boundary, i.e. GH,
IJ, JK and LG. Taking GH as a horizontal example, we have xRf and nZ(0,K1)
is an inward-pointing normal. By the same reasoning as used in the construction
of B, we need to prove that n$fFZx2Kf 2R0 for xRf, which is clearly true.
Taking IJ as a vertical example, we have y%0 and an inward-pointing normal is
nZ(K1, 0). Then n$ffZn$fFZKyR0, also obviously true.

We define HI as the curve GHIðx; yÞZyKl1ðF2Kx2Þ=gZ0, from which
the inward normal nZ(K2l1x/g, K1). Here, real l1O1 is to be found. The
appropriate choice for f is fF and so we need

n$fF Z ðF2Kx2ÞðK2l21x=g
2 Cl1K1ÞR0 for x2½xH;F �; ð2:12Þ

where xH is the x-co-ordinate of H. Now, F 2Kx2R0 so we require K2l21x=g
2C

l1K1R0. This is guaranteed for all x2[xH,F ] ifK2l21F=g
2Cl1K1R0, which is a

quadratic in l1 in which l21 has a negative coefficient; hence inequality (2.12) is

satisfied for l12½LK
1 ;L

C
1 �, where LG1Zg2ð1G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K8F=g2

p
Þ=4F. Letting rZ8F/

g2O0, so for l1 to be real, r2(0,1], we haveLK
1Z2ð1K

ffiffiffiffiffiffiffiffiffiffi
1Kr

p
Þ=rZ2=ð1C

ffiffiffiffiffiffiffiffiffiffi
1Kr

p
Þ,

which is clearly monotonically increasing from 1, at rZ0, to 2, at rZ1. Hence, for
the smallest possible A1 we choose l1Zg2ð1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K8F=g2

p
Þ=4F, which is

guaranteed to be positive, as, by construction, it must be. Similarly, we define
KL by GKLðx; yÞZyKl2ðf 2Kx2Þ=gZ0 and so nZ(2l2x/g, 1) is the required
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normal, where l2O1 is to be found. The inequality to be satisfied this time is
n$ffZðf 2Kx2Þð2l22x=g2Kl2C1ÞR0 for x2[f, xK], where xK is the x-coordinate of
K. The first bracket is clearly non-positive, so

2l22xKKl2g
2Cg2%0; ð2:13Þ

guarantees flow through KL in the direction of increasing y. Additionally, we have
yKZyJZ(f 2KF 2)/g and so l2ðf 2Kx2KÞZ f 2KF2. Eliminating xK between this and
equation (2.13) results in

hðl2ÞZ 4f 2l42C4ðF2Kf 2Þl32Kg4ðl2K1Þ2 Z 0: ð2:14Þ
Now, h(1)Z4F 2O0 and h(2)Z32(F 2Cf 2)Kg4; but g2R8F so h(2)%32
(f 2KF 2)!0, and so, by the Intermediate Value Theorem, there is at least one
real root of h(l2) such that l22(1,2). &
3. Absorbing set A2;mO1

We now construct an absorbing set, A2 for all mO1. The condition mO1 is
required for the nonlinear function in the differential equation, xm, to be
Lipschitz, thereby guaranteeing uniqueness of solutions (Hirsch & Smale 1974).
We redefine the vector field and its bounds as

fðtÞZ ðy; f ðtÞKxmKgyÞ; fF Z ðy;FmKxmKgyÞ and ff Z ðy; f mKxmKgyÞ:

By analogy with the construction of A1, we observe that the set I in which _y
has indefinite sign is now IZfðx; yÞjðf mKxmÞ%gy%ðFmKxmÞg. We can then
construct a hexagonal absorbing set A2 whose vertices are MNOPQR—see
figure 8. In the course of the construction, we make several assumptions whose
purpose is to make the problem tractable, these being (i) MN, QP are horizontal,
MR and OP are vertical; (ii) the x-co-ordinates of N and Q are xNZF and xQZf
respectively; (iii) the gradients of lines NO and RQ are both Kg; and (iv) M lies
on PF : yZ(F mKxm)/g and P lies on Pf : yZ(f mKxm)/g. Constraint (iv) arises in
an attempt to make A2 as small as possible: for instance, M cannot be below PF

because _y could then be positive, which would allow flow out of MN. With these
assumptions in place, the co-ordinates of all the vertices of A2 can be expressed in
terms of xM, as will be seen from the following.

Theorem 3.1. Let mO1, f mCfg2R(FCF m/g2) m and define the set A2 as the
closed hexagon MNOPQR whose edges are straight lines and whose vertices are

MZ ðxM;gDÞ;

NZ ðF ;gDÞ;

OZ ðFCD; 0Þ;

PZ ðFCD; ½ f mKðFCDÞm�=gÞ;

QZ ðf ; ½ f mKðFCDÞm�=gÞ;

RZ ðxM; 0Þ;
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Figure 8. The invariant set A2, whose vertices are MNOPQR. The continuous lines starting at
points S1, S2 and S3 are numerical solutions to equation (1.1), with mZ1.67 and f (t)Z(5C 3sin t)/2
(so F mZ4, f mZ1), gZ3. All the solutions can be seen to be attracted to the same period-1 limit
cycle and both transients and this limit cycle lie within A2. The curves PF : yZ(F mKx m)/g and
Pf : yZ(f mKx m)/g are shown as dashed lines.
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where DZðFmKxmMÞ=g2 and xM is the smallest real root of

FmKxmM
g2

CF

� �m

Cg2ðxMKf ÞKf m Z 0; ð3:1Þ

such that 0%xM!f. Then at least one such xM exists and the set A2 is an
absorbing set for all t and all mO1.

Proof. To show that A2, see figure 8, is an absorbing set, as before, we need to
prove that n$f(t)R0 over the entire boundary of A2 for all t, with the
appropriate choice for f and where n is the inward normal to the boundary. This
is trivial for the horizontal and vertical portions of the boundary, i.e. OP, PQ and
RM (see the proof of theorem 2.18).

We define NO as the straight line GNO(x, y)ZyKl3(xOKx) where xO is the
x-coordinate of point O and l3O0, from which the inward normal nZ(Kl3,K1).
The appropriate choice for f is fF here, so we need

n$fF Z l3ðxOKxÞðKl3 CgÞCðxmKFmÞR0 for x2½F ;xO�; ð3:2Þ
where xN has been set equal to F: with hindsight, we shall see that this choice
greatly simplifies the construction. Here l3(xOKx)R0 and (x mKFm)R0 if and
only if mR0, so we require (Kl3Cg)R0, and therefore choose l3Zg, which
guarantees that the boundary NO has n$f(t)R0. This choice for l3 also
simplifies the construction.

Similarly, we define QR by GQR(x, y)ZyKl4(xRKx), where xR is the
x-coordinate of R and l4O0, and so nZ(l4, 1) is the required normal. The
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inequality to be obeyed is now n$ff Zl4ðxRKxÞðl4KgÞCðf mKxmÞR0 for
x2[xR, f ], where xQ has been set equal to f, again for simplicity. Here (f mKx m)R0
if mR0 but l4(xRKx) is non-positive, so we need (l4Kg)%0. In choosing l4Zg
we guarantee that the boundary QR has n$f(t)R0.

Having determined the constants l3 and l4 which guarantee that n$f(t)R0
over the entire boundary of A2, we now need to find its vertices. In addition to
xNZF, xQZf and yOZyRZ0, we know the following:

yM Z ðFmKxmMÞ=gZ yN ZgðxOKFÞ;
yP Z ðf mKxPÞ=gZ yQ ZgðxRKf Þ;

xM Z xR;

xO Z xP;

9>>>=
>>>;

which results in the simultaneous equations

FmKxmM Zg2ðxOKFÞ and f mKxmO Zg2ðxMKf Þ; ð3:3Þ
between which xO can be eliminated to give equation (3.1). When this can be
solved, it gives all the vertices of MNOPQR in terms of g, m, F, f and xM. The
conditions under which a solution xM of equation (3.1) exists satisfying 0%xM!f
and xOOF are easily derived. Consider equation (3.3), solved for xO in terms of
xM, giving

xO ZFCðFmKxmMÞ=g
2 . curve ðaÞ;

xO Z ½f m Cg2ðfKxMÞ�1=m . curve ðbÞ;
respectively. At xMZf, we have xOZFCðFmKf mÞ=g2 for curve (a) and xOZf
for curve (b), and so (a) is above (b) at xMZf, provided mO1. Therefore, to
guarantee at least one solution of equation (3.3), we need (b) to be above (a) at
xMZ0, and so we must have

f m Cg2fR
f CFm

g2

� �m

;

which is the condition given in the theorem. &
(a ) Comparison of A1 and A2

We can now compare the restrictions on the parameters imposed in theorems
2.18 and 3.1 when mZ2. These are that g2R8F (set A1) and that fg4ðg2C f ÞR
F2ðg2CFÞ2 (set A2). Let g2Z8F so that the second inequality becomes 64F 2f

(8FCf)Z81F4. Solving for f in terms of F gives fZð
ffiffiffiffiffiffiffiffiffiffi
1105

p
=8K4ÞFz0:1552F.

Hence we conclude that, subject to FOfO0, if f!ð
ffiffiffiffiffiffiffiffiffiffi
1105

p
=8K4ÞF, the constraint

on g is weaker for set A1; otherwise, the constraint on g is weaker for set A2.
4. Conclusions

We have constructed a variety of invariant sets for the differential equation (1.1),
the sets being one for which solutions grow without bound; one which must
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contain any bounded limit cycles, both of these sets requiring no constraints
other than those given in the first paragraph of the paper. We have additionally
found two absorbing sets, both of which require additional parameter constraints
(effectively, large dissipation), one of which is valid for all mO1. We have also
described three areas of physical interest in which the differential equation arises.

We have had little to say here about the dynamics of this equation, since our
aim was to construct some important invariant sets. Numerical results presented
in Deane & Marsh (2004), Marsh (in preparation) indicate the presence of co-
existing periodic attractors but not chaos. There are also some results on
dynamics for large g and mZ2 in Gentile et al. (2005), in particular a study of the
analyticity properties of the orbit with the same period as f (t) that, numerically
at least, appears to be the only bounded periodic solution to equation (1.1) in this
case. Additionally, there are in principle ways to understand which periodic
orbits should occur (Bartuccelli et al. 2004), in particular when the dissipation
and the oscillatory part of f (t) are both small.

At least two interesting open questions remain. The first concerns the basin of
attraction of periodic solutions, which clearly must lie in B c, but the construction
of this set does not exclude the possibility that this basin has an infinite ‘tail’ lying
between curves AB and CD as x/KN. The second concerns the rate at which
solutions that grow without bound approach infinity: do they do so in finite or
infinite time? In the unperturbed version of the differential equation (gZ0, mZ2,
f (t) constant), exact solutions exist and these can be expressed in terms of
Weierstrass elliptic functions, which do indeed blow up in finite time, but it is not
clear whether this property is inherited by solutions to equation (1.1).
References

Azzouz, A., Duhr, R. & Hasler, M. 1983 Transition to chaos in a simple nonlinear circuit driven by
a sinusoidal voltage source. IEEE Trans. Circuits Syst. CAS-30, 913–914. (doi:10.1109/TCS.
1983.1085316)

Bartuccelli, M. V., Berretti, A., Deane, J. H. B., Gentile, G. & Gourley, S. A. 2004 Selection rules
for periodic orbits and scaling laws for a driven damped quartic oscillator. Preprint.

Blyuss, K. B. 2002 Chaotic behaviour of solutions to a perturbed Korteweg-de Vries equation. Rep.
Math. Phys. 49, 29–38. (doi:10.1016/S0034-4877(02)80003-9)

Deane, J. H. B. & Marsh, L. 2004 Nonlinear dynamics of the RL-varactor circuit in the depletion
region. International symposium on nonlinear theory and its applications (NOLTA 2004),
Fukuoka, Japan 2004 pp. 159–162.

Gentile, G., Bartuccelli, M. V. & Deane, J. H. B. 2005 Summation of divergent series and Borel
summability for strongly dissipative equations with periodic or quasi-periodic forcing terms.
J. Math. Phys. 46, 062704C21.

Hirsch, M. W. & Smale, S. 1974 Differential equations, dynamical systems and linear algebra.
New York: Academic Press.

Marsh, L. In preparation. Nonlinear dynamics of the RL-diode circuit. Ph.D. thesis.
Matsumoto, T., Chua, L. O. & Tanaka, S. 1984 Simplest chaotic nonautonomous circuit. Phys.

Rev. A 30, 1155–1157. (doi:10.1103/PhysRevA.30.1155)
Thompson, J. M. T. 1997 Designing against capsize in beam seas: recent advances and new

insights. Appl. Mech. Rev. 50, 307–325.
Proc. R. Soc. A (2006)

http://dx.doi.org/doi:10.1109/TCS.1983.1085316
http://dx.doi.org/doi:10.1109/TCS.1983.1085316
http://dx.doi.org/doi:10.1016/S0034-4877(02)80003-9
http://dx.doi.org/doi:10.1103/PhysRevA.30.1155
http://rspa.royalsocietypublishing.org/

	Invariant sets for the varactor equation
	Introduction
	Invariant sets, mu=2
	Construction of set B
	Dynamics within B
	Set C
	Absorbing set A1

	Absorbing set A2,mu1
	Comparison of A1 and A2

	Conclusions
	References


