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We consider a class of ordinary differential equations describing one-dimensional
analytic systems with a quasiperiodic forcing term and in the presence of damping.
In the limit of large damping, under some generic nondegeneracy condition on the
force, there are quasiperiodic solutions which have the same frequency vector as
the forcing term. We prove that such solutions are Borel summable at the origin
when the frequency vector is either any one-dimensional number or a two-
dimensional vector such that the ratio of its components is an irrational number of
constant type. In the first case the proof given simplifies that provided in a previous
work of ours. We also show that in any dimension d, for the existence of a quasi-
periodic solution with the same frequency vector as the forcing term, the standard
Diophantine condition can be weakened into the Bryuno condition. In all cases,
under a suitable positivity condition, the quasiperiodic solution is proved to de-
scribe a local attractor. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2213790�

. INTRODUCTION

In this paper we pursue the study started in Refs. 6 and 2. We consider one-dimensional
ystems with a quasiperiodic forcing term in the presence of strong damping, described by ordi-
ary differential equations of the form

�ẍ + ẋ + �g�x� = �f��t� , �1.1�

here ��Rd is the frequency vector, g�x� and f��� are functions analytic in their arguments, with
f quasiperiodic, i.e.,

f��� = �
��Zd

ei�·�f�, �1.2�

ith average �f�= f0, and ��0 is a real parameter, physically representing the inverse of the
amping coefficient. With · we are denoting the scalar product in Rd. A Diophantine condition is
ssumed on � for d�1, that is

�� · �� � C0���−� " � � Zd \ 	0
 , �1.3�

here ���= ���1���1�+ ¯ + ��d�, and C0 and � are positive constants. The set of vectors satisfying
he condition �1.3� is nonvoid for ��d−1 and is of full measure for ��d−1. For d=1 we denote
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he vectors without boldface; in that case � will be called the frequency number.
In Ref. 6 we show that, under the nondegeneracy condition

$c0 � R such that g�c0� = f0 and g��c0� � 0, �1.4�

he system �1.1� admits a quasiperiodic solution x�t ;�� with the same frequency vector as the
orcing. Such a solution can be obtained by a suitable summation of the formal power series

x0�t;�� ª �
k=0

�

�kx�k��t�, x�k��t� = �
��Zd

ei�·�tx�
�k�, �1.5�

hich solves the equations of motion order by order. For d=1 �periodic forcing� the series �1.4� is
orel summable in �. In Ref. 2 we also show that if g��c0��0, for any d such a solution is locally
n attractor. In some cases, for instance if g�x�=x2p+1, p�N, and f0�0, the attractor is global.

In this paper we first give a different �simpler� proof of Borel summability in the periodic case
Sec. II�, then we prove that the formal series for the solution turns out to be Borel summable also
or d=2 and �=1 �Sec. III�; this corresponds to frequency vectors with components such that their
atios are irrational numbers of constant type �i.e., numbers with bounded partial quotients in their
ontinued fraction expansion�. The proof does not rely on Nevanlinna-type theorems,7,8 but con-
ists in checking directly that the conditions for the formal series of the solution to be Borel
ummable are satisfied, and follows the same strategy introduced in Ref. 4 to investigate Borel
ummability of lower-dimensional tori.

Finally in Sec. IV we show how to relax the Diophantine condition. We show that, in order to
ave the same results on existence and attractivity of the quasiperiodic solution, one can take � to
e a Bryuno vector, that is one can assume that, by defining

B��� = �
n=0

�
1

2n log
1

�n���
, �n��� = inf

���	2n
�� · �� , �1.6�

hen � satisfies the Bryuno condition B���
�. More formal statements will be given in the next
ections.

I. BOREL SUMMABILITY FOR d=1

First of all let us recall the definition of Borel summability.8 Let f���=�n=1
� an�n be a formal

ower series �which means that the sequence 	an
n=1
� is well defined�. We say that f��� is Borel

ummable if

1� B�p�ª�n=1
� anpn /n! converges in some circle �p�
�,

2� B�p� has an analytic continuation to a neighborhood of the positive real axis, and
3� g���=�0

�e−p/�B�p�dp converges for some ��0.

Then the function B�p� is called the Borel transform of f���, and g��� is the Borel sum of f���.
oreover if the integral defining g��� converges for some �0�0 then it converges in the circle
e �−1�Re �0

−1. A function which admits the formal power series expansion f��� is called Borel
ummable if f��� is Borel summable; in that case the function equals the Borel sum g���.

Theorem 2.1: Consider the system (1.1) for d=1, and assume that the nondegeneracy con-
ition (1.4) is fulfilled. There exists �0�0 such that for ���
�0 there is a periodic solution x�t ;��
hich has the same frequency number as the forcing term and is Borel summable in � at the
rigin. If g��c0��0 such a solution describes a local attractor.

Proof: We consider explicitly the case g�x�=x2 in �1.1�, which corresponds to the varactor
quation extensively studied in Refs. 6, 1, and 2; the general case can be easily dealt with by
easoning as in Sec. VII of Ref. 6. In Ref. 6 we proved that the formal power series �1.5� is well

efined and that to any order k one has
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�x�
�k�� 	 A1�2

−kk!, �x�k��t�� 	 A1�2
−kk!, �2.1�

or suitable constants A1 and �2 �cf. formula �4.5� in Ref. 6�. This means that the first condition, in
he definition of Borel summability, is satisfied, with �=�2.

In Ref. 6 we also proved that the formal power series can be summed, and gives a function

x�t;�� = �
k=0

�

�
��Z

ei��tx�
�k�, �2.2�

hich is real-analytic and periodic in t, and analytic in � in a suitable domain tangent to the
maginary axis at the origin. The coefficients x�

�k� can be written as

x�
�k� = �

��Tk,�

Val���, Val��� = 
 �
��L���

g��
 �
v�E����V���

Fv� , �2.3�

here the symbols are defined as in Sec. V of Ref. 6. We briefly recall the basic definitions and
otations, with the purpose of making self-consistent the discussion; reference should be made to
ef. 6 for further details.

A tree � is a graph, that is a connected set of points and lines, with no cycle, such that all the
ines are oriented toward a unique point �root� which has only one incident line �root line�. All the
oints in a tree except the root are denoted nodes. The orientation of the lines in a tree induces a
artial ordering relation ��� between the nodes. Given two nodes v and w, we shall write w�v
very time v is along the path �of lines� which connects w to the root. We call E��� the set of
ndpoints in �, that is the nodes which have no entering line. The endpoints can be represented
ither as white bullets or as black bullets; we denote with EW��� and EB��� the set of white bullets
nd the set of black bullets, respectively. With each endpoint v we associate a mode label �v
Z, such that �v=0 if v�EW��� and �v�0 if v�EB���. We denote with L��� the set of lines in

. Since � is uniquely identified with the point v which it leaves, we may write �=�v. With each
ine � we associate a momentum label ���Z. The modes of the endpoints and and the momenta
f the lines are related as follows: if �=�v one has

�� = �
i=1

sv

��i
= �

w�EB���:w�v
�w, �2.4�

here sv denotes the number of lines entering v �one has sv=2 if g�x�=x2 in �1.1�, otherwise sv
2�, and �1 , . . . ,�sv

are the lines entering v. We denote by V��� the set of vertices in �, that is the
et of points which have at least one entering line. We set V0���= 	v�V��� :��v

=0
. We call
quivalent two trees which can be transformed into each other by continuously deforming the lines
n such a way that they do not cross each other. Let Tk,� be the set of inequivalent trees of order
and total momentum �, that is the set of inequivalent trees � such that �V����+ �EB����=k and the
omentum of the root line is �. We associate with each line � a propagator

g� = �1/��i�����1 + i������ , �� � 0,

1, �� = 0,
� �2.5�

ith each vertex v a node factor

Fv = �− � , v � V0��� ,

− 1/2c0, v � V0��� ,
� �2.6�
nd with each endpoint v a node factor

011 to 131.227.66.119. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



T
m

a
i

a
m
f

M
l

t

w
L
c
b

w
a

p
i
c
o
a
c

072702-4 Gentile, Bartuccelli, and Deane J. Math. Phys. 47, 072702 �2006�

Downloaded 15 Aug 2
Fv = �c0, v � EW��� ,

�f�v
, v � EB��� . � �2.7�

hen �2.3� says that each coefficient x�
�k� is given by the sum over all trees of order k and total

omentum � of the corresponding values.
It is more convenient to slightly change the definition of node factors and propagators, by

ssociating the factor � with the propagator g� of the line � coming out from v and not with v
tself. In this way the propagator of any line with � momentum ���0 is

g� = g����;��, g�x;�� =
�

ix�1 + i�x�
, �2.8�

nd the only dependence on � in Val��� is through the product of propagators with nonvanishing
omentum. �Note that g�x ;�� in �2.8� has a completely different meaning with respect to the

unction g�x� appearing in �1.1�. The same caveat applies to the propagators g�n��x ;�� in Sec. III.�
The function �2.8� is Borel summable, and its Borel transform is easily computed to be

gB�x;p� =
e−ipx

ix
Þ �gB�x;p�� 	

e�Im p��x�

�x�
. �2.9�

oreover gB�x ; p� is an entire function in p, and the integral �0
�e−p/�gB�x ; p�dp converges �abso-

utely� for all ��0.
For any tree ��Tk,� the Borel transform of Val��� is given by a constant times the Borel

ransform of the product of the propagators with nonzero momentum. One has

�Val����B�p� = 
 �
��L0���

g��
 �
v�E����V���

Fv�

 �
��L2���

g��
B

�p�� , �2.10�

here we have called L0��� is the set of lines in L��� with zero momentum, and we have set

2���=L��� \L0��� �cf. Sec. IV of Ref. 6�. The Borel transform appearing in �2.10� equals the
onvolution of the Borel transforms of the propagators with nonzero momentum, so that it can be
ounded as

�
 �
��L2���

g��
B

�p�� 	 �
��L2���

*�gB����;p�� 	 
 �
��L2���

1

������ �p�k−1

�k − 1�!
exp��Im p� max

��L2���
������ ,

�2.11�

here �* denotes the convolution product, and ���
 �����
 ����v�EB�����v�; cf. Remarks �4� to �6�
fter Definition 1 in Ref. 3 for properties of the Borel transforms we are using here.

Therefore, for p in any strip 
�= 	p�C : �Im p�
�
 of the real axis, we have

� �
v�EB���

Fv�exp��Im p� max
��L2���

������ 	 F�EB���� �
v�EB���

e−���v�/2, �2.12�

rovided ����
� /2, and summability over the Fourier labels in �2.3� is assured. The sum over k
n �2.2� produces a quantity bounded proportionally to the exponential e��p�, for some positive
onstant �. A comparison with Ref. 6 shows that �=1/�0, where �0 is the same as in the statement
f the theorem. In particular the Borel transform xB�t ; p� of the series �2.2� turns out to have an
nalytic continuation to the strip 
�, and admits there the bound �xB�t ; p��	Ce��p�, for a suitable

onstant C. Hence the integral
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g�t;�� ª �
0

�

e−p/�xB�t;p�dp �2.13�

bsolutely converges provided 0
�
�0. So also the last two conditions for the formal series of
�t ;�� to be Borel summable are satisfied.

That the solution x�t ;�� describes a local attractor, under the further condition g��c0��0,
ollows from the analysis performed in Ref. 2. �

Note that, because of the analyticity properties of xB�t ; p�, it follows, as a consequence of
evanlinna’s theorem,8 that the function defined by the integral �2.13� is analytic in the circle

R= 	��C :Re �−1�R−1
, with R=�0, and satisfies the bound

g�t;�� = �
k=0

N−1

�kx�k��t� + RN���, �RN���� 	 ABNN!���N, �2.14�

ith constants A and B independent of N. This is consistent with Proposition 5.3 of Ref. 6.

II. BOREL SUMMABILITY FOR d=2 AND �=1

In the case of quasiperiodic forcing terms for d=2 we obtain the following result.

Theorem 3.1: Consider the system (1.1) for d=2, and assume that � satisfies the Diophantine
ondition (1.3) with �=1 and that the nondegeneracy condition (1.4) is fulfilled. There exists �0

0 such that for ���
�0 there is a quasiperiodic solution x�t ;�� which has the same frequency
ector as the forcing term and is Borel summable at the origin. If g��c0��0 such a solution
escribes a local attractor.

Proof: Again we discuss explicitly the case g�x�=x2 in �1.1�. Let � be a nondecreasing C�

unction defined in R+, such that

��u� = �1 for u � 1,

0 for u 	 1/2,
� �3.1�

nd set ��u�ª1−��u�. Define, for all n�Z+, �n�u�ª��2nC0
−1u /4� and �n�u�ª��2nC0

−1u /4�.
With each line � with zero momentum we associate a scale label n�=−1, while with each line

ith nonzero momentum we associate �arbitrarily� a scale label n��Z+= 	0
�N. Then we can
efine cluster and self-energy clusters as in Refs. 4 and 6. A cluster T on scale n is a maximal set
f points and lines connecting them such that all the lines have scales n�	n and there is at least
ne line with scale n. The lines entering the cluster T and the possible line coming out from it
unique if existing at all� are called the external lines of the cluster T. Given a cluster T on scale
, we shall denote by nT=n the scale of the cluster; we call V�T�, E�T�, EW�T�, EB�T�, and L�T� the
et of vertices, of endpoints, of white endpoints, of black endpoints, and of lines of T, respectively.
e call self-energy cluster any cluster T such that T has only one entering line �T

2 and one exiting
ine �T

1, and one has �v�EB�T��v=0. With each line � with momentum �� and scale n� we associate
renormalized propagator g�=g�n���� ·�� ;��, still to be defined. On the contrary the node factors

re defined as in the previous case �with the only trivial difference that now �v, replacing �v, is a
-dimensional vector�.

Define the self-energy value VT�� ·� ;�� in terms of the renormalized propagators and node
actors as

VT�� · �;�� = 
 �
��L�T�

g�n���� · ��;���
 �
v�E�T��V�T�

Fv� , �3.2�

here � is the momentum of both the external lines of T.
We proceed as in Sec. VI of Ref. 6, with the only two differences that we perform a prelimi-
ary summation by including the contribution −2�c0 �arising from the self-energy graphs on scale
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1� into the propagator g�0��x ;��, and—as in the periodic case of Sec. II—we associate the factors
to the propagators with nonzero momentum. Therefore we define �see the comment after �2.8� in
ec. II�

g�0��x;�� =
��0��x��

ix�1 + i�x� − 2�c0
, M�0��x;�� = ��

k=1

�

�
T�Sk,0

R
VT�x;�� , �3.3�

hereas the propagators on scale n�1 are defined as in Ref. 6, again with a factor � appearing in
he numerator of the propagators with nonzero momentum; this means that one has

g�n��x;�� =
��0��x�� ¯ �n−1��x���n��x��
ix�1 + i�x� − M�n−1��x;��

,

�3.4�

M�n��x;�� = �
p=1

n

�0��x�� ¯ �p−1��x���n��x��M�p��x;��, M�n��x;�� = ��
k=1

�

�
T�Sk,n

R
VT�x;�� ,

here the set of renormalized self-energy clusters Sk,n
R is defined and the set of self-energy clusters

on scale nT=n and of order k �that is with �V�T��+ �EB�T��=k�. With respect to Refs. 6 and 4 a
urther factor � appears in M�n��x ;��, n�0, simply because there is one such factor per node
vertex or endpoint� with exiting line carrying a nonzero momentum—cf. Sec. 6 in Ref. 4—and
e are associating the factors � with the lines instead of the nodes.

An easy computation gives, for the Borel transform of g�0��x ;��,

gB
�0��x;p� =

�0��x��
ix

exp
− ip
x − 2
c0

x
�� Þ �gB

�0��x;p�� 	
1

�x�
e��x�+2�c0�/�x���Im p�. �3.5�

f we set, for n�0,

g̃�n��x;�� =
�

ix�1 + i�x� − M�n−1��x;��
" �x� 	 2−�n−1�C0, �3.6�

nd define M�n��x ;��=M�n��x ;��−M�n−1��x ;��, we obtain the recursive equations

�g̃�n��x;���−1 = �g̃�n−1��x;���−1 − �0��x�� ¯ �n−1��x���−1M�n−1��x;��, n � 1. �3.7�

By using these equations we can prove inductively the bound

�g̃B
�n��x;p�� 	

K0

�x�
e�cn+cn��x�−1/2��p�+�0�Im p��dn�x�+dn��x�−1�, �3.8�

here K0 and �0 are two constants, and the sequences 	cn
n=0
� , 	cn�
n=0

� , 	dn
n=0
� , 	dn�
n=0

� are to be
ound.

The proof proceeds as in Appendix A1 of Ref. 3. Set x�=� ·��, and call L0�T� and L2�T� the
et of lines in L�T� with zero momentum and the set L2�T�=L�T� \L0�T�, respectively. First we use

he inductive bound to obtain
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�
M�N��x;��
�

�
B
� 	 �

k=2

�

�
T�Sk,N−1

R 
 �
��L0�T�

�g���
 �
v�E�T��V�T�

�Fv��
� 
 �

��L2�T�

* K0

�x��
e�cn�

+cn�
� �x��−1/2��p�+�0�dn�

�x��+dn�
� �x��−1��Im p��

	 
 �
v�EB���

e−���v���
k=2

�

�k �p�k−2

�k − 2�!
e�cN−1+cN−1� 2N/2��p�+�0dN−1� 2N�Im p�, �3.9�

here D0=�2, rN=�+cN−1+�0cN−1� 2N/2, for some N-independent constant �0. The bound in the
ast line of �3.9� has been obtained by using part of the exponential decay �say one-fourth� of the
ode factors associated with the endpoints to control the exponent �0dN−1 max��L2�T��x��, provided

N−1
d for some N-independent constant d and �Im p�	�, with � small enough, more precisely

0�d���
� /4.
By explicitly performing the sum over k we obtain from �3.6�,

�
M�N��x;��
�

�
B
� 	 D0erN�p�e−�02N

, �3.10�

here we have used the bound ���EB�T���v���12N, for a suitable constant �1—see formula �7.12�
f Ref. 4—and again part of the exponential decay �say another one-fourth� of the node factors
ssociated with the endpoints to control the exponent �0dN−1� 2N�Im p�, provided again dN−1� 
d� for
ome N-independent constant d� and �0d��
��1 /4; in particular one finds �0=�1� /4.

Then, by using �3.10� and, once more, the inductive bound, we obtain from �3.7�,

�g̃B
�N��x,p�� 	

K0

�x�
e�cN−1+cN−1� �x�−1/2��p�+�0�dN−1�x�+dN−1� �x�−1��Im p� * �

k=0

� 
�D0e−rN�p�e−�02N
�

* 
K0

�x�
e�cN−1+cN−1� �x�−1/2��p�+�0�dN−1�x�+dN−1� �x�−1��Im p���*k

, �3.11�

ith a*k=a�a� ¯ �a �k times�. This gives

�g̃B
�N��x,p�� 	

K0

�x� �k=0

�
1

�2k�!
K0�p�2

�x�
D0e−�02N�K

e�rN+cN−1� �x�−1/2��p�+�0�dN�x�+dN� �x�−1��Im p�, �3.12�

hich implies the bound �3.5� for n=N, with cN=rN=�+cN−1+�0cN−1� 2N/2, cN� =cN−1�
�K0D0e−�02N

, dN=dN−1 and dN� =dN−1� . In particular one has dN=d=1 and dN�=d�=2�c0�, so that
here exists a constant c�0 such that max	cn2−n/2 ,cn� ,dn ,dn�
	c for all n�0.

The bounds �3.8� for the Borel transforms of the propagators can be used to obtain a bound on
he Borel transform xB�t ; p� of x�t ;��. We omit the details, which can be derived exactly as in
ppendix A1 of Ref. 3. Eventually one finds the bound

�xB�t;p�� 	 C1eC2�p�2, �3.13�

or suitable constants C1 and C2. Again, the bound �3.13� and the analyticity properties of xB�t ; p�
mplies that x�t ;�� is Borel summable, and it can be written for ��0 as

x�t;�� = �
0

�

e−p/�xB�t;p�dp , �3.14�

n terms of its Borel transform.

As in the case d=1 the last statement of the theorem has been proved in Ref. 2. �
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In the general case g�x��x2 in �1.1� the quantity 2c0 must be replaced with g��c0�, with
��c0��0 by hypothesis. Then the discussion proceeds as in Sec. VII of Ref. 6.

Note also that in the case d=2 and �=1 the Borel transform is still defined in a strip around
he real axis, but it does not satisfy any more an exponential bound like in the case d=1 �at least
he argument given above does not provide an estimate of this kind�. Thus, we cannot apply
evanlinna’s theorem to prove Borel summability.7,8

V. BRYUNO FREQUENCY VECTORS

Let ��Rd be a Bryuno vector. This means that B���
�, with B��� defined in �1.6�.

Theorem 4.1: Consider the system (1.1) for any d�2, and assume that � satisfies the Bryuno
ondition B���
� and that the nondegeneracy condition (1.4) is fulfilled. There exists �0�0
uch that for all real ���
�0 there is a quasiperiodic solution with frequency vector �. If
��c0��0 such a solution describes a local attractor.

For simplicity’s sake we discuss the case g�x�=x2 and ��R, but the analysis can be easily
eneralized to any analytic function g �provided the nondegeneracy condition �1.4� is satisfied�.
urthermore the solution can be showed to extend to a function analytic in � in the domain CR

efined in Sec. VI of Ref. 6 �cf. Fig. 16 in Ref. 6�.
Let ��x� be the nondecreasing C� function defined in �3.1� and set ��x�ª1−��x�. Define, for

ll n�Z+, �n�x�ª���n
−1���x /4� and �n�x�ª���n

−1���x /4�.
Set g�−1��x ;��=1 and M�−1��x ;��=0, and define iteratively g�n��x ;�� and M�n��x ;�� as done in

he case of Diophantine vectors. This means that for n=0 we can define g�0��x ;�� and M�0��x ;�� as
n �3.3�, while for n�1 we define

g�n��x;�� =
��0��x�� ¯ �n−1��x���n��x��
ix�1 + i�x� − M�n−1��x;��

,

�4.1�

M�n��x;�� = �
p=0

n

�0��x�� ¯ �p��x��M�p��x;��, M�n��x;�� = ��
k=1

�

�
T�Sk,n

R
VT�x;�� ,

here Sk,n
R is the set of renormalized self-energy clusters T on scale n and of order k, and the

elf-energy value VT�x ;�� is defined as in �3.2�. Note that we are using the same definitions of Sec.
II, in particular we are associating the factors � with the propagators rather than with the nodes
contrary to what done in Ref. 6�. So far the only difference with respect to the case of the
tandard Diophantine condition concerns the multiscale decomposition: the factors 2nC0

−1 appear-
ng in �n and �n are substituted with �n

−1���.

Lemma 4.2: Assume that the renormalized propagators up to scale n−1 can be bounded as

�g�n���� · ��;��� 	 C−1�n�

−���� �4.2�

or some positive constants � and C. Then for all p	n−1 the number Np��� of lines on scale p in
ny renormalized tree � and the number Np�T� of lines on scale p in any renormalised self-energy
luster T are bounded both by

Np��� 	 K2−p �
v�EB���

��v�, Np�T� 	 K2−p �
v�EB�T�

��v� , �4.3�

or some positive constant K. If ���
�0, with �0 small enough, then for all p	n−1 one has

�M�p��x;��� 	 D1���2e−D22p
, ��xM

�p��x;��� 	 D1���2e−D22p
, �4.4�

or some positive constants D1 and D2. Only the constant D1 depends on �. The constant �0 can
�
e written as �0=C1�n0

, with n0�� ,�� such that
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K� �
n=n0+1

�
1

2n log
1

�n���
	

�

4
, �4.5�

nd C1 a positive constant dependending on C but not on �.

Proof: The lemma can be proved by reasoning as in Refs. 4 and 5. We simply sketch the
roof, and omit the details. First of all note that, if we define n���= 	n�Z+ :2n−1
 ���	2n
 then
ne has �� ·����n������. Moreover n��n implies �n����	�n���, and �n����
�n��� implies
��n. Set M���=�v�EB�����v� and M�T�=�v�EB�T���v�. The bound on Np��� is obtained by prov-
ng by induction on the order of the renormalized tree that if Np����0 then Np���	22−pM���
1 Then, given a renormalized self-energy cluster T�Sk,n

R , one proves first that M�T��2n−1,
ence, again by induction, that if Np�T��0 then Np�T�	22−pM�T�−1. Therefore �4.3� is proved.
n important property is that if a cluster T has two external lines, with momenta � and ��,

espectively, with ����, both on scales greater or equal to n, so that �� ·��	�n−1��� /4 and
� ·��	�n−1��� /4, then one has �� · ��−����
�n−1���, hence n��−����n, so that M�T�� ��
����2n−1. For details we refer to Ref. 5.

The bounds �4.4� are obtained by exploiting the just mentioned bound on M�T� and half the
xponential decay factors e−���v� associated with the vertices and endpoints internal to T to derive
he factors e−D22p

, with D2 independent of �, and by using the fact that any self-energy cluster T
ontributing to M�p��x ;�� must be of order at least 2 to derive the factors ���2.

Then for any n0�N and for any tree �, we can bound each propagator on scale up to n0 with
−1�n0

−���� and the product of propagators on scale greater than n0 with

�
n=n0+1

�C−1�n
−�����Nn��� = C−�n=n0+1

� Nn��� exp
�M��� �
n=n0+1

�
1

2n log
1

�n���� , �4.6�

o that, by choosing n0 according to �4.5�, the last exponential in �4.6� is controlled by half the
xponential decay factor e−�M�T� arising from the node factors. Then the sum of the values of all
rees of order k is bounded by �C−1C��n0

−��k, for a suitable constant C�—taking into account all the
onstants other than C and the sums over the trees. Hence also the assertion about the dependence
f �0 on �n0

��� follows, and the proof of the lemma is complete. �

As in Ref. 6, to prove existence of the quasiperiodic solution we need the following result,
hich together with Lemma 4.2 provides the proof of Theorem 4.1.

Lemma 4.3: For real � small enough the renormalized propagators satisfy the bounds (4.2)
ith �=1. For � in the domain CR in Fig. 16 of Ref. 6 they satisfy the bounds (4.2) with �=2.

Proof: The proof can be carried out exactly as in Ref. 6. Indeed it is enough to show that the
ropagators g�n��x ;�� can be bounded proportionally to �x�−�, for � small enough in a suitable
omain, and this follows from Lemmata 6.2 to 6.5 of Ref. 6, independently on the particular
iophantine condition assumed on �. �

The proof of the theorem is completed if we show that the quasiperiodic solution is a local
ttractor if g��c0��0. But this can be proved as in the case of Diophantine frequency vectors, by
easoning as in Ref. 2: indeed the only property that we need for the argument given in Ref. 2 to
ork is the existence of the quasiperiodic solution.
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