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We consider a class of second order ordinary differential equations describing
one-dimensional systems with a quasiperiodic analytic forcing term and in the
presence of damping. As a physical application one can think of a resistor—
inductor—varactor circuit with a periodior quasiperioditforcing function, even if

the range of applicability of the theory is much wider. In the limit of large damping
we look for quasiperiodic solutions which have the same frequency vector of the
forcing term, and we study their analyticity properties in the inverse of the damping
coefficient. We find that even the case of periodic forcing terms is nontrivial, as the
solution is not analytic in a neighborhood of the origin: it turns out to be Borel
summable. In the case of quasiperiodic forcing terms we need renormalization
group techniques in order to control the small divisors arising in the perturbation
series. We show the existence of a summation criterion of the series in this case
also; however, this cannot be interpreted as Borel summabilitg0@ American
Institute of Physics[DOI: 10.1063/1.1926208

I. INTRODUCTION

Consider the ordinary differential equation

eX+ X+ ex? = ef(wt), (1.1

wherew € RY is the frequency vectof(i) is an analytic function,

fy)= > ", (1.2)

vezd

with averagex=a?, with a>0 (hence(f)=f,=a), ande >0 is a real parameter. Here and hence-
forth we denote with - the scalar productiiff. By the analyticity assumption dfthere are two
strictly positive constants and ¢ such that one has,|<Fe 4" for all v e 7¢.

By writing y=1/¢ the equation becomes

X+ yx+ X2 = f(wt), (1.3

which describes a nonlinear electronic circuit, known as resistor—inductor—varactor circuit, subject
to a quasiperiodic forcing function. Takind=1 and f(wt)=a+ 8 sint, this equation has been
studied in Ref. 1, where, among other things, it has been found numerically thaldige enough
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there exists only one attracting periodic orbit and the corresponding peried is=227, the same
as the forcing term. Furthermore one can prove analytically that such a periodic orbit is the only
one in a neighborhood of radiw@(1/y) around the pointa, 0).

Here we give some further analytical support to such numerical findings. In particular we
show that, if we take as forcing term an analytic periodic function,

f(y)= >, ", fo=a>0, (1.4

vel

then fore small enough there is am? w-periodic solution, but this is not analytic k=1/y in a

neighborhood the origin in the complexplane. We find that such a solution is Borel summable.
We also show that by considering quasiperiodic forcing terms, d4.8), we still have a

quasiperiodic solution with the same frequency veeaas the forcing term, but we can only say

in general that such a solution is analytic in a domain with boundary crossing the origin.
Finally we shall see that considering more general nonlinearities introduces no further diffi-

culties, and equations like

X+ yx+g(x) =f(wt), lim M:oo, (1.5

e ]

with g and f both analytic in their arguments, can be dealt with essentially in the same way.
Simply, we must impose a nondegeneracy condition on the fungtievhich reads as

[xg such thatg(xg) =, andg’(xg) # 0. (1.6

In the particular case of homogene(g), that isg(x)=oxP, with p=2 an integer and € R, the
condition is automatically satisfied ifis odd (for any value ofo), while it requiresofy>0 for p
even, as assumed (i.1).

The paper is organized as follows. For expository clearness we start with the case of periodic
forcing terms. In Secs. Il and Il we show that a periodic solution with frequengythe form of
a formal power series ia (perturbation serigss well defined to all orders, and it admits a natural
graphical representation. In Sec. IV we study further such a series, and we see that there is strong
evidence to show that it divergésven if we cannot exclude convergence definjteRhe best
bounds that we are able to provide for the coefficients grow as factorials. To obtain bounds which
allow summability of the perturbation series we must perform a suitable summation in order to
give the series a meaning. This is done in Sec. V, and the resummed series is found to represent a
27/ w-periodic solution which is Borel summable in To prove the latter property we rely on
Nevanlinna’s improvement of Watson’s theoréfin Sec. VI we consider the case of quasiperi-
odic forcing terms. We find that the perturbation series is well defined if the frequency vector of
the forcing term satisfies a Diophantine condition, and, by using renormalization group techniques
in order to deal with the small divisors problem, we find that the resummed series still converges
to a quasiperiodic solution, and it defines a function analytic in a domain containing the origin in
its boundary. We shall see that the bounds we find do not allow us any more to obtain Borel
summability, unlike the case of periodic forcing terms. In Sec. VIl we discuss how to extend the
analysis to more general nonlinearitig), by requiring the conditiori1.6) to be satisfied.

The interest of the approach we propose is that it allows the use of perturbation theory which
can be very natural in problems in which a small parameter appears. In fact analyticitgri
close to O(that is iny for y large enoughcould be proved very likely with other techniqued
least for periodic solutions in the case of periodic forcing terinst a naive expansion in powers
of ¢ is prevented by the lack of analyticity in a neighborhood of the origin. On the other hand, the
perturbation series gives a very accurate description of the solution, hence it is important to know
that such a series is an asymptotic series, and its use is fully justified. Finally we mention that the
quasiperiodic solution we investigate is of physical relevance, hence it is useful to study its
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properties. For instance in the case of the aforementioned resistor—inductor—varactor circuit in Ref.
1, for damping large enough, ther2w-periodic solution is numerically found to attract any
trajectory which remains bounded in phase space.

The techniques we use have been recently developed for problems of Hamiltonian stability,
and are based on resummation methods that are familiar in quantum field {keerRef. 7 and
references quoted thergirHere we show that they can be useful even in non-Hamiltonian prob-
lems with viscosity acting. We leave as an open problem to show whether the formal series of the
periodic or quasiperiodic solutions are really divergent. We also note that we are not able to prove
uniqueness of the quasiperiodic solutions we find by the resummation procedure, as in that case
there is no uniqueness result as for analytic or Borel summable functions which one can rely upon.
Furthermore, both for periodic and for quasiperiodic solutions, we cannot exclude existence of
other solutions with the same rotation vector, which either are of a different form or even admit the
same formal series, without being obtained through the same resummation procedure. Problems of
the same kind were met in the study of hyperbolic lower-dimensionaf tori.

Il. FORMAL ANALYSIS
Consider first(1.1) for d=1, that is

eX+ X+ ex’ = ef(wt), (2.1
with f() given by(1.4). We look for bounded solution& any) which are analytic ire, that is of
the form

x(t) = >, M), (2.2)
k=0
Inserting(2.2) into (2.1) and equating terms of the same Taylor order we find the set of recursive
equations
x9=0,
XV = =50 _ (024 ¢ (2.3
W =gkl 3 ko =2
ky+ko=k—1

From the first equatiofzeroth orderwe obtain tha® must be constant, sa§® =c, with ¢, to

be determined. The second equatifirst orde) can give a bounded solution only |fc—+a 0,
which fixescy= Ja=a and givesxV(t) as a periodic function with the same period of the forcing
term,

t
xD(t) = xD(0) + J dt' (f(wt') - a). (2.4
0

As eachx®(t) depends on the functiond<)(t) with k' <k, we expect that if there is any periodic
solution then it must have the same period as the forcing term.

To continue the analysis to all orders it is more convenient to write the recursive equations
(2.3 in Fourier space. The analysis to first order and the considerations above motivate us to write
in (2.2,

X(t) = Esx )= E <) et (2.5

vel

which inserted intq2.3) gives forv+#0,
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x9=0,
w_f
X, - (2.6
lowv

. _ l
X = = (jwp)xY - 2 2 I, k=2,
1OV =kt ity
kpkp=0

provided that one has far=0,
-x3"% + o,

-3 T A, k=1
ky+ko=k v1tv2=0
ky ko =0

(2.7)

If we setxg‘):ck then the first of(2.7) fixes, as already noted,

cO:a:\/E, (2.8

because one hdg=a>0, while the second of2.7) gives

2 > x<k k>x<k>—o (2.9

k'=0 v1€%

The latter equation, by taking into accou@t8) and the first of(2.6), can be more conveniently
written as

c,=0, :——22 <kk>x<_ky k=2, (2.10
2Co_ i

=1 »€Z

which provides an iterative definition of the coefficienfsas the right-hand side depends only on
the coefficientsc,, with k' <k. To deducec;=0 we used the first 02.6), which, inserted into
(2.9 for k=1, gives 2,c,=0, hencec;=0 asc,# 0.

The following result holds.

Lemma 2.1 Consider (2.1) with f given by (1.4). Then there exists a formal power series
solution (2.2) whose coefficient¥kt) are analytic in t If f is a trigonometric polynomial, that is
in (1.4) one hagy|<N for some N N, then for all k=0 the functions ¥(t) are trigonometric
polynomials of ordef(k+1)/2]N, where[-] denotes the integer part. This means that one has

x#9=0 and Xx*"'=0 for |1|>kN.

Proof: The existence of a formal solutio2.2), with coefficientsx¥(t) analytic int for all
k=0, follows from the analysis above. ffis a trigonometric polynomial of degre¥, that the
coefficientsxik) are trigonometric polynomials with the stated properties can be proved(#d@n
by induction onk. |

Then the functions<¥(t) are well defined to all orders. Before discussing the issue of con-
vergence of the formal power series defining such functions we look for a graphical representation
of the coefficient9<(vk)

Ill. GRAPHICAL REPRESENTATION AND TREE FORMALISM

We start by giving some abstract definitions.
Definition 3.1 (trees) A tree 6 is a graph, that is a connected set of points and lines, with no
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cycle, such that all the lines are oriented toward a unique point which has only one incident line.
Such a point is called the root of the tree. All the points in a tree except the root are denoted nodes.
The line entering the root is called the root line. The orientation of the lines in a tree induces a
partial ordering relation between the nodes. We denote this relatios byiven two nodes and
w, we shall write w<uv every timev is along the path (of lines) which connects w to the root
Given a treef, we can identify the following subsets h
Definition 3.2 (endpoints)We call K 6) the set of endpoints if, that is the nodes which have
no entering line. The endpoints can be represented eithevhaie bulletsor as black bullets.We
call Ey(6) the set of white bullets andgE) the set of black bullets. Of course,&) U Eg(6)
=E(6). With eachv € E\\(6) we associate anodelabel v,=0, an orderlabel k, € 7Z, and anode
factor FU:CKU. With eachv € Eg(6) we associate anodelabel v, e Z\{0}, and anode factorF,
=f,.
‘Definition 3.3 (lines) We denote with (#) the set oflinesin 6. Each linef € L(6) leaves a
pointv and enters another one which we shall denote hySince¢ is uniquely identified witly
(the point which( leaves), we may writé=¢,. With each linef we associate amomentumiabel
v, € 7 and apropagator
Uiwve), vy#0,
g(_{l, b= 0, (3.9

and we say that the momenturp flows through the lingf. The modes and the momenta are
related as follows: iff=¢, one has

S
vy = E vy, = E Vs (3.2
i=1 weEg(6)

wheref,,...,{s are the lines entering.

Definition 3.4 (vertices) We denote by M) the set ofverticesin 6, that is the set of points
which have at least one entering line. If&) # & we call the vertex, connected to the root the
last vertexof the tree. If g denotes the number of lines entermgall max, .\, S, the branching
number.One can have either,s1 or s,=2. We set M 6)={v e V(6):s,=s} for s=1, 2; of course
V1(0) UV,(0)=V(6). We define also ¥0)={v € V(0): v, =0}; one has ¥(6) C V,(6). We require
that either \§(6) =@ or Vy(6)={vy}, and that one can have V,(6) only if v # 0. We associate
with each vertex < V(6) a node factor

_1' SU:
F =1-1/2c, S, =
S,

v
- (l (1)1/(0)2,

2 andv & Vy(0),
2 andv e Vy(0), (3.3
1

which is always well defined ag# 0.

We call equivalenttwo trees which can be transformed into each other by continuously
deforming the lines in such a way that they do not cross each other.

Let 7, , be the set of inequivalent tre@ssuch that

(1) the number of vertices, the number of black bullets, and the order labels of the white bullets
are such that we have

ky+ko+ks=k, if v#0,
k1+k2+k3:k+1, ivaO, (34)

if we setk,=[V(6)|, k,=|Eg(6)], andks=Z, g, (gKe-
(2) The momentum flowing through the root lineus
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(k) (1) (k)

FIG. 1. Graphical representation gf’, x, andx¥. For »=0 the latter reduces to the first graph, while ko1 and»

v

#0 it reduces to the second graph. In the first graph the momentum is not shown as it is neces$arily

We refer to7, , as theset of trees of order k and total momentum
With the above definitions the following result holds.
Lemma 3.5 For all k=1 and all v+ 0 one has

9= val(e), Val(o>:( 11 9@)( 11 FU), (3.5
GE'ZT('V {el(0) veE(G)UV(6H)
whereVal: 7, ,—C is called thevalue of the tree. For k=2 and »=0 one has
X =c= X "Vval(), (3.6
07y

wherex means that there are two lines entering the last verteaf 6, and neither one exits from
an endpointy with order label k=0.

Proof. We can represent graphicaligg):ck as in Fig. 1a), x(vl), v#0, as in Fig. 1b), and,
more generallyx(yk) as in Fig. 1c).

Then the third equation i2.6) can be represented graphically as in Fig. 2, if we associate
with the nodes and to the lines the node factors and the propagators, respectively, according to the
definitions(3.1) and(3.3).

Analogously (2.10 is represented graphically as in Fig. 3, again if we use the graphical
representations in Fig. 1 and associate with the lines and vertices the propd@dtoend the
node factorg3.3), respectively.

Note that in this way we represent graphically each coeffiokéﬁﬁn terms of other coeffi-
cientsx(yk,'), with k’ <k, so that we can apply iteratively the graphical representation in Fig. 2 until
only trees whose endpoints represent eil*fvé?rwith v# 0 (black bullet$ or c, are left (white
bullets. This corresponds exactly to the expressiong3i) and(3.6). [ |

To get familiar with the graphical representati5) and (3.6) one should try to draw the
trees which correspond to the first orders, and check that the sum of the values obtained with the
graphical rules listed above gives exactly the same analytical expression which can be deduced
directly from (2.6) and (2.10.

For instance fok=2 we obtain forx(f), v# 0, the graphical representation in Fig. 4 and for
szxgz) the graphical representation in Fig. 5.

For k=3 we obtain forx(f), v# 0, the graphical representation in Fig. 6 and cf:@::xg3
graphical representation in Fig. 7, where we have explicitly usedctl+=0.

This can be continued to higher orders. In general adred, , looks like in Fig. 8, where for
simplicity no labels have been drawn other than the order labels of the white bullets. Note that
each node can have only one or two entering lines, while the endpoints have no entering line at all.
Moreover the momentum flowing through the line exiting a verieis equal to the sum of the

) the

(k)
(k) (k-1) @
—5 @5 @<l

[}

FIG. 2. Graphical representation of the third equatiof2i) expressing the coefficient* for k=2 andv+0 in terms of
the coe’rficients{/k, ) with k' <k. In the last graph one has the constraitsk,=k—1 andv;+v,=v.
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(K1)

(k)
—0 = U1 (ka)

1%

FIG. 3. Graphical representation of the equatidri0 expressing the coefficiemf, for k=2 in terms of the coefficients
x(uk, ) with k' <k. Both k; andk, are strictly positive and; +k,=k; moreoverv,+v,=0.

momenta flowing through the lines enterimgaccording tq3.2); this is a sort of conservation law.

The order of the tree is given by the number of vertices and black bullets plus the sum of the order
labels of the white bullets minus the number of vertice/i6). The latter is jus{Vy(6)|=0 if
6Ty, v#0, and|Vy(0)|=1 if 6 Ty,

If a vertexv hass,=1, that is it has only one entering lire the latter cannot come out of a
white bullet. Indeed if this occurs one should haxava= v,=0, henceF,=0 by (3.3), so that the
value of the tree containing such a vertex is zero.

Given a tree as in Fig. 8 we can represent each white bullet according to the graphical
representation in Fig. 3 corresponding to the analytic forn(8l6), and expand again the two
contrlbutlonsx(kl) andx k) as sums of trees, and so on, iteratively, until the only white bullets
which are left are the ones with order lalked 0. In this way we obtain a new graphical represen-
tation where the trees still look like those in Fig. 8, but now there are a few differences as follows:

(1) all the white bullets € Ey(6) have order labelk,=0, and
(2) there can be lineg e L(6) with momentumy,=0 which come out of vertices, that i4(6)
can contain no element or more than one element.

Note that only lines coming out either from nodesvig{ ) C V,(6) or from white bullets have
vanishing momentum.

The order of the tree is then given by the number of elementg(8fU Eg(6) minus the
number of elements dfy(6), that isk=|V(6)|+|Eg(6)|—|Vo(6)|. Of coursevq e Vo(6) if and only
if the momentum of the root line is vanishing, thatds 7y , for somek=2. It is important to
stress that no line entering a vertex Vy(6) can come out of a white bulléivhich now has
necessarily an order labe),(ecause this would be against the constraint in the @i6). This
means that if two lines carrying zero momentum enter the same verfeo thatv e Vy(6)
according to(3.2)], then none of them can exit from a white bullet.

But up to these minor differences a tree representation liK8.5 and (3.6) still holds. The
advantage of these modified rules is that now the tree values are expressed no longer in terms of
constants, to be determined, but only in terms of which is known. A tree drawn according
these new rules is represented as in Fig. 8 Wjthk,=k;=0 (and in particular a tree of this kind
can contribute only ta(vk) with v# 0). Note that we could avoid drawing the order labels associ-
ated with the endpoints, as they are uniquely determindd=8sfor the white bullets ank=1 for
the black bullets. Of course, with respect to the caption of that figure, now theloislgiven by
the number of elements iN(6) plus the number of elements iBz(#) minus the number of
elements invy(6).

v e

FIG. 4. Graphical representation xo(f) for v# 0. The second contribution must be counted twice, because there is also a
tree with the white and black bullets exchanged; of course the latter has the same value.
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(2) o
SO 7w
v, @

FIG. 5. Graphical representation oj:xgz). There is no contribution with any white bullet carrying order lakeD and

k=1 because of the restriction in the sum appearinif) and of the fact that,=0, respectively.

IV. FORMAL SOLUTIONS

The sum over the trees (8.5 and(3.6), with the new definition of the sef; , given at the
end of Sec. Il, can be performed by summing over all possible “tree shépes’is trees without
labels orunlabeled treesand, for a fixed shape, over all possible assignments of mode labels. In
the case of a trigonometric polynomial of degiééhe latter can be bounded KgN)E@ because
each endpoint can have either a mode label# 0, with |v,|<N, or the mode labek,=0, while
the case of analytic functiorier even to obtain bounds which are uniforrNhmust be discussed
a little more carefully. The number of unlabeled trees viAthodes(vertices and endpointsan be
bounded by 2.

Recall thatVy(#) denotes the set of verticessuch thats,=s; of courseV,(6) U Vy(6)=V(6),
andVy(6) C V,(6). Analogously we can set

Lo(ﬁ):{€ € L(G):n€=O,},
Ly(B)=1{€ e L(0):= 0,0 e V4(6)}, (4.1)

Lo(0) =L(6) \ (Lo(6) U L4(0)),

with the splitting made in such a way that one has

1

g _l
Cely(6) | vy

IT R IT 9= II lowl | II g

veVq(6) Lelq(0) Lelq(0) tely(0)
1\ Mool O
IT F|= . , 11 FU‘$COW( , (4.2
veVy(d) Co veEp(6)

Ve
o 0
2 0 i
AR .Y Voo
[y v (1)
(1) vV e
_®
P
vV @

FIG. 6. Graphical representation m(f) for v#0. The second and fourth contributions must be counted twice, while the
third one must be counted four times. There is no contribution with any white bullet carrying the ordek+dbakc,
=0.
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1 1)
3) f"/. //C» v L]
0 = & e 1 - —&

‘1;\0 ;\.\\ W
v e

FIG. 7. Graphical representation oj:x?). The second contribution must be counted twice, while the first one must be
counted four times. There is no contribution with any white bullet carrying the order katielasc,=0.

11 FU‘sFEBu» T e,
veEg(6) veEg(f)

where for each ling one hagv | <X, g (g|vs|-

The following result is useful when looking for bounds on the tree values.

Lemma 4.1 Given a treed with branching number s one hd&(6)| < (s-1)|V(9)|+1. If k
denotes the order of the tre@ that is [V(6)|—|Vy(6)|+|Eg(6)|=k, one has the identityL,(6)|
+|L,(6)|=k, and the bound$V,(0)| <Kk, |Vo(0)|<k-1, |[E(0)| <k and|E(6)|+|V(0)|<2k-1.

Proof. It is a standard result on trees that one Basy,(s,~1)=|E(6)|-1, so that the first
bound follows. The bounds ov,(6)|, |Vo(0)|, |E(6)| and|E(6)|+|V(6)| can be easily proved by
induction, while the identityL,(6)|+|L,(8)|=k follows from the observation that all lines in(6)
and L,(6#) come out either of vertices or of black bullets, and they have nonvanishing momen-
tum. |

Hence the number of lines in;(6) is bounded by, so that in(4.2) we can bound

( 11 Iwwl)< I Fe‘f‘”v')s< I1 Fe‘f‘”v'”)( 11 e‘f‘”f"2k|wwl)

Lelq(0) veEg(6 veEg(6) telq(0)

< ( I1 Fe—fvaZ)(@)k, (4.3

veEg(H

and in the second line the product can be used to perform the sum over the Fourier labels—this
gives a factoiFBE, with B,=2e792(1-e¥?)~1—while the last factor is bounded b, BXk!, for
some constantd,; andB;.

We can bound the value of a trédoy using the boundgt.2) and(4.3), and Lemma 4.1. If we
define

1= maxBy, || tmaxcy, FBytmax1,(2cy) ™Y, (4.9

with c0=\s’;, and take into account that the number of unlabeled tre@ ins bounded by 51
(because each tree ify , has at most -1 nodes, then

FIG. 8. Example of tree appearing in the graphical expangi®: and(3.6). The number of lines entering any vertex

can be only eithes,=1 or s,=2, while no line enters the endpoints. The order of the tree is given by the number of
elements inV(6)\Vy(6) plus the number of elements Eg(6) plus the sum of the order labels of the white bullets. Then,

if ki, ko, andk; are the order labels of the white bullets in the figure, the order of the tr&ekg+k,+ks+10 if vg

e Vo(0) andk=k;+ko,+ks+9 if vy e Vo(6). In the latter case one must hakg>0 because of the constraint in the sum
appearing in(3.6).
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(1)

@ @ @ @ @ @ L
v v v v 14 v v v
FIG. 9. Example of tree whose value grows as a factoridi.ifthe order of the treéhence there ark—1 vertices and 1
black bulle}, then the value of the tree is given (#.6).

X = Akt xR0 = A5kt (4.5

where we have set,=g,272.

A bound like (4.5 is obtained also in the case of forcing terms which are trigonometric
polynomials, because in general we can bound the faptor$ in (4.2) only with kN (see Lemma
2.1), and this produces an overall bound proportionak!tdNote that in that case the bourg},
arising from the sum over the Fourier labels, can be replaced with a faktoar®i B, can be
replaced with/w|N.

Then we have proved the following result.

Proposition 4.2 Given the equation (2.1) with f as in (1.4), there is only one periodic solution
in the form of a formal power series, and the corresponding period is the same eriaglas the
forcing term. The coefficients of such a formal power series satisfy the bounds (4.5)

One could ask if the factorials arising in the bounds are only a technical problem, or whether
they are a sign that the series really diverges. To okd®re can easily provide examples of trees
which grow like factorials; see for instance the tree represented in Fig. 9, where thdee lare
vertices with only one entering line. Then the corresponding value is

val(6) = (iwv)?k f,= (iwv)<2f,, (4.6)

(iwv)
which behaves akl! for large k. Furthermore it is unlikely that there are cancellations with the
values of other trees because the value of any otherétee, , can be proportional at most to
(iwv)P, with p<k-2 (strictly). Hence we expect that the coefficieufy@, even if well defined to
all orders, grow like factorials, so preventing the convergence of the series.

The lack of analyticity is further supported by the following fact. If we consi@et) without
the quadratic term and with=0, that is

eXx+x=f(wt), f=0, 4.7

in Fourier space, we fingdy,=0 andiwv(1+icwv)x,=f, for v# 0. Hence the equation is trivially
solvable, and it gives

x(t) = > Ly gt (4.9

szolov(l+icwy)

Of course the solutiox(t) of the linear equation is not analytic 1 (in a neighborhood of the
origin) whenf is an analytic function containing all the harmonics, as each poinf wv repre-

sents a singularity point fox(t), and such points accumulate to the originias . Then it is

likely that also when the quadratic terms are taken into account the solution cannot be analytic.
Therefore giving a meaning to the perturbation series requires some more work, and we discuss
this next.

An important remark is that for any=1 there is no tree whose value can be bounded worse
than proportionally to a factorial, as the estimat¢$) show, indeed they have been obtained by
bounding separately the value of each single tree. This observation will play an important role in
the forthcoming analysis.
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V. PERIODIC FORCING TERMS

To deal completely with the case of analytic functions and prove existence of the periodic
solution, we must modify the graphical expansion envisaged in the preceding sections.

Let us come back to the equati¢®.1), and write it in Fourier space. For# 0 and denoting
with x, the vth Fourier coefficient, we obtain

elior)?, +iovX, +¢ > X, Xy, =ef,, (5.1
vitvo=v

provided that forv=0 we have
> %%, =0. (5.2
v1+1,=0

Let us rewrite(5.1) as

e(iwv)®, +iwvX,+ pue >, X
vtvp=v

= pet,, (5.3

V1 V2

and look for a solutiorx(t) which is analytic inu, which suggests us to write

x(t) = > wx(). (5.4)
k=0

Of course we want the valye=1 to be inside the analyticity domain. Note also that néfk the
coefficient to orderk, has a different meaning with respect to the previous expandi@h in
powers ofe, and for this reason with use a different symbol to denote it. We shall call the series
(5.4) the resummed seriebecause the coefficient&d(t) depend ore, and are given by the sum
of infinitely many terms of the formal serig€2.5).
Again for k=0 we must take<5°]=0 for v#0 and fixcy=
To orderk=1 (in u) we obtain forv+0,

[0]—\01 with a=f,.

iwv(1+i8wv)XE,k]:8f,,5kvl e 2 > x E,kll] kel (5.5

ki+ko=k=1 vy +vo=v

while for v=0 we require

2 E xlkalyIkol — (5.6)

”1 V2
kit+ko=k vq+vo=v

[k]

By settingc,=x; - the latter equation can be written jad. (2.10]

=0, :——EE XK =2, (5.7)

Zcok/ =1 vel

Then we can proceed as in Sec. Ill, with some slight changes that we now explain. First of all
note that(5.5) gives forv#0,

x9I=0,

mo_eh
Y jwv(l+icwv)’
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(] (1] [£]

FIG. 10. Graphical representatlonxﬂf] andx . Forv=0 the latter reduces to the first graph, while kerl andv # 0
it reduces to the second graph. In the flrst graph the momentum is not shown as it is necesgarily

W= — 2 3 k] g, (5.9

: H V. V.
iov(l +|8wV)k1+k2:k—l =y L2

Then the graphical representationsx@‘?, x[Vl], andx[vk] are as in the previous case, with the only
change in the representation of the order lalfbbecause of the square brackets instead of the
parenthesgssee Fig. 10.

On the contrary the graphical representation of the third equatid¢b.& is as in Fig. 11.

At the end we obtain a tree expansion where the trees differ from the previous ones as they
contain no vertex with only one entering line. With the previous notations this meank;tl#at
=@ andV;(0) =9, henceV(6) =V,(#). Moreover also the propagators and the node factors of the
vertices are different, a8.1) and (3.2 must be replaced with

) {1/((iwv€)(1 tiswr), v #0,
=

5.9
1, Vo= 0, ( )
and, respectively,
- &, v ¢ V0(0)1
v {_ 1/200, U e Vo(g), ( )

and we recall once more that only verticeswith s,=2 are allowed. Finally, the node factors
associated with the endpoints a?g—ckv if v is a white bullet and,= fV if v is a black bullet.
As in Sec. Ill we can envisage an expansion in which all white buiJehlavek =0 (simply
by expanding iteratively in trees the white bullets of higher ordértree appearing in this new
expansion is represented in Fig. 12.
With the notationg4.1), we obtain the bounds

1

IT g/ =

11 Fv‘ < ||V,

veV(0)Wo(6) ecL(o) telyo) |0Vl +igwv,|’
1 [Vo(O)l
Il ri=<(=—] . | Il FU‘<C'0EW), (5.11)
veVy(6) 2o veEp(0)
(1]
[]
+. = v [k
v v [F]
)

FIG. 11. Graphical representation of the second equati®s.8 expressing the coeﬁicienf‘] for k=2 andv#0 in terms

of the coefficients<[vk,,] with k' <k. In the right-hand graph one has the constrakatsk,=k—1 andv;,+v,=v.
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FIG. 12. Example of tree appearing in the new graphical expansion. The number of lines entering any cantée only
s,=2. The order of the tree is given BB(6)|-|Vo(6)|. All the white bullets have order labe(§), and additionally all the
black bullets carry a labéll); hence we can avoid drawing explicitly such labels.

11 FU‘$FEB<0> [T e,
veEg(6 veEg(h)

where we have again used the boufdl< Fe é", for suitable(strictly) positive constant§ and
&, which follows from the analyticity assumption dn
For reale we can bound each propagator by

1

= — (5.12
w

so that the value of any tree 7, , can be bounded by

[Val(6)| < |e[ o[ ™ maxXco, FH¥(max1,1/xh)* [T e, (5.13
veEg(6)

where we have again used Lemma 4.1. If we write

11 e—§|vvw$e—avvz( 11 e—gmw), (5.14

veEg(6 veEg(6)

we can proceed as in Sec. IV; we use the last product to perform the sum over the Fourier labels,
which gives a factoBY, whereas the sum over the unlabeled trees gives a fa€fdt At the end
we obtain

X< w5 X)) < w5, (5.15

where we have set, =4|w| ™t max1,1/XtmaxFB,,c,}|¢|. Hence the radius of convergenag
of the series expansiofb.4) is bounded agu,= u,=0(1/|¢|), so that fore small enough, say
le| <e3=(4|w| ™t maxX1,1/2xoimaxFB,,co}) L, the valueu=1 is inside the analyticity domain.

We can summarize the results found so far as follows.

Theorem 5.1 Given the equation (2.1) with f analytic, there exists> 0 such that for all real
& with |&| < g, there is only one periodic solution which admits a formal expansion in powers of
g, and the corresponding period is the same perfatf w as the forcing term. An explicit bound
is 9= e3=0(w).

Note that ifw is very large then very large values ofare allowed.

We can investigate further the regularity propertiescinf the periodic solution found in
Theorem 5.1, and see what happens for complex values of

FIG. 13. () RegionCg in the complexe-plane andb) striplike region of analyticitySg of the Borel transform. The region
Cr is the union of two discs of radiug/2 and center$+R/2,0).
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We need the following preliminary resuykee Fig. 18g) for the regionCgl.

Lemma 5.2 Given «>0 and 0<R<1/4w let Cg be the pair of discsCr={e:|Ree™?|
>R}, For all £ e Cg and all v Z\{0} one hasiwv(l+iswv)|=w/2.

Proof. Write e=a+ib andx=wv, so that one halwv(1+iswv)|=|x|y/(1-bx)?+(ax)*=F(x).
If eeCgr one hasla=b?/2R. Fix 0<A<L1. If |[1-bX<A then (1-bx)?*+(ax)?=|ax
=b?x|/2R=|b|(1-A)/2R, so thatF(x)=(1-A)2/2R. If |[1-bX{=A then (1-bx)?+(ax)’>=A,
henceF(x) = A|x| = wA. Then choosé\=1-VwR=1/2; this givesF(x)= w/2. [ |

Now fix 0< R<R=¢g; so small thajw|R<1/4, and consider the corresponding dom&in
We can apply Lemma 5.2 and deduce that any propaggti bounded bylg,| < 2/|w| for all
e eCr

This allows us to obtain the following result.

Proposition 5.3 There exists B0 small enough such that in the domail one has the
asymptotic expansion

N-1
x(t) = X, %M1 + Ry(e),  [Rne)| < ABN! |g|N, (5.16)
k=0
where the constants A and B are uniform in N and:in
Proof. Write x(t) asx(t) =xy(t) +Ry(t), wherexy(t) is given by the sum of the firdl—1 orders
of the formal power series expansion of the soluti¢n as in(5.16). For e e Cg the function(5.4)
with ©=1 isC” in g, hence we can estimaféy(s) with a bound on thé\th derivative ofx(t) in

Cr, and this gives the bound i%.16). |
Of course the constan®s andB in (5.16) are explicitly computable; in particular one finds
B=0(e3Y).

Then we are under the assumptions where Nevanlinna’s thé’ofeee also Ref. )2can be
applied, and hence the series for

B(t:e) =, %skx(k)(t) (5.17
k=0 K

converges for|e|<B [with B given in (5.16] and has an analytic continuation iSg
={e:dist(e,R,) <B} [see Fig. 1&)], satisfying for some constank the bound |B(t;s)]
<KelIR uniformly in everySg with B’ <B. The functionx(t) can be represented as the abso-
lutely convergent integral

x(t) = }J e ¥*B(t;s)ds (5.18
€Jo

for all £ e Cg, and this property can be stated by saying tk&f is Borel summabldin &) and

B(t;¢) is its Borel transfornt. This implies that the function given by the summation procedure

described in Theorem 1 is unique. Therefore we have obtained the following result, which

strengthens Theorem 1.

Theorem 5.4 The solution given by Theorem 1 is Borel summable at the origin

Note that Watson'’s theorem cannot be invoked to obtain this result because the singularities
are along the imaginary axis.

In particular if f(wt)=a+gsint then there is a periodic solutiox(t)=a+e/3 cost+0(&?),
with a=Va, which has period 2 and moves around the fixed poifx,x)=(a,0), and close to it
within O(g). No other periodic solution analytic i can exist.

We conclude this section with two remarks. The summation criterion envisaged in this section
is reminiscent of that usedin a more difficult situation in Ref. 6 for hyperbolic lower-
dimensional tori. However in that case we are not able to prove Borel summability because to
order k the bounds were likgk!)® for some a>1. Neither extension to Watson'’s theorem
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analogous to the Nevanlinna—Sokal regak those developed in Ref) 8an be used because the
exponenta is too large. We shall find a very similar situation in next section.

The lack of analyticity ine in a neighborhood of the origin is due to the accumulation of
singularity points along the imaginary axis in the compéeglane (where the quantity liewv
vanishes forw e 7). The analyticity domain is tangential to the imaginary axis, and this allows us
to apply Nevanlinna’s theorem. We find that this situation has some analogies with a different
problem, the analyticity properties of rescaled versions of some dynamical systems, such as
Siegel's problerf (and its linearization as considered in Ref),lthe standard m&mnd general-
ized standard maﬁsfor complex rotation numbers tending to rational values in the complex
plane. In those cases, however, only nontangential limits could be considered. Of course the
situation is slightly more complicated there, because the set of accumulating singularity points is
dense—and not only numerable as in the present case.

VI. QUASIPERIODIC FORCING TERMS

In the case of analytic quasiperiodic forcing terms, we shall assume a Diophantine condition
on the rotation vectow, that is

lw-v|=Colv[” Owez9\{0}, (6.2)

where|v|=|v|,=|v,|+ - +|vy|, andC, and 7 are positive constants. We neeg d—-1 in order to

have a nonvoid set of vectors satisfying the conditiéri), and 7>d-1 in order to have a full

measure set of such vectors. For simplidignd without loss of generalitywe can assumé€,

<yl2, with y=min{1,|c|}, wherec is a suitable constant to be fixed @s—2c,, with CO:\/E.
The equation of motion can be written in Fourier space as

io-v(ltieo V)X, +e > XX, =&f, (6.2)

vitvy=v

and the formal expansion for a quasiperiodic solution with frequency vest@ads as

x(t) =2 %M(t) = D ek D dretx) (6.3
k=0

k=0 5ezd

and to see that the coefficient%() are well defined to all orderls=0 one can proceed as in Sec.
[I, with no extra difficulty. In particular the Diophantine conditidf.1) is sufficient to assure
analyticity int of the coefficients<(t).

Also the graphical representation can be worked out as in Sec. Ill. The only difference is that
now the propagators of the lines with nonvanishing momenignwhich is defined according to
(3.2), with the vectors replacing the scalars, are given biiak/v,), the node factors associated
with the vertices with s,=1 are given by:v:—(iw-wv)z, and the node factors associated with
the black bulletsy are given byF,=f, , with », e 78\{0}. All the other notations remain un-
changed.

This yields that the propagators and the node factors can be bounde@a3 and(4.3), with
just a few differences of notation. More precisely one has

1 _
IT Rl IT g =< II lelvl IT of=< II < Cyllwl",
veVy(6) Celq(6) Celq(6) Celq(6) Celq(6) o v
1\ Mool
II r s(z—) : Fv‘ < clEw®l (6.4)
veVy() Co veEw(6)
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11 FU‘gF“EB(ﬂ) [T et

veEg(6) veEg(6)

where the only bound which introduces a real difficulty with respect to the case of periodic forcing
terms is the second one in the first line. Indeed it is the source of a small divisors problem, which
cannot be set only through the Diophantine condi{i6ri).

To each ordek we obtain forx®(t) a bound likeABk!™aX1.7% where the factor 1 arises from
the propagators of the lines In(#) and the factorr from those of the lines i,(6) in (6.3). The
last assertion is easily proved by reasoning as (#3), with max|w||v|,CoYv,?
<=maX{C;, |el[}|w| "7 replacingv,. In particular only ford=2 andr=1 we obtain the same
bound proportional t&! as in the case of periodic solutidof course with different constanis
andB). Note that the vectors satisfying the Diophantine conditi®rl) with 7=1 for d=2 is of
zero measure but everywhere dense. An example of vector of this kied {4 ,y,), wherey,
:(\f%—l)/z is the golden section.

However, to deal with the problem of accumulation of small divisors and discuss the issue of
convergence of the series, we need renormalization group techniques. The first step is just to
introduce a multiscale decomposition of the propagators, and this leads naturally to the introduc-
tion of clusters and self-energy graphs into the trees. The discussion can be performed either as in
Ref. 6 or as in Ref. §and in Ref. 7. We choose to follow Ref. 8, which is more similar to the
present problem because the propagators are scalar quantities and not matrices. In any case, with
respect to the quoted reference, we shall use a multiscale decomposition involving only the
quantities|w - v,|, that is without introducing any dependence ©in the compact support func-
tions. Indeed this is more suitable to investigate the analyticity propertiesand, as we shall
see, we shall not need to exclude any real value iof order to give a meaning to the resummed
series, a situation more reminiscent of Ref. 6 than of Ref. 8.

In the following we confine ourselves to outlining the main differences with respect to Ref. 8.
Let us introduce the functiong, and y,,, for n=0, as in Ref. 8, Sec. 5. In particulak,(|x|) # 0
implies [x|=2"™YC, and x,(|x|) # 0 implies |x <2™"C,. We shall define recursively thenor-
malized propagatorsff=g""(w-v,;s) and thecountertermsM™(w-v; &) on scales as

g Ux;e)=1, MMH(x;e) =0,

Yol[X) -
[Ol(x:g) = [O)(x: & :E: 2 ‘e
g (X' ) iX(1+i8X)’ M (Xv ) k:lTES’EOVT(X, ),
dlx:e) = XolX) -+ X2 (D) (X)) 6.5

ix(1 +iex) + M U(x;e)’

M(x;e) = MIH(x;2) + xo(X) - X2 (XD xa(IXMT(x; ),

MMxGe) =D X Vixe),

k=1 TESEn

where the set of renormalized self-energy grarjﬁﬁ and the self-energy graphé;(x;e) are
defined as in Ref. 8, Sec. 6. We have explicitly used the fact that the first contribution to the
self-energy graphs is of orddr=1 (see Fig. 14 Note that one haso(X]): xn-1(IXDxn(|X))
=xn([X)), so that ifgi™(x;e) # 0 then one has?*VC,<|x|<2""VC,.

Then one defines fdk=1
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@)

0) e

D /11(1)

———————— * + e A

FIG. 14. Lower order contributions to the counterterm arising from self-energy graphs okertlendk=3. The(dashed
external lines do not enter into the definition of self-energy graph, and they have been drawn only with the aim of helping
to visualize the structure of the self-energy graph.

M= val(g), MW=c= > *valo), (6.6)

06’]k,, t967I(,O
where the tree value is defined as
val(9) :( Il g%””)( I1 Fu), (6.7)
tel(0) veE(OUV(H)

and, as beforey means that there are two lines entering the last vargeof 6, and neither one
exits from an endpoiné with order labelk,=0. Fork=1 the second of6.7) must be interpreted
asc;=0.

Furthermore one has

MO(x; ) = ML%0;e) + O(e2x),

(6.8
M%0;e) = - 2eco+ MPN(0;e),  MF(0:e) = O(e?),
and an easy computation shoyes. Fig. 14 that
MIZ0:6) = = 3 Bl - ¥) 7.0 +0(e%) (6.9
2 Corz0 0 (w2 (1+(cw-v)?d ’ '
so that in fact one ham[zo](o;e):O(s3).
Moreover to higher scales one hs"(x; )=MM(0;¢) +O(&3x), with
N CHSEREES S SR (P WAy P | 1,0 +0(s%
, 0v#0 ny+ny=n " "2 (o0 V)2(1 +(w- V)Z)
(6.10

so that eactM["(0;¢) is a higher order correction #1l%(0;¢) and it decays exponentially im
(because of the compact support functjons
The following result holds.
Lemma 6.1 Assume that the renormalized propagators up to scalé nan be bounded as
g < ¢yt (6.11)

for some positive constants; @nd 8. Then for all H <n-1 the number I (6) of lines on scale
n’ in 6 is bounded by

Ny () <K2™™ > |p,, (6.12)
veEg(6)

for some positive constant. Kf || < &g, with &5 small enough, then for all’i<n one has

M lze)] < Difef?e @™, (M7 x;o)] < Dyfef%e 02", (6.13
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Ime Im e

(a) (b)
Ree Re e

FIG. 15. RegiorDg, in the complexe-plane forn=tan/6 (a) and foraA=1 (b). One can write\=tane, whereg is the
angle between the imaginary axis and the ave\b.

for some G-independent positive constants Bnd D,. Only the constant Pdepends orB8. The
constantgg can be written as;o:C1C5/3C3, with C, and G; two positive constants independent of
B and C.
Proof. The proof can be easily adapted from the proofs of Lemma 1 and Lemma 2 of lef. 8.
So we are left with the problem of proving that the renormalized propagators satisfy the
bounds(6.11). To this end let us introduce the notation

F(x) = Fo(x) + cy(e)e + C2(£,X)82X, Fo(x) =ix(1 +iex), (6.149

with x=w-» and the functiong;(¢) andc,(e,x) such thatc,(g)=c+cs(e)e, with c# 0, and the
functions|c,(e,X)| and |cs(e)| bounded by a constamt uniformly (in & andx). Recall thaty
=min{1,|c[} andCy< y/2.

Fix X €[0,1]. SetBg(0)={e e C:|e| <R} and Dg,={e=a+ib e B,x(0):|a|=\|b|} (see Fig.
15). The following result refines Lemma 5.2.

Lemma 6.2 Given0<R<1/4C,, let Cg be defined as in Lemma 5.2. For alk Cg and all
x one hagFy(x)|=min{Cy, |X|}/2, while for all £ € Dg, one hagFy(x)|=\|x|/2.

Proof: Write e=a+ib, so that|Fy(x)|=|x|\/(1-bx)?+(ax)2. For & € Cg setA=1-\CyR. If |X
=C,, for |[1-bx <A one has|Fy(x)|=|ax’|=b?x?/2R=C,/2, while for |[L1-bx=A one has
[Fo(X)|=Alx|=|x|/2=Cy/2. If |x|<C,, for |[1-bx]<A one has|Fy(x)|=|ax®|=Cy/2=|x|/2,
while for [1-bx =A one has|Fy(x)|=AX=|x|/2. For e € Dg, setA=1/2, onefinds |Fo(X)|
=\|x|/2. [

Then the following result holds.

Lemma 6.3 Set xw-v and assumgx|<C,. Then if R is small enough one h#5(x)|
=\v|x|/8 for all & € Dg,.

Proof. Set F,(x)=Fq(x)+ce and e=a+ib. Then F;(x)=i(x+b(c-x%)+a(c—x?), and |F(x)|
=|F(x)|—c’|e(1+|x]). If |x+b(c—x?)|=|x|/2 and |bc|=4|x| one has|Fi(x)|=|c|Vb?+a?/2
=|ce|/2, so that|F(x)|=|ce|/4=|cb|l/4=]x|. If |x+b(c—x?)|=|x|/2 and |bc<4|x| one has
[F1(x)| =y maxyx2+a2,|e|/4}/2, so thalF(x)| = y\x?+a?/4= y|x|/4. If |[x+b(c—x?)|<|x|/2 one
has |b(c-x%)|=|x|/2 and |bd<3|x|, which give |s]?<3|e|Va®+x?/y<3\R(|a]+|x|)/y, and

[F1(x)|=]a(c—x?)|=|a(c—x3)|/2+(\|x|/2) /2= y\(|a] +|x|) /4, so thatF(x)| = y\|x|/8. [
Then we can come back to the bounds of the renormalized propagators, and prove the fol-
lowing result.

Lemma 6.4 If R is small enough for all =0 and all ¢ € Dy, the renormalized propagators
gi"l(x; &) satisfy the bounds (6.11) wite=1 and C,;=\C,, with a A-independent constant,C

Proof. The proof can be done by induction onFor n=0 the bound is trivially satisfied by
Lemma 6.2. Assuming that the bounds hold for @lk<n then we can apply Lemma 6.1 and
deduce the bound$.13. In turn this implies that the renormalized propagators on stakn be
written asgt"l(x; ) =1/F(x), with F(x) written as in(6.14) for c=—-2c, [cf. (6.8)], and for suitable
functionsc,(e) andc,(e,x), depending om and satisfying the properties listed afi@r.14) for
some n-independent constar’. Then by Lemma 6.3 the renormalized propaga@f¥x;e)
satisfy the same bound6.11) with C;=0O(\) for & € Dg,. |

Of course for reak the bound(6.11) is trivially satisfied, withC,=2"1C,. This follows from
Lemma 6.4 witha=1, but it is obvious independently of that result because onecf{ag=ce
+0(g?), with c=-2c, € R. If we want to take also complex values gfwe have analyticity in a
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Im ¢

Re ¢

FIG. 16. Region®g andCx in the complexe-plane, Dy is the entire grey region, whil€g is the region contained inside
the two circles.

domainD which can be written a®r=U, .0 1Dr). One can easily realize that the regiGnis
contained inside the domaidy (cf. Fig. 16. Fix A=tan¢, with ¢ €[0,7/4] (see Fig. 15 for all
such¢ the line which forms an angle with the imaginary axigsee Fig. 15and passes through

the origin intersects the boundary Bg at a distancd? tan ¢ from the origin and the boundary of

Cr at a distancér sin ¢. Hence we have an analyticity domain of the same form as in the case of
periodic forcing terms. Nevertheless the results found so far do not allow us to obtain Borel
summability, notwithstanding a circular analyticity domdigis found, as the bounds which are
satisfied inside the regiof; are not uniform ine (because of the dependenceon

Note thatB=1 in (6.1]) is the same exponent appearing in the bounds of the propagators in
the formal expansion. To obtain uniform bounds in a dontginfor some value oR, we must
allow larger values of3. The following result is obtained.

Lemma 6.5 Set x w- v and assumé| < C,. If R is small enough one haB(x)| > v|x|?/2 for
all e e Cr.

Proof: SetF;(x)=Fy(x)+ce ande =a+ib. If [x+b(c—x?)|<|x|/2 one hash(c—-x?)|=|x|/2 and
3]x|=|bc/=|x|/4. Hence|a(c—x?)|=b?c-x?/2R=|x|?/16R|c|, so that one hasF,(x)|=]|a(c
-x?)|=|ad|/4+|a(c-x?)|/2= y(]a| +x?/ 16RO /2. On the other hand, one has?>=a?+b’<a?
+9x?/c?, so that|F(x)| =|F,(x)|—2¢'|e|>=|F1(x)|/ 2= yx?/2. The caséx+b(c—x?)|=|x|/2 can be
discussed as in Lemma 6.3, and it giVE§x)| = y|x|/4. [

Then we can prove the following result by proceeding exactly as in the proof of Lemma 8.

Lemma 6.6 If R is small enough for all B0 and all € e Cg the renormalized propagators
g"(x; ) satisfy the bounds (6.11) with=2 and C, a suitable constant

The advantage of Lemma 6.4 with respect to Lemma 6.6 is that the boumis dletter, which
means that the domai’k contained insidéy in the first case is larger than the doméipof the
second case. The advantage of Lemma 6.6 is that it allows uniform bounds inside the correspond-
ing domainCx to be obtained. Nevertheless, because of the faBtoR, a boundABk!?" is
obtained for the coefficientg¥(t) of the formal solution, and a result analogous to Proposition 2
can be proved also for the present case, Witff replacingN!; we do not give the details as the
proof is identical. Hence the bounds that we have are not good enough to obtain Borel summa-
bility in the case of quasiperiodic forcing terms, a situation strongly reminiscent of that encoun-
tered in Ref. 6. In fact at best one can setl for d=2 (which, as noted above, corresponds to a
set of Diophantine vectors of zero measure but everywhere fdngehis in turn implies a bound
proportional toN!?, which is not enough to apply Nevanlinna’s theorem.

The conclusion is that the resummed series

x(t) = 2 M), (6.19
k=0

where the coefficients!{l(t) are given by
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xK(t) D gtk (6.16)

vezd

with xE,k] defined by(6.6), is well defined and converges. In general it is not obvious—even if
expected—that6.15 solves the equation of motiol.1). Indeed, unlike the case of periodic
forcing terms, we have no result, such as Nevanlinna’s theorem on Borel summability, which we
can rely upon in order to link the resummed series to the formal series. Therefore we must check
by hand that by expanding in powers®the resummed series we recover the formal power series
(6.3). This means that the resummed series, which in principle could be unrelated to the equation
of motion (because of the way it has been defined fact solves such an equation. Such a
property can be proved by reasoning as in Ref. 8, Sec. 8. Again we omit the details, which can be
easily worked out.

We can summarize our results in the following statement.

Theorem 6.7 Given the equation (1.1) with f analytic in its argument a@dsatisfying the
Diophantine condition (6.1), there existg such that for all reale with |e| < &g there is a quasi-
periodic solution with the same frequency vector as the forcing term. Such a solution extends to a
function analytic in the domai®g shown in Fig. 16, with Re,,.

The conclusion is that the summation criterion described here gives a well defined function,
which is quasiperiodic and solves the equation of motibd), but the criterion is not equivalent
to Borel summability any more. In particular the issue of whether such quasiperiodic solutions are
unique or not remains open, as in Ref. 6.

VII. EXTENSION TO MORE GENERAL NONLINEARITIES

When considering the equatigh.5 the formal analysis of Sec. (nd of Sec. VI in the case
of quasiperiodic forcing termsan be performed essentially in the same way. If we write

“1 dP
g(x) = % agp(x -Co)’, gp= d—xgp(co),

(7.9
1
[I0I¥=3 Zg, X x2-x, k=0,
p=0 P* g ik P
V1+"'+Vp:1/
then the recursive equations for~ 0 are
X9 =0,
- _fv
X, = — (7.2

14 14

1
== (iw vx;YV-——[g]*?, k=2,
iw-v

while the compatibility condition become{g(x)]g‘):foﬁk@ for k=0. The latter fork=0 gives
g(cg)=fe, while for k=1 gives g'(cy)cet+R(cy,Cq,...,C-1)=0, where the function
R(cg,¢q,-..,C.1) depends on the coefficients to all ordde’'s<k, hence, in particular, on the
constants,, ...,C1. Therefore the constantg can be fixed iteratively as
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1
Ck=— ——R(Cp,Cy,...,Cc1), (7.3
k g (CO) 0s“1 k-1

provided that one hag (cy) # 0, so that under the conditioii$.6) one has the formal solubility of
the equations of motio(iL.1). Note that the first condition ifi.6) requiresf, € Rang), and if such
a condition is satisfied then the condition on the derivative is a genericity condition. Note also that
the class of functiong(x) which are not allowed depends érimore precisely on its averadg).
For instance an explicit example of a function which does not satis® is g(x)=3x%>-2x3 if
f0: 1.

The graphical representation differs from that of the preceding sections as now the number of
lines entering a vertex can assume any valug e N, and if v & V() the corresponding node
factor is

&
F,=- ggsvv (74)

which is bounded proportionally to some consta@btto the powers,. Since X, cy(4(S,—1)
=|E(6)|-1<k-1 (by Lemma 4.1 this produces an overall consta®i® in the tree value. Also the

study of the convergence of both the formal series and the resummed series can then be performed
as in the previous case, and no further difficulty arises. The constappearing aftef6.14)
becomes g’'(cp), instead of -2, so that still one has+ 0 by the assumptiofil.6).
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