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Frequency locking in an injection-locked
frequency divider equation

BY MICHELE V. BARTUCCELLI
1, JONATHAN H. B. DEANE

1

AND GUIDO GENTILE
2,*

1Department of Mathematics, University of Surrey, Guildford GU2 7XH, UK
2Dipartimento di Matematica, Università di Roma Tre, Roma 00146, Italy

We consider a model for a resonant injection-locked frequency divider, and study
analytically the locking onto rational multiples of the driving frequency. We provide
explicit formulae for the width of the plateaux appearing in the devil’s staircase structure
of the lockings, and in particular show that the largest plateaux correspond to even
integer values for the ratio of the frequency of the driving signal to the frequency of the
output signal. Our results prove the experimental and numerical results available in
the literature.

Keywords: frequency locking; Arnold tongues; devil’s staircase;
injection-locked frequency divider
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Rec
Acc
1. Introduction

In O’Neill et al. (2005a), an electronic circuit known as a resonant injection-
locked frequency divider is studied experimentally, and the devil’s staircase
structure of the lockings is measured: when the ratio of the frequency u of the
driving signal to the frequency U of the output signal is plotted versus u,
plateaux are found for rational values of the ratio. In O’Neill et al. (2005b), a
model for the circuit is presented and numerically investigated, and the results
are shown to agree with the experiments.

In this paper, on the basis of the model introduced in O’Neill et al. (2005b), we
address the problem of explaining analytically the appearance of the plateaux of
the devil’s staircase. We aim to understand why the largest plateaux correspond
to even integer values for the frequency ratio and, more generally, how the
widths of the plateaux depend on the particular values of the ratio.

From a qualitative point of view, the mechanism of locking can be illustrated
as follows. In the absence of the driving signal, the dynamics evolves towards a
periodic attractor (limit cycle). Call U0 the proper frequency of the attractor (the
term ‘proper’ refers to the fact that, whatever the initial condition is, the solution
is asymptotically periodic, with a frequency intrinsically associated to the
system, i.e. it is completely determined by the parameters of the circuit). When
the driving signal is switched on, denote by m and u, respectively, its amplitude
and its frequency. For fixed driving frequency u one considers the Poincaré
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section at times tZ2pn/u, for integer n, and studies the dynamics on the
attractor. This leads to a map that behaves as a diffeomorphism on the circle.
Thus, based on the theory of such systems (Arnold 1988), one expects that for
u/U0 close to a rational number one has locking. How close u has to be to a rational
multiple of U0 depends on m and on the multiple itself: in the (u, m) parameter
plane one has locking in wedge-shaped regions known as Arnold tongues.

However, all the discussion above is purely qualitative. In particular, there
remains the major problem of determining the map to which one should apply
the theory. A quantitative constructive analysis is another matter, and requires
taking into account the fine details of the equation and the explicit expression of
the solution of the unperturbed equation: we carry this out in this paper. Our
analysis is based on perturbation theory, which is implemented to all orders and
proved to be convergent. This approach is particularly suited for quantitative
estimates within any given accuracy (for which it has to be possible to go to
arbitrarily high perturbation orders, and to control the truncation errors).
Furthermore, we think that a rigorous analysis ab initio, without introducing
uncontrolled simplifications or approximations, can be of interest in itself.
Indeed, although such simplifications can capture the essential features of the
problem and allow a qualitative understanding of the physical phenomenon, it
nonetheless remains unclear in general how far a simplified model can be
expected to describe the original system faithfully.

The conclusions of our analysis can be summarized as follows. The equation
modelling the system can be viewed as a perturbation of order m of a particular
differential equation. In the absence of the perturbation, after a suitable change
of variables, the system can be cast in the form of a Liénard equation
x 00ChðxÞx 0CkðxÞZ0. Under suitable assumptions on h and k, this admits a
globally attracting limit cycle. Let U0 be the proper frequency of such a cycle,
and let us denote by x0ðtÞZX0ðU0tÞ the solution of the equation corresponding
to the limit cycle, with the function X0 being 2p-periodic in its argument. By also
including the time direction, one can study the dynamics in the three-
dimensional extended phase space (x, x 0, t), in which the limit cycle generates
a topological cylinder. When the perturbation is switched on, the cylinder
survives as an invariant manifold, slightly deformed with respect to the
unperturbed case. This follows from general arguments related to the centre
manifold theorem (Chow & Hale 1982). However the dynamics on the manifold
strongly depends on the relation between the proper frequencyU0 and the frequency
u of the driving signal. Ifu/U0 is irrational and satisfies someDiophantine condition
(such as jun1CU0n2jOgðjn1jC jn2jC1ÞKt for all ðn1; n2Þ2Z

2 and some
positive constants g, t), then one expects the output signal x(t) to be a quasi-
periodic function with frequency vector uZ(u, U0), so that one has
xðtÞZXðut;U0tÞZX0ðU0tÞCOðmÞ, where X is a 2p-periodic function of both its
arguments. In this case we say that the output frequencyU equalsU0 (of course, this
is slightly improper terminology because U0 is only the frequency of the leading
contribution to the output signal, and the latter is not even periodic). On the other
hand, ifu/U0 is close to a rational number p/q (resonance), then x(t) is periodic with
frequency UZpu/q (locking): hence the frequency U of the output signal differs
fromU0—even if it remains close to it—because it is locked to the driving frequency
u. Thus, if one plots the ratio u/U versus u, one obtains the devil’s staircase
structure depicted in fig. 4–9 of O’Neill et al. (2005a). The locked solutions can be
Proc. R. Soc. A (2009)
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obtained analytically from the unperturbed periodic solutions by a mechanism
similar to the subharmonic bifurcations that we have studied in previous papers
(Bartuccelli et al. 2007, 2008). We stress, however, that, unlike the cases studied in
the latter references, here, the unperturbed equation cannot be solved in closed
form. This will yield extra technical difficulties, because we shall have to rely for our
analysis on abstract symmetry properties of the solution, without the possibility of
using explicit expressions.
2. Model for the resonant injection-locked frequency divider

We consider the system of ordinary differential equations

C
dVC

dt
Z ILC f ðVC; tÞ; L

dIL
dt

ZKRILKVC; ð2:1Þ

where L,C,RO0 are parameters, VC and IL, the state variables, are the capacitor
voltage and the inductor current, respectively, and

f ðVC; tÞZ ðACB sin UtÞVCð1KðVC=VDDÞ2Þ; VDD;AO0; B2R;

is the (cubic approximation of the) driving point characteristic of the nonlinear
resistor. The model (2.1) was introduced in O’Neill et al. (2005b) as a simplified
description of a resonant injection-locked frequency divider.

By introducing the new variables udVC=VDD and vdRIL=VDD and
rescaling time t/ t 0ZRt=L—but continuing to denote the new time by t in
order not to overwhelm the notation—(2.1) becomes

u 0 ZavCFðtÞuð1Ku2Þ; v 0 ZKuKv; ð2:2Þ

where the prime denotes derivative with respect to time t, and we have set aZL/
R2C, bZLA/RC, mZLB/RC and FðtÞZbCm sin ut, with uZUL/R.

From now on, we shall consider the system (2.2), with aObO1, and m, u2R.
By setting sZuCv we obtain

s0 Z ðaK1ÞsCðFðtÞKaÞuKFðtÞu3;

u 0 ZasCðFðtÞKaÞuKFðtÞu3;
ð2:3Þ

which gives u 00C ½1KFðtÞC3FðtÞu2�u 0C ½ðaKFðtÞÞuCFðtÞu3�CF0ðtÞðu3KuÞ
Z0, that is

u 00Cð1KbC3bu2Þu 0C ½ðaKbÞuCbu3�CmJðu; u 0; tÞZ 0; ð2:4Þ
with

Jðu; u 0; tÞZ ½u 0ð3u2K1Þsin utCðu3KuÞsin utCuðu3KuÞcos ut�: ð2:5Þ
For mZ0, (2.4) reduces to u 00Cð1KbC3bu2Þu 0C ½ðaKbÞuCbu3�Z0, which can
be written as a Liénard equation

u 00Cu 0hðuÞCkðuÞZ 0; ð2:6Þ
Proc. R. Soc. A (2009)
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Figure 1. The limit cycle for aZ2.5, bZ2.0 and mZ0. The proper frequency is U0z1.1434.
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with

hðuÞZ 1KbC3bu2; kðuÞZ ðaKbÞuCbu3 Z uðaKbCbu2Þ: ð2:7Þ
For (2.6) to have a unique limit cycle (Coppel 1989; Hartman 2002), we require
that

1Kb!0; aKbO0 0 aObO1;

which motivates our assumption on the parameters a and b—an assumption that
turns out to be consistent with the physical context and the numerical
experiments (O’Neill et al. 2005a,b).

Consider the system described by equation (2.6), with the functions h(u) and
k(u) given by (2.7) with aObO1. Such a system admits one and only one limit
cycle encircling the origin (Hartman 2002); see for instance figure 1. Let T0 be
the period of the solution u0(t) running on such a cycle. Denote by U0Z2p=T0

the corresponding frequency: U0 will be called the proper frequency of the system.
Note that U0 depends only on the parameters a and b.

The solution u0(t) is unique up to time translation. Fix the time origin so that
u 0
0ð0ÞZ0, u0(0)O0. Note that fixing the origin of time in such a way that u 0

0ð0ÞZ0
compels us to shift by some t0 the time in the argument of the driving term in (2.5),
i.e. J(u, u0, t) must be replaced with Jðu; u 0; tC t0Þ; see the analogous discussion
in Gentile et al. (2007).

Lemma 2.1. The Fourier expansion of u 0(t) contains only the odd harmonics, i.e.

u0ðtÞZ
X
n2Z

expðiU0ntÞu0; n Z
X
n2Z

n odd

expðiU0ntÞu0; n:
Proc. R. Soc. A (2009)
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Figure 2. Examples of attractors for aZ2.5, bZ2.0 and mZ0.1. For juK4U0j%0:03 the motion is
periodic: in (a), uZ4U0C0:02. The diamonds mark the four points where sin ut is zero and
positive-going. (b) For uZ4U0C0:2 the motion is quasi-periodic. Recall that U0z1.1434.
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Proof. The symmetry properties of (2.6), more precisely the fact that
h(Ku)Zh(u) and k(Ku)ZKk(u), ensure that the periodic solution u0(t) satisfies
the property

u0ðtCT0=2ÞZKu0ðtÞ; ð2:8Þ

and in turn this implies the result (compare the proof of lemma 3.2 in Bartuccelli
et al. 2007). &

Lemma 2.2. One has
ÐT0

0 dt hðu0ðtÞÞO0.

Proof. For a proof see Coppel (1989). &

Moreover the limit cycle is a global attractor (Sansone & Conti 1964; Hartman
2002), and it is uniformly hyperbolic (Zhang 1986; Coppel 1989). Hence the
cylinder it generates in the extended phase space persists, slightly deformed, as a
global attractor for small perturbations (Hirsch et al. 1977; Levi 1981; Chow &
Hale 1982; Vanderbauwhede 1989). This also means that the system described by
equation (2.4), at least for small values of m, has one and only one attractor,
which attracts the whole phase space. However, the persistence of the attractor
does not tell us whether the dynamics on the attractor is periodic or quasi-
periodic; cf. Ciocci et al. (2005) for an analogous discussion. In particular it does
not imply that for U0/u close to a resonance the dynamics remains periodic; see
for instance figure 2.

We note that for U0/u Diophantine the attractor is expected to become quasi-
periodic, with the dynamics analytically conjugated to a Diophantine rotation
with rotation vector (U0, u). In principle, this can be proved by KAM techniques
(Ciocci et al. 2005), or with methods closer to those used in this paper (Gallavotti
1994; Gentile 1995; Gallavotti et al. 2004; Gentile & Gallavotti 2005; Gentile
et al. 2005).
Proc. R. Soc. A (2009)
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3. Framework for studying frequency locking

Rescale time so that the driving term has period 2p, hence frequency 1, by
setting tZut. Then, by denoting with the dot the derivative with respect to
rescaled time t, (2.4) gives

€uC
1

u
ð1KbC3bu2Þ _u C

1

u2
½ðaKbÞuCbu3�Cm �Jðu; _u ; tCt0ÞZ 0; ð3:1Þ

where t0Zut0, and we have defined �Jðu; _u ; tÞZ ½uK1 _u ð3u2K1Þsin tC
uK2ðu3KuÞsin tCuK1ðu3KuÞcos t�. For mZ0 one has €uCuK1ð1KbC3bu2Þ _uC
uK2½ðaKbÞuCbu3�Z0, which can be written as

€uC
1

u
hðuÞ _u C

1

u2
kðuÞZ 0; ð3:2Þ

which is of the form (2.6) up to the rescaling of time. As an effect of the time rescaling,
the frequency of the limit cycle for the system (3.2) depends on u, as it is given by
�U0ZU0=u.

Remark 3.1. As the solution u0(t) is analytic in t, the property _u 0ð0ÞZ0
means that we can write _u 0ðtÞZr1tCOðt2Þ, and hence u0ðtÞZr0Cr1t

2=
2COðt3Þ, with r0Zu0ð0Þ and r1Z €u0ð0Þ.

We want to show that if the frequency u of the driving term is close to a
rational multiple of the unperturbed proper frequency U0 of the system, that is
uzpU0=q for some p, q2N relatively prime, then the frequency U of the solution
exactly equals qu/p, that is u/UZp/q. Such a phenomenon is known as
frequency locking: the system is said to be locked into the resonance p : q.

Let rZp=q 2Q. For mZ0, for any frequency u of the driving term the proper
frequency is UZU0—the system is decoupled from the perturbation—so that if
we fix uZrU0 we obtain UZU0Zu=r. In terms of the rescaled variables, for
which u is replaced with �uZ1, the proper frequency becomes �U0Z1=r. For u
close to rU0 write

1

u
Z

1

rU0

C3ðmÞ; ð3:3Þ

with 3(m) such that 3(m)/0 as m/0.
We look for periodic solutions for the full system (2.4), hence for solutions with

period TZ2pp/u (i.e. the least common multiple of both 2p/u and 2pp/uq). In
terms of the rescaled time t, the solution will have period 2pp, hence frequency
1/p. For mZ0 the system (3.1) reduces to

H0ðu; _u ; €uÞd€uC f ðuÞ _u CgðuÞZ 0; ð3:4Þ

with

f ðuÞZ 1

rU0

hðuÞ; gðuÞZ 1

r2U2
0

kðuÞ;

which admits the periodic solution u0(t) such that u0(0)O0, _u0ð0ÞZ0 and
u0ðtC2prÞZu0ðtÞ. In other words the frequency of the limit cycle is 1/rZq/p
and the period is 2pp/q, i.e. u0ðtÞZUðt=rÞ, with the function U being
2p-periodic.
Proc. R. Soc. A (2009)
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For ms0 we write

3ðmÞZ 31mC32m
2C/Z

XN
kZ1

3km
k ; ð3:5Þ

and, by inserting (3.3) and (3.5) into (3.1), we obtain the equation

Hðu; _u ; €u;mÞdH0ðu; _u ; €uÞC
XN
kZ1

mkHkðu; _u ; tCt0ÞZ 0; ð3:6Þ

where

H1ðu; _u ; tÞZ 31ð1KbC3bu2Þ _u C
231
rU0

½ðaKbÞuCbu3�

C
1

rU0

_u ð3u2K1Þsin tC
1

r2U2
0

ðu3KuÞsin t

C
1

rU0

ðu3KuÞcos t; ð3:7Þ

H2ðu; _u ; tÞZ 32ð1KbC3bu2Þ _u C
232
rU0

C321

� �
½ðaKbÞuCbu3�

C31 _u ð3u2K1Þsin tC
231
rU0

ðu3KuÞsin tC31ðu3KuÞcos t; ð3:8Þ

and so on. The shifting of time by t0Zut0 in the driving term is due to the choice
of the origin of time made according to §2.

In the following sections, we shall prove that for m small enough it is possible
to choose 3(m) as a function of t0, in such a way that there exists a periodic
solution of (3.6) with period 2pp, i.e. with frequency 1/p. When projected onto
the ðu; _u Þ plane, such a solution is close enough to the unperturbed limit cycle
(cf. for instance figure 2): the difference between them is of order m.
4. The linearized equation

Write the unperturbed system (3.4) as

_u Z v; _v ZGðu; vÞ; ð4:1Þ

with Gðu; vÞZKðrU0ÞK1ð1KbC3bu2ÞvKðrU0ÞK2½ðaKbÞuCbu3�. Let ðu0ðtÞ;
v0ðtÞÞ be the 2pr-periodic solution of (4.1), which is uniquely determined by
the conditions

_u0ð0ÞZ 0; u0ð0ÞO0: ð4:2Þ

The periodicity properties of u0(t) allow us to write

u0ðtÞZ
X
n2Z

n odd

eint=ru0;n; rZ
p

q
; ð4:3Þ
Proc. R. Soc. A (2009)
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as follows from lemma 2.1. Denote by

W ðtÞZ
w11ðtÞ w12ðtÞ
w21ðtÞ w22ðtÞ

 !
ð4:4Þ

the Wronskian matrix of the system (4.1), that is the solution of the matrix
equation

_W ðtÞZMðtÞW ðtÞ;
W ð0ÞZ1;

MðtÞZ
0 1

Guðu0ðtÞ; v0ðtÞÞ Gvðu0ðtÞ; v0ðtÞÞ

 !
;

(

ð4:5Þ
where Gu and Gv denote derivatives with respect to u and v of G, and w21ðtÞZ
_w11ðtÞ, w22ðtÞZ _w12ðtÞ.
Lemma 4.1. In (4.4) one can set

w12ðtÞdc2 _u 0ðtÞ; w11ðtÞdc1 _u 0ðtÞ
ðt
t
dt0

eKFðt0Þ

_u 2
0ðt0Þ

; ð4:6Þ

where F(t) is defined as

FðtÞd
ðt
0
dt0 f ðu0ðt0ÞÞ; f ðuÞd 1

rU0

ð1KbC3bu2ÞZ 1

rU0

hðuÞ; ð4:7Þ

the constant �t2 ð0;prÞ is chosen so that _w11ð0ÞZ0, and the constants c1 and c2
are such that w11ð0ÞZw22ð0ÞZ1.

Proof. It can immediately be checked that ðw12ðtÞ;w22ðtÞÞ, with w12(t) defined
as in (4.6) and w22ðtÞZ _w12ðtÞ, solves the linearized equation to (4.1). Then a
second independent solution is of the form ðw11ðtÞ;w21ðtÞÞ, with w11(t) given by
(4.6) and w21ðtÞZ _w11ðtÞ; cf. Ince (1944, p. 122). In appendix A we show that it is
possible to choose �t2 ð0;prÞ in such a way that _w11ð0ÞZ0. The constants c1 and
c2 are chosen so that W(0)Z1. &

Remark 4.2. With the notations of remark 3.1 one has c 2Z1=r1 and c1ZKr1,
so that c1c 2C1Z0.

Note that _u 0ð0ÞZ0, so that in (4.6) the function w11(t) at tZ0 is defined as
the limit

lim
t/0

c1 _u 0ðtÞ
ðt
t
dt0

eKFðt0Þ

_u 2
0ðt0Þ

; ð4:8Þ

which is well defined; see appendix A. The same argument applies for tZpr,
where _u 0ðprÞZ _u 0ð0ÞZ0—by (2.8), with the half-period T0/2 becoming pr in
terms of the rescaled variable.

For any periodic function G, we denote its average by hGi and set
~GZGK hGi. Then f0dhf+u0iO0 (cf. lemma 2.2), so that we can write

eKFðtÞ Z expðKf0tK ~FðtÞÞ; ~FðtÞZ
ðt
0
dt0ð f ðu0ðt0ÞÞK f0Þ; ð4:9Þ

where ~FðtÞ, and hence eK
~FðtÞ, are well-defined 2pr-periodic functions.
Proc. R. Soc. A (2009)
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Lemma 4.3. Given any periodic function P(t) and any real constant Cs0,
there exists a periodic function Q(t), with the same period as P(t), and a constant
D such that ðt

0
dt0 eCt0Pðt0ÞZDCeCtQðtÞ:

One has DZKQ(0).

Proof. Let P(t) be a periodic function of period T. Write

PðtÞZ
X
n2Z

eiuntPn; ð4:10Þ

where uZ2p/T. Then one hasðt
0
dt0 eCt0Pðt0ÞZ

X
n2Z

Pn

ðt
0
dt0 expðiunt0 CCt0ÞZ

X
n2Z

Pn

expðiuntCCtÞK1

C C iun
;

so that, by setting

QðtÞd
X
n2Z

Pn

C C iun
eiunt; DdK

X
n2Z

Pn

C C iun
; ð4:11Þ

the assertion follows. &

Lemma 4.4. There exist two 2pr-periodic functions a(t) and b(t) such that

w11ðtÞZ aðtÞCeKf0tbðtÞ; w12ðtÞZ caðtÞ; ð4:12Þ

for a suitable constant c.

Proof. We cannot directly apply lemma 4.3 because the function eKFðtÞ= _u 2
0ðtÞ

appearing in (4.6) is singular. However we can proceed as follows. We write

1

_u 2
0ðtÞ

Z lim
h/0

1

_u2
0ðtÞCh

;

so that the new integrand is smooth and it is given by eKf0t times a 2pr-periodic
function. Hence, as long as 0!t!pr, the integrand is bounded uniformly in h,
and we can apply Lebesgue’s dominated convergence theorem, to write

w11ðtÞZ c1 _u 0ðtÞ lim
h/0

ðt
t

dt0
ect

0

_u 2
0ðt0ÞCh

:

Then lemma 4.3 gives

w11ðtÞZ c1 _u 0ðtÞ lim
h/0

ðectPðt;hÞKectPð�t; hÞÞ

Z c1 lim
h/0

ð _u 0ðtÞectPðt; hÞÞK _u 0ðtÞectPð�tÞ;

where the function P(t,h) is 2pr-periodic in t and Pð�tÞZ limh/0Pð�t;hÞ is well
defined. Note that K _u 0ðtÞectPð�tÞ gives the function a(t) in (4.12). On the other
hand, the function w11(t) is also well defined, so that we can conclude that
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limh/0ð _u 0ðtÞectPðt; hÞÞ is well defined and smooth. As the function _u 0ðtÞPðt;hÞ
is periodic for any h, the limit will also be periodic, and this defines the function
b(t) of (4.12).

Comparing the expressions for w11(t) and w12(t) in (4.6), proportionality
between w12(t) and the periodic component of w11(t) also follows. &

Lemma 4.5. The Fourier expansions of the functions a(t) and b(t) in (4.12)
contain only the odd harmonics.

Proof. Write u0(t) according to (4.3). Then w12ðtÞZcaðtÞZc2 _u0ðtÞ, so that

the assertion follows trivially for a(t). Moreover the function eKFðtÞ= _u2
0ðtÞ

involves even powers of functions containing only odd harmonics, so that it
contains only even harmonics, and so does its integral as appearing in the
definition (4.6) of w11(t). Hence, by lemmas 4.3 and 4.4, also b(t) in (4.12)
contains only the odd harmonics. &

A straightforward calculation gives det W ðtÞZKc1c 2e
KFðtÞZeKFðtÞ, since

c1c 2ZK1, so that

W K1ðtÞZ eFðtÞ
w22ðtÞ Kw12ðtÞ

Kw21ðtÞ w11ðtÞ

 !
: ð4:13Þ

We want to develop perturbation theory for a 2pp-periodic solution which
continues the solution running on the unperturbed limit cycle when the
perturbation is switched on. Therefore we write

uðtÞZ u0ðtÞC
XN
kZ1

mkukðtÞ; ukðtÞZ
X
n2Z

eint=puk; n; ð4:14Þ

where u0(t) is the solution satisfying the conditions (4.2). Inserting (4.14) into
(3.6) and expanding everything in powers of m, we obtain a sequence of recursive
equations. In §§5 and 6 we shall consider in detail the first order. Higher order
analysis and the issue of convergence will be discussed in §7.
5. First order computations

Let us also expand the initial conditions in m,

uð0Þd�u Z u0ð0ÞC
XN
kZ1

mk �uk; _u ð0Þd�v Z
XN
kZ1

mk�vk ; ð5:1Þ

and set J1ðtÞZH1ðu0ðtÞ; v0ðtÞ; tCt0Þ—cf. (3.7). We look for a solution
(u(t), v(t)) which is analytic in m, i.e. uðtÞZu0ðtÞCmu1ðtÞCm2u2ðtÞC/ and
vðtÞZ _u ðtÞ—see Bartuccelli et al. (2007, 2008) and Gentile et al. (2007) for similar
situations. Here we are interested in the dynamics on the attractor, hence in periodic
solutions, but in principle we could also study the dynamics near the attractor, by

looking for solutions of the form uðtÞZUðeKf1t; eKf2t; tÞ, as in Gallavotti (1994),
Gentile (1995) and Bartuccelli et al. (2002), with f1Z f0COðmÞ and f2ZOðmÞ, and
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Uð$; $;jÞ 2p/p-periodic in j. To first order one has

u1ðtÞ
v1ðtÞ

 !
ZW ðtÞ

�u1

�v1

� �
C

ðt
0
dt0 W K1ðt0Þ

0

J1ðt0Þ

 !" #
; ð5:2Þ

and we can confine ourselves to the first component u1(t), since v1ðtÞZ _u 1ðtÞ, so

u1ðtÞZw11ðtÞ�u1 Cw12ðtÞ�v1C
ðt
0
dt0 eFðt

0Þ½w12ðtÞw11ðt0ÞKw11ðtÞw12ðt0Þ�J1ðt0Þ;

which can be more conveniently written as

u1ðtÞZw11ðtÞ �u1K

ðt
0
dt0 eFðt

0Þw12ðt0ÞJ1ðt0Þ
� �

Cw12ðtÞ �v1C

ðt
0
dt0 eFðt

0Þw11ðt0ÞJ1ðt0Þ
� �

:

The function eFðtÞeKf0tbðtÞJ1ðtÞ is periodic, while eFðtÞaðtÞJ1ðtÞ is given by ef0t

times a periodic function. Therefore we can write w11(t) and w12(t) according to
(4.6), and set—see lemma 4.3ðt

0
dt0 eFðt

0Þaðt0ÞJ1ðt0ÞZ e f0tQ1ðtÞKQ1ð0Þ; ð5:3Þ

ðt
0
dt0 eFðt

0ÞeKf0t
0
bðt0ÞJ1ðt0ÞZ tQ0CQ2ðtÞKQ2ð0Þ; ð5:4Þ

for some periodic functions Q1ðtÞ and Q2ðtÞ, and with

Q0 Z he~FbJ1i: ð5:5Þ

Assume that we can choose the parameters in such a way that Q0Z0. Then
we obtain

u1ðtÞZ aðtÞ �u1CcQ1ð0ÞKef 0tcQ1ðtÞCc�v1Cef 0tcQ1ðtÞKcQ1ð0Þ
�

CcQ2ðtÞKcQ2ð0Þ
�
CeKf 0tbðtÞ �u1 CcQ1ð0ÞKef 0tcQ1ðtÞ

� �
; ð5:6Þ

and if we want that (5.6) describe a periodic function, the constant �v1 can assume
any value, but we need

�u1 ZKcQ1ð0Þ; ð5:7Þ

so that (5.6) becomes

u1ðtÞZ caðtÞð�v1KQ1ð0ÞCQ2ðtÞKQ2ð0ÞÞCcbðtÞQ1ðtÞ; ð5:8Þ

where we have used the fact that the function ef0tcQ1ðtÞ appears twice but with
opposite sign in (5.6).
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Remark 5.1. The constant �v1 is left undetermined, and we can fix it arbitrarily,
say �v1Z0, as we still have at our disposal the free parameter t0; see §2 of Gentile
et al. (2007) for an analogous discussion.

Therefore we can conclude that if Q0Z0 then we can choose �u1 according to
(5.7) in such a way that up to first order there exists a periodic solution
u0ðtÞCmu1ðtÞCOðm2Þ. In §6 we study in detail the condition Q0Z0.
6. Compatibility to first order

Consider the equation Q0Z0, which can be written as

31ACB1ðt0ÞCB2ðt0ÞCB3ðt0ÞZ 0; ð6:1Þ

where we have defined

Ad e
~Fb 1KbC3bu2

0

� �
_u 0 C

2

rU0

au0Kbu0Cbu3
0

� �� �	 


Z
1

2pp

ð2pp
0

dt e
~FðtÞbðtÞ _u 0ðtÞhðu0ðtÞÞC

2

rU0

kðu0ðtÞÞ
� �

Z
1

2pr

ð2pr
0

dt e
~FðtÞbðtÞ _u 0ðtÞhðu0ðtÞÞC

2

rU0

kðu0ðtÞÞ
� �

; ð6:2Þ

and

B1ðt0Þd
1

2pp

ð2pp
0

dt e
~FðtÞbðtÞ 1

rU0

_u 0ðtÞ 3u2
0ðtÞK1

� �� �
sinðtCt0Þ;

B2ðt0Þd
1

2pp

ð2pp
0

dt e
~FðtÞbðtÞ 1

r2U2
0

u0ðtÞ u2
0ðtÞK1

� �� �
sinðtCt0Þ;

B3ðt0Þd
1

2pp

ð2pp
0

dt e
~FðtÞbðtÞ 1

rU0

u0ðtÞ u2
0ðtÞK1

� �� �
cosðtCt0Þ: ð6:3Þ

Remark 6.1. Note that we can write (6.2) as AZð2prÞK1
Ð 2p
0 ds QðsÞ

½hðUðsÞÞdUðsÞ=dsCð2=U0ÞkðUðsÞÞ�, where U(s) and Q(s) are 2p-periodic

functions, with U(s)Zu0(rs) and QðsÞZe
~FðrsÞbðrsÞ. The function U(s) is the

2p-periodic solution of the differential equation d2U=ds2CUK1
0 hðUÞdU=

dsCUK2
0 kðUÞZ0, and ~FðrsÞZKUK1

0 f0sCUK1
0

Ð s
0 ds

0 hðUðs 0ÞÞ, so that the con-
stant A is of the form AZ �A=r, with �A independent of r. Hence if As0 for some
r2Q then it is non-zero for all rational rs0.

By expanding sinðtCt0ÞZsin t cos t0Ccos t sin t0 and cosðtCt0ÞZcos t
cos t0Ksin t sin t0, we can rewrite (6.3) as Biðt0ÞZBi1 cos t0CBi2 sin t0 for
iZ1, 2, 3, where we have introduced the constants
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B11d
1

2pp

ð2pp
0

dt e
~FðtÞbðtÞ 1

rU0

_u 0ðtÞ 3u2
0ðtÞK1

� �� �
sin t;

B12d
1

2pp

ð2pp
0

dt e
~FðtÞbðtÞ 1

rU0

_u 0ðtÞ 3u2
0ðtÞK1

� �� �
cos t;

B21d
1

2pp

ð2pp
0

dt e
~FðtÞbðtÞ 1

r2U2
0

u0ðtÞ u2
0ðtÞK1

� �� �
sin tZK

1

rU0

B32;

B22d
1

2pp

ð2pp
0

dt e
~FðtÞbðtÞ 1

r2U2
0

u0ðtÞ u2
0ðtÞK1

� �� �
cos tZ

1

rU0

B31: ð6:4Þ

BysettingD1ZKðB11CB21CB31Þ andD2ZKðB12CB22CB32Þ, (6.1) thenbecomes

31AZD1ðt0ÞdD1 cos t0CD2 sin t0: ð6:5Þ

All constants Bij in (6.4) are given by the average of a suitable function which
can be written as the product of a 2p/r-periodic function times a cosine or sine
function. Consider explicitly the constant B11; the other constants can be
discussed in the same way. We write

B11 Z
1

2pp

ð2pp
0

dt KðtÞsin t; with KðtÞZ
X
n2Z

n even

eint=rKn Z
X
n2Z

ei2nt=rK2n;

as follows from lemmas 4.1 and 4.5. If we write sin tZ
P

sZG1ðs=2iÞeist, then

B11 Z
X

n2Z;sZG1
2nCsrZ0

sK2n

2i
: ð6:6Þ

The same argument applies to the other constants, so that we can conclude that
the constants Bij can be different from zero only if r is an even integer. If we set
rZp/q this means qZ1 and pZ2n, n2N. Hence for all rational r;2N the first
order compatibility equation (6.5) gives 31AZ0, so that either AZ0 and 31 is
arbitrary or As0 and 31Z0. An explicit calculation (given in appendix B) shows
that As0. Therefore for all resonances p : q, with p/q;2N, frequency locking, if
possible at all, can occur only for a range of frequencies of width at most m2; more
detailed discussion will be found in Bartuccelli et al. (in preparation).

The argument above does not imply that D1, D2s0 for p/q22N—in principle
there could be cancellations in the sum (6.6). For any given resonance p : q, the
non-vanishing of the constants D1 and D2 can be checked numerically; for
instance, when aZ5 and bZ4, for p/qZ2 one finds D1Z0.007035 and
D2ZK0.04507 (Bartuccelli et al. in preparation). Therefore for rZ2n, n2N,
frequency locking occurs for a range of frequencies of width of order m around
the value 2n.
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7. Higher order computations and convergence

To extend the analysis of the previous sections to any perturbation order, we
write the solution we are looking for as

uðtÞZ
XN
kZ0

mkukðtÞ; vðtÞZ
XN
kZ0

mkvkðtÞZ _u ðtÞ; ð7:1Þ

with (u(0), v(0)) written according to (5.1). Thus we find for all k2N

ukðtÞ
vkðtÞ

 !
ZW ðtÞ

�uk

�vk

� �
C

ðt
0
dt0 W K1ðt0Þ

0

Jkðt0Þ

 !" #
; ð7:2Þ

where

JkðtÞd
Xk
k 0Z1

mk 0Hk 0 ðuðtÞ; _u ðtÞ; tCt0Þ
" #

k

; ð7:3Þ

with Hk defined in (3.6). The notation [$]k for Jk(t) in (7.3) means the following.

In each term Hk 0 , we expand u(t) and _u ðtÞ according to (7.1), and, by taking the

Taylor series of the function Hk 0 , we keep all contributions proportional to mk: we
write the sum of these contributions as mkJk(t). For instance one has J2ðtÞZ
H2ðu0ðtÞ; v0ðtÞ; tCt0ÞCðv=vu0ÞH1ðu0ðtÞ; v0ðtÞ; tCt0Þu1ðtÞCðv=vv0ÞH1ðu0ðtÞ;
v0ðtÞ; tCt0Þ _u 1ðtÞ, with u1(t) given by (5.8).

As in §5, we study only the equation for the first component, which is

ukðtÞZw11ðtÞ�uk Cw12ðtÞ�vk C
ðt
0
dt0eFðt

0Þ w12ðtÞw11ðt0ÞKw11ðtÞw12ðt0Þ
� �

Jkðt0Þ:

ð7:4Þ
The equation (7.4) for kZ1 has been studied in §5. Here we want to show that
the equation (7.4) is well defined to any perturbation order k, and that it
is possible to choose the constant 3k in (3.5) so that it admits a periodic
solution uk(t).

The discussion proceeds as in §5, once we note that each functionHkðu; _u ; tCt0Þ
in (3.6) contains a term 3kð1KbC3bu2Þ _uC23kðrU0ÞK1½ðaKbÞuCbu3�, whereas
all the other terms depend on the constants 3k 0 , with k 0 strictly less than k. Therefore
for k2N one has

JkðtÞZ3k 1KbC3bu2
0

� �
_u 0ðtÞC

23k
rU0

ðaKbÞu0ðtÞCbu3
0ðtÞ

� �
CXkðt;t0Þ; ð7:5Þ

with the function Xkðt;t0Þ depending only on the constants 31,., 3kK1, besides the
parameter t0 and time t. Therefore to any perturbation order k, in order to have a
periodic solution, we need

Qk;0dhe ~FbJkiZ0; ð7:6Þ

and this can be obtained by requiring

3kAZDkðt0Þ; Dkðt0ÞdKhe ~FbXkð$;t0Þi; ð7:7Þ
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with A defined as in (6.2). Since As0 (as proved in appendix B) then we can use
(7.7) to fix 3k as a function of t0. Defining the periodic functionsQk;1ðtÞ andQk;2ðtÞ
such that ðt

0
dt0 eFðt

0Þaðt0ÞJkðt0ÞZef0tQk;1ðtÞKQk;1ð0Þ; ð7:8Þ

ðt
0
dt0 eFðt

0ÞeKf0t
0
bðt0ÞJkðt0ÞZtQk;0CQk;2ðtÞKQk;2ð0Þ; ð7:9Þ

choosing the constants �uk so that �ukCcQk;1ð0ÞZ0, and using (7.6), then (7.4) gives

ukðtÞZcaðtÞð�vkKQk;1ð0ÞCQk;2ðtÞKQk;2ð0ÞÞCcbðtÞQk;1ðtÞ; ð7:10Þ

with the constants �vk which will be fixed in the most convenient way (see remark
5.1). For instance we can set �vkZ0 for all k2N.

We can make the perturbative analysis of the previous sections rigorous to all
orders, by following the strategy introduced in Bartuccelli et al. (2007) and Gentile
et al. (2007), and hence study the convergence of the perturbation series.
Alternatively, one could try to apply arguments based on the implicit function
theorems. Typically, the latter would allow a simplification of the proof of
existence of the periodic solutions, but would be less suitable for explicitly
constructing the solutions themselves within any given accuracy; see the comments
in Gentile et al. (2007); therefore we follow the first method. Note that we are not
confining ourselves to approximate analytical solutions, which could be unreliable
owing to the uncontrolled truncation of the series expansion. On the contrary we
want also to settle the issue of convergence. In some sense this approach is
complementary to that of Guckenheimer & Holmes (1990), where qualitative
geometric methods are preferred to quantitative analytical ones.

The study of the convergence of the series is standard, and it has been
discussed extensively and in full detail in Gentile et al. (2007) for a similar
situation. Thus, we only sketch how the argument proceeds.

By expanding the functions u(t) and _u ðtÞ in Hk 0 ðuðtÞ; _u ðtÞ; tCt0Þ in (7.3)
according to (7.1), one sees that Jk(t) can be expressed in terms of the functions
uk 0 ðtÞ with k0!k. On the other hand, by (7.10), the functions uk(t) are expressed
in terms of the functions Qk;1ðtÞ and Qk;2ðtÞ, which in turn are integrals of

functions involving Jk(t), and hence depend on uk 0 ðtÞ for k0!k.
This means that we have recursive equations for the functions uk(t). By passing

to Fourier space, that is by expanding ukðtÞZ
P

n2Ze
int=puk;n, we obtain recursive

equations for the Fourier coefficients uk,n. We do not write them explicitly because
the ensuing expressions are rather cumbersome, but one can easily work out the
analytical expressions for the recursions by following the scheme that we have
outlined. Eventually, we can represent uk,n for kR1 and n2Z, in terms of tree
graphs, which can be studied with the techniques of Gentile et al. (2007).

We do not repeat the analysis here, but we instead just give the final result. To
any order kR1 one obtains the following bounds for the Fourier coefficients:
juk;nj%C1C

kK1
2 and

P
n2Zjuk;nj%C3C

kK1
2 , for suitable positive constants C1, C2,

C3, depending on r. This implies the convergence of the perturbation series (7.1)
for m small enough, say for jmj!CK1

2 .
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8. Arnold tongues and devil’s staircase

We use the perturbative analysis, developed to all orders in §7, to study for
which values of the driving frequency u one has locking. We shall see that the
analysis accounts for the devil’s staircase structure found in O’Neill et al.
(2005b), for small values of the driving amplitude m.

Lemma 8.1. The functions Hkðu; _u ; tCt0Þ in (3.6) are polynomials of odd
order in ðu; _u Þ for all k2N.

Proof. The function Hðu; _u ; €u;mÞ given by (3.1) is a polynomial of odd order in
ðu; _u ; €uÞ. By writing Hðu; _u ; €u;mÞ as in (3.6), the only term containing €u is the
first one (kZ0), so that all the other terms are polynomials of odd order in ðu; _u Þ.

&

Lemma 8.2. For all k2N one has

ukðtÞZ
X
n2Z

n odd

X
s2Z

jsj%k

eint=reisðtCt0Þuk;n;s ð8:1Þ

JkðtÞZ
X
n2Z

n odd

X
s2Z

jsj%k

eint=reisðtCt0ÞJk;n;s; ð8:2Þ

with the coefficients �uk;n;s and Jk;n;s independent of t0.

Proof. First of all note that if Jk(t) is of the form (8.2), then uk(t) is also of
the form (8.1). This can be proved as follows. For brevity, here and henceforth
we say that uk(t) and Jk(t) ‘contain only odd harmonics’ if they are of the form
(8.1) and (8.2), respectively. The functions Qk;1ðtÞ and Qk;2ðtÞ are integrals of
functions that are either periodic functions P(t) or of the form ef 0t times periodic
functions P(t). In all cases the function P(t) is given by the product of three
functions: two of these functions—one is either a(t) or b(t), the other one is
Jk(t)—contain odd harmonics, by lemma 4.5 and by our assumption on Jk(t),

while the third one—e
~FðtÞ—contains only even harmonics. If we compare (4.10)

with (4.11) we see that the integral of a function eCtPðtÞ is of the form

DCeCtQðtÞ, where Q(t) contains the same harmonics as P(t). Therefore both
Qk;1ðtÞ and Qk;2ðtÞ are periodic functions containing only even harmonics. Then,

recall that uk(t) is given by (7.10). We have already used the fact that the
functions a(t) and b(t) contain only odd harmonics, so that we can conclude
that, as claimed above, if Jk(t) is of the form (8.2) then uk is of the form (8.1).

Then, the proof of the lemma proceeds by induction. Recall that for kZ1 one
has J1ðtÞZH1ðu0ðtÞ; _u 0ðtÞ; tCt0Þ, with H1 given by (3.7), so that, by lemmas
2.1 and 8.1, J1(t) is of the form (8.1), and, by the previous observation, the
function u1(t) is also of the form (8.2).

By assuming that uk(t) is of the form (8.1) for all k! �k, then by lemma 8.1 it
also follows that JkðtÞ, given by (8.2), is of the form (8.2). Again by the
observation at the beginning of the proof, it follows that u kðtÞ can be expressed
as in (8.2). &
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Remark 8.3. If we expand uk(t) as a Fourier series, ukðtÞZ
P

n2Ze
int=puk;n,

then (8.1) implies
uk; n Z

X
n02Z;jsj%k
qn0CpsZn

eist0 �uk; n0;s:

In particular uk(t) and Jk(t) are polynomials of order k in t0.

Lemma 8.4. For all k2N one has

Dkðt0ÞZDk;0C
1

2pp

X
n2Z

n even

X
s2Z

0!jsj%k

ð2pp
0

dt eint=reisðtCt0ÞKk;n;s;

for suitable t0-independent coefficients Kk,n,s, depending on 31, ., 3kK1, but not
on 3k.

Proof. The functions e
~FðtÞ and b(t) in (7.6) are periodic in t with period

2prZ2pp/q, and contain only even and odd harmonics, respectively, whereasJk(t)
is given by (8.2). By lemma 8.2, this yields that Qk;0ZQk;0ðt0Þ is of the form

Qk;0 Z
1

2pp

X
n2Z

n even

X
s2Z

jsj%k

ð2pp
0

dt eint=reisðtCt0ÞQk;n;s;

for suitable coefficients Qk,n,s, which are independent of t0 but depend on

31,., 3k. In particular the only contribution to Qk;0 depending on 3k is of the
form 3kA, see (7.7), so that we can write Qk;0Z3kACDk;0ð31;.; 3kK1; t0Þ, for
a suitable function Dk;0ð31;.; 3kK1; t0Þ. &

By (3.5) and (7.7), and using lemma 8.4, we can write

3ðmÞZDðt0;mÞd
1

A

XN
kZ1

mk
Dkðt0Þ; Dkðt0ÞZ

X
s2Z

jsj%k

eist0Dk;s; ð8:3Þ

for suitable coefficients Dk;s. For given u, for a periodic solution with period 2pp
to exist, we need that 3(m), defined according to (3.3), satisfy (8.3) for some
t02[0,2p). Therefore, by defining

3maxðrÞd max
0%t0%2p

Dðt0;mÞ; 3minðrÞd min
0%t0%2p

Dðt0;mÞ;

and setting WðrÞZ3maxðrÞK 3minðrÞ, such a periodic solution exists for all
3ðmÞ2 ½3minðrÞ; 3maxðrÞ�.
Lemma 8.5. Fix rZp/q. One has Dkðt0ÞZDk;0 for all k!q if p is even and for

all k!2q if p is odd.

Proof. One can write 3kAZDkðt0Þ, with Dkðt0Þ defined in lemma 8.4.
By comparing (8.3) with the expression for Dkðt0Þ in lemma 8.4, we see that

Dk;s Z
1

2pp

X
n2Z

n even

ð2pp
0

dt eint=reisðtCt0ÞKk;n;s
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for ss0, so that one can have Dk;ss0 only if sr2 2N for some jsj%k. Hence,
if rZp=q with either even p and qOk or odd p and qO2k, one has Dk;sZ0. In
other words, for fixed rZp=q one has Dkðt0ÞZDk;0 for all k!q if p is even
and for all k!2q if p is odd. &

By lemma 8.5 we can write in (8.3)

Dkðt0ÞZDk;0 C ~Dkðt0Þ; ~Dkðt0ÞZ
X

s2Z

0!jsj%k

eist0Dk;s;

where the zero-mean function ~Dkðt0Þ vanishes for k!q if p is even and for k!2q if
p is odd.

Remark 8.6. The coefficient Dk;0 does not contribute to WðrÞ: when making
the difference between 3max(r) and 3min(r) only ~Dkðt0Þ plays a role. Therefore
lemma 8.5 implies that WðrÞZOðmÞ only for rZ2n, n2N; WðrÞZOðm2Þ only
for rZ2nK1, n2N; WðrÞZOðm3Þ only for rZ2n=3, n2N and r;2N;

WðrÞZOðm4Þ only for rZð2nK1Þ=2, n2N and r;N; WðrÞZOðm5Þ only for
rZ2n=5, n2N and r;2N; WðrÞZOðm6Þ only for rZð2nK1Þ=3, n2N and
r;N; and so on. In general, if rZp=q with even p, then WðrÞZOðmqÞ, while if
rZp=q with odd p, then WðrÞZOðm2qÞ.

If we recall the definition (3.3) of 3(m) and we set

uminðrÞd
rU0

1CrU03maxðrÞ
; umaxðrÞd

rU0

1CrU03minðrÞ
; ð8:4Þ

we obtain that for
uminðrÞ%u%umaxðrÞ; ð8:5Þ

there exists a periodic solution with period 2pp (recall that rZp=q). In the (u, m)
plane the region (8.5) defines a distorted wedge with apex at uZrU0 on the
real axis.

Call DuðrÞZumaxðrÞKuminðrÞ the range of frequencies around the value rU0,
with rZp=q, for which there is frequency locking. Then

Duð2n=kÞZOðmkÞ; Duðð2nC1Þ=kÞZOðm2kÞ; ð8:6Þ
for all k, n2N such that 2n/k and ð2nC1Þ=k, respectively, are irreducible
fractions. Indeed, Du(r) is proportional to WðrÞ, so that Dk,0 does not contribute
to the width of the plateau, but only to its ‘centre’. In the (u, m) plane the locking
regions (Arnold tongues) ‘emanate’ from the values rU0, with r2Q. For r22N
they are centred around the vertical passing through uZrU0 and for fixed m
have width O(m). For all the other rational values of r, in general, they slightly
bend away from the vertical: for fixed m the centre of the region is shifted of order
m2 with respect to the value uZpU0=q, whereas the width is O(mq) for even p and
O(m2q) for odd p.
9. Conclusions and open problems

The locking of oscillators onto subharmonics of the driving frequency (also called
frequency demultiplication) has been well known in electronics since the work of
van der Pol & van der Mark (1927); since then, electronic circuits approximately
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described by the van der Pol equation have been extensively studied from the
numerical point of view (cf. for instance Kennedy & Chua (1986) and Parlitz &
Lauterborn (1987)). In the (u, m) frequency-amplitude plane, the locking region
occurs in distorted wedges (Arnold tongues) with apices corresponding to the
rational values on the frequency axis. If one plots the ratio of the driver
frequency u to the output frequency U versus the driving frequency u, one
obtains a so-called devil’s staircase, i.e. a self-similar fractal object, where the
qualitative structure is replicated at a higher level of resolution, with plateaux
corresponding to rational values of the ratio.

The phase locking phenomenon, the existence of the Arnold tongues, and the
devil’s staircase picture have been proved rigorously in some mathematical
models, such as the circle map (Arnold 1988), and studied numerically for several
electronic circuits, such as the van der Pol equation (Guckenheimer & Holmes
1990), the Josephson junction (Abidi & Chua 1979; Levi 1988; Qian et al. 2008),
the Chua circuit (Pivka et al. 1994) among others.

In this paper we have studied analytically the injection-locked frequency
divider equation considered in O’Neill et al. (2005b). In particular we aimed to
understand the devil’s staircase picture, with the largest plateaux corresponding
to integer resonances of even order, and to provide an algorithm to compute the
width of the plateaux for small values of the driving amplitude m.

The main result is summarized by (8.6), which gives the width of the Arnold
tongues in terms of the driving amplitude m and of the resonances p : q. Note that
the width of the tongues is narrower for resonances of higher order.

In most of the analytic discussions in the literature, one usually assumes that
the unperturbed system is written in a very simple form—see for instance
(Guckenheimer & Holmes 1990). Of course, determining analytically the change
of variables which puts the system into such a form can be very difficult in
general, in principle as difficult as finding explicitly the solution itself. Hence, we
have preferred to work directly with the original coordinates. Even if we have
concentrated here on a resonant injection-locked frequency divider equation, our
analysis applies to any driven Liénard equation, of which the van der Pol
equation is a particular type (it is obtained from (2.6) by setting hðuÞZu2K1
and kðuÞZu). The dynamics of the forced or driven van der Pol equation has
been analytically investigated in Levinson (1949, 1950) and Levi (1981).
However, we could not rely on results existing in the literature, as we are
interested in the exact structure of the Arnold tongues, which of course strongly
depends on the particular form of the system under study.

We have considered the model (2.1) introduced in O’Neill et al. (2005b). In
particular we have taken the same driving term as in O’Neill et al. (2005b),
containing only one non-zero harmonic. In principle, one can consider more
general functions, for instance any analytic periodic function, instead of the sine
function. In that case the driving function contains all the harmonics; of course,
by analyticity, the coefficients of the harmonics decay exponentially fast. Then
one could ask how the analysis changes in such a case. From a technical point of
view, there are no further complications. However, the conclusions about
the devil’s staircase structure are slightly different. For instance, the width of
all plateaux becomes of order m (of course it is also proportional to the amplitude
of the relevant harmonics: usually, in any physical problem, only the first
few harmonics are important). This follows by the same arguments as given
Proc. R. Soc. A (2009)
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in §6. The analogues of the functions Bi(t0) in (6.3) contain all the harmonics
sinðsðtCt0ÞÞ and cosðsðtCt0ÞÞ, with s2N, so that, when imposing the
constraint 2nCsrZ0 in (6.6), one no longer has sZG1. On the contrary,
one has s2Z; thus in general the constraint can be satisfied for all r2Q (by
choosing n appropriately), and so all the plateaux have width of order m.
However, the larger p and q in rZp=q are, the narrower the plateau is: indeed
2nCsrZð2nqCspÞ=qZ0 requires 2jnj=jsjZp=q, hence, for very large values of
p and q, both n and s are very large, and hence the factors K2n contributing to B11

in (6.6) are very small. This is consistent with the fact that the union of Arnold
tongues forms an open dense subset of the (u, m) plane, whose complement
converges to full measure as m/0 (Herman 1977). So, an important observation
is that large plateaux have not been found in O’Neill et al. (2005a) for odd integer
values owing to the peculiar form of the driving term: they would appear by
taking, for instance, a driving term involving also the harmonics with nZG2
(provided the corresponding amplitudes were comparable with those of the
harmonics with nZG1). The dependence of the width of the plateaux on the
driving signal—in particular on the number and size of the harmonics it
contains—will be further investigated in Bartuccelli et al. (in preparation).

We have studied analytically the existence and properties of the periodic
solution which continues the unperturbed limit cycle when the perturbation is
switched on. It would be interesting to prove analytically also that such a
solution is attracting, for instance by determining the Lyapunov exponents or
studying the more general solutions that move nearby and tend asymptotically
to the attractor—for instance by following the strategy outlined in the first
paragraph of §5.

Another interesting problem to investigate analytically concerns the dynamics
far away from the resonances, i.e. when the rotation vector (u, U0) satisfies some
Diophantine condition such as the standard Diophantine condition mentioned in
§1—see also the comments in the last paragraph of §2—or the weaker Bryuno
condition (Gentile et al. 2006; Gentile 2007). Such values of u, in the devil’s
staircase picture, are complementary to those for which frequency locking occurs.

The analysis we have performed is based on perturbation theory, and applies
for m small enough. It would be interesting to investigate the locking diagram in
the (u, m) plane for large values of m. It could be worthwhile to enquire further
both analytically (for small values of m) and numerically (even for larger values
of m) into the structure of the Arnold tongues in the (u, m) plane. Work is
underway concerning these problems (Bartuccelli et al. in preparation).

We thank Giovanni Gallavotti for useful discussions, and Peter Kennedy for bringing this problem
to our attention. We are also indebted to Henk Bruin and Freddy Dumortier for providing us with

the references Zhang (1986) and Coppel (1989).
Appendix A. Well-posedness of the Wronskian matrix

Let u0 be the periodic solution of (3.4) satisfying the conditions (4.2). Write
u0ðtÞZr0Cr1t

2=2Cr2t
3=3COðt4Þ, see remark 3.1.

Lemma A.1. The function w11(t) in (4.6 ) is smooth.
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Proof. By deriving (3.4), one finds

t _u0C f ðu0Þ€u0 C f 0ðu0Þ _u 2
0 Cg 0ðu0Þ _u 0 Z 0; ðA1Þ

where f 0 and g 0 are the derivatives of f and g with respect to their arguments,
while the dots denote derivatives with respect to the time t.

By computing (A 1) at tZ0 and using that _u 0ð0ÞZ0, we find

0Z/u 0ð0ÞC f ðu0ð0ÞÞ€u0ð0ÞZ 2r2C f ðr0Þr1: ðA2Þ

In (4.7) we can write FðtÞZ
Ð t
0 dt

0 f ðu0ð0ÞÞCOðt2ÞZ f ðr0ÞtCOðt2Þ, so that

eKFðtÞZ1Kf ðr0ÞtCOðt2Þ. On the other hand one has 1= _u 2
0ðtÞZðr 21t2ÞK1

ð1K2r2t=r1COðt2ÞÞ. Therefore the integrand in (4.6) can be expanded as

eKFðtÞ

_u 2
0ðtÞ

Z
1

r 21t
2

1K
2r2
r1

tKf ðr0ÞtCOðt2Þ
� �

: ðA3Þ

The term 1=r 21t
2 produces a linear divergence, which is compensated by the

function _u 0ðtÞ in front of the integral. The integral arising from the linear term
inside the parentheses of (A 3) would produce a logarithmic divergence (hence
a divergence of the first derivative of w11(t)); however such a term is of the
form Kð2r2=r1C f ðr0ÞÞtZKtrK1

1 ð2r2C f ðr0Þr1Þ, which vanishes owing to (A 2).
Finally, the remaining part of the integrand arises from the terms of order
t2 in (A 3), and hence produces regular terms. This proves that the function
w11(t) is smooth. &

Lemma A.2. There exists a unique �t2 ð0;prÞ such that _w11ð0ÞZ0.

Proof. One can write w11(t) in (4.6) as w11ðtÞZc1 _u 0ðtÞðRðtÞKRð�tÞÞ, where
R(t) is a primitive of the function eKFðtÞ= _u 2

0ðtÞ, i.e. _RðtÞZrðtÞdeKFðtÞ= _u 2
0ðtÞ.

The function r(t) is smooth and strictly positive for t 2 ð0;prÞ, and hence
its primitive R(t) is strictly increasing for t 2 ð0;prÞ. For all t; �t2 ð0;prÞ
the function

Rðt; �tÞd
ðt
t
dt0 rðt0ÞZRðtÞKRð�tÞ ðA4Þ

is smooth, and for all �t2 ð0;prÞ one has limt/0CRðt; �tÞZKN and limt/prK

Rðt; �tÞZCN, which imply that for all �t2 ð0;prÞ the function Rðt; �tÞ is strictly
increasing in t from KN to CN. Now _w11ðtÞZc1€u0ðtÞðRðtÞKRð�tÞÞC
c1e

KFðtÞ= _u 0ðtÞ, so that

_w11ð0ÞZ c1 lim
t/0

€u0ðtÞRðtÞC
eKFðtÞ

_u 0ðtÞ

 !
K c1€u0ð0ÞRð�tÞ: ðA5Þ

Lemma A.1 shows that the limit in (A 5) is well defined, so that we obtain
_w11ð0ÞZ0 provided

Rð�tÞZ 1

€u0ð0Þ
lim
t/0

€u0ðtÞRðtÞC
eKFðtÞ

_u 0ðtÞ

 !
: ðA6Þ

Since Rð�tÞ is finite, by (A 4) also the function R(t) is strictly increasing in t from
KN to CN. Therefore (A 6) has one and only one solution �t in (0,pr). &
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Appendix B. Non-vanishing of the constant A

Recall the definition (6.2) of A. We can write eKf0tbðtÞZw11ðtÞKaðtÞZw11ðtÞK
g _u 0ðtÞ, with gZc2=c and _u 0ðtÞhðu0ðtÞÞC2ðrU0ÞK2kðu0ðtÞÞZK½2rU0€u0ðtÞC
_u 0ðtÞhðu0ðtÞÞ�—see (4.6), (4.12) and (3.4)—so obtaining

AZK
1

2pr

ð2pr
0

dt eFðtÞðw11ðtÞKg _u 0ðtÞÞ½2rU0€u0ðtÞC _u 0ðtÞhðu0ðtÞÞ�: ðB 1Þ

Lemma B.1. One hasð2pr
0

dt eFðtÞ _u 0ðtÞ½2rU0€u0ðtÞC _u 0ðtÞhðu0ðtÞÞ�Z 0:

Proof. By writing FðtÞZeFðtÞ, one has _FðtÞZ f ðu0ðtÞÞFðtÞZhðu0ðtÞÞ
FðtÞ=rU0; cf. (4.7). Hence F _u 0½2rU0€u0C _u 0hðu0Þ�ZrU0ðFðd=dtÞ _u 2

0C _F _u 2
0ÞZ

rU0ðd=dtÞðF _u 2
0Þ, so thatð2pr

0
dt eFðtÞ _u 0ðtÞ½2rU0€u0ðtÞC _u 0ðtÞhðu0ðtÞÞ�

Z rU0

ð2pr
0

dt
d

dt
FðtÞ _u 2

0ðtÞ
� �

Z rU0½Fð2prÞ _u 2
0ð2prÞKFð0Þ _u 2

0ð0Þ�

Z rU0ðFð2prÞKFð0ÞÞ _u 2
0ð0ÞZ 0; ðB2Þ

where we have used that _u 0ðtÞ is 2pr-periodic and _u 0ð0ÞZ0. &

From lemma B.1, (B 1) becomes

AZK
1

2pr

ð2pr
0

dt eFðtÞw11ðtÞ½2rU0€u0ðtÞC _u 0ðtÞhðu0ðtÞÞ�: ðB 3Þ

Lemma B.2. One hasð2pr
0

dt eFðtÞw11ðtÞ½2rU0€u0ðtÞC _u 0ðtÞhðu0ðtÞÞ�ZK2prr1rU0;

with r1 defined in remark 4.2.

Proof. By writing once more FðtÞZeFðtÞ, we have

Fw11½2rU0€u0 C _u 0hðu0Þ�Z rU0w11½F €u0CðF €u0 C _F _u 0Þ�

Z rU0 w11F €u0Cw11

d

dt
ðF _u 0Þ

� �

Z rU0 w11F €u0C
d

dt
ðF _u 0w11ÞKF _u 0 _w11

� �

Z rU0

d

dt
ðF _u 0w11ÞCFðw11€u0K _w11 _u 0Þ

� �
; ðB4Þ

where

Fðw11€u0K _w11 _u 0ðtÞÞZ
1

c2
Fðw11w22Kw21w12ðtÞÞZ

1

c2
F detW

Z
1

c2
FeKF Z

1

c2
Z r1;
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so that the integration of (B 4) givesð2pr
0

dt eFðtÞw11ðtÞ½2rU0€u0 C _u 0ðtÞhðu0ðtÞÞ�

Z rU0½Fð2prÞ _u 0ð2prÞw11ð2prÞKFð0Þ _u 0ð0Þw11ð0ÞC2prr1�
Z 2prr1rU0; ðB5Þ

where once more we have used _u 0ð2prÞZ _u 0ð0ÞZ0. &

By using lemma B.2 in (B 3) we obtain AZKr1rU0. Therefore As0 for any
value r2Q. Note that the time rescaling implies that r1 is of the form
r1ZðrU0ÞK2�r1, with �r1 independent of r, so that AZ �A=r, with �AZK�r1=U0

independent of r, consistently with remark 6.1.
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