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Frequency locking in an injection-locked
frequency divider equation
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' Department of Mathematics, University of Surrey, Guildford GU2 7XH, UK
2Dipartimento di Matematica, Universita di Roma Tre, Roma 00146, Italy

We consider a model for a resonant injection-locked frequency divider, and study
analytically the locking onto rational multiples of the driving frequency. We provide
explicit formulae for the width of the plateaux appearing in the devil’s staircase structure
of the lockings, and in particular show that the largest plateaux correspond to even
integer values for the ratio of the frequency of the driving signal to the frequency of the
output signal. Our results prove the experimental and numerical results available in
the literature.

Keywords: frequency locking; Arnold tongues; devil’s staircase;
injection-locked frequency divider

1. Introduction

In O’Neill et al. (2005a), an electronic circuit known as a resonant injection-
locked frequency divider is studied experimentally, and the devil’s staircase
structure of the lockings is measured: when the ratio of the frequency w of the
driving signal to the frequency Q of the output signal is plotted versus w,
plateaux are found for rational values of the ratio. In O’Neill et al. (20050), a
model for the circuit is presented and numerically investigated, and the results
are shown to agree with the experiments.

In this paper, on the basis of the model introduced in O’Neill et al. (2005b), we
address the problem of explaining analytically the appearance of the plateaux of
the devil’s staircase. We aim to understand why the largest plateaux correspond
to even integer values for the frequency ratio and, more generally, how the
widths of the plateaux depend on the particular values of the ratio.

From a qualitative point of view, the mechanism of locking can be illustrated
as follows. In the absence of the driving signal, the dynamics evolves towards a
periodic attractor (limit cycle). Call Qg the proper frequency of the attractor (the
term ‘proper’ refers to the fact that, whatever the initial condition is, the solution
is asymptotically periodic, with a frequency intrinsically associated to the
system, i.e. it is completely determined by the parameters of the circuit). When
the driving signal is switched on, denote by u and w, respectively, its amplitude
and its frequency. For fixed driving frequency w one considers the Poincaré
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section at times t=2mn/w, for integer n, and studies the dynamics on the
attractor. This leads to a map that behaves as a diffeomorphism on the circle.
Thus, based on the theory of such systems (Arnold 1988), one expects that for
w/Qq close to a rational number one has locking. How close w has to be to a rational
multiple of Q; depends on u and on the multiple itself: in the (w, u) parameter
plane one has locking in wedge-shaped regions known as Arnold tongues.

However, all the discussion above is purely qualitative. In particular, there
remains the major problem of determining the map to which one should apply
the theory. A quantitative constructive analysis is another matter, and requires
taking into account the fine details of the equation and the explicit expression of
the solution of the unperturbed equation: we carry this out in this paper. Our
analysis is based on perturbation theory, which is implemented to all orders and
proved to be convergent. This approach is particularly suited for quantitative
estimates within any given accuracy (for which it has to be possible to go to
arbitrarily high perturbation orders, and to control the truncation errors).
Furthermore, we think that a rigorous analysis ab initio, without introducing
uncontrolled simplifications or approximations, can be of interest in itself.
Indeed, although such simplifications can capture the essential features of the
problem and allow a qualitative understanding of the physical phenomenon, it
nonetheless remains unclear in general how far a simplified model can be
expected to describe the original system faithfully.

The conclusions of our analysis can be summarized as follows. The equation
modelling the system can be viewed as a perturbation of order u of a particular
differential equation. In the absence of the perturbation, after a suitable change
of variables, the system can be cast in the form of a Liénard equation
"+ h(z)x' + k(z) =0. Under suitable assumptions on h and k, this admits a
globally attracting limit cycle. Let Qg be the proper frequency of such a cycle,
and let us denote by z,(t) = X(2,t) the solution of the equation corresponding
to the limit cycle, with the function X, being 2m-periodic in its argument. By also
including the time direction, one can study the dynamics in the three-
dimensional extended phase space (z, z’, t), in which the limit cycle generates
a topological cylinder. When the perturbation is switched on, the cylinder
survives as an invariant manifold, slightly deformed with respect to the
unperturbed case. This follows from general arguments related to the centre
manifold theorem (Chow & Hale 1982). However the dynamics on the manifold
strongly depends on the relation between the proper frequency Q, and the frequency
w of the driving signal. If w/Q is irrational and satisfies some Diophantine condition
(such as |wy; + Qyvo|> (1| + |vo] +1)77 for all (v;,1,) €Z* and some
positive constants vy, 7), then one expects the output signal z(t) to be a quasi-
periodic function with frequency vector w=(w, Qy), so that one has
z(t) = X(wt, Qyt) = Xy(Qot) + O(u), where X is a 2m-periodic function of both its
arguments. In this case we say that the output frequency Q equals Qg (of course, this
is slightly improper terminology because Qg is only the frequency of the leading
contribution to the output signal, and the latter is not even periodic). On the other
hand, if w/Qy is close to a rational number p/ ¢ (resonance), then z(t) is periodic with
frequency Q=pw/q (locking): hence the frequency Q of the output signal differs
from Qy—even if it remains close to it—because it is locked to the driving frequency
w. Thus, if one plots the ratio w/Q versus w, one obtains the devil’s staircase
structure depicted in fig. 4-9 of O’Neill et al. (2005a). The locked solutions can be
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obtained analytically from the unperturbed periodic solutions by a mechanism
similar to the subharmonic bifurcations that we have studied in previous papers
(Bartuccelli et al. 2007, 2008). We stress, however, that, unlike the cases studied in
the latter references, here, the unperturbed equation cannot be solved in closed
form. This will yield extra technical difficulties, because we shall have to rely for our
analysis on abstract symmetry properties of the solution, without the possibility of
using explicit expressions.

2. Model for the resonant injection-locked frequency divider

We consider the system of ordinary differential equations

dV, df
d—f:IL+f(V07t)7 Ld—tL:_RIL_ VC7 (21)

where L, C, R>0 are parameters, V¢ and I;, the state variables, are the capacitor
voltage and the inductor current, respectively, and

f(Ve,t) = (A+ Bsin @) Ve(1—(Ve/Vop)?),  Vop, A>0, BER,

is the (cubic approximation of the) driving point characteristic of the nonlinear
resistor. The model (2.1) was introduced in O’Neill et al. (2005b) as a simplified
description of a resonant injection-locked frequency divider.

By introducing the new variables u:= V/Vpp and wv:=RIL/Vpp and
rescaling time t— t'= Rt/L—but continuing to denote the new time by ¢ in
order not to overwhelm the notation—(2.1) becomes

u = ov + () u(l—u?), v =—u—u, (2.2)

where the prime denotes derivative with respect to time ¢, and we have set a=L/
R?>C, B=LA/RC, u=LB/RC and &(t) =+ u sin wt, with w=QL/R.

From now on, we shall consider the system (2.2), with «>>1, and u, 0w €R.
By setting ¢ =u+ v we obtain

o = (a—1)o + (B(t) — a)u— D),
(2.3)
v = ao + (O(t) —a)u— () v,

which gives o’ + [1—®(t) + 3®(t)v?]u’ + [(a — D(t)u+ O(t)u?] + &' () (u® —u)
=0, that is

v+ (1—6 +36uH)u + [(a—B)u + Bu’] + w¥ (u, ', t) =0, (2.4)
with
W(u, o, t) = [/ (3u* — 1)sin wt + (u* — u)sin wt + w(u® —u)cos wi]. (2.5)

For u=0, (2.4) reduces to uv” + (1 —8+ 38u*)u’ + [(« —B)u+ Bu’] = 0, which can
be written as a Liénard equation

u” + u'h(u) + k(u) =0, (2.6)
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Figure 1. The limit cycle for «=2.5, =2.0 and u=0. The proper frequency is Qy=1.1434.

with
h(u) =1—8 + 364, k(u) = (a—B)u + Bu’ = u(a—B + Bu?). (2.7)

For (2.6) to have a unique limit cycle (Coppel 1989; Hartman 2002), we require
that
1—-6<0, a—B3>0 = a>pB>1,

which motivates our assumption on the parameters o and f—an assumption that
turns out to be consistent with the physical context and the numerical
experiments (O’Neill et al. 2005a,b).

Consider the system described by equation (2.6), with the functions h(u) and
k(u) given by (2.7) with a>>1. Such a system admits one and only one limit
cycle encircling the origin (Hartman 2002); see for instance figure 1. Let T be
the period of the solution ug(¢) running on such a cycle. Denote by Q)= 2n/T
the corresponding frequency: Q, will be called the proper frequency of the system.
Note that Q, depends only on the parameters a and (.

The solution ug(t) is unique up to time translation. Fix the time origin so that
uy(0) =0, uo(0) >0. Note that fixing the origin of time in such a way that u((0) =0
compels us to shift by some ¢, the time in the argument of the driving term in (2.5),
i.e. ¥(u, v/, t) must be replaced with W(u, u’, t+ t,); see the analogous discussion
in Gentile et al. (2007).

Lemma 2.1. The Fourier expansion of uo(t) contains only the odd harmonics, i.e.

ug(t) = Zexp(iQovt)uoyy = Z exp(iQyvt)ug .
vEZ vz

v odd
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Figure 2. Examples of attractors for «=2.5, =2.0 and u=0.1. For |w —4Q,| < 0.03 the motion is
periodic: in (a), w=4Q,+ 0.02. The diamonds mark the four points where sin wt is zero and
positive-going. (b) For w=4Q,+ 0.2 the motion is quasi-periodic. Recall that Qy=1.1434.

Proof. The symmetry properties of (2.6), more precisely the fact that
h(—wu)=h(u) and k(—u)= —k(u), ensure that the periodic solution wug(t) satisfies
the property

ug(t + To/2) = —ug(1), (2.8)
and in turn this implies the result (compare the proof of lemma 3.2 in Bartuccelli
et al. 2007). [

Lemma 2.2. One has [/ dt h(ug(t)) > 0.
Proof. For a proof see Coppel (1989). [ |

Moreover the limit cycle is a global attractor (Sansone & Conti 1964; Hartman
2002), and it is uniformly hyperbolic (Zhang 1986; Coppel 1989). Hence the
cylinder it generates in the extended phase space persists, slightly deformed, as a
global attractor for small perturbations (Hirsch et al. 1977; Levi 1981; Chow &
Hale 1982; Vanderbauwhede 1989). This also means that the system described by
equation (2.4), at least for small values of u, has one and only one attractor,
which attracts the whole phase space. However, the persistence of the attractor
does not tell us whether the dynamics on the attractor is periodic or quasi-
periodic; cf. Ciocci et al. (2005) for an analogous discussion. In particular it does
not imply that for Qy/w close to a resonance the dynamics remains periodic; see
for instance figure 2.

We note that for Q,/w Diophantine the attractor is expected to become quasi-
periodic, with the dynamics analytically conjugated to a Diophantine rotation
with rotation vector (Qy, ). In principle, this can be proved by KAM techniques
(Ciocci et al. 2005), or with methods closer to those used in this paper (Gallavotti
1994; Gentile 1995; Gallavotti et al. 2004; Gentile & Gallavotti 2005; Gentile
et al. 2005).
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3. Framework for studying frequency locking

Rescale time so that the driving term has period 2w, hence frequency 1, by
setting 7=wt. Then, by denoting with the dot the derivative with respect to
rescaled time 7, (2.4) gives

1 1 . _
i + ;(1 — B+ 38u%) 0 + g[(a—ﬁ)u + B8u*] + p (u, 0,7 +79) =0,  (3.1)
where 7o=wty, and we have defined ¥(u,u,7)= [0 "i(3u> —1)sin 7+
w2 (u® —u)sin 7+ 0 (u® —u)cos 7]. For u=0 one has i+ ' (1 —B8+ 36u*) i+
o %[(a—B)u+ Bu*] =0, which can be written as

i +£h(u)u +%k(u) —0, (3.2)

which is of the form (2.6) up to the rescaling of time. As an effect of the time rescaling,
the frequency of the limit cycle for the system (3.2) depends on w, as it is given by
QO = Qo/(,!)

Remark 3.1. As the solution wug(7) is analytic in 7, the property ,(0)=0
means that we can write 1y(7)=mn7+ O(7%), and hence wu(7)= 1)+ r 7/
2+ O(7%), with ry=u,(0) and r, = iiy(0).

We want to show that if the frequency w of the driving term is close to a
rational multiple of the unperturbed proper frequency Qg of the system, that is
w = pQ,/q for some p, gEN relatively prime, then the frequency Q of the solution
exactly equals qw/p, that is w/Q=p/q. Such a phenomenon is known as
frequency locking: the system is said to be locked into the resonance p: g.

Let p=p/q € Q. For u=0, for any frequency w of the driving term the proper
frequency is Q=Q,—the system is decoupled from the perturbation—so that if
we fix w=pQ, we obtain Q= Qy=w/p. In terms of the rescaled variables, for
which w is replaced with @ =1, the proper frequency becomes Q;=1/p. For w

close to pQ, write
1 1
—=—+ , 3.3
= e (33)
with e(u) such that e(u)—0 as u—0.

We look for periodic solutions for the full system (2.4), hence for solutions with
period T=27p/w (i.e. the least common multiple of both 27 /w and 27p/wgq). In
terms of the rescaled time 7, the solution will have period 27p, hence frequency
1/p. For p=0 the system (3.1) reduces to

Hy(u,u, i) =1+ f(u)d + g(u) =0, (3.4)
with
1 1
f(u) = TQoh(u)’ g(u) = pTng(U),

which admits the periodic solution wug(7) such that ug(0)>0, 4y(0)=0 and
ug (7 + 27p) = up(7). In other words the frequency of the limit cycle is 1/p=¢/p
and the period is 2mp/q, i.e. uy(r)= U(7/p), with the function U being
2m-periodic.

Proc. R. Soc. A (2009)
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For u#0 we write
e(u) = erp + eop’ - = g:ekuk7 (3.5)
=1
and, by inserting (3.3) and (3.5) into (3.1), we obtain the equation
H(u, 1, i, 1) = Hy(u, @, @) + i,uka(u, W, T+ 1) =0, (3.6)
k=1
where
Hy(u,,7) = e, (1—6 + 36u*)i + /)2—;10 [(a—B)u + Bu’]
+$ i(3u® — 1)sin 7 + pQ—Q% (u® —u)sin 7
—i—p—Q0 (u” —wu)cos 7, (3.7)
Hy(u, 1, 7) = e5(1—6 + 36u”)u + <Z—go + e%) [(a—B)u + Bu’]
+e1(3u* — 1)sin 7 + 1)2—;210 (v* —u)sin 7 + & (v* —u)cos 7,  (3.8)

and so on. The shifting of time by 7o=wtq in the driving term is due to the choice
of the origin of time made according to §2.

In the following sections, we shall prove that for u small enough it is possible
to choose e(u) as a function of ¢y, in such a way that there exists a periodic
solution of (3.6) with period 27p, i.e. with frequency 1/p. When projected onto
the (u, @) plane, such a solution is close enough to the unperturbed limit cycle
(cf. for instance figure 2): the difference between them is of order u.

4. The linearized equation

Write the unperturbed system (3.4) as
u =, = G(u,v), (4.1)

with G(u,v)=—(pQy) "'(1 =B+ 36u®)v—(pQy) *[(a —B)u+ Bu’]. Let (uy(r),
1y(7)) be the 2mp-periodic solution of (4.1), which is uniquely determined by
the conditions

1y(0) =0, ug(0) > 0. (4.2)
The periodicity properties of ug(7) allow us to write
ug(7) = Py, =£, 4.3
o) =Y 0, P=7 (4.3)
veZ
v odd
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as follows from lemma 2.1. Denote by

W(r) = (wn(T) w12(7)> (4.4)

wy (7)) wyp(7)

the Wronskian matrix of the system (4.1), that is the solution of the matrix
equation

{W<T)=M(T)W(T), M(T):< 0 1 )
W(0) = 1, Go(ug(r), w(r)  Gy(ug(r), w(7)) )

(4.5)

where G, and G, denote derivatives with respect to u and v of G, and wy, (7)=
W1 (), waa(T) = Wy(7).

Lemma 4.1. In (4.4) one can set

walr) = evi(r). ()=t [ @S a0

where F(7) is defined as
F(r):= J;dT/f(U(](T/)), flu) =——(1—8 + 36u*) = — h(u), (4.7)

the constant 7 € (0, mp) is chosen so that wy;(0) =0, and the constants ¢; and co
are such that w1 (0) = wy(0) = 1.

Proof. Tt can immediately be checked that (w;s(7), Wy (7)), with wo(7) defined
as in (4.6) and wyy(7) = wo(7), solves the linearized equation to (4.1). Then a
second independent solution is of the form (wyq(7), wy (7)), with wy;(7) given by
(4.6) and wy; (1) = wy1(7); cf. Ince (1944, p. 122). In appendix A we show that it is
possible to choose 7 € (0, 7p) in such a way that w;;(0) = 0. The constants ¢; and
co are chosen so that W(0)=1. |

Remark 4.2. With the notations of remark 3.1 one has ¢, =1/r; and ¢; = —1,
so that ¢;co+1=0.

Note that 44(0) =0, so that in (4.6) the function wy;(7) at 7=0 is defined as
the limit
‘ ' T e—F(T')
171—I>% c1tio(7) L dr 7&3(7”) ,
which is well defined; see appendix A. The same argument applies for 7=mp,
where ty(mp) = 14(0) = 0—by (2.8), with the half-period T;,/2 becoming mp in
terms of the rescaled variable.
_For any periodic function G, we denote its average by (G) and set
G= G— (G). Then fy:=(fouy) >0 (cf. lemma 2.2), so that we can write

e =exp(—fr— F(n). F(r) = | a7 (Sl =), (49)

(4.8)

where F(7), and hence ¢ ") are well-defined 2mp-periodic functions.

Proc. R. Soc. A (2009)
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Lemma 4.3. Given any periodic function P(t) and any real constant C+#0,
there exists a periodic function Q(7), with the same period as P(t), and a constant
D such that

JT dr’ " P(') = D + T Q(n).
0
One has D= — Q(0).

Proof. Let P(t) be a periodic function of period 7. Write

= Z P, (4.10)

vEZ

where w=27/T. Then one has

Cr)—1
J dr' " P(r ZP J dr’ exp(iwvr’ + C7") ZP exp(iorr + O7) ,
vEZ vEZ C+iwy

so that, by setting
m)V'r’ —_ (411)
1; C + iwy I; C’ + iwy’
the assertion follows. [ ]

Lemma 4.4. There exist two 2mp-periodic functions a(t) and b(t) such that

w (1) = a(7) + e h(7),  wiy(r) = cal7), (4.12)
for a suitable constant c.

Proof. We cannot directly apply lemma 4.3 because the function e 7 /42 (1)
appearing in (4.6) is singular. However we can proceed as follows. We write

= lim
ag(r) =0 ad(r) +
so that the new integrand is smooth and it is given by ¢ #7 times a 2mp-periodic

function. Hence, as long as 0 <7 <rp, the integrand is bounded uniformly in 7,
and we can apply Lebesgue’s dominated convergence theorem, to write

T ecr’
= ¢ug(7) li dr' ————.
() = evig(r) i [ ' 2y S
Then lemma 4.3 gives

wii(7) = ertio(7) lim (e P(r, ) —eP(7,m))
= lin%(fdo(r)e”P(T, n)) — to(7)e” P(7),
n—)
where the function P(7,n) is 2mp-periodic in 7 and P(7) = lim,_,(P(7,n) is well
defined. Note that —1(7)e” P(7) gives the function a(7) in (4.12). On the other

hand, the function wy(7) is also well defined, so that we can conclude that

Proc. R. Soc. A (2009)
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lim,, (1o (7)e“ P(7,n)) is well defined and smooth. As the function 4 (7)P(,7)
is periodic for any 7, the limit will also be periodic, and this defines the function
b(t) of (4.12).

Comparing the expressions for wii(7) and wyy(7) in (4.6), proportionality
between w;5(7) and the periodic component of wy;(7) also follows. [ |

Lemma 4.5. The Fourier expansions of the functions a(t) and b(t) in (4.12)
contain only the odd harmonics.

Proof. Write ug(7) according to (4.3). Then wy(7) = ca(7) = cy1((7), so that
the assertion follows trivially for a(r). Moreover the function e ¥ /42(7)
involves even powers of functions containing only odd harmonics, so that it
contains only even harmonics, and so does its integral as appearing in the
definition (4.6) of wy;(7). Hence, by lemmas 4.3 and 4.4, also b(r) in (4.12)
contains only the odd harmonics. [ ]

A straightforward calculation gives det W(r)=—c¢ coe™ ¥ N =e=F gince

c1co=—1, so that
Woo(T)  —wio(T
W—I(T) _ eF(r)< 22(7) 12( )) (4.13)

—wy (1) wy(7)

We want to develop perturbation theory for a 2mp-periodic solution which
continues the solution running on the unperturbed limit cycle when the
perturbation is switched on. Therefore we write

u(r) = ug(r) + Y pbu(r),  w(r) =y, (4.14)
k=1

veZ

where ug(7) is the solution satisfying the conditions (4.2). Inserting (4.14) into
(3.6) and expanding everything in powers of u, we obtain a sequence of recursive
equations. In §§5 and 6 we shall consider in detail the first order. Higher order
analysis and the issue of convergence will be discussed in §7.

5. First order computations

Let us also expand the initial conditions in u,

w(0) =17 = ug(0) + f: wFay, 0(0) =17 = fjuk@k, (5.1)
k=1 k=1

and set Wi ()= H(uo(7),v(7), 7+ 19)—cf. (3.7). We look for a solution
(u(t), v(7)) which is analytic in w, i.e. u(7)=uy(r)+ pu (1) + pluy(r) + -+ and
v(1) = 4(1)—see Bartuccelli et al. (2007, 2008) and Gentile et al. (2007) for similar
situations. Here we are interested in the dynamics on the attractor, hence in periodic
solutions, but in principle we could also study the dynamics near the attractor, by
looking for solutions of the form u(7)= U(e /7, e %7 1), as in Gallavotti (1994),
Gentile (1995) and Bartuccelli et al. (2002), with f; = fy + O(u) and f, = O(u), and
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U(-,-,¥) 2m/p-periodic in . To first order one has

<:<(:))> = W(r) [(Zi) +J0 dr’ Wl(f’)(%ll))], (5.2)

and we can confine ourselves to the first component u(7), since v, (1) = 4,(7), so

uy (1) = wiy (1)U + wip(1)0; + J; dr’ ") [wia(T)wy (7") = wiy (7) wio(7)]¥4 (1),

which can be more conveniently written as

ui (1) = wyy (7) <@1 _J

0

T

dr’ eF(T/)wlg(T’)’lfl (7'/)>

T

+ wyy(7) (m + J dr' eF“’)wU(T/)qfl(T/)).

0

The function e” e ™07 b(7)¥ (1) is periodic, while eV a(r)W¥,(7) is given by eh”
times a periodic function. Therefore we can write wy1(7) and wio(7) according to
(4.6), and set—see lemma 4.3

J; dr’ eF(T’)a<7_/)lp1 (T/) — e'fOTQl (T) -9, (0)’ (5.3)

JT dr’ eF(T')effOT’b(Tl)q’l (7) = 7Q + Qu(71) — 25(0), (5.4)
0

for some periodic functions Q;(7) and Q,(7), and with
Q, = (Fbwr)). (5.5)

Assume that we can choose the parameters in such a way that Q;=0. Then
we obtain

uy (1) = a(r) (ﬂl +¢Q,(0) =/ cQ, (1) + ¢ty + ¢/ cQ, (1) — cQ;(0)

+cQy(1) — CQQ(O)) + e h(7) (a1 +¢9,(0) —ef”TcQ1(T)), (5.6)

and if we want that (5.6) describe a periodic function, the constant v; can assume
any value, but we need

u; = —cQ,(0), (5.7)
so that (5.6) becomes
uy(r) = ca(7) (v = Q1(0) + Qa(7) = Q5(0)) + cb(7)Qu(7), (5-8)

where we have used the fact that the function e cQ, () appears twice but with
opposite sign in (5.6).
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Remark 5.1. The constant v, is left undetermined, and we can fix it arbitrarily,
say v, = 0, as we still have at our disposal the free parameter 7; see §2 of Gentile
et al. (2007) for an analogous discussion.

Therefore we can conclude that if Q=0 then we can choose 4, according to
(5.7) in such a way that up to first order there exists a periodic solution
uo(T) + puy (1) + O(1?). In §6 we study in detail the condition Q= 0.

6. Compatibility to first order
Consider the equation Qy =0, which can be written as
e1A + Bi(7o) + By(70) + Bs(7) =0, (6.1)

where we have defined

A= <eﬁb[(1 -6+ Bﬁug)do + % (auo —Bugy + 6u3)] >
P

R O . 2
=5 Jo dr e \b(7) [uo('r)h(uo(r)) + o E(uo( ))}
Zi%mreﬁ(f)TdT ug (T iur
2mp Jo dr e N )[ o(7)h(uo(7) + -5 K(uo ))], (6.2)
and
B = gr [ o) [t @) = ) sintr 7).
Batro) = [ ar ) o) (udr) - s+
2700 =50 |, 2z 0 0)s
Bs(t ):=L 2mp dr eF(r)b(T) Lu (1) (ug(r) — 1)](}05(7’ + 7). (6.3)
o 27tp Jo s 0 0 0

Remark 6.1. Note that we can write (6.2) as A= (2mp) [7"ds Q(s)
[h(U(s))dU(s)/ds+ (2/2¢)k(U(s))], where U(s) and Q(s) are 2m-periodic
functions, with U(s)=uo(ps) and Q(s)=ef*b(ps). The function U(s) is the
2m-periodic solution of the differential equation d?U/ds*+ Q;'h(U)dU/
ds+ Qy%k(U)=0, and F(ps)=—Q; fys+ Q," [ ds’ h(U(s')), so that the con-
stant A is of the form A= A/p, with A independent of p. Hence if A+#0 for some
p € Q then it is non-zero for all rational p#0.

By expanding sin(7+ 74) = sin 7 cos 7y + cos 7 sin 7y and cos(7+ 7y) = cos T
cos 7o —sin 7 sin 7y, we can rewrite (6.3) as B;(7y) = By cos 7o+ By sin 7 for
1=1, 2, 3, where we have introduced the constants

Proc. R. Soc. A (2009)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on August 15, 2011

Frequency locking 295
1 2mp Fr) M1 5
B =— d (1) |— 3 —1)|si
11 279 Jo Te (1) e to(T )( ug(7) )}sm T,
]' 277Pd ﬁ(T)b [ 1 2
Byi=— — 3 —1 ,
19 275 Jo Te (1) = UO(T)( uy(7) )} Ccos T
(> 1 1
Byyi=— | drefDp(r)|—— 2(r) = 1) |sin T = ———
21 27 Jo Te (1) _pQQg UO(T>(U0(T) ) s T pYe) 325
(> 1 1
Byy i =—— dr "D p(r) |—— 2(r)—1 =——Bs;. 6.4
22 27 Jo Te (1) _pQQg UO(T)(UO(T) ) cos T pQ; 31 (6.4)

By Setting D1 = _(Bll + BQl + B31) and D2 = _(312 + BQQ + B32)7 (61) then becomes
elA = Dl('ro) = Dl COS T + D2 sin To- (65)

All constants B;; in (6.4) are given by the average of a suitable function which
can be written as the product of a 2m/p-periodic function times a cosine or sine
function. Consider explicitly the constant Bj;; the other constants can be
discussed in the same way. We write

1 27p
= gy L dr K(r)sint, with K(7 Z VIEK, = ;Zeﬁw/pl( -
veZ 4

v even

as follows from lemmas 4.1 and 4.5. If we write sin 7= _,_1,(d/2i)e"", then

aK.
By, = Z 212'}- (6.6)
veElZo==+1
2v+op=0

The same argument applies to the other constants, so that we can conclude that
the constants B;; can be different from zero only if p is an even integer. If we set
p=p/q this means ¢=1 and p=2n, nEN. Hence for all rational p& 2N the first
order compatibility equation (6.5) gives ¢;A=0, so that either A=0 and ¢; is
arbitrary or A#0 and ¢;=0. An explicit calculation (given in appendix B) shows
that A#0. Therefore for all resonances p: ¢, with p/¢& 2N, frequency 1ock1ng, if
possible at all, can occur only for a range of frequencies of Wldth at most u’; more
detailed dlscussmn will be found in Bartuccelli et al. (in preparation).

The argument above does not imply that Dy, Dy #0 for p/g€ 2N—in principle
there could be cancellations in the sum (6.6). For any given resonance p: g, the
non-vanishing of the constants D; and D, can be checked numerically; for
instance, when a=5 and (=4, for p/q=2 one finds D;=0.007035 and
Dy=—0.04507 (Bartuccelli et al. in preparation). Therefore for p=2n, nEN,
frequency locking occurs for a range of frequencies of width of order u around
the value 2n.

Proc. R. Soc. A (2009)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on August 15, 2011

296 M. V. Bartuccelli et al.

7. Higher order computations and convergence

To extend the analysis of the previous sections to any perturbation order, we
write the solution we are looking for as

u(r) =Y pru(r),  o(r) =) wlu(n) = (), (7.1)
k=0 k=0

with (u(0), v(0)) written according to (5.1). Thus we find for all kEN
uy, (1) Uy T 0
= T dr T , .
(vk(r)> W )[(@k> +J0 W )<II/k,(T')>] 7-2)

k
W, (r) = [Z W Hy(ulr), (1), 7+ 79)

k=1

where

: (7.3)
k
with Hy defined in (3.6). The notation [-]; for ¥,(7) in (7.3) means the following.
In each term Hy, we expand u(7) and 4(7) according to (7.1), and, by taking the

Taylor series of the function H,, we keep all contributions proportional to u*: we
write the sum of these contributions as u"¥ (7). For instance one has Wy (7) =
Hy(uo(7), w(7), 74 70) + (8/9ug) Hy (ug(7), vo(7), 7+ 70) us (7) 4 (/) Hy (uo(7),
vo(7), 7+ 19) U, (1), with u(7) given by (5.8).

As in §5, we study only the equation for the first component, which is

T

up(1) = wiy (1)U, + wio(7) v + Jo dr'e™) [wia () wyy (77) = wyy (7) wyo (7)) | W1 (7).
(7.4)

The equation (7.4) for k=1 has been studied in §5. Here we want to show that
the equation (7.4) is well defined to any perturbation order k, and that it
is possible to choose the constant &, in (3.5) so that it admits a periodic
solution wu(7).

The discussion proceeds as in §5, once we note that each function Hy(u, 4,7+ 7)
in (3.6) contains a term e, (1 — 8+ 36u?)u + 2¢,(pQy) ~*[(a — B)u+ Bu®], whereas
all the other terms depend on the constants e/, with &’ strictly less than k. Therefore
for kEN one has

Wi () = ep(1—B+3Bup) to(7) +j—;"’0 (= B)ug(7) + Bui(1)] + Ep(r;70),  (7.5)

with the function E,(7;7,) depending only on the constants ¢, ..., &x—1, besides the
parameter 7y and time 7. Therefore to any perturbation order &, in order to have a
periodic solution, we need

Q= (e By) =0, (7.6)
and this can be obtained by requiring

e A=Dpl(ry),  Dp(ro)i=— (e bEx(-i79)), (7.7)
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with A defined as in (6.2). Since A#0 (as proved in appendix B) then we can use
(7.7) to fix e as a function of 7. Defining the periodic functions Q1 (7) and Q. 5(7)
such that

erf’ "7 a(7 )W (7)) = 7 Q1 (7) — Q11 (0), (7.8)

JO dr’ eF(T')e—fOT’ b(T/)lek(T/) _ TQI@O + th (T) — ka(())7 (79)

choosing the constants u, so that 4, + ¢Qy,;(0) =0, and using (7.6), then (7.4) gives
wp(7) = ca(r)(Vp — Qp1(0) + Qpa(7) — Qp2(0)) + ¢b(7) Qp1 (7)), (7.10)

with the constants v;, which will be fixed in the most convenient way (see remark
5.1). For instance we can set ;=0 for all kEN.

We can make the perturbative analysis of the previous sections rigorous to all
orders, by following the strategy introduced in Bartuccelli et al. (2007) and Gentile
et al. (2007), and hence study the convergence of the perturbation series.
Alternatively, one could try to apply arguments based on the implicit function
theorems. Typically, the latter would allow a simplification of the proof of
existence of the periodic solutions, but would be less suitable for explicitly
constructing the solutions themselves within any given accuracy; see the comments
in Gentile et al. (2007); therefore we follow the first method. Note that we are not
confining ourselves to approximate analytical solutions, which could be unreliable
owing to the uncontrolled truncation of the series expansion. On the contrary we
want also to settle the issue of convergence. In some sense this approach is
complementary to that of Guckenheimer & Holmes (1990), where qualitative
geometric methods are preferred to quantitative analytical ones.

The study of the convergence of the series is standard, and it has been
discussed extensively and in full detail in Gentile et al. (2007) for a similar
situation. Thus, we only sketch how the argument proceeds.

By expanding the functions w(7) and 4 (7) in Hy(u(7), 4 (7), 7+ 79) in (7.3)
according to (7.1), one sees that ¥,(7) can be expressed in terms of the functions
wy (1) with &' <k. On the other hand, by (7.10), the functions u,(7) are expressed
in terms of the functions Q;;(7) and Qj,(7), which in turn are integrals of
functions involving ¥ (), and hence depend on uy (1) for &' <k.

This means that we have recursive equations for the functions (7). By passing
to Fourier space, that is by expanding (1) =, cze"/? uy, ,, we obtain recursive
equations for the Fourier coefficients u;,. We do not write them explicitly because
the ensuing expressions are rather cumbersome, but one can easily work out the
analytical expressions for the recursions by following the scheme that we have
outlined. Eventually, we can represent uy, for k>1 and vEZ, in terms of tree
graphs, which can be studied with the techniques of Gentile et al. (2007).

We do not repeat the analysis here, but we instead just give the final result. To
any order k>1 one obtains the following bounds for the Fourier coefficients:
lup,| < CC5™and 3, ez|w,| < C3C571, for suitable positive constants Cy, Cb,
Cs, depending on p. This implies the convergence of the perturbation series (7.1)
for u small enough, say for |u| < C5 .

Proc. R. Soc. A (2009)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on August 15, 2011

298 M. V. Bartuccelli et al.

8. Arnold tongues and devil’s staircase

We use the perturbative analysis, developed to all orders in §7, to study for
which values of the driving frequency w one has locking. We shall see that the
analysis accounts for the devil’s staircase structure found in O’Neill et al
(2005b), for small values of the driving amplitude u.

Lemma 8.1. The functions Hy(u,u,7+ 1q) in (3.6) are polynomials of odd
order in (u,u) for all kEN.

Proof. The function H(u, 4, i, 1) given by (3.1) is a polynomial of odd order in
(u, u, ). By writing H(u, 4, i,u) as in (3.6), the only term containing i is the
first one (k=0), so that all the other terms are polynomials of odd order in (u, @).

[ |
Lemma 8.2. For all k&N one has

'U,k(T) — Z Z eivr/pei(r(‘r+ru)ﬂk%y (81)

vEZ oEZ
v odd |o|<k

lpk(T) — Z Z eil}‘r/peic7(7'+‘r0)W}CJ/J7 (82)

vEZ oEZ
v odd |o|<k

with the coefficients uy,, , and W,w,a independent of 1.

Proof. First of all note that if ¥,(7) is of the form (8.2), then u(7) is also of
the form (8.1). This can be proved as follows. For brevity, here and henceforth
we say that u.(7) and ¥,(7) ‘contain only odd harmonics’ if they are of the form
(8.1) and (8.2), respectively. The functions Q;,(7) and Q;,(7) are integrals of
functions that are either periodic functions P(7) or of the form e/o! times periodic
functions P(7). In all cases the function P(7) is given by the product of three
functions: two of these functions—one is either a(7) or b(7), the other one is
Y (1)—contain odd harmonics, by lemma 4.5 and by our assumption on ¥ (1),
while the third one—e’(”—contains only even harmonics. If we compare (4.10)
with (4.11) we see that the integral of a function e“"P(r) is of the form
D+ e“"Q(7), where Q(7) contains the same harmonics as P(7). Therefore both
Qy1(7) and Qy »(7) are periodic functions containing only even harmonics. Then,

recall that u,(7) is given by (7.10). We have already used the fact that the
functions a(7) and b(7) contain only odd harmonics, so that we can conclude
that, as claimed above, if ¥(7) is of the form (8.2) then uy is of the form (8.1).

Then, the proof of the lemma proceeds by induction. Recall that for k=1 one
has ¥ (1) = H,(uo(7), 4o(7), 7+ 79), with H; given by (3.7), so that, by lemmas
2.1 and 8.1, ¥ (1) is of the form (8.1), and, by the previous observation, the
function wuy(7) is also of the form (8.2). ~

By assuming that u,(7) is of the form (8.1) for all k< k, then by lemma 8.1 it
also follows that ¥y(7), given by (8.2), is of the form (8.2). Again by the
observation at the beginning of the proof, it follows that u;(7) can be expressed
as in (8.2). [
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Remark 8.3. If we expand u;(7) as a Fourier series, u(7)=3",cz¢"" "y,
then (8.1) implies '
Uy, , = Z e Uy g
v ez|dl<k
@' +po=v
In particular u,(7) and ¥(7) are polynomials of order k in 7.

Lemma 8.4. For all k&N one has

1 2mp i .
— - iwr/p io(T4+7))
Dp(70) = Dpp + o Z Z L dr e Pe™ VK 6,

vEZ o€Z
v even 0<|o|<k

for suitable To-independent coefficients Ky, ,, depending on e, ..., ex—1, but not
on €.

Proof. The functions e/™ and b(r) in (7.6) are periodic in 7 with period
2mwp=2mp/ ¢, and contain only even and odd harmonics, respectively, whereas ¥ ;(7)
is given by (8.2). By lemma 8.2, this yields that Q= Q} ((7) is of the form

_ ivr/p io(T+7))
Q=50 ¥ 3 [Marerenicng,,,

vEZ o€EZ
v even |o|<k

for suitable coefficients @), ,, which are independent of 7, but depend on

€1, ..., & In particular the only contribution to Q( depending on ¢ is of the
form e, A, see (7.7), so that we can write Q= erA+ Dyoler, ..., 84-1;70), for
a suitable function Dy (ey, ..., e5-1; 7). [ |

By (3.5) and (7.7), and using lemma 8.4, we can write

e(un) = D7, 1 ZM Di(70), Di(ro) = D €Dy, (8.3)
gEZ
lo|<k
for suitable coefficients D, ,. For given w, for a periodic solution with period 27p

to exist, we need that 8(,&), defined according to (3.3), satisfy (8.3) for some
€[0,2m). Therefore, by defining

8ma.x(p) = Oénag; D(7'07 ,LL), emin(p) = 0<I1I%1<%7T 3(707 :U')a

and setting W(p) = epax(P) — €min(p), such a periodic solution exists for all
e(1) € [emin(p); emax(p))-

Lemma 8.5. Fiz p=p/q. One has Dy(7q) = Dy for all k<q if p is even and for
all k<2q if p is odd.

Proof. One can write &, A=D.(7y), with Dy(ry) defined in lemma 8.4.
By comparing (8.3) with the expression for D, (7)) in lemma 8.4, we see that

27
D _ 1 Pd ivr/p io(T+7g)
ko — Te € Kk.vo
) 277]) 0 )
vEZ
v even
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for ¢#0, so that one can have ®;, #0 only if gp € 2N for some || < k. Hence,
if p=p/q with either even p and ¢>k or odd p and ¢>2Fk, one has D;,=0. In
other words, for fixed p=p/q one has D(r9) = D, for all k<q if p is even
and for all £k<2gq if p is odd. ' [ ]

By lemma 8.5 we can write in (8.3)

Di(r9) = Dy + Di(p), Bi(r0) = Z "Dy,
oEZ
0<|o|<k
where the zero-mean function D (7,) vanishes for k< ¢if pis even and for k<2q if
p is odd.

Remark 8.6. The coefficient D;, does not contribute to W(p): when making
the difference between ée,.(p) and eynin(p) only D.(7y) plays a role. Therefore
lemma 8.5 implies that W(p) = O(w) only for p=2n, nEN; W(p) = O(u*) only
for p=2n—1, nEN; W(p)= O(u?) only for p=2n/3, nEN and p&2N;
W(p)= O(u*) only for p=(2n —1)/2, nEN and p &N; W(p) = O(x’) only for
p=2n/5, nEN and p & 2N; W(p)= O(u°) only for p=(2n —1)/3, nEN and
p &N; and so on. In general, if p= p/q with even p, then W(p) = O(u?), while if
p=p/q with odd p, then W(p)= O(u??).

If we recall the definition (3.3) of ¢(u) and we set
2N

a 1+ pQ()gmaX(p) ,

P2

= 8.4
1+ P-Qofmin(/’) ( )

Wmin (p) ; Wax (p> :

we obtain that for
wmin(p) Sw< wmax(p)7 (85)

there exists a periodic solution with period 27p (recall that p= p/q). In the (w, u)
plane the region (8.5) defines a distorted wedge with apex at w= pQ, on the
real axis.
Call Aw(p) = Wypax(p) — ®uin(p) the range of frequencies around the value pQ,
with p= p/q, for which there is frequency locking. Then
Aw@n/k) = O, Aw((2n+1)/k) = O(u®), (3.6)
for all k£, n€EN such that 2n/k and (2n+ 1)/k, respectively, are irreducible
fractions. Indeed, Aw(p) is proportional to W(p), so that Dy, does not contribute
to the width of the plateau, but only to its ‘centre’. In the (w, u) plane the locking
regions (Arnold tongues) ‘emanate’ from the values pQ, with p€Q. For p€2N
they are centred around the vertical passing through w= pQ, and for fixed u
have width O(u). For all the other rational values of p, in general, they slightly
bend away from the vertical: for fixed u the centre of the region is shifted of order

u? with respect to the value w = pQ,/q, whereas the width is O(u?) for even p and
O(u??) for odd p.

9. Conclusions and open problems
The locking of oscillators onto subharmonics of the driving frequency (also called
frequency demultiplication) has been well known in electronics since the work of

van der Pol & van der Mark (1927); since then, electronic circuits approximately
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described by the van der Pol equation have been extensively studied from the
numerical point of view (cf. for instance Kennedy & Chua (1986) and Parlitz &
Lauterborn (1987)). In the (w, u) frequency-amplitude plane, the locking region
occurs in distorted wedges (Arnold tongues) with apices corresponding to the
rational values on the frequency axis. If one plots the ratio of the driver
frequency w to the output frequency Q versus the driving frequency w, one
obtains a so-called devil’s staircase, i.e. a self-similar fractal object, where the
qualitative structure is replicated at a higher level of resolution, with plateaux
corresponding to rational values of the ratio.

The phase locking phenomenon, the existence of the Arnold tongues, and the
devil’s staircase picture have been proved rigorously in some mathematical
models, such as the circle map (Arnold 1988), and studied numerically for several
electronic circuits, such as the van der Pol equation (Guckenheimer & Holmes
1990), the Josephson junction (Abidi & Chua 1979; Levi 1988; Qian et al. 2008),
the Chua circuit (Pivka et al. 1994) among others.

In this paper we have studied analytically the injection-locked frequency
divider equation considered in O’Neill et al. (2005b). In particular we aimed to
understand the devil’s staircase picture, with the largest plateaux corresponding
to integer resonances of even order, and to provide an algorithm to compute the
width of the plateaux for small values of the driving amplitude u.

The main result is summarized by (8.6), which gives the width of the Arnold
tongues in terms of the driving amplitude u and of the resonances p : ¢. Note that
the width of the tongues is narrower for resonances of higher order.

In most of the analytic discussions in the literature, one usually assumes that
the unperturbed system is written in a very simple form—see for instance
(Guckenheimer & Holmes 1990). Of course, determining analytically the change
of variables which puts the system into such a form can be very difficult in
general, in principle as difficult as finding explicitly the solution itself. Hence, we
have preferred to work directly with the original coordinates. Even if we have
concentrated here on a resonant injection-locked frequency divider equation, our
analysis applies to any driven Liénard equation, of which the van der Pol
equation is a particular type (it is obtained from (2.6) by setting h(u)= u* — 1
and k(u) = u). The dynamics of the forced or driven van der Pol equation has
been analytically investigated in Levinson (1949, 1950) and Levi (1981).
However, we could not rely on results existing in the literature, as we are
interested in the exact structure of the Arnold tongues, which of course strongly
depends on the particular form of the system under study.

We have considered the model (2.1) introduced in O’Neill et al. (2005b). In
particular we have taken the same driving term as in O’Neill et al. (2005b),
containing only one non-zero harmonic. In principle, one can consider more
general functions, for instance any analytic periodic function, instead of the sine
function. In that case the driving function contains all the harmonics; of course,
by analyticity, the coefficients of the harmonics decay exponentially fast. Then
one could ask how the analysis changes in such a case. From a technical point of
view, there are no further complications. However, the conclusions about
the devil’s staircase structure are slightly different. For instance, the width of
all plateaux becomes of order u (of course it is also proportional to the amplitude
of the relevant harmonics: usually, in any physical problem, only the first
few harmonics are important). This follows by the same arguments as given
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in §6. The analogues of the functions By(1y) in (6.3) contain all the harmonics
sin(o(7+ 7)) and cos(o(r+73)), with ¢€N, so that, when imposing the
constraint 2v+gp=0 in (6.6), one no longer has ¢==+1. On the contrary,
one has ¢ €Z; thus in general the constraint can be satisfied for all p€@Q (by
choosing v appropriately), and so all the plateaux have width of order pu.
However, the larger p and ¢ in p= p/q are, the narrower the plateau is: indeed
2v+ap= (2vq+ op)/q= 0 requires 2|v|/|o| = p/q, hence, for very large values of
p and ¢, both v and ¢ are very large, and hence the factors Ks, contributing to Bj;
in (6.6) are very small. This is consistent with the fact that the union of Arnold
tongues forms an open dense subset of the (w, u) plane, whose complement
converges to full measure as u—0 (Herman 1977). So, an important observation
is that large plateaux have not been found in O’Neill et al. (2005a) for odd integer
values owing to the peculiar form of the driving term: they would appear by
taking, for instance, a driving term involving also the harmonics with v=+2
(provided the corresponding amplitudes were comparable with those of the
harmonics with »=41). The dependence of the width of the plateaux on the
driving signal—in particular on the number and size of the harmonics it
contains—will be further investigated in Bartuccelli et al. (in preparation).

We have studied analytically the existence and properties of the periodic
solution which continues the unperturbed limit cycle when the perturbation is
switched on. It would be interesting to prove analytically also that such a
solution is attracting, for instance by determining the Lyapunov exponents or
studying the more general solutions that move nearby and tend asymptotically
to the attractor—for instance by following the strategy outlined in the first
paragraph of §5.

Another interesting problem to investigate analytically concerns the dynamics
far away from the resonances, i.e. when the rotation vector (w, Q) satisfies some
Diophantine condition such as the standard Diophantine condition mentioned in
§1—see also the comments in the last paragraph of §2—or the weaker Bryuno
condition (Gentile et al. 2006; Gentile 2007). Such values of w, in the devil’s
staircase picture, are complementary to those for which frequency locking occurs.

The analysis we have performed is based on perturbation theory, and applies
for u small enough. It would be interesting to investigate the locking diagram in
the (w, u) plane for large values of u. It could be worthwhile to enquire further
both analytically (for small values of u) and numerically (even for larger values
of u) into the structure of the Arnold tongues in the (w, u) plane. Work is
underway concerning these problems (Bartuccelli et al. in preparation).

We thank Giovanni Gallavotti for useful discussions, and Peter Kennedy for bringing this problem
to our attention. We are also indebted to Henk Bruin and Freddy Dumortier for providing us with
the references Zhang (1986) and Coppel (1989).

Appendix A. Well-posedness of the Wronskian matrix

Let ug be the periodic solution of (3.4) satisfying the conditions (4.2). Write
uy(7) =19+ 72 /2 + 1,73 /3 + O(r), see remark 3.1.

Lemma A.1. The function wy(7) in (4.6) is smooth.
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Proof. By deriving (3.4), one finds
tiig + f(ug)iig + f' (ug)tif + g’ (ug) iy = 0, (A1)

where f' and ¢’ are the derivatives of f and ¢ with respect to their arguments,
while the dots denote derivatives with respect to the time 7.
By computing (A 1) at 7=0 and using that 4,(0) =0, we find

0= '12'0(0) + f(u0(0))iin(0) = 21y + f(rp)ry. (A2)

n (4.7) we can write F(7)= []d7’ f(uy(0))+ O(r*) = f(ry)T+ O(7%), so that

e P =1—f(ry)r+ O(r?). On the other hand one has 1/u42(7)=(rir?)~!
(1=2m7/7r + O(7%)). Therefore the integrand in (4.6) can be expanded as

eiF(T) 1 27”2 9

30 e < 7"1 T—f(ry)T + O(7 )> (A3)
The term 1/r37? produces a linear divergence, which is compensated by the
function 44(7) in front of the integral. The integral arising from the linear term
inside the parentheses of (A 3) would produce a logarithmic divergence (hence
a divergence of the first derivative of wi;(7)); however such a term is of the
form —(2ry/r + f(ry))7=—771 (21, + f(ry)1), which vanishes owing to (A 2).
Finally, the remaining part of the integrand arises from the terms of order
% in (A 3), and hence produces regular terms. This proves that the function
wy1(7) is smooth. [ |

Lemma A.2. There exists a unique T € (0,mp) such that wy;(0)=0.

Proof. One can write wy;(7) in (4.6) as wy;(7)= clzlo( )(R(T) — R(f)), where
R(7) is a primitive of the function e ") /42(7), i.e. R() = r(r)=e " /0l(7).
The function r(7) is smooth and strictly positive for ¢ € (0,7p), and hence
its primitive R(7) is strictly increasing for ¢ € (0,7p). For all t,7 € (0,mp)

the function
.

Mnﬂzﬁmuvq=mﬂ—mﬂ (A4)
is smooth, and for all 7 € (0,7p) one has lim,_ o+ R(7,7)=— and lim,_, .,
R( 7) = +oo, which imply that for all 7 € (0,mp) the function R(r,7) is strictly
1ncreasmg in 7 from —o to +o. Now w(7)= ¢ ig(r)(R(T)—R(T))+
c1e P 144 (7), so that

w11(0) = ¢; lim (ilo(r)R(T) +

e_F(T)

tg(T)

7—0

)—q%mm@y (A5)

Lemma A.1 shows that the limit in (A 5) is well defined, so that we obtain
wy1(0) = 0 provided

1 e F
R(7) = lim (uO(T)R(T) + — ) (A6)

iig(0) 70 to(T)

Since R(7) is finite, by (A 4) also the function R(7) is strictly increasing in 7 from
— o to + 0. Therefore (A 6) has one and only one solution 7 in (0,7p). [ |
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Appendix B. Non-vanishing of the constant A

Recall the definition (6.2) of A. We can write e 07b(7) = wyy (1) — a(7) = wy, (1)—
Yig(7), with y=cy/¢ and dg()h(ug(r)) +2(pQ0) ~*k(ug(r)) = —[2pQ01ig(7)+
Uo(T)h(ug(7))]—see (4.6), (4.12) and (3.4)—so obtaining
I . . . .
A=— 2 JO dr "7 (wyy (1) = viig(7)) 200 (7) + 1 (7)A(ug(7))]. (B 1)
Lemma B.1. One has

JowpdT eF(T)do(T)[Qp-Qoilo(T) + 1o (T)h(uo(1))] =

Proof. By writing ]:(T)ZeF<T>, one has .7-“(7) flug(r))F(r)= h(uo( )
F(1)/pQy; cf. (4.7). Hence Fiig[2pQ0ily+ tigh(ug)] = pQy(F(d/dt)ul + Ful)=
pQy(d/dt)(Fud), so that

LW dr Dy (7)[2pQ0 i (1) + g (7) (g (7))]

21p d
=0y || dr - (F()3() = p@ulF 2mp) i (2mp) — F(0)3(0)
= pQy(F(2mp) = F(0))15(0) =0, (B2)
where we have used that 1, (7) is 2wp-periodic and 4 (0) = 0.
From lemma B.1, (B 1) becomes
12 . . ,
A== | ar e (2000 (r) + o (DhCwm) (B3)

Lemma B.2. One has

2mp
[, ar e w2yl + io(r)blug (1)) = 2oy

with 7, defined in remark 4.2.
Proof. By writing once more F(7) = e’ we have

Fuwiy[20Qqii + ugh(ug)] = PQowu[}-’do + (Fiig + Fiig)]
d
= pQy | w Fiby + wyg — ar (-7:710)}

[ . d ) ..
= pQy | wy F i +5(7:U0w11)_~7:uow11]

d ) . .
= pQ 5(-7:%71111) + F(wyy g _’wuuo)} (B4)
where
. 1 1
F(wyy ity — 1wy tg(7)) = 0_2-7:(71’117022_ Wy Wyo(T)) = 6—2.7-"det w
1 1
= Fe =" = T,
Co Co
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so that the integration of (B 4) gives

j dr "Dy, (7)[20Qu i + o (T)h(1p(7))]

= pQo[F (2mp)iig(2mp) wyy (2mp) — F (0)1ig(0)wy; (0) + 2mpr]
= 2mpr pQy, (B5)

where once more we have used 44(2mp) = 144(0) = 0. [ |

By using lemma B.2 in (B 3) we obtain A =—rpQ,. Therefore A#0 for any
value p€Q. Note that the time rescaling implies that r is of the form
r = (pQy) *F, with 7, independent of p, so that A= A/p, with A=—7/Q,
independent of p, consistently with remark 6.1.
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