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Attractiveness of periodic orbits in parametrically forced
systems with time-increasing friction

Michele Bartuccelli,’-® Jonathan Deane,!® and Guido Gentile?:©)
! Department of Mathematics, University of Surrey, Guildford GU2 7XH, United Kingdom
*Dipartimento di Matematica, Universita di Roma Tre, Roma I1-00146, Italy

(Received 10 July 2012; accepted 15 September 2012; published online 16 October 2012)

We consider dissipative one-dimensional systems subject to a periodic force. As a
model system, particularly suited for numerical analysis, we investigate the driven
cubic oscillator in the presence of friction, and study numerically how time-varying
friction affects the dynamics. We find that, if the damping coefficient increases in time
up to a final constant value, then the basins of attraction of the leading resonances
are larger than they would have been if the coefficient had been fixed at that value
since the beginning. From a quantitative point of view, the scenario depends both
on the final value and the growth rate of the damping coefficient. The relevance of
the results for the spin-orbit model is argued and discussed in some detail. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4757650]

. INTRODUCTION
Take a one-dimensional system driven by an external force,
i+ Fx,t)=0 (1.1)

with F a smooth function 27 -periodic in time #; here and henceforth the dot denotes derivative with
respect to time. Now add a friction term. Usually friction is modelled as a term proportional to the
velocity, so that the equations of motion become

i+ F,0)+yi=0, y>0 (1.2)

with the proportionality constant y referred to as the damping coefficient.

As a consequence of friction attractors appear.>* If the system is a perturbation of an integrable
one, there is strong evidence that all attractors are either equilibrium points (if any exist) or periodic
orbits with periods 7 which are rational multiples of the forcing period 27.>7 If 27/T = pl/q, with
P, q € N and relatively prime, one says that the periodic orbit is a p : g resonance. For each attractor
one can study the corresponding basin of attraction, that is the set of initial data which approach the
attractor as time goes to infinity. If all motions are bounded, one expects the union of all basins of
attraction to fill the entire phase space, up to a set of zero measure. This appears to be confirmed by
numerical simulations.> 7143

Recently such a scenario has been numerically investigated in several models of physical interest,
such as the dissipative standard map,'®?%*3 the pendulum with oscillating suspension point,’ the
driven cubic oscillator,’ and the spin-orbit model.> '3 What emerges from the numerical simulations
is that, for fixed damping, only a finite number of either point or periodic attractors is present
and every initial datum in phase space is attracted by one of them, according to a conjecture of
Palis.>“0 However, which attractors are really present and the sizes of their basins depend on the
value of the damping coefficient. If the latter is very small then many periodic attractors can coexist.
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This phenomenon is usually called multistability, see Refs. 19 and 20. By taking larger values for
the damping coefficient, many of the attracting periodic orbits disappear and, eventually, when the
coefficient becomes very large, only a few, if any, still persist: for every other resonance there is a
threshold value for the damping coefficient above which the corresponding attractor disappears.

In this paper, we aim to study what happens when the friction is not fixed but grows in time: more
precisely, when the damping coefficient is not a constant, but a slowly increasing function of time.
This is a very natural scenario. It is reasonable to suppose that in many physical contexts dissipation
tends to increase to some asymptotic value. We aim to show (numerically) in such a setting, with
the damping coefficient slowly increasing to a final value, that the relative areas of some basins of
attraction become larger than they would be if the damping were fixed for all time at the final value.
In other words, we claim that, in order to understand the dynamics of a forced system in the presence
of damping, not only is the final value of the friction important, but also the time evolution of the
damping itself plays a role. So, by looking in the present at a damped system which evolved from
an original nearly conservative one, with the friction slowly increasing from virtually zero to the
present value, it can happen that an attractor, which should have a small basin of attraction on the
basis of the final value of the friction, is instead much larger than expected. An heuristic explanation
of this phenomenon is obtained from a quasi-static point of view: with the friction slowly increasing
in time, even though the basin of attraction of a given resonance tends to become smaller, many
trajectories have already been captured, so that they continue to evolve toward that resonance. Of
course, as we shall see, several elements come into the picture, in particular the growth rate of the
damping coefficient and the closeness between its threshold and final values. Moreover, as we shall
see, to draw conclusions about the case of varying friction, very detailed information for the case of
constant friction will be needed too, in particular about the asymptotic behaviour of the relative areas
of the basins of attraction for very small values of the damping coefficient: we make the conjecture
that the limits of such areas are finite when the damping coefficient goes to zero.

We expect the phenomenology described above to be a general feature. However, for concrete-
ness, we shall focus on a specific case: we shall investigate in detail a model system, the driven
cubic oscillator in the presence of friction, which is particularly suited for numerical investigations
because of its simplicity. We shall first study in Sec. II some properties in the case of constant fric-
tion, with some details worked out in Appendix A. Then in Sec. III, we shall see how the behaviour
of the system is affected by the presence of non-constant—in fact, slowly increasing—friction. In
Sec. IV, we shall introduce another system of physical interest, the spin-orbit model, with some
details deferred to Appendices B, C, D, and E. A numerical analysis as performed in the case of
the cubic oscillator is hampered by the fact that the values of the damping coefficient would be too
small, requiring too long an integration time to allow us to deal with a large enough number of initial
data points. However, by assuming that the same scenario as found for the cubic oscillator occurs for
this system too, we shall discuss how the results described in Secs. II and III may be relevant to the
study of the dynamics of the spin-orbit model. Further comments are deferred to Sec. V. Finally in
Sec. VI, we draw our conclusions and briefly discuss open problems. Some discussion of the codes
we used for the numerical analysis is given in Appendix F.

Il. THE DRIVEN CUBIC OSCILLATOR WITH CONSTANT FRICTION
Let us consider the cubic oscillator, subject to periodic forcing and in the presence of friction,
i+ +efOxP+yi=0, f(1) = cost, (2.1)

where x € R and ¢ is a real parameter, called the perturbation parameter, that we shall suppose
positive (for definiteness). Of course one could consider more general expressions for f and the
choice made here is for simplicity. The system (2.1) has been investigated in Ref. 5, with y a fixed
positive constant. The constants ¢ and y are two control parameters, measuring respectively the
forcing and the dissipation of the system.

We shall look at (2.1) as a non-autonomous first order differential equation, so that the phase
space is R2. Note that (x, x) = (0, 0) is an equilibrium point for all values of ¢ and y. Moreover,
for ¢ = y = 0 the system is integrable and all motions are periodic. One can write the solutions
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TABLE . Values of the constants Co(p/q) for p=1and g = 2,4, 6, 8, 10 (leading primary resonances) for the cubic oscillator
(2.1); the threshold values are of the form y(w, £) = Co(w)e + 0(&?).

q 2 4 6 8 10

Co(1/g) 0.178442 0.061574 0.008980 0.000920 0.000078

explicitly in terms of elliptic integrals.? For & # 0 (hence & > 0) and y > 0 fixed, a finite number
of periodic orbits of the unperturbed system persist and, together with the equilibrium point, they
attract every trajectory in phase space.’ Such periodic orbits are called subharmonic solutions in
the literature.”® Each periodic orbit can be identified through the corresponding frequency or, better,
the ratio w := p/q between its frequency and the frequency of the forcing term. For each periodic
orbit one can compute the corresponding threshold value y (w, €): if y > y(w, ¢) the orbit ceases to
exist, while for y < y(w, €) the orbit is present, with a basin of attraction whose area depends on
the actual value of )/.5’ 14.26 At fixed &, one has’

lim y(p/q,e)=0. 2.2)
max{p,q}—00

Therefore, if we assume that all attractors different from the equilibrium point are periodic and no

periodic attractors other than subharmonic solutions exist, then we find that at fixed ¢ and y only a

finite number of attractors exists. We note that the assumption above, even though we have no proof,

is consistent with numerical findings.’

The threshold value y (w, &) depends smoothly on &:'%2%26 for all w € Q there exists n(w) € N
such that the corresponding threshold value is of the form y (w, £) = Co(w, &) ™, with the constant
Co(w, &) nearly independent of ¢ for & small; more precisely Cy(w, €) tends to a constant Cop(w) as
goes to zero, so that we can consider it a constant for ¢ small enough. Resonances are classified as
follows: we refer to resonances with frequency w such that n(w) = 1 as primary, to resonances with
frequency w such that n(w) = 2 as secondary, and so on.>* Of course such a classification makes
sense only for ¢ small enough. The primary resonances are the most important, in the sense that, at
fixed small ¢, for y large enough, only primary resonances are present; moreover, by decreasing the
value of y, although non-primary resonances appear, they have a small basin of attraction with respect
to those of the primary ones. The threshold values of the leading attractors (that is the attractors
with largest threshold values), in terms of the constants Cy(w), were computed analytically in
Ref. 5 and are reproduced in Tables I and II. In particular the periodic attractors with frequency 1/q,
with ¢ odd, appear in pairs.’> The higher order corrections to Co(w, &) are explicitly computable;
however, we shall not need to do this here. Note that the classification of resonances and the
corresponding threshold values strongly depend on the forcing: all values in this section and Sec. II1
refer to f(f) = cost, as in (2.1).

Consider the system (2.1) at fixed ¢. For y large enough, the only attractor left is the equilibrium
point; in that case all trajectories eventually go toward this point, which becomes a global attractor
(see Appendix A). If y is not too large—that is, according to Table I, if y < Cy(1/2)¢, up to higher
order corrections—then, besides the equilibrium point, there is a finite number of other attractors,
which are periodic orbits.

For ¢ = 0.1, from Tables I and II one obtains the threshold values y(1/2, 0.1) ~0.018,
y(1/4, 0.1) =0.0062, y(1, 0.1) ~ 0.0015, y(1/6, 0.1) ~0.00090, y(1/3, 0.1) = 0.00065, y(1/8,
0.1) &0.000092, y(1/5, 0.1) =0.000065, and so on. Using a probabilistic approach, we study

TABLE II. Values of the constants Co(p/q) for p = 1 and g = 1, 3, 5, 7, 9 (leading secondary resonances) for the cubic
oscillator (2.1); the threshold values are of the form y (w, €) = Co(w)e? + O(&3).

q 1 3 5 7 9

Co(1/g) 0.146322 0.065001 0.006488 0.000177 0.000002
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TABLE III. Numerical results for the relative areas A(w, y), %, of the parts of the basins of attraction contained inside the
square Q for ¢ = 0.1 and some values of y. The attractors are identified by the corresponding frequency (O is the origin).
The number of random initial conditions taken in Q is 1000000 up to ¥ = 0.0001, 500 000 for y = 0.00005, 150 000 for
y = 0.00001, and 50 000 for y = 0.000005.

[} 0 12 1/4 la 1b 1/6 1/3a 1/3b 3/8
y = 0.020000 100.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0
y = 0.015000 91.1 08.9 00.0 00.0 00.0 00.0 00.0 00.0 00.0
y = 0.010000 79.1 20.9 00.0 00.0 00.0 00.0 00.0 00.0 00.0
y = 0.005000 64.9 31.8 03.4 00.0 00.0 00.0 00.0 00.0 00.0
y = 0.001000 44.5 40.9 13.2 00.7 00.7 00.0 00.0 00.0 00.0
y = 0.000500 38.7 41.8 14.7 01.3 01.3 01.7 00.3 00.3 00.0
y = 0.000100 322 419 14.0 02.6 02.6 03.6 01.5 01.5 00.1
y = 0.000050 30.2 41.6 13.8 02.8 02.8 03.8 01.7 01.7 00.6
y = 0.000010 26.9 41.1 13.2 02.9 02.9 03.9 01.8 01.8 01.1
y = 0.000005 26.2 40.9 13.0 02.9 02.9 03.8 01.8 01.8 01.3

numerically the basins of attraction, for various values of y, as follows (see Appendix F for de-
tails). Take uniformly distributed, random initial data in a finite domain of phase space, say the
square Q@ = [—1, 1] x [—1, 1] and let them evolve for a very long time. By collecting together
all the initial data whose trajectories end up in the same attractor, we reconstruct the part of the
corresponding basin of attraction contained in Q. The relative areas we find, for some values of
y, for the parts of the basins of attraction inside Q, are given in Table III. In principle the relative
areas depend on the domain, but one expects that they do not change too much by changing the
domain, provided the latter is not too small. Note that for ¢ = 0.1 and y < 0.00005, other attractors
than those listed in Table III appear (namely periodic orbits with frequencies 1/8, 1/5 and 3/4 for
y = 0.00005; with frequencies 1/8, 1/5, 3/10, 2/5, 5/12, and 3/4 for y = 0.00001; and with frequen-
cies 1/10, 1/8, 1/7, 1/5, 3/14, 2/7, 3/10, 2/5, 5/12, 3/7, 2/3, and 3/4 for y = 0.000005), so explaining
why the relative areas of the basins of attraction considered there do not sum up to 100%. Small
discrepancies for the other values are simply due to round-off error (the error on the data is in the
first decimal digit; see Appendix F).

If one plots the relative areas A(w, ) of the basins of attraction versus y one finds the situation
depicted in Figures 1 and 2. Of course in general A(w, y) depends also on ¢, i.e., A(w, y) = A(w,
y, €), although we are not making explicit such a dependence since ¢ has been fixed at e = 0.1; the
same comment applies to the quantities Apx (@) = Amax(w, €) and A(w) = A(w, €) to be introduced.

It can be seen that for any w € Q one has A(w, y) =0if y > y(w, €). By decreasing y below
y(w, €), A(w, y) increases up to a maximum value An,ax(w) which tends to stabilise. For very small
values of y one observes a slight bending downward. It would be interesting to investigate very—in
principle arbitrarily—small values of y, but of course we have to cope with the technical limitations
of computation: studying arbitrarily small friction would require running programs for arbitrarily
long times and with arbitrarily high precision—see also comments in Appendix F. However, by
looking at Figures 1 and 2 and noting that numerical evidence suggests that all attractors different
from the origin are periodic orbits, we make the following conjecture: as y goesto 0F, forallw € Q
the relative area A(w, ) tends to a finite limit A(w) such that

Z A(w) = 100%, (2.3)
weQ

where w = 0 designates the origin. Of course when y = 0 the area of each basin drops to zero, so
that, accepting the conjecture above, all functions A(w, y) are discontinuous at y = 0. This is not
surprising: a similar situation arises in the absence of forcing, where the only attractor is the origin,
with a basin of attraction which passes abruptly from zero (y = 0) to 100% (y > 0). Moreover,
analogously to Ref. 48, we expect that the total number of periodic attractors N, grows as an inverse
power of y when y tends to 0, say N, ~ C;y ~¢, for some positive constants C; and «. Therefore
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100.0

80.0

20.0

-12.0 -10.0 -8.0 -6.0 -4.0

logy

0.0

FIG. 1. Relative areas A(w, y) of the basins of attraction versus log y for the values of y listed in Table III.

there should exist at least one resonance @ for which A(®) < Czyﬂ as y tends to zero, for positive
constants C, and < «. This means that if the limits A(w) vanished at least one function A(®, y)
should be exponential in log y, i.e., A(®, y) < C, exp(Blog y), a behaviour which seems unlikely
in the light of Figures 1 and 2. Of course the argument above is far from conclusive, because we
cannot rule out the possibility that a sharp change appears in the profiles A(w, y) when y becomes
very close to zero.

15.0

10.0

A(®, ), %

5.0

FIG. 2. Relative areas A(w, y) of the basins of attraction versus log y: a magnification of Figure 1 for the periodic orbits
with w = 1/4, 1, 1/6, 1/3, 3/8.
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TABLE IV. Numerical results for the relative areas A(w, 0.015; A) of the parts of the basins of attraction contained inside Q
for ¢ = 0.1 and y (¢) given by (3.2) with yo = 0.015 and Ty = A/yy, for various values of A and w = 0, 1/2 (w = 0 is the
origin). In each case, 1 000 000 random initial conditions have been taken in Q.

A 0 25 50 75 100 125 150 175 200
w=0 91.1 70.6 66.2 64.6 63.4 62.6 62.1 61.6 61.3
w=1/2 08.9 29.4 33.8 354 36.6 37.4 379 38.4 38.7

lll. THE DRIVEN CUBIC OSCILLATOR WITH INCREASING FRICTION

Here we shall consider y = y (f) explicitly depending on time, that is
i+ +efOX+yn)x=0, f(t) = cost. (3.1)

For both concreteness and simplicity reasons, we shall consider a dissipation y (¢) linearly increasing
in time up to some final value, i.e.,
! 0<t T
) =1 <1y,
T 0 (3.2)
0, t > T,

y() =

where the parameters y and T are positive constants. However, the results we are going to describe
should not depend too much on the exact form of the function y (¢), as long as it is a slowly increasing
function; see Sec. V. In (3.2) we shall take Ty = A/y(, with A € R a varying parameter, whose
form is suggested by the fact that trajectories converge toward an attractor at a rate proportional to
1/y (see Appendix A).

Hence, consider the system with ¢ = 0.1 again but now with y(f) given by (3.2), with
To = Alyg and y¢ = 0.015. Computing numerically the corresponding relative areas A(w, yo;
A) =A(w, yo, 0.1; A)—that is A(w, v, €; A) for e = 0.1—for different values of A, we obtain the
results in Table IV and Figure 3. If A is very small, the damping coefficient reaches the asymptotic
value y( almost immediately, and we would expect to obtain the same scenario as in the previous
case (y constant): two attractors, corresponding to the origin and the 1:2 resonance, with basins
whose relative areas are close to the values for A = 0, i.e., 91.1% and 8.9%, respectively. On the

100.0 : : . | .

80.0

60.0

40.0

A(m, 0.015; A)

20.0

0.0 . | 1 1 , |
0 50 100 150 200

A

FIG. 3. Relative measures of the basins of attraction versus A for yo = 0.015.
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TABLE V. Numerical results for the relative areas A(w, 0.005; A) of the parts of the basins of attraction contained inside the
square Q for ¢ = 0.1 and y (¢) given by (3.2) with yo = 0.005 and Ty = A/y, for various values of A and w =0, 1/2, 1/4
(w = 0 is the origin). 500 000 random initial conditions have been taken in Q.

A 0 20 40 60 80 100 120
w=0 64.8 534 494 479 46.8 46.1 46.0
w=1/2 31.8 385 40.0 40.7 412 41.5 413
w=1/4 03.4 08.1 10.6 114 12.0 124 12.7

other hand, if A becomes larger, we find that the relative area of the basin of attraction of the origin
decreases, whereas that of the basin of attraction of the 1:2 resonance increases. For A very large,
these areas apparently tend to constant values of around 61% and 39%, respectively; see Table IV.

Analogous numerical results are found, for instance, for yo = 0.005; see Table V and
Figure 4. One sees that for A = 20 the relative areas of the basins of attraction of the origin
and of the 1:2 and 1:4 resonances have already appreciably changed: they have become, respec-
tively, 53.4%, 38.5%, and 8.1%. By further increasing A, once again a saturation phenomenon is
observed and the relative areas settle about asymptotic values around 45%, 42%, and 13% (for
instance for A = 120 the areas are, respectively, 46.0%, 41.3%, and 12.7%). Note that the value
yo = 0.005 is such that the threshold values y(1/2, 0.1) &~ 0.018 and y(1/4, 0.1) &~ 0.0062 of the
persisting resonances are slightly above it (that is their ratios with y are of order 1).

If one fixes the value o = 0.0005, then the 1:6, 1:1, and 1:3 resonances are also present. On
the other hand the threshold values of the 1:2 and 1:4 resonances are appreciably larger than y (that
is, y(w) > yo for @ = 1/2 and w = 1/4), whereas the threshold values y (1/6, 0.1) =~ 0.00090, y (1,
0.1) & 0.0015, and y(1/3, 0.1) & 0.00065 of the 1:6, 1:1, and 1:3 resonances, respectively, are not
too different from y (. If we again take y (¢) as in (3.2), with Ty = A/y( and y¢ = 0.0005, we have
the numerical results in Table VI and Figure 5.

Therefore we have, from a qualitative point of view, the same scenario as in the case
yo = 0.005, but with some relevant quantitative differences: for yo = 0.0005, by comparing
Table VI with Table III, we see that the relative areas of the basins of the 1:2 and 1:4 resonances are
not too different in the two situations y constant and y increasing.

70.0 T T T T T T

60.0

50.0

N
<
(=]

A(®, 0.005; A)
8
oS
I
|

200 —

10.0 — o= 1/4"

0 0 1 I 1 I 1 l 1 I 1 I 1
0 20 40 60 80 100 120

A

FIG. 4. Relative areas of the basins of attraction versus A for yo = 0.005.
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TABLE VI. Numerical results for the relative areas A(w, 0.0005; A) of the parts of the basins of attraction contained in Q
for ¢ = 0.1 and y(¢) given by (3.2) with y¢ = 0.0005 and Tp = A/y, for various values of A and w =0, 1/2, 1/4, 1, 1/6, 1/3
(w = 0 is the origin). 250 000 random initial conditions have been taken in Q.

A 0 10 20 30 40 50 60 70 80
w=0 38.7 36.4 34.8 34.1 335 333 33.1 329 32.7
w=1/2 41.8 40.9 41.4 41.6 41.5 415 41.6 41.3 41.6
w=1/4 14.7 13.9 13.8 13.6 13.9 13.9 13.8 14.0 13.9
=1 01.3 02.9 02.9 02.9 02.9 03.0 03.0 03.0 03.0
w=1/6 01.6 01.8 02.4 02.9 02.9 03.0 03.2 03.1 03.2
w=1/3 00.3 00.6 00.9 01.0 01.2 01.2 01.3 01.4 01.3

We now give an argument to explain why the basins of attraction are different if y is not fixed ab
initio to some value y( but slowly tends to that value. According to Table III, for smaller values of y
the basins of the periodic attractors are larger. For instance for y = 0.005, the 1:2 and 1:4 resonances
have basins with relative areas 31.8% and 3.4%, respectively, while the basins of attraction of the
same resonances for y = 0.0005 have relative areas 41.8% and 14.7%, respectively. Then, if we
suppose that the friction is slowly increasing in time, when it passes, say, from y = 0.0005 to 0.005,
on the one hand the size of the basin would decrease because of the larger value of y, but on the other
hand many trajectories have already nearly reached the basin and hence continue to be attracted
toward that resonance. If friction increases slowly enough we can assume that it is quasi-static.
Therefore, at every instant 7, the basin of attraction of any resonance has the size corresponding to
the value y (7) at that instant, as can be deduced by interpolation from Table III (or Figures 1 and 2),
while the rate of approach to the resonance can be roughly estimated as proportional to 1/y(7); see
Appendix A. Therefore if A is large enough (that is if the growth of y (¢) is slow enough) one expects
the trajectory to be captured by the resonance faster than the rate at which the basin of attraction is
decreasing.

By increasing the friction further, the basin of a resonance w can become negligible, until the
resonance itself disappears. If this does not happen, that is if y(w, 0.1) > y(, then there is a value
of A above which the relative measure A(w, yo; A) of the basin saturates to a value close to the
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400 -
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<3001 s
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8200} —
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FIG. 5. Relative areas of the basins of attraction versus A for yo = 0.0005.
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FIG. 6. Basins of attraction determined numerically for the 1:2 resonance for constant y (gray; red online) and time-varying
y (black plus most of the gray/red region). Note that the gray/red region has priority over black and over white, so parts of
the basin of attraction for the 1:2 resonance, y varying, are obscured. Initial conditions in the white region either go to the
origin or to the 1:4 resonance.

maximum value Anax (@) (possibly a bit smaller because of the slight bending downward observed in
Figures 1 and 2). In particular, this explains the difference between Figures 4 and 5. For concreteness
let us focus on the 1:2 resonance: with respect to the case yoy = 0.0005, according to Figure 3, the
relative area A(1/2, y) of the basin of attraction does not increase appreciably when taking smaller
values y < yo—indeed A(1/2, 0.0005) is already close to Apax(1/2).

Note that, according to the quasi-static description above, at no instant T can the basin of
attraction A(w, y (7)) of any resonance w be larger than A,x(), so that the a priori estimate A(w,
y0; A) < Apax(w) is expected to hold for all values of y and A.

We conclude that the main effect of friction slowly growing to a final value y ¢ is that, eventually,
every basin of attraction has essentially the same size that would appear for lower values of friction.
So, if the basin of attraction of any p: g resonance is larger for values of friction lower than the
final value, then, when the final value y is reached, one observes a basin of attraction with relative
area larger than A(p/q, y ). If on the contrary for lower values of the friction the basin of attraction
has more or less the same size as for the final value, then one observes essentially the same basin
one would have by taking the friction fixed at that value since the beginning. In other words, if the
friction increases in time, one can really have a larger basin of attraction only if the final value yq
is close enough to the threshold value y(w, 0.1). However, if y is too close to y(w, 0.1), for the
phenomenon to occur, the rate of growth has to be slow enough: the closer y is to y(w, 0.1), the
larger A to be chosen. For instance, for ¢ = 0.1 and y( = 0.0005, a glance at Table VI gives the
following picture. The areas of the basins of attraction for the 1:2 and 1:4 resonances have small
variations for different values of A, whereas the areas of the basins of attraction for 1:1, 1:3, and
1:6 change in a more appreciable way when A becomes larger. Moreover, the threshold value y (1/3,
0.1) &~ 0.00065 is just above y, so for the area of the corresponding basin of attraction to come close
to the maximum possible value one needs large values of A; on the contrary y (1, 0.1) ~ 0.00146 is
not too close to yo and hence the area of the corresponding basin of attraction comes closer to the
maximum possible value for smaller A = 10.

We finish this section with a pair of figures showing the difference between the basins of
attraction of the 1:2 resonance for y = 0.005, as found numerically in the cases of constant and
time-varying y. According to Table V, changing A from zero—i.e. constant y—to 40 increases the
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FIG. 7. Basins of attraction determined numerically for the 1:2 resonance for constant y (gray; red online) and time-varying
y (black plus most of the gray/red region). Note that the gray/red region has priority over black and over white, so parts of
the basin of attraction for the 1:2 resonance, y varying, are obscured. Initial conditions in the white region either go to the
origin or to the 1:4 resonance. This figure shows a magnified portion of Figure 6.

area by about 8%, and Figures 6 and 7 show how this extra area is distributed (most of the points
of the basin of attraction of the resonance for constant y still belong to the basin of attraction for

varying y).

IV. THE SPIN-ORBIT MODEL

The spin-orbit model describes the motion of an asymmetric ellipsoidal celestial body (satellite)
which moves in a Keplerian elliptic orbit around a central body (primary) and rotates around an axis
orthogonal to the orbit plane.?>3° If § denotes the angle between the longest axis of the satellite and
the perihelion line, in the presence of tidal friction the model is described by the equation

G+eGO,)+y@—1)=0, “.1)

where ¢, y > 0 and 6 € T = R/2xZ, so that the phase space is T x R (note that (4.1) is of the
form (1.2), withx = 6 — £). Here ¢ is a small parameter, related to the asymmetry of the equatorial
moments of inertia of the satellite, and G(6, 1) = d4g(0, t), where

1 1, 5 1 5, 13,
g(@0, t)_<4_16 — 3—26 + ﬁe )005(29 -1+ (5 — 4_16 + 3—26 )cos(26 —2t)
7 123 489 17 115
+< — Ze + 56‘3 — ﬁé‘S) COS(20 - 3t) + (762 — 664) COS(29 - 4t)
845 5 32525 533 ,
+( - Se¢ + oo ) cos20 — 51+ (35-¢*) cos(26 — 61 4.2)

208347 | 1, 1
(— 7630 e )cos(29 —7t) + (— %e — 1536e )cos(29 +1)
1, 81 .
+<&e )oos(ze +20)+ (— e ) cos(20 + 31),

with e being the eccentricity of the orbit; terms of order O(e®) have been neglected. In celestial
mechanics cases the model (4.1) may appear oversimplified and more realistic pictures could be
devised.'> 132 Nevertheless, because of its simplicity, it is suitable also for analytical investigations
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TABLE VII. Values of the constants e, €, and y for some cases of physical interest for the spin-orbit model (4.1).

Primary Satellite e 3 y
E-M Earth Moon 0.0549 6.75 x 1077 3.75 x 1078
S-M Sun Mercury 0.2056 8.11 x 1077 3.24 x 1073
J-G Jupiter Ganymede 0.0013 4.30 x 107 1.91 x 1073
J1 Jupiter Io 0.0041 3.85x 1073 1.71 x 10~*
S-E Saturn Enceladus 0.0047 1.41 x 1072 6.26 x 10~
S-D Saturn Dione 0.0022 3.85 x 1073 1.71 x 107

(as opposed to just numerical ones) on the relevance of friction in the early stages of evolution of
celestial bodies and for the selection of structurally stable periodic motions.

Values of e, ¢, and y for some primary-satellite systems of the solar system are given in
Table VII. The values of ¢ can be found in the literature,?® while the derivation of & and y is
discussed in Appendix B; see also below. All non-chaotic satellites of the solar system—we are not
considering irregular satellites, which are very distant from the planet and follow an inclined, highly
eccentric and often retrograde orbit—are trapped in the 1:1 resonance (rotation period equal to the
revolution period), with the remarkable exception of Mercury, which is in a 3:2 resonance (Mercury
can be considered as a satellite of the Sun). The spin-orbit model has been used since the seminal
paper by Goldreich and Peale? in an effort to explain the anomalous behaviour of Mercury. The
ultimate reason is speculated to be related to the large value of the eccentricity. However, even though
higher than for the other primary-satellite systems, the probability of capture into the 3:2 resonance
is still found to be rather low.!*?3 In the following part of this section, we aim to investigate what
happens if we take into account the fact that friction has increased during the evolution history of
the satellites.

Considerations analogous to those made in Sec. II for the cubic oscillator apply also in this
case. In particular we can introduce the threshold values y (w, ¢) for the resonances @ and classify
the resonances as primary, secondary, etc., according to the integer n(w) such that y(w, €) = Cop(w,
) e"®@ with Cy(w) := Co(w, 0F) # 0. Again one can compute analytically the threshold values
of the primary resonances, by writing y (@) = Co(w)e, up to higher order corrections. If one writes

(4.2) as
g(0.1) = arcos(20 — k1), (4.3)
keZ
one finds (see Appendix D)
2qlazp/q| p 1 3.5 17
C(P/Q)Z—, — € _lvj:_7:|:_52’_749_ ) (4-4)
’ lp —ql q 27727727 72

while Cy(1) = oo (that is no threshold value exists for the 1:1 resonance) and Cy(w) = O for any
other w; other resonances may appear only at higher order in €. This leads to the values listed in
Table VIII, for the primary resonances of the systems considered in Table VII. Note that for y large
enough, all attractors disappear except the 1:1 resonance, which becomes a global attractor.

TABLE VIII. Values of the constants Cy(p/q) for some primary resonances of the the spin-orbit model (4.1); the threshold
values are of the form y (w, €) = Co(w)e. Only positive w have been explicitly considered.

1) 172 312 2 52 3 72

E-M  Colw) 5488x1072 3.818x107" 2545x1072 1.928x 1073 1513 x 1074 1.186 x 1073
SM  Co(w) 2.045 x 107! 1.308 3251 x 107" 9163 x 1072 2.976 x 1072 8.739 x 1073
J-G  Colw) 1.300x1073 9.100x 1073  1.436x 1075 2578 x 1078 4757 x 1071 8832 x 10~14
-1 Co(w) 4.100x 1073  2870x 1072  1429x107* 8.088 x 1077  4.707 x 10~ 2.756 x 10~
S-E  Cow) 4700x1073  3200x 1072 1.878 x 107* 1.218 x107% 8128 x 1072  5.455 x 107!
S-D  Colw) 2200x 1073 1.540x 1072  4.114x 1075  1.259x 1077  3.902x 10710 1.226 x 10712
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It seems reasonable on physical grounds (see Appendix E) to assume that friction was increasing
in the past up to the present-day value yo = y, with y as in Table VII. Application to the spin-
orbit model for S-M would require numerics with very small values of ¢ and y: the discussion in
Appendix B provides the values in Table VII, so that yy ~ 0.05 . However, the value usually taken
for ¢ in the literature is ¢ ~ 10~* (see Appendix B). In both cases, y is far below the threshold
value y (o, ¢), especially for the most interesting resonance w = 3/2,>>% as y(3/2, &) ~ 1.3 ¢ (see
Table VIII); we refer to Sec. VI for further comments.

As already noted in Ref. 13, the small value of y( represents a serious difficulty from a
numerical point of view, because it requires very long integration (for a very large number of initial
conditions—see comments in Appendix F). Nevertheless, the discussion in Sec. III about the driven
cubic oscillator allows us to draw the following conclusions about the spin-orbit model.

The results in Table III suggest that the relative areas A(w, y, €) of the basins of attraction are
almost constant for values of y much smaller than the threshold values; more precisely they assume
values close to Apax(w, €). In the case of increasing friction, if the final value y( is much smaller
than the threshold value, the basin turns out to have more or less the same size close to Ay (w, &)
as it would have if y were set equal to y since the beginning. The same scenario is expected in the
case of the spin-orbit problem. In particular a crucial aspect is understanding when the final value
can be considered “much smaller” than the threshold value or comparable to it. Again the analysis in
Sec. Il is useful: pragmatically, we shall define y much smaller than y (w, €) when A(w, y, €) is close
to the maximum possible value A, (w, €). Therefore it becomes fundamental to check whether, for
the current values of y and ¢ as given in the literature, A(w, y, €) is either close to Ay (w, €) or
much smaller.

1. If we assumed A(w, y, €) to be close to Anax(w, €), then the time-dependence of friction would
not change the general picture as observed today. From this point of view, our results would
be a bit disappointing: indeed the relative area of the basin of attraction of the 3:2 resonance,
with the values of ¢ and y usually taken in the literature, is found to be rather small for S-M
(Ref. 13) and including the time-dependence of friction in the analysis would not give larger
estimates. On the other hand, also in this second case, our analysis would provide some more
information: it would show that the results available in the literature'®'>!¢ would remain
correct even if time-dependent friction were included. In particular, to explain why Mercury
has been captured into the 3:2 resonance, other mechanisms should be be invoked, such as the
chaotic evolution of its orbit.'> Of course the values of & and y used in the literature are only
speculative: again our analysis suggests that the results would not change in a sensible way
even by taking different values for one or both parameters—see also comments in Sec. VI.

2. On the contrary if A(w, y, €¢) were much smaller than A« (@, €), taking into account the
time-dependence of friction would imply a larger basin of attraction with respect to the case
of constant friction. In this case the exact values of the parameters ¢ and y would play a
fundamental role—again see also Sec. VI.

TABLE IX. Numerical results for the relative areas of the parts of the basins of attraction contained inside the square Q for
& = 0.5. (w = 0 denotes the origin). 1 000 000 random initial conditions have been taken in Q.

3 0 12 1/4 la 1b 1/6
y = 0.1000 100.0 00.0 00.0 00.0 00.0 00.0
y = 0.0750 70.5 29.5 00.0 00.0 00.0 00.0
y = 0.0500 49.8 50.2 00.0 00.0 00.0 00.0
y = 0.0250 32.0 56.0 05.8 03.1 03.1 00.0
y = 0.0050 10.4 48.8 07.7 10.5 10.5 00.0
y = 0.0025 08.1 36.3 06.8 115 11.5 00.8
y =0.0010 06.9 37.5 04.4 11.4 114 01.6
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TABLE X. Numerical results for the relative areas of the parts of the basins of attraction contained inside the square Q for ¢
= 0.01. (w = 0 denotes the origin). 500 000 random initial conditions have been taken in Q.

[ 0 172 1/4 la 1b 1/6
y = 0.0020 100.0 00.0 00.0 00.0 00.0 00.0
y =0.0015 98.1 01.9 00.0 00.0 00.0 00.0
y =0.0010 94.0 06.0 00.0 00.0 00.0 00.0
y = 0.0005 88.3 10.6 01.1 0.00 0.00 00.0
y = 0.0001 78.2 15.3 06.5 00.0 00.0 00.0

V. REMARKS AND COMMENTS

A. Different values of the perturbation parameter

In Secs. II and III, we have fixed ¢ = 0.1. However, by taking different values of ¢, the
phenomenology does not change. For instance, for ¢ = 0.5 and ¢ = 0.01 we find numerically the
relative areas listed in Tables IX and X (for & = 0.5 only a few attractors are taken into account in

Table IX).

The general scenario is the same as in the case ¢ = 0.1, with obvious quantitative differences
due to the fact that for smaller values of ¢ (say ¢ = 0.01) only primary resonances are relevant unless
y is very small, while for larger ¢ (say ¢ = 0.5) more and more resonances appear by taking smaller
values of y (because powers of ¢ are not much smaller than ¢ itself). Indeed, if ¢ = 0.5, even for
y = 0.005 we detect numerically more than 50 attractors and the classification of resonance w
according to the the value of n(w) becomes meaningless. For instance, for ¢ = 0.5, one has A(3/4,
0.0025, 0.5) ~ 11.4% and A(3/4, 0.001, 0.5) ~ 6.8%, to be compared with the values for w = 1/4
in Table IX. Moreover for large values of ¢, say for ¢ = 0.5, the bending of the curves A(y, w, €)
in Figures 1 and 2 is more pronounced and the monotonic decrease observed for ¢ = 0.1 when y
tends to 0 seems to be violated (compare the values A(1/2, y, 0.5) for y = 0.0025 and y = 0.001 in
Table IX); see also the comments in Sec. VI.

B. Different functions y(t)

As stated at the beginning of Sec. III, the exact form of the function y (f) should not be relevant.
As a check we studied (3.1) with y(¢) given by both (3.2) and

y(@®) = (1 —e M), (5.1

where y( and T are positive constants, by setting Tp = A/y( and varying A for fixed values of y¢.
The results show that the same behaviour is obtained in both cases. For instance, for y¢ = 0.006,
one has the numerical results in Tables XI and XII; see also Figures 8 and 9.

In particular, in both cases the relative areas A(w, yg, 0.1; A) start at the values corresponding
to constant dissipation y = yo for A = 0 and then either decrease (for the origin) or increase (for
the periodic orbits), apparently to some asymptotic value close to Apax(w, 0.1). For instance the
relative areas corresponding to (3.2) with A = 30 are very close to those corresponding to (5.1) with

TABLE XI. Numerical results for the relative areas A(w, 0.006, 0.1; A) of the parts of the basins of attraction contained
inside Q for ¢ = 0.1 and y (¢) given by (3.2) with y¢ = 0.006 and Ty = A/yy, for various values of A and w = 0, 1/2, 1/4.
(w = 0 denotes the origin). 500 000 random initial conditions have been taken in Q.

A 0 10 20 30 40 50
w=0 69.6 64.3 56.3 53.1 514 50.1
w=112 29.9 34.8 37.2 38.6 39.2 39.8
w=1/4 00.5 00.9 06.5 08.3 09.4 10.1
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TABLE XII. Numerical results for the relative areas A(w, 0.006, 0.1; A) of the parts of the basins of attraction contained
inside Q for ¢ = 0.1 and y (¢) given by (5.1) with y¢ = 0.006 and Ty = A/y, for various values of A and w =0, 1/2, 1/4 (o
= 0 denotes the origin). 500 000 random initial conditions have been taken in Q.

A 0 1 2 8 13 20 30 40
w=0 69.6 69.3 67.0 58.3 55.8 53.3 51.3 50.0
w=12 29.9 30.1 31.8 36.1 37.1 38.2 39.1 39.7
w=1/4 00.5 00.6 01.2 05.6 07.2 08.5 09.6 10.3
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FIG. 8. Relative areas of the basins of attraction versus A for y(¢) given by (3.2), with yo = 0.006.
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FIG. 9. Relative areas of the basins of attraction versus A for y(¢) given by (5.1), with yo = 0.006.
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A = 20 (compare Table XI with Table XII). The asymptotic values seem to be the same in both
cases.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we have studied how the slow growth of friction may affect the asymptotic
behaviour of dissipative dynamical systems. We have focused on a simple paradigmatic model, the
periodically driven cubic oscillator, particularly suited for numerical investigations. Nevertheless,
we think that the results hold in the more general setting considered in Sec. I. The main result,
discussed in Sec. III, can be summarised as follows: on the one hand it is the final value of the
damping coefficient that determines which attractors are present, but on the other hand the sizes
of the corresponding basins of attraction strongly depend on the full evolution of the damping
coefficient itself, in particular on its growth rate. Let y(p/q, €) and y denote the threshold value
of the p: g resonance and the final value of the damping coefficient, respectively. If yo > y(p/q, €)
the attractor disappears. Otherwise the following possibilities arise: if yo < y(p/q, €) the area of
the corresponding basin of attraction is more or less the same as in the case with constant damping
coefficient equal to y o, whereas it is larger if yo < y(p/q, €). In the latter case, the closer yg is to
y(plq, €), the slower the growth rate of y (7) required for the maximum possible area of the basin of
attraction to be attained. Moreover, when yo < y(p/q, €) the area can even be a little smaller than
what it would be if the damping were fixed at y since t = 0, because other attractors may have
acquired a larger basin of attraction while the damping coefficient increased. It is not possible for
the relative area to be larger than the value A, (P/g, €), which therefore represents an upper bound
(see comments in Sec. III, first paragraph on page 9).

Finally, let us mention a few open problems which would deserve further investigation, also in
relation with the spin-orbit problem.

1. As far as a dynamical system can be considered as a perturbation of an integrable one, all
attractors seem to be either equilibrium points or periodic orbits: at least, this is what emerges
from numerical simulations. It would be interesting to have a proof of this behaviour, even for
some simple model such as (2.1), in particular of the fact that neither strange attractors nor
periodic solutions other than subharmonic ones appear.

2. In this paper, with the aim of studying the dynamics of systems of the form (1.2), with F' a
periodic perturbation of a function of x, and y slowly increasing in time, in fact we considered
only one case, the cubic oscillator (3.1). It would be worthwhile to investigate other systems,
for instance the pendulum with oscillating suspension point considered in Ref. 7 in the case
of constant friction, to check rigorously that the same phenomenology occurs—and hence is a
general feature as expected.

3. The analysis presented in Sec. III covers small values of y, but still not as small as desirable. It
would be worthwhile to study the behaviour of the curves A(w, y, €) in the limit of even smaller
y, for instance by implementing some numerical integrator which allows us to decrease the
running time of the programs without losing accuracy in the results. However, at the moment
it is doubtful whether the question can be solved by numerical simulations. For instance, in
Refs. 15 and 16, where a very delicate numerical investigation is performed, 1 000 initial
conditions were considered with the damping coefficient fixed at the final value yo ~ 1078,
which is already very small. On the other hand we would need many more initial conditions
and much smaller values of y to duplicate the numerical analysis in Sec. II for the spin-orbit
model.

4. In studying the spin-orbit model in Sec. IV, if one really wanted to consider the past history of
the system, then not only y but also ¢ should be taken to depend on time: this would introduce
further difficulties and a more detailed model for the evolution of the satellite would be needed
(see also comments at the end of Appendix B). Of course, this would be by no means an easy
task. The use of a model for the time-dependence of friction already raises several problems,
as we highlight in Appendix E.

Downloaded 08 Oct 2013 to 131.227.66.198. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



102703-16 Bartuccelli, Deane, and Gentile J. Math. Phys. 53, 102703 (2012)

5. We have seen that, for the spin-orbit model, in the case of constant friction, the exact value of
the parameters ¢ and y is fundamental. For instance if y = y; such that A(w, y1, €) & Amax(®,
€), then we have a basin of attraction much larger than for y = y,, where y, > y is close
to the threshold value y (w, €). On the contrary, our analysis shows that, when one takes into
account that friction slowly increased during the solidification process of the satellite, then
for both values y; and y, we expect more or less the same relative area close to Apax (@, €).
This is useful information because it shows that exact values of the parameters ¢ and y are
not essential in the case of time-dependent friction, as long as y is not much smaller than the
threshold value (we mean “much smaller” in the sense of Sec. IV): of course the values of y
and ¢ are essential if y is much smaller than y (w, £)—see next item.

6. Asremarked in Sec. IV, to study the probability of capture of Mercury into the 3:2 resonance,
it becomes crucial to determine the value Anax(3/2, €) and the current values of y and ¢ to see if
y turns out to be much smaller than y(3/2, ¢), that is if one has A(3/2, y) < Amax(3/2, €). If this
were the case, by using time-dependent friction, the relative area of the basin of attraction of
the 3:2 resonance would be much larger than what was found for constant damping coefficient
y (estimated around 13% in Ref. 13). By assuming the values of y given in the literature,
for which ¥ ~ 1078 and & ~ 10~*, and using that (3/2, &) ~ 1.3 &, the relation A(3/2, y)
&K Amax(3/2, €) could be verified only by assuming for A(3/2, y, ¢) a very slow variation in
y for & ~ 10~*. This does not seem impossible: already for the driven cubic oscillator the
profiles of the curves A(w, y, €) seem to have a much smoother variation for smaller values
of ¢ (compare Table III for ¢ = 0.1 with Table IX for ¢ = 0.5), so it could happen that by
decreasing ¢ further, the curves A(w, y, €) could be nearly flat on much longer intervals: in
other words, by fixing ¢ ~ 10~% and decreasing y, the curve A(w, y, &) could have not yet
reached its maximum value A« (@, €) at y ~ 10~ 8 Asa consequence, the exact values of the
parameters € and y and the profile of the curve A(3/2, ¢, y) could be fundamental. In any case,
it would be very interesting to study numerically the spin-orbit model for very small values of
¢ and y, in order to obtain the profiles of the curves A(3/2, y, €) versus y.
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APPENDIX A: SOME ANALYTICAL RESULTS ON SYSTEM (2.1)
1. Global attraction to the origin for large y

For & small enough introduce the positive function F(#) such that F>(f) = 1 + &f(¢) and rescale

time through the Liouville transformation® 3>
t
n:/mFm. (A1)
0
Then we can rewrite (2.1) as
x'=y,
N y ()/ F/(f)> (A2)
F) Fa))

where the prime denotes derivative with respect to 7. Define

x4

o
[0 1) =2+ (A3)
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which is an invariant for (2.1) with ¢ = y = 0. More generally one has

o1 ef() 2
"="%0 (V M sf(t))) v
so that, if
.ef
y > —min —2(1 T ef ) s (A4)

by using the theorem of Barbashin-Krasovsky-La Salle,?! we find that the origin is an asymptotically
stable equilibrium point and every initial datum is attracted to it as  — co.

2. Rate of convergence to attractors

The periodic orbits for the system (2.1) appear in pairs of stable and unstable orbits: this is a
consequence of Poincaré-Birkhoff’s theorem.” Let us consider the primary resonances, so that we
can set y = ¢ C, with C a constant independent of ¢.

We rewrite the equations of motion in action-angle variables (I, ¢)°

{(/') = (31)1/3 + 8(31)1/3f(t)cn4<p —¢eCcnesnedng,

, AS
I =eBD*?f(t)en3psnpdng — e C(3I)sn2pdn’g, (a3)

where cn ¢, sn ¢, dn ¢ are the cosine-amplitude, sine-amplitude, delta-amplitude functions, respec-
tively, with elliptic modulus k = 1/+/2.

Let K(k) be the complete elliptic integral of the first type. For ¢ = 0 the periodic solution
to (2.1) with frequency w = p/q is of the form x(f) = acn(a(t + fy)), with 27 = 4wK(1/2)
and 1, suitably fixed.> In terms of action-angle variable this gives I = Iy := /3 and ¢ = @(t)
=a + 1)

Linearisation of (AS5) around the periodic solution leads to the system

8¢ )
(3.‘;)=L(r>(5f), L(t) = Lo+ eL1(1) + O(e?), (A6)
where
(0 a? _(Lu() L@
LO(”‘(O 0>’ Ll(”‘(Lﬂ(r) Lzz(n)’ (&7)
with

L) = f0)a@0) = Ca™'b(r), L) = =207 L) +a ? f(t)a),
Ly(t) = &’ f(1) é(1) — CaPd(1), Lon(t) = 4o f(t)c(t) —3Cd(1), (A8)
where we have defined
a(t) :=cngo(t),  b(r) := cngo(t) sn o) dn go(0),
c(r) = cn’po(t) sngo(t) dngo(t),  d(t) == sn>po(t) cn*go(1) (A9)
and denoted by (¢1(?), I;(?)) the first order of the periodic solution.

Let us denote by W(t) = Wy(t) + eWi(¢) + O(s?) the Wronskian matrix, that is the ma-
trix whose columns are two independent solutions of the linearised system (A2), so that
W(t) = L(t)W(¢), with W(0) = 1. Then one has

-2
Wo(t) = exp Lo = (é “ ’) , (A10)
while Wi (¢) is obtained by solving the system Wi = LoW, + LiWy(1), i.e.,
t
Wi(#) = Wo(?) [W1(0) + f dr (Wo(r)™" Li(7) Wo(f)] ; (AT1)
0

where one has to take W;(0) = 0 in order to have W(0) = 1.
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A trivial computation shows that in (A10) one has

Li(t) — a2t Lyy(t)  Lip(t) +a=2t(Liy(t) — L) — 06—2L21(¢))>
Ly (1) Loy(t) + a2t Ly (1) ’

Let T = 27 q be the period of the periodic solution. The Floquet multipliers around the periodic
solution are the eigenvalues of the Wronskian matrix, computed at time 7. Denote by x*(¢) the kth
primitive of any function x() with x*(0) = 0 (so that x*(¢t) = x*~1(¢), with x°(f) = x(t)). Then, by
using that

Wo() ™' Li(t)Wo(t) = (

T T
f dr x(t) = x (T, / drtx(t) = Tx'(T) — xX(T),
0 0

T
f dr ?x(t) = T*x(T) — 2T x*(T) + 2x°(T), (A12)
0

we obtain that
Wi L1 (T)+a2L3(T) Li,(T)+a 2(TL}(T)—L3 + L3, +a X(T L3, —2L3(T)))
1 = .

L (T) L3(T)+ a2 (TLY(T) — L3,(T))

For ¢ = 0, the corresponding Floquet multipliers are equal to 1. To first order they are the roots A 4
of the equation 22— 2boh + o =0, with

b0:=1+%(L},(T)+ng(T)+a—2TL;,(T)), co:=1+¢e(L{(T)+ L}(T)), (Al3)

so that
Ay =14 ,/ea2TL(T)+ % [L1,(T) + L3(T) + a2 T Ly (T)] + o(e). (Al14)
One has
T T )
LI (T)+ L3(T) = / dr f(0)(a(t) + 4o c(1)) — Cf dr (a™'b(t) + 3d(1)). (A15)
0 0

One immediately realises that the first integral vanishes and hence
1 T
L1(T)+ L,(T) = —3CTu, W= ?/o dtd(t) > 0, (A16)

while, for the stable periodic solution, #, is such that L;l (T) < 0. Therefore the Floquet multipliers
are of the form

1
Ar = 1+irgV/Te — E(A% +3Cw)Te + o(e),

with Ay > 0. The corresponding Lyapunov exponents, defined as 7~ 'Relog A+, are given by
—3uCe/2 = —3uy /2. This shows that for primary resonances of the system (2.1), at least for
initial conditions close enough to the attractors, convergence to the attractors has rate 1/y. In
principle the analysis can be extended to any resonance, by writing y = Ce™ and going up to order
m, for suitable m depending on the resonance (m = n(w) for the resonance with frequency w; see
Sec. II): the contributions to the Lyapunov exponents due to the Hamiltonian components of the
vector fields cancel out and the leading part of the remaining part turns out proportional to — y.

In the case of the linearly increasing friction (3.2) one expects that the Lyapunov exponent be
still proportional to — y. If the friction increases very slowly, one may reason as it were nearly
constant over long time intervals, that is time intervals covering several periods, by approximating
y (#) with a piecewise constant function. For each of such interval y can be considered as constant
and one can reason as above. When passing from an interval to another, the value of the initial phase
to of the attractor slightly changes. The Lyapunov exponent is then expected to behave proportionally
to

T T To
— lim l/ dry (@), / dry(®) = / dty@®) +yo(t —Tp) = % + (Yot — A),
0 0 0

T—>00 T
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TABLE XIII. Values of wr (angular velocity), M (satellite mass), Mo (primary mass), R (satellite radius) and p (mean
distance between satellite and primary) for the systems considered in Sec. IV. CGS units are used.

Primary Satellite wr M My R P
E-M Earth Moon 266 x 1070 7.35 x 10% 5.97 x 10%7 1.74 x 108 3.84 x 1010
S-M Sun Mercury 827 x 1077 330 x 10%° 1.99 x 103 244 x 108 579 x 102
I-G Jupiter Ganymede  1.02 x 1077 1.48 x 10% 1.90 x 103 263 x 108 1.07 x 10"
J1 Tupiter To 411 x 1075 893 x 10% 1.90 x 10% 1.82 x 108 4.22 x 100
S-E Saturn Enceladus 531 x 1077 1.08 x 102 5.68 x 10%° 2.52 x 107 2.38 x 100
S-D Saturn Dione 2,66 x 1073 1.09 x 10 5.68 x 10%° 5.62 x 107 3.77 x 100

where we have used that 7y = A/y(. Therefore again the rate of exponential convergence to the
attractor is proportional to 1/y and after the time T the distance to the attractor has already
decreased by a factor exp (— cpA) =exp (— coyoTp), for some positive constant ¢y, and hence like
in the case of constant friction, possibly with a different constant c.

APPENDIX B: PARAMETERS ¢ AND y FOR THE SPIN-ORBIT MODEL

The spin-orbit model has been extensively used in the literature to study the behaviour of regular
satellites?**®*—as opposed to the irregular ones mentioned in the first paragraph of page 11. The
equations of motion are given by

6+eG@O,1)=0, (B1)

with G as in (4.2). Here time has been rescaled t — w7t, where wr is the mean angular velocity of
the satellite along its elliptic orbit (cf. Table XIII), so that the orbital period (“year”) of the satellite
becomes 1. Then the 1:1 resonance is 6 ~ 1.

In a system satellite-primary there can be several types of friction: for instance the friction
between the satellite layers of different composition, say one liquid and one solid (core-mantle
friction), or the friction due to the tides (tidal friction). One can expect that such phenomena produce
a friction to be minimised in a 1:1 resonance. There could be also other sources of friction which we
do not consider, especially those which could modify the revolution motion of the satellite, because
we are implicitly using that it occurs on a fixed orbit. The dissipation term due to tidal torques is of
the form 3233441

—y (Q(e)0 — N(e)), (B2)

where Q(e) and N(e) are two constants depending on e. Since both Q(e) = 1 4+ O(e?) and N(e) = 1
+ 0O(e?), for small values of e we can approximate (B1) as in (4.1).
A comparison with the literature'>?? gives

e= T lin M, (R (B, (B3)
2 I 2R EQ\p M

where I, I,, I are the moments of inertia of the satellite, / is the maximal equatorial deformation
(tide excursion), R and M are the mean radius and the mass of the satellite, M|, is the mass of the
primary, p is the mean distance between satellite and primary, and k,, &, Q are constants, known
respectively as the potential Love number, the structure constant, and the quality factor. For instance,
in the case of the Moon one has k, ~ 0.02, £ &~ 0.4 and Q & 30,2%:%! which gives 3k,/£Q ~ 0.005 and
hence y ~3.75 x 108 (approximately 3.15 x 10~ years —!). In the case of S-M, the constants
are usually (somehow arbitrarily) set equal to the values ky &~ 0.4, £ ~ 0.3333 and Q ~ 50,23:2427:34
which gives 3k/€Q ~ 0.072. The corresponding value of the damping coefficient is y = 3.24
x 1078, a value very close to the Moon’s. Expressed in years ~! this becomes approximately
8.46 x 1077 (the revolution period of Mercury is 2/wy ~ 7.60 x 10° s ~0.24 year). For lack
of astronomical data, we set 3k,/6Q = 10~ ! for all other primary-satellite systems considered in
Sec. IV: the corresponding values of y as obtained from (B3) are given in Table XIV. Of course
such values only provide a rough guide.
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TABLE XIV. Values of T (orbital period) and y for the systems considered in Sec. IV, with 3k2/£Q = 0.1 for the systems

with Jupiter and Saturn as primary. In the third column y is computed by using 7 as time unit, whereas the fourth column

gives the value of the damping coefficient expressed in years ~ !

Primary Satellite T T (years) y y (years— 1)
E-M Earth Moon 2.36 x 10° 748 x 1072 375 x 1078 3.15 x 10~°
S-M Sun Mercury 7.60 x 10° 241 x 107! 3.24 x 1078 8.46 x 1077
-G Jupiter Ganymede 6.18 x 10° 196 x 10~2 191 x 1073 248 x 1072
J1 Jupiter Io 1.53 x 10° 4.84 x 1073 171 x 10~4 551 x 1072
S-E Saturn Enceladus 1.18 x 10° 375 x 1073 6.26 x 10~ 1.05
S-D Saturn Dione 236 x 10° 749 x 1073 171 x 10~4 144 x 101

To obtain the value of ¢ one can use the formula

3 R\3 /M,
h=2mr (=) (7): (B4)
2 P M

for the equatorial deformation; see Appendix C. Here A, is the tidal Love number (h, & 2k,%"), while
the other constants are as defined after (B3). If we are interested only in orders of magnitude, we
can express the equatorial deformation according to (B4) with s, = 1 for the systems with Jupiter
or Saturn as primary. Then, by inserting the values of R, p, My, M listed in Table XIII into (B4) and
using (B3) to compute &, we obtain the values in Table VII. A comparison between (B3) and (B4)
gives y = Ceg, with C & 0.05 (taking the values of the constants k;, &, Q, and A, in the literature
gives C =~ 0.04 for E-M and C = 0.055 for S-M).

Note that the values so obtained for ¢ are lower than those usually assumed in the literature:
compare for instance the values ¢ = 2.3 x 10~* for E-M (Ref. 58) and ¢ = 1.5 x 10~* for S-M
(Refs. 3,13,15,16, and 27) with the corresponding values ¢ = 6.75 x 10~ 7 ande =8.11 x 1077
in Table VII. However, as discussed in Sec. V, if one does not insist on looking at only the present
structure of the satellite, then all its evolution plays a relevant role. So, one has to take into account
that in the past, when the satellite was more fluid, because of the lower value of viscosity, not only
the friction was smaller, but also the deformation was bigger and hence the coupling ¢ was larger;
see also the comments in Sec. VI.

APPENDIX C: THE EQUATORIAL DEFORMATION

Consider a homogeneous celestial body S of mean radius R coated by an ocean of depth
h > 0, not too small. Let P be the centre of attraction. Denote by M and M|, the respective masses and
assume that the motion of the two celestial bodies about their centre of mass be circular uniform.
Let p be the distance between the two celestial bodies S and P, with p > R > h. Assume, for
simplicity, that S rotates about an axis orthogonal to the plane of the orbit and that the ocean density
is negligible with respect to the core assumed to be rigid. The discussion below is essentially taken
from Ref. 36.

The distance p¢ of the centre of mass C from the centre of S is such that pc(My + M) = Myp.
Moreover, if wr denotes the angular velocity of revolution of the two celestial bodies and « is the
universal gravitational constant, one has w% 0> = k(M + M) by Kepler’s third law. Let n be a unit
vector out of the surface of § and note that, imagining the observer standing on the frame of reference
rotating around C with angular velocity w, so that the axis from P to S has a fixed unit vector i, the
potential (gravitational plus centrifugal) energy in the point along the direction » at distance r from
the centre of S has density V = Vg + Vp + V¢, where

V. =—KK Vp = —k Mo V. =la)2(p2+r2—2p r cosyr)
§ r’ i (p2 +r2 = 2prcosy)l/2’ ) ¢ ¢ ’
(ChH
if cos ¥ :=1i - n. Expanding V in powers of r/p one finds
M (r\*(3My , 1
Vp + Vi = —/c; (;) (Eﬁ cos” ¥ + 5) + const., (C2)
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because the linear terms cancel out in virtue of Kepler’s third law. Therefore the equation of the
equipotential surface is

2
3 M, 1

g + <%) <§ﬁo cos® Y + 5) = const. (C3)

If one writes r = R(1 + 8()), with () = 8¢9 + S8Px(cos V), where Pa(z) = (322 — 1)/2 is the

second Legendre polynomial® and & is such that the volume of the body P is the same as the
volume of a sphere of radius R, then (B3) gives

()%
8(¢) = 8 Pr(cos ¥), 8o =0, == —- (C4)
P M

If the core of the satellite is rigid but the ocean density o, is not negligible, e.g., it is equal to
the core density o, then one has to take into account that the tide will modify the potential Vg at
the site of coordinates r, ¥. We make the Ansatz that the equipotential surface is still described as
r= R(1 4+ 8P,(cos yr)), possibly for a different constant §. Then the density Vg will be

M T ) 2 R(14+8 Py(cos ) ,Ozd,O
— sin« da do - - .
4 R3 J, 0 0 (r2 + p? — 2rp(cos ¥ cos a + sin ¥ sina cos @))1/2

(C5)
By expanding the integrand into Legendre polynomials and using the orthogonality properties of the
polynomials one finds (Sec. 4.3 of see Ref. 36 for details)

M 3R2—r2+3r28P( ") R
— - 4+ - — cos , r <R,
* 2R 5R3C?

Vs = 1 3R?
—kM <— + ——38P2(cos 1/;)), r > R.
r r-

(Co)

5

By expanding (C6) in powers of r/p and summing the leading orders to (C2), one finds that the
equation of the equipotential surface becomes

kM [ p 2 \? M,
— | = |(1—=0Px(cosy¥) ) +|— ) —Pa(cosy) | = const., (C7)
o \R 5 P M
up to higher order corrections in R/p. Hence if we look for the constant potential surface we find
8() = 8 Py(cos ¥r) 8 5(RY Mo (C8)
= cos ), ==(—] —,
: 2\ p M

which replaces the previous (C4). The tidal deformation at the surface of the ocean, using the
notations common in celestial mechanics, can be written as s, ¢ P,(cos ), so that the maximal tidal
excursion is

3 R\’ M,

h= Ehzc, {=R (;) o hy = —. (C9)
The number £, is called the tidal Love number. More generally %, depends on the detailed structure
of the satellite, so far supposed to have uniform density o, = o.. If on the contrary o, # o, then,
denoting by r. the shape of the core boundary (while r is the shape of the external ocean surface),
one can make once more the Ansatz that the deformations be such that r = R(1 4+ §P,(cos ¥)) and
re = R.(1 + 8'P,(cos ¥)), where R is the mean radius of the core and §, 8’ are two constants to
be determined by imposing that the ocean surface is equipotential and balancing the forces acting
on the core boundary. The latter can be performed by considering the pressures acting on the core
boundary due to the elastic forces within the core and the loaded terms caused by the ocean and core
tide. This leads to two relations involving §, 8’ (see Sec. 4.4 of Ref. 36)

g-c [200 (RC)3< 00)} | 3<Rc>5( 00)
L 2% (RN oo g 3 (Re) (1 _ %), (C10a)
R. 50 R o S\R [oft
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1 O, 5 ¢ 300 ,.,
s=—(1-2) 2% 54 2% —0)], C10b
a( oc>[2Rc 25, )} (C106)

where ¢, = (M/M.)¢ (with M, being the mass of the core) and the effective rigidity /& is a di-
mensionless quantity proportional to the rigidity of the core. For instance, if o0, < 0., we can

approximate
5 R\* 3 /R 1
R~ Rsme|(=) +o () ——].
21+ 4 R. 2\ R/ 1+i

In particular in the limit of high rigidity (u > 1) then R.8’ ~ 0 and RS ~ (R/R.)*¢. = ¢ (in
agreement with (B4)), so that the core deformation becomes very small, that is the core is essentially
undeformed.

APPENDIX D: THRESHOLD VALUES FOR THE SPIN-ORBIT MODEL

We reason as done for the driven cubic oscillator in Ref. 5. We consider (4.1) with y = ¢ C and
write it as the first order differential equation

L
(D1)
jy=—eGO,1)—eC(y—1).

Then we look for a solution z(f) = (6(¢), y(¢)) in the form of a power series in ¢, that is z(f) = 70)
+ ez + 2220 + ..., where 200 = 6y + wt, w), with w = p/g, and 20 (1) = P (1),
y®(#)) to be determined by imposing that z(¢) be periodic in ¢ with period 27 g.

A first order analysis gives

o — y(l)’
(D2)
Yy =—-Gly+wt,t)—C(w—1).
By introducing the Wronskian matrix
1 ot
W) = (0 o ) (D3)

we can write z(¢) as

9(”(,) _ oM 4 1 0
(y(l)(t)) =W({) (}_)(1)) + W(t)/0 drt W' (7) <—G(00 Yor.1)—Clo— 1)> , (D4)

with (00, ) to be fixed. Then we obtain

t T
0V (t) =D + 3WDer — f dr/ dt' [G(O) + o', ) + C (0 — 1)], (D5)
0 0
whereas y(z) = 6V(¢). For (D4) to be periodic we have to require first of all that
1 2mq
M@ = 5 [ atiG@ + o0+ Clw =11 =0 (D6)
2rnq Jo
then fix " in such a way that
1 2mq t
V0 = — dtf dr [G(0y + wt, T) + C (0 — 1)], (D7)
2rq Jo 0

while 8V will be fixed to second order by requiring that also () be periodic.
Using that G(0, ) = 09g(9, 1), with g(6, 1) given by (4.3), and inserting (D6) into (D5) leads to

2rq
— > 2 / dt sin(26y + 2wt — k1) = C (w0 — 1) (D3)
0
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and hence
. P 2p
2ay(p/q) Sin 200 = C(; - 1), k(p/q) = E (D9)

Since a; # 0 only for k = —3, ..., 7, k # 0, as (4.2) implies, w = p/q is either integer (and
w € {—1, 1,2, 3}) or half-integer (and w € {—3/2, —1/2, 1/2, 3/2, 5/2, 7/2}). If we confine
ourselves to positive w, we see that (D9) fixes 6 provided

2ak(p/9)4
ICI < Colp/gq) = —22=. (D10)
lp—ql
In particular (D10) is always satisfied for w = 1, so that the 1:1 resonance always exists, while for
the other values of w we obtain (4.4).

APPENDIX E: TIME EVOLUTION OF FRICTION FOR THE SPIN-ORBIT MODEL

The mechanism of capture into resonance has been studied by several authors starting with
the theory of capture into the 3:2 resonance of Mercury.'>2*37 Usually the friction is considered
either periodic or just not depending on time. Here we regard the friction as non-periodic in time
and given by (2.2), that is starting from an initial very small value, then slowly increasing in order
of magnitude, until the satellite has completely solidified. Such a situation seems possible in the
formation of a satellite or planet, as we are going to argue. At the beginning, the satellite can be
considered in a fluid state; however, the dissipation due to tidal effects becomes more and more
sensible due to the cooling and the resulting increase of viscosity and, eventually, it settles at the
final present value. The time over which the entire process takes place is called the solidification
time and will be denoted by Ts.

We stress that, in the model we are considering, we assume that the satellite has first stabilised in
its orbit around the primary and then modifies its spinning velocity. Of course the exact evolution of
the satellite dynamics is still debated and no theory is universally agreed upon. In what follows, we
shall ignore the model-dependent details of such an evolution. So, for instance, if we accept that in
some stage of the history of Mercury large quantities of its mantle material have been removed,®
for the purposes of our argument it is not important whether this occurred before Mercury attained
its final orbital motion or after that event.

Suppose that friction is essentially due to tidal effects on an originally entirely fluid fast rotating
satellite (that is with rotation frequency 6 at least a few times larger than the present-day orbital
frequency wr) evolving toward a solid body. Assuming that the dynamics is described by (4.1) since
the beginning could appear contradictory with the fact that originally the satellite was essentially
fluid, since (4.1) deals with a rigid body with given moments of inertia. On the other hand, as we
shall argue, friction becomes really effective only when the viscosity has attained high values and,
when this occurs, the shape of the satellite can be considered close to its final state. One could
also imagine to study the deformations of the satellite during its evolution, but of course this would
make the analysis much more complicated; see for instance Ref. 4, where asymptotic stability of
the 1:1 resonance is obtained for a deformable body with high rigidity (see also Ref. 50). In other
words, using the spin-orbit model is justified except possibly for the very early stage of the satellite
evolution (which we are not interested in).

In the early history of the solar system one can assume that the viscosity is rather low, not too
different from that of the water, which equals 10~ 2 poises (CGS units). The solidification process
is very complicated, and although it has been extensively studied in the literature, especially in the
case of the Earth and the Moon (for the obvious reason that it is much easier to compare the results
obtained by theoretical methods and numerical simulations with the experimental data), still there
are many unsolved issues. See for instance, Ref. 51, for a review of recent results on the Moon.
Usually one assumes that originally all satellites and planets were completely or almost completely
molten, according to the so-called magma ocean hypothesis; in the case of the Moon see Ref. 57
and especially Ref. 51 and the references quoted therein (see also Ref. 55 in the case of Earth).
Most of the celestial body crystallised, from the bottom to the top, following a sequence determined
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by chemical composition and pressure'®2%- leaving only a layer of very fluid magma close to the

surface of the satellite. The outer liquid part eventually disappeared, through a further solidification
process from the core-mantle boundary to the surface, and it is irrelevant in any case to the damping,
because of its very low viscosity.

Timing of formation of satellites and for the cooling of the magma is mostly deduced from the
study of rock samples: in the case of the Moon of course this is much easier,'%!”-3%:5! while the
results are far from being conclusive in the case of Mercury (however, see for instance Refs. 11
and 53). In any case, it is not unlikely that the solidification time of Mercury is of the same order
of magnitude of that of the Moon; we can also mention that the theory has been proposed that the
two celestial bodies may have had similar origin.>® %" There is strong evidence that the solidification
time T’ for the Moon is of order of 10% years.'%3 Thus, for the reasons given above, we take this as
the order of magnitude of the solidification time of all the satellites considered in Sec. IV.

For most of the solidification process the ocean magma is maintained above its solidus."'® So
it is reasonable that the viscosity has increased as an effect of the cooling of the satellite: eventually
most of the satellite is almost solidified and its viscosity is very large, say of the order of that
of the mantle, which is almost solid (hence about 10** poises, much higher than the viscosity of
the terrestrial magma which ranges from 10* and 10'? poises’*“?). Of course the viscosity strongly
depends on temperature, which in turn decreases in time during the process of cooling of the satellite.
One could look at the literature for profiles of temperatures versus time?">> or for the dependence
of viscosity on temperature in fluids.*” A detailed discussion on viscosity evolution during the
solidification of the satellite stands as a very hard problem, and in fact such an issue is not widely
studied;'®*-3! see however Ref. 46, where the despinning of Saturn’s satellite Iapetus is studied and
an Arrhenius law is assumed to describe the temperature dependence of the viscosity, and Ref. 47,
where the despinning of Mercury is related to the thermal evolution of the planet.

As far as the satellite can be considered essentially fluid, the damping coefficient y has to be
formed with the following physical quantities: the viscosity n of the magmatic fluid constituting the
satellite, the mass M of the satellite, the equatorial deformation 2/ due to the tides and the angular
velocity wy. Starting from the rescaled Eq. (4.1), one expects y ocnR>*h/I, with I, ccMR?; then, by
rescaling time ¢t — t/wr, an appropriate choice for y turns out to be y ~ nh/Mwr. The evolution
of magma from the initial melt passes through the formation of cumulate rocks and fractional
crystallisation, leading to the reduction of the outer liquid layer with low viscosity and the accretion
of the internal, highly viscous core; for a more detailed discussion see for instance Ref. 51 in the
case of the Moon. Therefore, when the solidification process attained a high stage of advancement, a
different model for the friction has to be taken. If the satellite is essentially solid, with a thin external
fluid layer (ocean), one can neglect the fluid part, because of its very low viscosity, and concentrate
on the solid core. One can use the analysis in Appendix B, in the limit case o, < o and very high
rigidity p, so that the core deformation in (C10b) is very small. Also in this case, one can express
y in terms of the involved physical quantities and, again on the basis of dimensional arguments, set
y ~ uh/M w% Therefore, to sum up, friction increases with viscosity up to a certain value. Once
such a value is reached, the satellite can be considered essentially a solid with very high rigidity.

The despinning time 7 represents the time which the satellite needs to be really attracted into
a resonance. Hence (see Appendix A) Tp = O(y ~ '), where y is the quantity appearing in (4.1). Of
course, we would want that the solidification time be larger or at least comparable with despinning
time. This is the case if one can assume Ts ~ 108 years and Tp &~ 1/y, with y as in Table XIV (which
yields T ~ 10° years).

APPENDIX F: NUMERICAL DETAILS

The numerical results have been found by running a variety of computer programs which im-
plement different algorithms. The main algorithms used were (1) a standard Runge-Kutta integrator
with automatic step-size control;** (2) the Bulirsch-Stoer algorithm,** which extrapolates the step-
size to zero and is suitable for high-accuracy computation; and (3) a numerical implementation of
the Frobenius method. Of these, (2) is the slowest, but serves to confirm the results obtained with the
other methods. Most of the data in this paper came from (1) and (3), of which (3) is the fastest. This

Downloaded 08 Oct 2013 to 131.227.66.198. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



102703-25 Bartuccelli, Deane, and Gentile J. Math. Phys. 53, 102703 (2012)

is because the use of series often enables large time steps to be taken. On the assumption that the
solution to the differential equation around a point ¢ = #, can be expressed as a power series in 7, we
obtain a (nonlinear) recursion formula for the coefficients in this series. In principle, as many terms
as desired can be computed, and in practice about 25 worked well. For a given initial condition,
this series enables us to compute x and x for |t — fy| < R, for some R that depends on the desired
accuracy, the initial conditions, and #y. The size of the step, # — #, is chosen as the one that makes
the absolute value of the right-hand side of the differential equation, which should of course be zero,
smaller than some tolerance: 10~ ! was used here. Typical step sizes ranged between about 0.29
and 10.0, with 0.7 being chosen about 50% of the time. Even the smallest step size is many times
larger than that which would be used in a Runge-Kutta implementation.

The initial conditions are chosen randomly and are uniformly distributed inside the square Q.
Since we seek detailed estimates of the relative areas of the basins of attraction, at least up to the
first decimal digit whenever possible, we have to take many initial conditions: certainly 1000 initial
conditions, as in Refs. 13 and 15 is not enough. For the data to be reliable to the first decimal place,
with a 95% confidence level, we found that 1 000 000 initial conditions need to be taken inside the
square Q defined in Sec. II. A statistically rigorous justification for this confidence level, given the
number of initial conditions, can be found from the theory for estimating a proportion (see Chap. 9
of Ref. 56). Thus, for the relative areas in Table III, we used up to 1 000 000 initial conditions except
for smallest values of y (500000 initial condition for y = 0.00005, 150 000 initial condition for y
= 0.00001 and 50000 initial conditions for y = 0.000005). Analogously we considered 1 000 000
initial conditions for ¢ = 0.5 (Table IX) and 500 000 initial conditions for ¢ = 0.01 (Table X). Also
in Sec. III we considered as many initial data points as feasible: 1000000 initial conditions for
larger y (y = 0.015), 500000 for y = 0.005 and 250000 for the smallest value y = 0.0005. As
a general rule, the smaller y is, the longer the integration time and hence, by taking y smaller, we
also need to diminish the number of initial conditions in order that the computation time does not
become prohibitively long. However, the error on the relative areas then becomes larger. That said,
the general scenario described in Sec. III seems clear and well supported by the numerics.

As already noted in Ref. 48, for y very small, the basins of attraction are spread out over the
entire phase space and become very sparse. Thus, if one wants to detect which basin a given initial
condition belongs to, very high numerical precision is needed.

Finally, the integration time 7j, must be chosen in such a way that all trajectories reach the
attractor (within a reasonably fixed accuracy). For instance, one can take Tj, = N/y, with N = 20.
Therefore, in order to investigate the dynamics for very small values of the damping coefficient, Tjy
has to be very large.

The conclusion is that we have to follow the trajectories of a large number of initial conditions,
for very long times and with very high accuracy. Of course, this is at odds with obtaining results
within a reasonable time, so that we need to reach a compromise. This has led us to the choice
described above.
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