
Nonlinear Analysis: Real World Applications 9 (2008) 1966–1988
www.elsevier.com/locate/na

Selection rules for periodic orbits and scaling laws for a driven
damped quartic oscillator

Michele V. Bartuccellia, Alberto Berrettib,c, Jonathan H.B. Deanea,
Guido Gentiled,∗, Stephen A. Gourleya

aDepartment of Mathematics, University of Surrey, Guildford GU2 7XH, UK
bDipartimento di Matematica, II Università di Roma (Tor Vergata), 00133 Roma, Italy

cIstituto Nazionale di Fisica Nucleare, Sez. Tor Vergata, Italy
dDipartimento di Matematica, Università di Roma Tre, 00146 Roma, Italy

Received 15 June 2006; accepted 12 June 2007

Abstract

In this paper we investigate the conditions under which periodic solutions of the nonlinear oscillator ẍ + x3 = 0 persist when the
differential equation is perturbed so as to become ẍ + x3 + �x3 cos t + �ẋ = 0. For any frequency �, there exists a threshold for
the damping coefficient �, above which there is no periodic orbit with period 2�/�. We conjecture that this threshold is infinitesimal
in the perturbation parameter, with integer order depending on the frequency �. Some rigorous analytical results towards the proof
of this conjecture are given: these results would provide a complete proof if we could rule out the possibility that other periodic
solutions arise besides subharmonic solutions. Moreover the relative size and shape of the basins of attraction of the existing stable
periodic orbits are investigated numerically, showing that all attractors different from the origin are subharmonic solutions and hence
giving further support to the validity of the conjecture. The method we use is different from those usually applied in bifurcation
theory, such as Mel′nikov’s method or that of Chow and Hale, and allows us to investigate situations in which the non-degeneracy
assumptions on the perturbation are violated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We study the existence of periodic solutions of the ordinary differential equation

ẍ + x3 + �f (t)x3 + �ẋ = 0, f (t) = cos t , (1.1)

where � > 0 is the friction coefficient and � is a real parameter characterising the strength of the external driving force.
As the driving function f (t) has fixed period 2�, this means that the frequency � of the periodic orbit must be such
that 2�/� is commensurable with 2�, that is � = p/q, where p and q are relatively prime integers. We refer to such
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a case as a p : q resonance. The corresponding solution has period 2�q. If a periodic solution of the system (1.1) for
� = � = 0, with frequency � = p/q, persists when �, � �= 0, then it is called a subharmonic solution of order q/p. Both
� and � are assumed to be small. For � fixed and small, assuming that � is also small is natural, in order to avoid the
origin becoming a global attractor [3].

Our techniques could be applied to more general differential equations, in particular to the class considered in Chapter
11 of the book by Chow and Hale on bifurcation theory [13], as shown in [17]. We prefer to concentrate on a specific
model, such as (1.1), in order to deal with a case in which all analytical calculations can be performed explicitly.
Moreover excessive generality has the disadvantage of hiding that some assumptions on the perturbation, although
generically true, can fail to be satisfied in concrete problems; see below for details. Hence existence of certain attractors
cannot be explained for some values of the parameters by relying only on the analysis performed in [13]. Finally,
Eq. (1.1) is an equation which has its own interest in physics; see Appendix A for some background and physical
applications.

With respect to [13], we are interested not only in the problem of investigating bifurcations from given periodic
orbits, but also in the problem of understanding, for fixed values of the parameters, which periodic orbits coexist, and
of studying the relative sizes of the corresponding basins of attraction. Moreover we shall consider situations in which
some hypotheses of Theorem 2.1 of [13, Chapter 11] are not satisfied. This will be essential in order to interpret the
numerical results we shall present later, because, typically, not all the periodic orbits which are detected in numerical
simulations satisfy all the non-degeneracy hypotheses assumed in [13]. Strictly speaking [13] deals only with periodic
solutions whose frequencies �=p/q have p=1, but the method can be applied to the case p �= 1 as well. An alternative
method was previously developed by Mel′nikov [32] (see also [23]), and it requires essentially the same assumptions,
which, expressed in terms of the so-called Mel′nikov function, mean that this has simple zeroes.

Our method is essentially based on perturbation theory, but rigorously implemented (so as to control the perturbation
series to all orders and check convergence). It turns out to be a very efficient tool, despite the comments made in [25], as
it allows removal of restrictive conditions on the perturbation. Hence our approach is along the same lines of the papers
by Cesari, Gambill and Hale on existence of subharmonic and ultraharmonic solutions for weakly nonlinear systems
(see in particular [11,24,16,12]), but deals with strongly nonlinear systems, i.e. with the case in which the unperturbed
system is itself nonlinear. An important difference between the linear and nonlinear cases is that in the first one only
one periodic solution can be expected to exist, depending on the parameters of the unperturbed linear system, whereas
in the nonlinear cases a full range of periods is possible. In both cases one finds that a periodic solution, if a priori
possible, can really exist only if the friction coefficient is small enough. Hence we show that perturbation theory is a
very efficient method to investigate problems of this kind, and it can be naturally extended to the nonlinear setting.
Moreover one can show (see for instance [15,18] and references therein) that the formalism can be extended to even
more interesting—and technically more difficult—problems, where also small divisor issues arise.

One motivation to consider Eq. (1.1) in particular was to explain analytically some numerical results that we discussed
in [3]. There, the following scenario emerged. Besides the origin, the only other attractors are periodic orbits with
frequencies which are submultiples of that of the driving force, that is of the form � = 1/q, with q ∈ N. Furthermore,
only the lowest values of q are really relevant, and even values turn out to be preferred with respect to odd values.
Here we study Eq. (1.1) in a regime where perturbation theory can be applied (small �), and we find in such a regime
a theoretical explanation of those results. A direct application of the bifurcation theory developed in [13] is in no way
possible, because of the problem of detecting the periodic orbits that one can expect to be continued under perturbation,
and, as remarked above, we must also consider periodic orbits for which some non-degeneracy assumptions of [13]
are violated (which are for instance those with frequency � = 1/q, q even). We will come back to this later on in this
section.

Another motivation for this work arises from celestial mechanics, where problems of this type appear when studying
the resonance locking between the orbital and rotational periods of satellites via the mechanism of spin–orbit coupling
[8,19,20]. It is well known that the two periods are rationally dependent. Not only is this so: in almost all cases the two
periods are equal, so that there is a 1:1 resonance; only in the case of the Sun–Mercury there is a 3:2 resonance. This
can be considered as an effect of friction in planetary motions. By deriving a suitable model to describe the problem
(spin–orbit model) and introducing some friction terms, one can show that for fixed values of the parameters only a
finite number of periodic orbits are actually possible, and each of them appears only when the friction is below some
suitable threshold value. For a more detailed discussion see [8,19,20]. One can imagine that, in the evolution of the solar
system, the friction term decreased over astronomical timescales and the satellite motion eventually became locked
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into some resonance. In other words, the corresponding trajectory was captured by some periodic attracting orbit. Of
course, within such a picture, it becomes essential to analyse the relative sizes of the basins of attraction in order to
decide if the existence of a certain periodic orbit can really have some impact on the dynamics—if there exists an
attracting periodic orbit but its basin of attraction is negligible, then that orbit will have no physical relevance. This can
be difficult to assess from an analytical point of view, but it is essentially routine to perform the numerical simulations.

What we have in mind is an analogous description for the model equation (1.1). It is clear that a given periodic orbit
may possibly exist only if the friction coefficient � is not too large: we have already remarked that if � is large enough
then any trajectory is attracted to the origin. Numerically one finds that for values of � relatively small, only a few
periodic orbits appear and they are asymptotically stable. Moreover the union of (the closure of) the corresponding
basins of attraction and of the basin of attraction of the origin appears to fill the entire phase space.

The system described by Eq. (1.1) can be considered as a Hamiltonian quasi-integrable system with a friction term.
In the absence of friction most of phase space is filled by KAM invariant tori. When friction (however small) is present,
not only are all tori destroyed, but it appears that all motions are attracted to a few surviving periodic orbits. Therefore it
is of interest to investigate the selection criteria which determine the surviving periodic orbits. By decreasing the value
of �, new periodic orbits can arise. They are less relevant than the old ones, in the sense that their basins of attraction
are very small compared to those of the orbits already appearing for larger values of �. In practice it is very difficult to
see the orbits arising for very small values of �; as we shall see, the corresponding basins of attraction have very small
area and the convergence to the orbits is obviously very slow.

A periodic orbit of given rational frequency �, if it exists at all, exists only if � is less than a suitable threshold
�0(�, �). We now make and investigate the following conjecture.

• The threshold �0(�, �) is infinitesimal in �. The order of magnitude in � of �0(�, �) is given by an integer exponent
m(�), that is �0(�, �) = O(�m(�)).

Therefore the thresholds �0(�, �) are characterised by a scaling law in terms of the perturbation parameter �, with a
scaling exponent which depends on the frequency �. If we could prove that no other periodic solutions exist besides
subharmonic solutions, then the analysis performed here would provide a complete proof of the conjecture. But of
course we cannot exclude a priori that other periodic solutions exist, possibly with different regularity properties.

To investigate the conjecture, we cannot rely on the analysis performed in [13], as the discussion requires dealing
with degenerate cases in which Chow and Hale’s hypotheses are not satisfied. Indeed, in [13, Chapter 11] existence of
subharmonic solutions is proved under two kinds of assumptions, one involving the unperturbed system—hypothesis
(H1)—and the other involving the perturbation—hypotheses (H2) and (H3), which become (H4) for the forced systems
studied in [25]. In our case the first assumption is satisfied, whereas it can be the case that once the values of the
parameters � and � have been fixed then the second one holds only for some periods. The result of this is that the other
periodic orbits cannot be studied by simply applying the results of [25,13].

In this paper we provide results, both analytical and numerical, which support the conjecture. For fixed � and � we
can write:

� = �mCm (1.2)

(or more generally �mCm + higher order terms, which are irrelevant anyway), and we find that subharmonic solutions
with given rational frequency � either are impossible or appear only if Cm is less than some threshold value depending
on �, say Cm < Cm,0(�).

We study the system (1.1) by writing � as in (1.2), so that, for fixed m and � given by (1.2), we can consider � and
Cm as independent parameters. We shall discuss in full detail the cases m = 1 and 2. The other cases can be treated
in the same way, but they add nothing new from a qualitative point of view (once the general strategy is understood).
Nevertheless, we stress once more that dealing with the cases m > 1 allow us to extend the results of Chow and Hale to
situations in which their assumptions do not apply, and in particular to study bifurcations of periodic orbits with periods
which are excluded under the hypotheses described in [13]. An advantage of our method is that it allows a unified
approach to any subharmonic solutions, without making any restrictive assumption on the perturbation. In particular we
can study bifurcations from unperturbed periodic orbits of any given frequency �: when the perturbation is switched
on, either an orbit of this kind becomes possible for some m in (1.2) and Cm < Cm,0(�) or it never arises (unlikely).
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Of course one could also envisage generalisations of the bifurcation method described in [13] to problems in which the
first assumption is not satisfied. Some results in this direction were provided in [26].

As we said before, in this paper we concentrate on the subharmonic solutions. Hence, when saying periodic solutions
we shall mean periodic solutions which are subharmonic solutions, except when explicitly stated otherwise.

For fixed Cm we prove that only a finite number of periodic (subharmonic) solutions are present, as an upper bound
on the values of p and q arises. Once a periodic orbit with frequency � has appeared, it remains for all values of Cm

less than the threshold value Cm,0(�)—so, as the value of m in (1.2) increases, the periodic orbits found for smaller
m still survive, while at the same time, new ones appear. We call the resonances appearing for m = 1 primary (or first
order) resonances, those appearing for m = 2 secondary (or second order) resonances, and so on.

Note that in this way we more or less reverse the point of view explained initially: in fact, given m, we determine
the periodic orbits which are possible under the parameterisation (1.2) of the friction coefficient. Some of the periodic
orbits can exist for more than one value of m, and therefore the lowest m for a given frequency � = p/q defines m(�).

2. Perturbation theory of subharmonic solutions for primary resonances

We start by considering ẍ + x3 + �f (t)x3 + �Cẋ = 0, with f (t) = cos t , for small � ∈ R: this corresponds to m = 1
in (1.2). Here C is a real parameter; we shall be interested in the case �C > 0, so that �Cẋ can be interpreted as a
dissipative term.

For � = 0 the system reduces to

ẍ + x3 = 0, (2.1)

and the solution x(0)(t) can be written in terms of Jacobi elliptic functions. If we set � = (4E)1/4, where the energy

E = H(x, ẋ) = 1
2 ẋ2 + 1

4x4, (2.2)

is a constant of motion for (2.1), we can write the solution as x(0)(t) = � cn(�(t − t0)), where cn t ≡ cn(t, 1/
√

2) is
the cosine-amplitude function with elliptic modulus k = 1/

√
2, and −�t0 is the initial phase. In Appendix B we recall

some basic properties of elliptic functions.
We can also write f (t + t0) instead of f (t), so obtaining for � = �C:

ẍ + x3 + �f (t + t0)x
3 + �Cẋ = 0, f (t) = cos t . (2.3)

The advantage of introducing t0 is that we can suitably choose t0 in order to fix as zero the phase of the solution, which
becomes

x(0)(t) = � cn(�t). (2.4)

In other words, as we have an infinite number of unperturbed solutions of energy E, all differing just by a phase, we
prefer to fix this phase as zero by implicitly using an initial condition x(0)(0) = �, and move the freedom of choice in
the initial condition to the phase of the driving force (the only one which is time-dependent). In this way no generality
is lost in fixing the initial condition as in (2.4).

If we denote by K(k) the complete elliptic integral of the first kind

K(k) =
∫ �/2

0

d�√
1 − k2sin2�

, (2.5)

which for k = 1/
√

2 gives K(1/
√

2) = [�(1/4)]2/(4
√

�) ≈ 1.85407, we have that the solution x(0)(t) is periodic with
period T0 = 4K/�, with K = K(1/

√
2). Its derivative is given by

y(0)(t) ≡ ẋ(0)(t) = −�2 sn(�t) dn(�t), (2.6)

with sn t ≡ sn(t, 1/
√

2) and dn t ≡ dn(t, 1/
√

2). The constant � is determined by the initial conditions (x̄(0), ȳ(0)) ≡
(x(0)(0), y(0)(0)) = (�, 0), while the initial phase is such that t0 ∈ [0, 4K/�).
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It is more convenient to work with action-angle variables. A straightforward calculation gives (see Appendix C){
x = (3I )1/3 cn 	,

y = −(3I )2/3 sn 	 dn 	,
(2.7)

where (	, I ) ∈ R/4KZ × R+ are conjugate variables. Then (2.2) becomes

E = 1
4 (3I )4/3 ≡ H0(I ), (2.8)

which yields 3I = (4E)3/4, and the equations of motion (2.1) can be written as (see Appendix C){
	̇ = (3I )1/3 + �(3I )1/3f (t + t0) cn4	 − �C cn 	 sn 	 dn 	,

İ = �(3I )4/3f (t + t0) cn3 	 sn 	 dn 	 − �C(3I )sn2	 dn2	.
(2.9)

In terms of the variables (	, I ) the unperturbed solution (� = 0) becomes (	(0)(t), I (0)(t)) = (�t, I (0)) = (�t, �3/3),
so that one has � = (3I (0))1/3.

The Wronskian matrix W(t) is a solution of the unperturbed linear system

Ẇ = M(t)W, M(t) =
(

0 (3I (0))−2/3

0 0

)
=
(

0 �−2

0 0

)
, (2.10)

so that the matrix W(t) can be taken as

W(t) =
(

1 �−2t

0 1

)
(2.11)

and one can check that W(0) = 1 and det W(t) ≡ 1.
We look for periodic solutions z(t) = (	(t), I (t)) with period 2�/�, � = p/q ∈ Q, of the form

z(t) =
∞∑

n=0

�nz(n)(t), (2.12)

where the coefficients z(n)(t) are given by

z(n)(t) =
(

	(n)(t)

I (n)(t)

)
= W(t)

(
	̄(n)

Ī (n)

)
+ W(t)

∫ t

0
d
W−1(
)

(
F

(n)
1 (
)

F
(n)
2 (
)

)
, (2.13)

with

F
(n)
1 (t) = [(3I (t))1/3 − (3I (0))−2/3I (t)](n)

+ [(3I (t))1/3f (t + t0) cn4 	(t) − C cn 	(t) sn 	(t) dn 	(t)](n−1),

F
(n)
2 (t) = [(3I (t))4/3f (t + t0) cn3 	(t) sn 	(t) dn 	(t) − C(3I (t))sn2	(t) dn2 	(t)](n−1), (2.14)

where by [. . . ](n) we denote the terms of order n in � within [. . .].
If � = 0 one has � = 2�/T0 = 2��/4K , so that one has a periodic solution with period commensurate with 2� if

2��/4K ∈ Q, which imposes a condition on the energy (2.8); the value of t0 can be arbitrarily chosen in [0, 4K/�).
If � �= 0 we study the conditions under which the unperturbed free solution is preserved, i.e. we look for a solution

of the form (2.12), with

� = 2��

4K
= p

q
∈ Q, (2.15)

which reduces to the unperturbed case for � = 0, only for a suitable choice of the initial time t0. Note that if � satisfies
(2.15), i.e. if � = �(p, q) ≡ 4Kp/2�q, then t0 ∈ [0, 2�q/p) and the solution z(t) is periodic with period T = 2�q.
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In (2.13) we have

W(t)W−1(
)

(
F

(n)
1 (
)

F
(n)
2 (
)

)
=
(

1 �−2(t − 
)
0 1

)(
F

(n)
1 (
)

F
(n)
2 (
)

)
=
(

F
(n)
1 (
) + �−2(t − 
)F (n)

2 (
)

F
(n)
2 (
)

)
, (2.16)

so that, by taking into account that one has∫ t

0
d
 (t − 
)F (n)

2 (
) =
∫ t

0
d

∫ 


0
d
′ F (n)

2 (
′), (2.17)

we can write the first component 	(n)(t) of z(n)(t) in (2.13) as

	(n)(t) = 	̄(n) + �−2t Ī (n) +
∫ t

0
d
F

(n)
1 (
) + �−2

∫ t

0
d

∫ 


0
d
′ F (n)

2 (
′), (2.18)

while the second component I (n)(t) is given by

I (n)(t) = Ī (n) +
∫ t

0
d
F

(n)
2 (
). (2.19)

Given a periodic function g, let us denote with g0 =〈g〉 the average of g and with g̃ the zero average function g−〈g〉.
Suppose that one has

〈F (n)
2 〉 = 1

T

∫ T

0
dt F

(n)
2 (t) = 0, (2.20)

so that we can write

F
(n)
1 (t) =

∫ t

0
d
F

(n)
1 (
) = 〈F (n)

1 〉t +
∫ t

0
d
 F̃

(n)
1 (
),

F
(n)
2 (t) =

∫ t

0
d
F

(n)
2 (
) =

∫ t

0
d
 F̃

(n)
2 (
). (2.21)

Then in (2.18) and (2.19) we can write{
	(n)(t) = 	̄(n) + �−2t Ī (n) + 〈F (n)

1 〉t + ∫ t

0 d
 F̃
(n)
1 (
) + �−2〈F(n)

2 〉t + �−2
∫ t

0 d
 F̃
(n)

2 (
),

I (n)(t) = Ī (n) + F
(n)
2 (t) = Ī (n) + ∫ t

0 d
F̃ (n)
2 (
),

(2.22)

where all terms which are not linear in time are periodic. By choosing the initial conditions Ī (n) such that one has

Ī (n) = −(�2〈F (n)
1 〉 + 〈F(n)

2 〉), (2.23)

we obtain{
	(n)(t) = 	̄(n) + ∫ t

0 d
 F̃
(n)
1 (
) + �−2

∫ t

0 d
 F̃
(n)

2 (
),

I (n)(t) = Ī (n) + ∫ t

0 d
F̃ (n)
2 (
),

(2.24)

so that z(n)(t) is a periodic function with period T. So we are left with the problem of proving (2.20). We shall see that
this will require fixing also the initial phase t0 and the initial conditions 	̄(n) (which give corrections to t0).

We shall prove first that the series expansion (2.12) is formally defined, that is that the coefficients z(n)(t) are well
defined to all perturbation orders. Then we shall show that the coefficients admit a bound |z(n)(t)| < Zn for some
constant Z, so that, by taking � and C small enough, the series (2.12) converges to a 2�/�-periodic function, analytic
in t, � and C.

3. Existence of subharmonic solutions for primary resonances

The validity of assumption (2.20) is guaranteed by the following result.
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Lemma. Consider the formal series (2.12). If p/q =1/2n, n ∈ N, and C is small enough, it is possible to fix the initial
conditions (	̄(n), Ī (n)) in such a way that (2.20) holds for all n�1. If p/q �= 1/2n for all n then (2.21) can be satisfied
only for C = 0.

Proof. For n = 1 one has

F
(1)
2 (t) = (3I (0))4/3f (t + t0) sn 	(0)(t) dn 	(0)(t) cn3 	(0)(t) − C(3I (0)(t)) sn2 	(0)(t) dn2 	(0)(t)

= �4f (t + t0) sn(�t) dn(�t) cn3(�t) − C�3 sn2(�t) dn2(�t). (3.1)

Define

� = 1

T0

∫ T0

0
dt sn2(�t) dn2(�t) = 1

4K

∫ 4K

0
dt sn2 t dn2 t = 1

3
, (3.2)

(see Appendix D) and

�1(t0; p, q) = 1

T

∫ T

0
dt sn(�t) dn(�t) cn3(�t) f (t + t0)

= cos t0
1

4Kp

∫ 4Kp

0
dt sn t dn t cn3 t cos(t/�) − sin t0

1

4Kp

∫ 4Kp

0
dt sn t dn t cn3 t sin(t/�)

= − sin t0
1

4Kp

∫ 4Kp

0
dt sn t dn t cn3 t sin(t/�), (3.3)

(as the integral which multiplies cos t0 is 0 because of parity) which we rewrite as

�1(t0; p, q) = − sin t0 G1(p, q), (3.4)

where

G1(p, q) ≡ 1

4Kp

∫ 4Kp

0
dt sn t dn t cn3 t sin(t/�). (3.5)

Then we obtain that, by choosing (if possible) t0 such that

C = G1(t0; p, q) ≡ −� sin t0
G1(p, q)

�
≡ − sin t0

4K

2��

(
p

q
G1(p, q)

)
, (3.6)

one has 〈F (1)
2 〉 = 0.

The function G1(p, q) is identically vanishing for odd q, while for even q one has G1(p, q) = 0 for all p �= 1 and
G1(1, q) �= 0; see Appendix C for a proof of this assertion. Moreover the function G1(p, q) is decreasing in q, so that,
for a fixed value of C, there will be q0 = q0(C) such that (3.6) can be satisfied only for q �q0: in other words only
a finite number of periodic orbits will exist. Again we refer to Appendix C for details. A list of nontrivial values for
G1(p, q) up to q = 10 is given in Table 1.

Table 1
Values of G1(1, q) for q = 2, 4, 6, 8 and 10

q G1(1, q) �(1/q) C0(1/q)

2 0.100773 0.590170 0.178442
4 0.069555 0.295085 0.061574
6 0.015217 0.196723 0.008980
8 0.002078 0.147543 0.000920

10 0.000220 0.118034 0.000078

All the other values of G1(p, q), q �10, are identically zero. The corresponding threshold values C0(p/q) for C are computed according to (3.8).
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Note that the existence of a value t0 satisfying (3.6) is possible only if

min
t0∈[0,2�q/p]G1(t0; p, q)�C� max

t0∈[0,2�q/p]G1(t0; p, q), (3.7)

that is only if

|C|�C0(p/q) ≡ 4K

2��

(
p

q
G1(p, q)

)
≈ 3.54102

(
p

q
G1(p, q)

)
, (3.8)

which represents a smallness condition on C. See Table 1 for some threshold values C0(p/q).
Once t0 has been set according to (3.6) one has to fix Ī (1) as prescribed by (2.23) for n = 1.
To obtain (2.20) for n�2 one has to fix the initial conditions 	̄(n) for n�1: notice that in order to eliminate the terms

diverging in time we had to fix only the initial conditions Ī (n). For all n�2 one has

F
(n)
2 (t) = (3I (0))4/3f (t + t0)

�

�	
(sn 	 dn 	 cn3	)

∣∣∣∣
	=�t

	̄(n−1)

−C(3I (0))
�

�	
(sn2 	 dn2 	)

∣∣∣∣
	=�t

	̄(n−1) + R
(n)
2 (t), (3.9)

where R
(n)
2 (t) is a suitable function which does not depend on 	̄(n−1). One has 〈F (n)

2 〉 = 0 if and only if one has

〈R(n)
2 〉 = − �3

(
�

T

∫ T

0
dt f (t + t0)

1

�

d

dt
(sn(�t) dn(�t) cn3(�t))

−C

T

∫ T

0
dt

1

�

d

dt
(sn2(�t) dn2(�t))

)
	̄(n−1). (3.10)

An easy computation shows that one has

〈R(n)
2 〉 = M1(t0; p, q)	̄(n−1), M1(t0; p, q) = �3 cos t0G1(p, q), (3.11)

so that M1(t0; p, q) is non-vanishing for t0 such that (3.6) is satisfied; for a proof of (3.11) see Appendix D. Therefore
we can fix the initial conditions 	̄(n) in such a way that one has 〈F (n)

2 〉 to all orders. This completes the proof of the
lemma. �

The analysis performed so far shows that the coefficients z(n)(t) of the series expansions in (2.12) are well defined
to all orders. To complete the proof of existence of subharmonic solutions for primary resonances one has still to show
that the series expansions converge. This is assured by the following result.

Theorem 1. Fix �=p/q =1/2n, n ∈ N. Then there exist C0 =C0(1/q), decreasing to zero in q, and, for all |C| < C0,
a value �0 > 0 such that for all |�| < �0 the system (2.3) admits 2q 2�/�-periodic solutions x1(t, �, C) analytic in
(t, �, C). The analyticity domain in (�, C) contains the region{

(�, C) ∈ R2 :
( �

a

)2 +
(

C

C0

)2

< 1 and |�| < b

}
, (3.12)

for two suitable positive constants a and b. Furthermore there are no subharmonic solutions with frequency � �= 1/2n.

Proof. As we are looking for periodic solutions there are no small divisors, and one easily shows that the periodic
functions z(n)(t) are analytic in t and admit a bound like Zn for some positive constant Z. For instance one could use
the tree expansion as in [15,18,8]; we note that the analysis turns out to be a particular case of that developed in [15],
and it is rather trivial as no small divisors appear. Otherwise one could also reason as in [34], Appendix A, to deduce
the analyticity of the periodic solutions, hence the convergence of the series, from general considerations.

Then it is sufficient to take � small enough, say less than some value �0, and analyticity in � for |�| < �0 follows. The
constant �0 depends on C; to make explicit such a dependence first of all we express t0 in terms of C, as sin t0 =−C/C0,
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Case a ≤ b. Case a > b.

Fig. 1. Projection on the real plane of the (estimated) analyticity domain in (�, C) of the periodic solutions x1(t, �, C). (a) Case a�b. (b) Case a > b.
Case (b) is more realistic, as discussed in the text.

with C0 = �G1(p, q)/� (see (3.6)), and hence cos t0 =
√

1 − (C/C0)
2. The study of the perturbation series (again we

refer to [15] for details) shows that, for � = 1/2n and |C| < C0(1/2n), as far as the dependence on C is concerned, to
all orders n the functions z(n)(t) are just polynomials of order n in C and 	̄(n′), n′ < n, and the initial conditions 	̄(n)

can be written as (1/ cos t0) times a quantity which again is a polynomial in C and 	̄(n′), n′ < n. In the end we find

that z(n)(t) can be written as a polynomial of degree n in C and
√

1 − (C/C0)
2, so that for |C| < C0 analyticity in C

follows.
The condition of smallness on � is of the form �0 < min{b, a| cos t0|}, for suitable positive constants a and b (again

see [15] for details), so that we can write �0 < min

{
b, a

√
1 − (C/C0)

2
}

, and we find that for � < min{b, a} we can

choose any value of C such that |C| < C0

√
1 − (�/a)2; see Fig. 1. Then the relation (3.12) between � and C follows.

Finally, from the proof of the lemma (see comments after (3.6)), we obtain that only periodic solutions with frequency
� = p/q with p = 1 and q even, are possible, and the larger the value of q is the smaller is C0(1/q). �

If one performs explicitly the calculations of the constants a and b appearing in the estimates, one finds a > b, so that
Fig. 1b gives a shape of the estimated analyticity domain which is more realistic. The existence of the formal series
(that is the fact that the coefficients are well defined to all orders), which follows from the lemma, requires a threshold
value which is independent of �, whereas the analysis of the convergence of that series gives a dependence on �. An
approximately square form of the analyticity domain would imply that with good approximation one can take the same
threshold value for all � in the domain.

As the condition (3.7) shows for |C| < C0(1/2n) there are 4n periodic solutions of (2.12) with frequency �=1/2n: 2n

of them are asymptotically stable, hence attracting, and 2n unstable [23], so that, when performing numerical analysis,
only the first 2n can actually be detected: this means that numerically, by letting the system evolve in the future for a
long time, only 2n periodic orbits with a frequency � can be found.

We conclude this section by making some connection with the literature. Eq. (1.1) belongs to the class of planar
equations considered in [13, Chapter 11] (cf. in particular Eq. (2.2)), hence Theorem 2.1 of [13, Chapter 11] applies. As
Eq. (1.1) describes a parametrically driven system, not a forced one, strictly speaking it is not of the form of Eq. (2.3)
considered in [13] (cf. also [25]). However, the analysis performed in [13] can be easily adapted to the case of driven
systems, and a result analogous to Corollary 2.3 of [13, Chapter 11] can be derived. Hence a function which represents
the analogue of the function Gk(�) of Eq. (2.9) in [13] can be introduced. It would be, essentially, the same as function
�1(t0; p, q) in our case, with p = 1 and q = k, and with t0 playing the role of the parameter �. Then, assumption (H4)
of [13] is satisfied in our case only for values of p, q such that G1(p, q) �= 0 (otherwise the function is identically
vanishing): for p = 1—as assumed in [13]—this requires q even. For such values the results of [13] (equivalently of
[23]) can be applied. In particular the domain we found in the proof of Theorem 1, in the plane (�, �), near the origin,
becomes a sector, and it corresponds to the set Sk

2 described in [13]. So, for such orbits, our result provides an alternative
method to study the bifurcation of surviving periodic orbits, and it can be extended to more general equations as in
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[13], provided that the associated vector fields are analytic. To deal with all the other periodic orbits we need to go
to high orders of perturbation theory. This will be done in next section. We shall see that this will allow us to study
situations in which the curves delimiting the sector Sk

2 are tangent, even with very high order of tangency.

4. Secondary and higher order resonances

Consider now the equation

ẍ + x3 + �f (t + t0)x
3 + �2Dẋ = 0, f (t) = cos t , (4.1)

for which we seek for periodic solutions analytic in �.
We can repeat the analysis performed in the previous section: the only difference is that now the contributions due

to the dissipative terms start arising from the second order and on.
To first order we find

〈F (1)
2 〉 = − sin t0 �4 G1(p, q), (4.2)

as immediately follows from (3.1) by taking into account definitions (3.3) and (3.5) and the fact that there is no term
proportional to C. Existence of the formal solution requires 〈F (1)

2 〉=0. Therefore, if G1(p, q)=0, that is if p/q �= 1/2n,
we have that (4.2) is identically satisfied and t0 is arbitrary, while if G1(p, q) �= 0, that is if p/q = 1/2n, we have to
fix sin t0 = 0.

The latter solutions are dealt with through the following result.

Theorem 2. Fix � = p/q = 1/2n. There are 2�/�-periodic solutions x2(t, �, D) of (4.1), analytic in (t, �, D), and
they coincide with the solutions x1(t, �, �D) of (2.3) given by Theorem 1.

Proof. Fix � = p/q = 1/2n. By reasoning as for the proof of Theorem 1, we find that there exist 2�/�-periodic
solutions of (4.1) for � small enough and D not too large. Eq. (4.2) requires sin t0 = 0. A second order computation
gives

〈F (2)
2 〉 = �3 cos t0 G1(p, q) 	̄(1) + �4 �2(t0; p, q) − 1

3�3D, (4.3)

where the first term is that obtained in the previous case, the last one is due to the dissipative term, and the second one
takes into account all the contributions which depend neither on 	̄(1) nor on D.

It is easy to see that, just by parity properties, one has �2(t0; p, q) = 0 for sin t0 = 0, so that (4.3) requires

cos t0 G1(p, q) 	̄(1) − D

3
= 0, cos t0 = ±1, (4.4)

which imposes a constraint on the two parameters D and 	̄(1). From higher order computations (as in [15,8]) one finds
also that, in order to have convergence of the perturbation series, one has to require

�	̄(1)c1 < 1, (4.5)

for some positive constant c1. In the end one obtains that there exists �1 > 0 such that for |�| < �1 and D < D0(1/2n) =
O(1/�) Eq. (4.1) admits 2q solutions x2(t, �, D) analytic in t, � and D. For � small enough choose D so small that, by
fixing C=�D, one has |C| < C0 and (3.12) is satisfied. Then any function x1(t, �, �D) is analytic in �, as the composition
of two analytic functions; note also that for C = �D Eq. (2.3) reduces to (4.1). The analysis of Section 3 shows that
there are 2q periodic solutions analytic in �, as there are 2q possible values of t0 such that (3.6) is satisfied in [0, 2�q).
On the other hand there are also 2q periodic solutions of (4.1), corresponding to the values t0 ∈ [0, 2�q) such that
t0 = k� with k an integer, so that the solutions have to be pairwise equal to each other. By the uniqueness of analytic
continuation, such solutions have to be equal pairwise as long as they are defined. �

For the new periodic solutions (the ones corresponding to frequencies �=p/q �= 1/2n) the following result applies.
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Table 2
Values of G2(1, q) for q = 1, 3, 5, 7, 9

q G2(1, q) �(1, q) D0(1/q)

1 0.041322 1.180341 0.146322
3 0.055069 0.393447 0.065001
5 0.009161 0.236068 0.006488
7 0.000351 0.168620 0.000177
9 0.000006 0.131149 0.000002

All the other values of G2(p, q), with odd q �10, are identically zero. The corresponding threshold values D0(p, q) for D are computed according
to (4.7).

Theorem 3. Fix � = p/q = 1/(2n + 1), n ∈ Z+. There exists D0 = D0(1/q), decreasing to zero in q, and, for
all |D| < D0, a value �0 > 0 such that for all |�| < �0 the system (4.1) admits 4q 2�/�-periodic solutions analytic in
(t, �, D). There are no subharmonic solutions with frequency � = p/q, for p �= 1.

Proof. Fix � = p/q �= 1/2n. As explained in the remark after (4.2) in this case G1(p, q) = 0, hence t0 is arbitrary.
To second order a tedious computation (see Appendix D) gives

�2(t0; p, q) = sin 2t0 G2(p, q), (4.6)

where

G2(p, q) = − 1

8Kp

∫ 4Kp

0
dt

{
sin(t/�)

d

dt
(cn3t sn t dn t)

∫ t

0
dt ′ cos(t ′/�) cn4 t ′

+ cos(t/�)
d

dt
(cn3t sn t dn t)

∫ t

0
dt ′ sin(t ′/�) cn4 t ′

+ sin(t/�)
d

dt
(cn3t sn t dn t)

∫ t

0
dt ′
[∫ t ′

0
dt ′′ cos(t ′′/�) cn3 t ′′ sn t ′′ dn t ′′

− 1

4Kp

∫ 4Kp

0
dt

∫ t

0
dt ′ cos(t ′/�) cn3 t ′ sn t ′ dn t ′

]

+ cos(t/�)
d

dt
(cn3 t sn t dn t)

∫ t

0
dt ′
∫ t ′

0
dt ′′ sin(t ′′/�) cn3 t ′′ sn t ′′ dn t ′′

+ 4

(
sin(t/�) cn3t sn t dn t

∫ t

0
dt ′ cos(t ′/�) cn3 t ′ sn t ′ dn t ′

+ cos(t/�) cn3 t sn t dn t

∫ t

0
dt ′ sin(t ′/�) cn3 t ′ sn t ′ dn t ′

)}
, (4.7)

where the sum of the last two terms gives a vanishing contribution, as it is the average of a total derivative, so that (4.7)
can be satisfied only if

|D|�D0(p/q) ≡ 4K

2��

(
p

q
G2(p, q)

)
≈ 3.54102

(
p

q
G2(p, q)

)
, (4.8)

which defines the threshold values D0(p/q).
By analogous reasoning to that used for G1(p, q) (see Appendix C), one can show that one can have G2(p, q) �= 0

only if p/q = 1/n; see Appendix D. As we are excluding p/q = 1/2n, we obtain the result that p has to be 1, and q
has to be odd. See Table 2 for the quantities G2(1, q) and the corresponding threshold values D0(1/q), for the first odd
values of q.

So far we have seen that the first order gives no condition, while the second order fixes the value of the initial phase
t0. Then one can show that the higher order contributions fix the values of the corrections 	̄(n): contrary to what happens
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in the case discussed in Section 3 now the condition on 	̄(n), n�1, is found at step n + 2 instead than at step n + 1.
We omit the details of the proof, which are rather cumbersome. �

An important difference with respect to the primary resonances discussed in Section 3 is that, as implied by the
condition (4.7) for t0, for |D| < D0(p/q) we now have 4q periodic orbits with frequency � = p/q: 2q of them will
be asymptotically stable and 2q will be unstable, so that, numerically, by considering only evolution in forward time,
only 2q periodic orbits can be detected. This is in agreement with the numerical results presented in Section 5.

We can also consider models (1.1) with � given by (1.2), with other values of m. The general scenario is that, by
increasing the value of m, one still finds all the periodic orbits found for the previous values of m, and then new periodic
orbits appear, with a threshold Cm,0(�) of order 1 in �. For fixed m and Cm, only a finite number of periodic orbits
exist, as the following result shows.

Theorem 4. Consider the system (1.1), with � given by (1.2). For fixed Cm only a finite number of subharmonic orbits
exist, and the corresponding frequencies � = p/q are such that |p|�m and 1�q �qm(Cm), where qm(Cm) goes to
infinity when Cm goes to zero.

Proof. We give only a sketch of the proof, which can be performed by induction. For m=1 the statement follows from
Theorem 1.

Then assume that the statement is true for all m′ < m: one has to check that only a finite number of new subharmonic
orbits appear. By using the perturbation expansion envisaged in the previous sections one looks for periodic orbits with
frequencies � which were not possible for any previous value m′. Therefore, up to order m, no condition has arisen for
such new periodic orbits. To order m one obtains a condition of the form

�4 �m(t0; p, q) − 1
3�3Cm = 0, (4.9)

where �m(t0; p, q) is the average (in t) of a function which depends on t0 as a trigonometric polynomial of order at
most m:

�m(t0; p, q) =
m∑

r1=−m

m∑
r2=−m

∑
n∈Z

Pr1,r2,neir1t0
1

4Kp

∫ 4kp

0
dt ei�qr2t/2Kpei�nt/2K , (4.10)

so that one can prove (see Appendix D) that (4.10) can be different from zero only if q/n = n/r2, which yields
|p|�r2 �m. For fixed p only the component with r2 = p, hence with n = q, can contribute to the average in (4.10).
On the other hand the coefficients Pr1,r2,n tend to zero exponentially for n → ∞, by the analyticity of the elliptic
functions, so that, for a fixed value of Cm, there is a value q = qm(Cm) such that the corresponding ��(t0; p, q) is less
than Cm/3, so that (4.9) cannot be satisfied. �

What emerges numerically is that the size of the basins of attraction of the attracting periodic orbits increases when
� is decreased: we can interpret such a phenomenon by saying that if we let � decrease, when it crosses some value
�0(p/q, �) an attracting periodic orbit with frequency p/q appears, and its basin of attraction enlarges as � continues
to decrease. The periodic orbits obtained for m = 1 in (1.2), which were the first to appear, have the largest basins of
attraction, the orbits appeared at m=2 have smaller basins of attraction, and so on, until the orbits which appear for the
largest values of n will be the less relevant ones, that is the ones with the smallest basins of attraction. Such a scenario
is well accounted by the numerical results given in the next section.

5. Numerical results

In this section we give some numerical results for the model (1.1), with � = 0.1. For numerical purposes it is more
convenient to have the same initial phase for all solutions: so, if there is some periodic solution x(t) with frequency
�, then t0 will be defined by the condition that, denoting the corresponding unperturbed solution by x(0)(t), one has
x(0)(0) = � cn(−�t0).

If one tries to obtain explicit bounds for the constants a and b appearing in the statement of Theorem 1, by proceeding
as outlined in the proof without looking for optimal estimates, the value of �0 as found in the proof of Theorem 1 turns out
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Fig. 2. Attracting periodic orbits in the square [−1.4, 1.4] × [−1.4, 1.4] for � = 0.1. Starting from the outer to the inner ones, the values of � and
the frequencies of the orbits are: (a) � = 0.005, and � = 1

2 and � = 1
4 ; (b) � = 0.001, and � = 1 (I and II), � = 1

2 and � = 1
4 ; (c) � = 0.0005, and

� = 1 (I and II), � = 1
2 , � = 1

3 (I and II), � = 1
4 and � = 1

6 .

to be very small. However, one expects that such bounds could be greatly improved through a more careful analysis, so
that we assume that the analytical results found in the previous sections still apply to the chosen value of �. Problems of
this kind are unavoidable in perturbation theory. For instance a similar situation arises in KAM theory, where analytical
bounds on the radius of convergence of the perturbation series are in general very bad, and to obtain bounds compatible
with realistic values of the perturbation parameters can be very difficult in simple models as well (such as the standard
map, the periodically forced pendulum and the circular restricted three-body problem), even if in such cases better
(even optimal) bounds can be worked out with some effort [10,9]. On the other hand, taking � extremely small would
make any numerical analysis difficult as the system would become a very small perturbation of the free system (for
� = 0) and the corresponding value of the damping coefficient � would also be small. Decay of the transient, and hence
attraction to the periodic orbit, would become very slow and hence difficult to detect without increasing the numerical
precision and the running times of the programs. A reasonable compromise turns out to be taking � = 0.1.

We recall that if the value of � is large enough all trajectories tend to the origin, which is a global attractor according
to the analysis performed in [3]. By decreasing � new attractors appear.

For instance if we fix �= 0.005, hence C = 0.05 in (2.3) and D = 0.5 in (4.1), according to Table 1 we can have only
periodic orbits with frequencies 1

2 and 1
4 , while no periodic orbit among the ones described in Section 4 is possible,

as the corresponding value of D is above the threshold value (cf. Table 2). Moreover for given frequency � = 1/2n

there are 4n periodic orbits, and 2n of them are asymptotically stable. All these orbits are obtained from each other by
a shift of 2� in the time direction, so that if they are projected into the (x, ẋ) plane they give the same closed curve.
As we are interested in understanding which periods arise, we do not want to distinguish between orbits with the same
periods. This will allow us to study the basins of attraction of all orbits which are identified when projected into the
(x, ẋ) plane.

By taking a grid of 1024 × 1024 initial conditions in the square Q= [−1, 1] × [−1, 1] around the origin, we indeed
find that all trajectories are captured either by the origin or by one of the six periodic orbits represented in Fig. 2a: two
orbits with period 4� and four orbits with period 8�.

The parts of the basins of attraction of the origin and the periodic orbits with frequencies � = 1
2 and 1

4 contained in
the square Q, are represented in Fig. 3. As is typically the case [22,5,7] there is a thick basin core surrounded by thin
layers. Basins of curves with the same projection into the plane (x, ẋ) are represented together. Note that the basins of
attractions are invariant under the transformation (x, ẋ) → (−x, −ẋ).

Of course there are faster and more sophisticated methods one could use to study the basins of attraction, such as
the straddle orbit method or its variants [5,33,2]. However, we are mostly interested in the relative sizes of the basins,
so the method we use, which consists in just following the evolution of the initial data point by point [22,35,6], even if
very simple and slow, is better suited for our purposes.

If we fix � = 0.001, hence C = 0.01 in (2.3) and D = 0.1 in (4.1), the analysis in Section 3 predicts that only the
periodic orbits with frequencies 1

2 and 1
4 appear, according to Table 1, while by using the threshold values in Table 2
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Fig. 3. Basins of attraction of the origin (left), the periodic orbits with frequency � = 1
2 (middle) and with frequency � = 1

4 (right) for � = 0.1,
� = 0.005 in (1.1). Basins of orbits with the same projections into the plane (x, ẋ) are represented together.

Fig. 4. Basin of attraction of the origin (top row left) and the periodic orbits with frequency � = 1
2 (top row middle), � = 1

4 (top row right) and
� = 1 (bottom row) for � = 0.1 and � = 0.001 in (1.1). Basins of orbits with the same projections into the plane (x, ẋ) are represented together.

we see that only the periodic orbit with frequency 1 has to be added to the previous one. We expect that other models
(1.1) with � given by (1.2) for m�3 do not imply other periodic orbits than the ones considered, for fixed �, so that, in
the end, we see that the only attractors which are possible for �= 0.1 and �= 0.001 are, besides the origin, the periodic
orbits with frequencies 1

2 , 1
4 and 1. This is in agreement with the numerical results. Indeed if we take as before a grid

of 1024 × 1024 initial conditions in the square Q= [−1, 1] × [−1, 1] around the origin we find that all trajectories are
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Fig. 5. Basin of attraction of the origin (top row left) and the periodic orbits with frequency � = 1
2 (top row middle), � = 1

4 (top row right), � = 1
6

(middle row left), � = 1 (middle row middle and middle row right) and � = 1
3 (bottom row) for � = 0.1, � = 0.0005 in (1.1). Basins of orbits with

the same projections into the plane (x, ẋ) are represented together.

captured either by the origin or by one of the periodic orbits represented in Fig. 2b, which have exactly the frequencies
predicted by the theory. As anticipated there are two attracting periodic orbits with frequency � = 1 (with different
projections into the plane (x, ẋ)), while, for � = 1

2 and 1
4 , there are, respectively, two and four attracting orbits (which

reduce, when projected into the plane (x, ẋ) to two curves, one for the orbits with frequency 1
2 and one for the orbits

with frequency 1
4 ).

The parts of the basins of attraction of the origin and of the eight periodic orbits contained in the square Q, for �=0.1
and � = 0.001 are represented in Fig. 4.
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Table 3
Relative sizes of the parts of the basins of attraction contained inside the square Q = [−1, 1] × [−1, 1] for some values of �; the value of � is fixed
at � = 0.1

� 0 (%) 1/2 (%) 1/4 (%) 1/6 (%) 1-I (%) 1-II (%) 1/3-I (%) 1/3-II (%)

0.0200 100.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
0.0150 91.08 08.92 00.00 00.00 00.00 00.00 00.00 00.00
0.0100 79.12 20.88 00.00 00.00 00.00 00.00 00.00 00.00
0.0050 64.83 31.84 03.34 00.00 00.00 00.00 00.00 00.00
0.0010 44.39 40.94 13.32 00.00 00.67 00.67 00.00 00.00
0.0005 34.03 41.83 14.56 06.44 01.29 01.29 00.29 00.29

The periodic orbits are labelled by the corresponding frequencies, and 0 denotes the origin. I and II refer to curves with different projections into
the plane (x, ẋ). Vanishing percentages mean that there is no corresponding attracting orbit.

A natural criterion to measure the relative size of the basins of attraction is provided by the respective areas (as
given by the number of points of the grid of initial data evolving towards the corresponding attractor). For instance, for
� = 0.001, one finds that the basin of attraction of the origin is still the largest one as it covers 44.39% of the square Q.
On the other hand the size of the basin of attraction of the periodic orbits with frequency 1

2 is comparable, as it covers
40.94% of Q. The relative measures of the basins of attraction of the periodic orbits with frequency 1

2 and of the two
periodic orbits with frequency 1 are, respectively, given by 13.32%, 0.67% and 0.67% of the overall area of the squareQ.

Analogous numerical analysis performed for higher and lower values of � shows that, when � is decreasing, the basin
of attraction of the origin, which at the beginning (that is for � such that C = �/� is above the critical threshold C0(

1
2 ))

filled the entire phase space (see also [3]), begins to decrease, to the advantage of the basins of attraction of the newly
appearing attractors.

For �=0.0005 there are several attracting periodic orbits: when projected into the plane (x, ẋ) those with frequencies
1 and 1

3 appear in pairs, while only one curve is obtained by projecting the periodic orbits for each frequency of the form
� = 1/q, with q = 2, 4, 6; see Fig. 2c. Of course each projection corresponds to q phase-shifted periodic trajectories.
The two projected curves corresponding to the periodic orbits with frequencies 1

3 , which appear indistinguishable in
Fig. 2c, can be seen to be different if the figure is enlarged.

The parts of the basins of attraction of the origin and of the coexisting periodic orbits contained in the square Q, are
represented in Fig. 5.

The relative sizes of the (parts contained in Q) of the basins of attraction of the origin and of the attracting periodic
orbits for some values of � are given in Table 3.

It emerges from Table 3 that as � decreases new attracting orbits appear and, once either C = �/� or D = �/�2 (or
whatever else) have became smaller than the corresponding critical threshold, their basins of attraction get larger at
the expense of the basin of attraction of the origin. For example the relative measure of the basin of attraction of the
periodic orbits with frequency 1

2 increases: for instance for � = 0.001 (that is for C = 0.01 and D = 0.1) it becomes
almost equal to the relative measure of the basin of attraction of the origin, and for � = 0.0005 it actually becomes
larger. Analogous considerations hold for the other attracting orbits.

In general to see orbits with frequency p/q, where either q or p or both of them are large, one needs a very small
value for the friction coefficient �: in the limit that � = 0 all periodic orbits appear, as a byproduct of the analysis of the
previous sections.

The appearance of the moiré-like patterns in some of the figures can be explained by the use of a regular grid overlaid
on the basins of attraction.

Numerically we find that each initial condition in the grid belongs to the basin of attraction of one of the coexisting
periodic orbits. This suggests that the union of the closure of all basins of attraction fills the entire phase space: of
course approximation errors in the numerical integration of the ordinary differential equation makes it impossible to
study the forward evolution of the boundaries of the basins of attraction.

6. Open problems

The analysis performed in Sections 3 and 4 deals with periodic orbits which are obtained for (1.1) in a very particular
way: they are subharmonic solutions, that is solutions bifurcating from periodic solutions of the unperturbed system.
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Numerically all attracting periodic orbits which have been detected are of this kind: it would be interesting to find a
mathematical justification for this phenomenon.

As a byproduct we have found that all attractors are, in the cases investigated, periodic orbits. This is unlikely
to be an accident. In general, introducing a dissipation term into Hamiltonian equations can produce other kinds of
attractors, as for instance in [4]. In our case the system, in the absence of friction, is a quasi-integrable system (that is
a perturbation of an integrable system), whereas in [4], if we look at the model considered there as a perturbation of an
integrable system, strange attractors appear when the values of the perturbation parameters are large enough, beyond
the perturbation regime. Perhaps it is natural to expect that only periodic orbits appear when adding a dissipative term
to a quasi-integrable system and confining ourselves to small values of the parameters: such an issue would deserve
further study. Note also that in our case, the unperturbed system has a very simple structure as there is only a stable
equilibrium point, while in the model studied in [4] there is also a saddle-point, with the corresponding stable and
unstable manifolds, which can be responsible for strange attractors appearing for large values of the parameters.

It would be also interesting to see what happens in our case when increasing the value of �, in particular when we
are definitely beyond the range of validity of perturbation theory. Of course an analytic study in such a case is more
difficult (even if we can rely on KAM-type results in the absence of friction [30]), but numerically the problem can be
easily tackled.

In this paper we have limited ourselves to perturbations of the quartic oscillator. Of course one could consider more
general systems, for instance any analytic anharmonic potential (diverging at ±∞). Analogous results can be expected
in such cases, even if analytically the unperturbed solutions would no longer have the nice properties of the Jacobi
elliptic functions which we have used to perform the calculations of perturbation theory.

Finally, a more detailed study of the basins of attraction, for instance with the techniques quoted in Section 5, could
be a further topic of investigation. Of course such a study would not shed any further light on the relative sizes of the
basins of attraction, in order to understand the relevance that a given attracting periodic orbit can have for the dynamics,
but we think that it could be interesting for its own sake.
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Appendix A. Background and motivations

Differential equations like (1.1) arise in various branches of engineering and mathematical physics. Engineering
applications include the description of nonlinear electronic circuits known as parametric amplifiers [29], whose dif-
ferential equation is typically of the form (1.1). In a more direct application, an equation which reduces exactly to
(1.1) for certain values of the parameters is explicitly considered in [37,38], where the dynamic response of a micro-
electromechanical sensor (MEMS) is investigated. According to the means by which the voltage signal is applied, the
behaviour of the device can be described either by the Duffing equation, which has been extensively studied in the
literature (including applications to MEMS devices [1,14]), or by a nonlinear Mathieu equation. In the latter case the
equation becomes ẍ + �ẋ + (� +  cos t)x + (3 + ′

3 cos t)x3 = 0, and the cubic stiffness of the oscillator (due to both
mechanical and electrical effects) affects strongly the dynamic response of the device: by varying the voltage ampli-
tude of the applied electrical signal the frequency response of the first-order parametric resonance changes drastically
[37,38]. Note that the presence of the nonlinear terms in the Mathieu equation globally modifies the dynamics. For
instance, for 3 > |′

3|, unbounded motions are no longer possible. For � = 0 this is a consequence of KAM theorem;
it also occurs when the driving force is not small, but still such that 1 + �f (t) in (1.1) is positive [30]. In fact there are
plenty of invariant tori which provide a topological obstruction to the drifting of solutions. A fortiori boundedness of
all motions follows also when there is a friction term—i.e. for � > 0.

In [37,38], � is typically of order 1, while the other parameters are small (say of order �). In this paper we are
interested in the case in which the nonlinear effects are more relevant, so that both � and 3 can be supposed to be of
comparable magnitude. If they are both positive, then for � = 0 the equations of motion describe a one-dimensional
system with potential �x2/2 + 3x

4/4, so that an explicit solution in terms of Jacobi elliptic functions exists. For
simplicity we shall take � =  = 0. Of course this eliminates resonance effects in the linear regime, but we can assume
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that the same scenario we are investigating appears for (�, ) �= (0, 0) well inside some stability regions in the (�, )

plane—that is outside the resonance tongues. In this case the origin is always a stable equilibrium point. Hence, we
take � =  = 0, 3 = 1 and ′

3 = �, which leads to (1.1).
One might think that confining ourselves to the case of linear stability is too restrictive. However, we are in fact

interested not in the problem of stability of the origin and related issues (such as the study of the resonance tongues),
but instead in that of studying which periodic orbits are preserved when the perturbation is switched on. This is an
important question in the presence of friction, because in such a case all invariant KAM tori break up as an effect of
the dissipation, and it is found numerically that all solutions are attracted by periodic orbits, so that the asymptotic
behaviour of the system is completely governed by the periodic solutions. Hence our aim is not that of determining for
which values of � and  the origin is stable; this explains why we simplify the system by choosing �==0, so producing
(1.1). For the same reason, the role of the friction is very different in our case relative to what happens when studying
the characteristic values, that is the boundaries of the resonance tongues, of the linear (and also nonlinear) Mathieu
equation. There, a small friction term slightly changes the characteristic values [27,28,31], while for the nonlinear
equation (1.1) the friction causes all motions to converge either to the origin or to one among a few attracting periodic
orbits.

We stress that choosing � = 0 simply fixes to k = 1/
√

2 the elliptic modulus of the corresponding Jacobi elliptic
functions which solve the unperturbed equation (�= �=0). Of course the analysis could be extended to any choice of �
(but still such that � and  remain within a stability region). However, this would introduce further technical intricacies
without shedding any further light on the problem. Also generalisations to other super-quadratic potentials would be
possible. Nevertheless, if on the one hand the qualitative features (conservation of only a finite number of periodic
orbits) were the same, on the other hand all quantitative results (determination of the threshold values) would of course
change, and would be much more difficult to work out analytically. Hence we preferred to consider an explicit model
instead of setting up a general scheme which would in the end give more general, but only qualitative, results.

Appendix B. Basic properties of the elliptic functions

Let us denote by sn(u, k), cn(u, k) and dn(u, k) the Jacobi elliptic functions sine-amplitude, cosine-amplitude and
delta-amplitude, respectively; see for instance [21,36]. Here k ∈ (0, 1) is the elliptic modulus, and k′ = √

1 − k2 is the
complementary modulus. See Fig. 6.

The Jacobi elliptic functions are doubly periodic functions with periods 4K(k) and 4K ′(k)i, where

K(k) =
∫ �/2

0

d�√
1 − k2 sin2 �

, K ′(k) = K(k′), (B.1)

are the complete elliptic integrals of the first kind. More precisely one has

sn(u + 2mK + 2niK ′, k) = (−1)m sn(u, k),

cn(u + 2mK + 2niK ′, k) = (−1)m+n cn(u, k),

dn(u + 2mK + 2niK ′, k) = (−1)n dn(u, k), (B.2)
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Fig. 6. Jacobi elliptic functions with elliptic modulus k = 1/
√

2: (a) Sine-amplitude; (b) Cosine-amplitude; (c) Delta-amplitude.
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where K = K(k) and K ′ = K ′(k), so that, for real values of the arguments, one has

sn(u + 2mK, k) = (−1)m sn(u, k),

cn(u + 2mK, k) = (−1)m cn(u, k),

dn(u + 2mK, k) = dn(u, k), (B.3)

which means that cn(u, k) and sn(u, k) are periodic functions with period 4K , while dn(u, k) is periodic
with period 2K .

One has

cn(−u, k) = cn(u, k), sn(−u, k) = −sn(u, k), dn(−u, k) = dn(u, k), (B.4)

and

�

�u
cn(u, k) = −sn(u, k) dn(u, k),

�

�u
sn(u, k) = cn(u, k) dn(u, k),

�

�u
dn(u, k) = −k2 sn(u, k) cn(u, k). (B.5)

Moreover the following identities hold:

cn2(u, k) + sn2(u, k) = 1,

dn2(u, k) + k2 sn2(u, k) = 1,

dn2(u, k) − k2 cn2(u, k) = 1 − k2. (B.6)

If k=1/
√

2 is fixed, we can write, for simplicity, cn(u)=cn(u, 1/
√

2), sn(u)=sn(u, 1/
√

2) and dn(u)=dn(u, 1/
√

2).

Appendix C. Action-angle variables for the quartic potential

To show that the coordinates (	, I ) given by (2.7) are canonical it is sufficient to show that one has

{x, y} ≡ �x

�	

�y

�I
− �x

�I

�y

�	
= 1, (C.1)

and this is an easy computation.
To see that the coordinates (	, I ) can be interpreted as action-angle variables, just note that, by defining

A ≡ 1

4K

∮
y dx = 1

2
√

2K
(4E)3/4

∫ 1

−1
dx
√

1 − x4 = 1

2
√

2K
(4E)3/4 2

√
2K

3
, (C.2)

one obtains I = A (we defer the computation of the integral to Appendix D).
Actually (	, I ) are not strictly speaking action-angle variables as 	 is not an angle (it is defined modulo 4K instead

than 2�); formulae are slightly simpler with our choice of 	.
In the new variables the Hamiltonian for � = 0 is given by (2.8). If we neglect the dissipative term, then the equation

of motion can be derived by the Hamiltonian

H(	, I ) = H0(I ) + 1
4 �(3I )4/3f (t + t0) cn4 	, (C.3)

which yields (2.9) for C = 0.
To take into account the dissipative term can just write 	̇= (�	/�x) ẋ + (�	/�y) ẏ, and İ = (�I/�x) ẋ + (�I/�y) ẏ,

where the partial derivatives can be computed in terms of the entries of the Jacobian matrix of the inverse
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transformation:⎛
⎜⎝

�	

�x

�	

�y
�I

�x

�I

�y

⎞
⎟⎠=

⎛
⎜⎝

�x

�	

�x

�I
�y

�	

�y

�I

⎞
⎟⎠

−1

=
⎛
⎜⎝

�y

�I
−�x

�I

− �y

�	

�x

�	

⎞
⎟⎠ , (C.4)

as the determinant of a symplectic matrix is 1, so that (2.9) is immediately obtained.

Appendix D. Some useful integrals

Given � as defined in (3.2), using obvious notational shorthands, one has

� = 〈sn2 dn2 〉 = −〈(cn)′(sn dn)〉 = 〈cn(sn dn)′〉
= 〈cn(cn dn2 − 1

2 cn sn2)〉 = 〈cn2 dn2 − 1
2 cn2 sn2 〉

= 〈cn2(1 − 1
2 sn2) − 1

2 cn2 sn2〉 = 〈cn2 − cn2 sn2〉 = 〈cn2 − (2dn2 − 1)sn2〉
= 〈cn2 + sn2〉 − 2〈sn2 dn2〉 = 1 − 2〈sn2 dn2〉 = 1 − 2�, (D.1)

where the prime denotes the derivative, and (B.6) have been repeatedly used; hence � = 1
3 .

One has∫ 1

−1
dx
√

1 − x4 =
∫ 2K

0
dt sn t dn t

√
1 − cn4 t =

∫ 2K

0
dt sn t dn t

√
2 sn2t dn2 t

= 2
√

2K

(
1

4K

∫ 4K

0
dt sn2 dn2 t

)
= 2

√
2K� = 2

√
2K

3
, (D.2)

which implies the last identity in (C.2).
The Fourier series of the Jacobi elliptic functions considered in Appendix B are given by

sn(u, k) = 2�

kK(k)

∞∑
n=1

qn−1/2

1 − q2n−1
sin

(2n − 1)�u

2K(k)
,

cn(u, k) = 2�

kK(k)

∞∑
n=1

qn−1/2

1 + q2n−1
cos

(2n − 1)�u

2K(k)
,

dn(u, k) = �

2K(k)
+ 2�

K(k)

∞∑
n=1

qn

1 − q2n
cos

2n�u

2K(k)
, (D.3)

where q= exp(−�K ′(k)/K(k)), so that q= e−� for k = 1/
√

2, while we can write

G1(p, q) = 1

4Kp

∫ 4Kp

0
dt sn t dn t cn3 t sin(t/�) = 1

4Kp

∫ 4Kp

0
dt

(
−1

4

d

dt
cn4 t

)
sin(t/�)

= 1

4�

(
1

4Kp

∫ 4Kp

0
dt cn4 t cos(t/�)

)
, (D.4)

with

cos(t/�) = cos
�t

2K(k)

q

p
, (D.5)

so that one can have G1(p, q) �= 0 only if, for suitable integers nj one has

p(±(2n1 − 1) ± (2n2 − 1) ± (2n3 − 1) ± (2n4 − 1)) ± q = 0, (D.6)

which requires for q to be of the form:

q = 2np, n ∈ Z. (D.7)
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Therefore first of all q has to be even. Moreover, for fixed q, one must have p = q/2n for some n ∈ Z. If we impose
that (q, p) are relatively prime then the identity p/q = 1/2n imposes q = 2n and p = 1. Finally (D.4) also implies that
for p/q = 1/2n one has G1(1/2n) > 0, as G1(p, q) is equal to the qth Fourier label of the function cn4(t), which is
strictly positive by the second of (D.3).

Note moreover that if we choose q to be large enough in (D.7) then also n has to be large, so that large Fourier labels
of the elliptic functions have to be involved in order that the integral G1(p, q) be non-vanishing. This implies that the
corresponding value of G1(p, q) has to be small enough (use the fact that in the expansions (D.3) one has 0 < q< 1).

Now let us show how the condition (3.10) implies (3.11). One can write (3.10) as

〈R(n)
2 〉 = �3(�U(p, q) − C V (p, q))	̄(n−1), (D.8)

with

U(p, q) ≡ 1

4Kp

∫ 4Kp

0
dt cos(t/�)

1

�

(
d

dt
(sn t dn t cn3 t)

)
cos t0

− 1

4Kp

∫ 4Kp

0
dt sin(t/�)

1

�

(
d

dt
(sn t dn t cn3 t)

)
sin t0

= 1

4Kp

∫ 4Kp

0
dt cos(t/�)

1

�

(
d

dt
(sn t dn t cn3 t)

)
cos t0, (D.9)

and

V (p, q) ≡ 1

4Kp

∫ 4Kp

0
dt

1

�

(
d

dt
(sn2 t dn2 t)

)
= 0. (D.10)

In (D.9), by integrating twice by parts, we obtain

U(p, q) = − 1

4Kp

∫ 4Kp

0
dt

(
cos(t/�)

1

�

(
d2

dt2

(
1

4
cn4 t

)))
cos t0

= − 1

4�

(
1

4Kp

∫ 4Kp

0
dt sin(t/�)

1

�

(
d

dt
cn4 t

))
cos t0

= 1

4�2

(
1

4Kp

∫ 4Kp

0
dt cos(t/�) cn4 t

)
cos t0 = 1

�
G1(p, q) cos t0, (D.11)

which implies (3.11).
Now let us consider the case � = �2D and p/q �= 1/2n: first of all we want to prove (4.7). By shortening O(t) =

cn3(�t) sn(�t) dn(�t), E(t)=Ȯ(t), c(t)=cos t and s(t)=sin t , and by denoting with I [F ](t) the integral of F between
0 and t, we can write

〈F (2)
2 〉 = �4{cos t0 〈cE 〉	̄(1) + cos t0 sin t0(〈sEI[cE(1)]〉 + 〈cEI [sE(1)]〉)

+ cos t0 sin t0(〈sEI[I [cO(1)] − 〈I [cO(1)]〉]〉 + 〈cEI [I [sO(1)]]〉)}
+ 4 �{− sin t0〈sO〉Ī (1) + �2 cos t0 sin t0(〈sOI[cO(1)]〉 + 〈cOI [sO(1)]〉)} − 1

3�3D, (D.12)

for suitable functions E(1) (even) and O(1) (odd); an explicit computation gives

E(1)(t) = −� cn4(�t), O(1)(t) = −�2cn3(�t) sn (�t) dn(�t) = −�2O(t). (D.13)

This simply follows from the parity properties of the unperturbed solution (2.4), from the remark that if F is an even
function then I [F ] is odd and from the Fourier expansions (D.3) of the Jacobi elliptic functions (which imply that the
averages 〈cE(1)〉 and 〈I [sO]〉 are vanishing for p/q �= 1/2n).

In (D.12) the averages 〈cE〉 and 〈sO〉 are vanishing because of (D.6) and (D.7); note also that the first one is simply
�−1G1(p, q) (see (D.9) and (D.11), so that (4.6) is proven, with G2(p, q) defined according to (4.7).
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Imposing 〈F (2)
2 〉 = 0 gives

1
3 �3 D = 1

2 �3 sin 2t0{�(〈sEI[cE(1)]〉 + 〈cEI [sE(1)]〉)
+ �(〈sEI[I [cO(1)]]〉 + 〈cEI [I [sO(1)]]〉) + 4(〈sOI[cO(1)]〉 + 〈cOI [sO(1)]〉)}. (D.14)

By writing

c(t) = 1

2

∑
�=±1

ei�t , s(t) = 1

2i

∑
�=±1

�ei�t , F (t) =
∑
n∈Z

ein�tFn, (D.15)

for F = E, O, E(1), O(1), we can rewrite (D.13) as

1
3 �3 D = �3 sin 2t0 G2(p, q),

G2(p, q) = 1

4i

∑
�(n+n′)+�+�=0

{
�

i(� + �n′)
(EnE

(1)

n′ )(� + �)

+ �

i2(� + �n′)2
(EnO

(1)

n′ )(� + �) + 4

i(� + �n′)
(EnO

(1)

n′ )(� + �)

}
, (D.16)

so that we immediately see that the contributions with � + � = 0 disappear. As � + � ∈ {−2, 0, 2} then we have to
retain in (D.16) only the contributions with n and n′ such that n + n′ = ±2q/p. As n and n′ have to be even, as it is
easy to check from the expressions (D.13) by relying on the Fourier expansions (D.3), we are left with 2n ± 2q/p = 0,
which requires p/q = 1/n. As we are excluding values of p, q such that p/q = 1/2n we have finally shown that the
quantity G2(p, q) in (4.7) can be different from zero only for p/q = 1/n, with n odd.

Finally we want to prove that for � = �mCm to order m the equation 〈F (m)
2 〉 = 0 takes the form (4.9). First note that

one has a function f (t + t0) for each perturbation order, so that 〈F (m)
2 〉 is a polynomial of order m in t0: for the same

reason it has to be a polynomial in t/�. Because of the presence of the Jacobi elliptic functions any further dependence
on t has to be analytic and 4K-periodic: hence the expansion (4.10) follows. In order to have �m(t0; p, q) �= 0 one
has to require (by the same reasoning used to obtain (D.6) for m = 1) qr2/p = n ∈ Z: as p and q are relatively prime
integers and |r2|�m, then one must have |p|�m. The exponential decay in n of the coefficients Pr1,r2,n can be proved
as in the previous case m = 1, by using the analyticity of the elliptic functions (which in turn implies the exponential
decay of the Fourier coefficients appearing in the expansions (D.3)).

References

[1] S.G. Adams, F.M. Bertsch, K.A. Shaw, N.C. MacDonald, Independent tuning of linear and nonlinear stiffness coefficients [actuators],
J. Microelectromech. Syst. 7 (1998) 172–180.

[2] K.T. Alligood, J.A. Yorke, Accessible saddles on fractal basin boundaries, Ergodic Theory Dyn. Syst. 12 (3) (1992) 377–400.
[3] M.V. Bartuccelli, J.H.B. Deane, G. Gentile, S.A. Gourley, Global attraction to the origin in a parametrically driven nonlinear oscillator, Appl.

Math. Comput. 153 (1) (2004) 1–11.
[4] M.V. Bartuccelli, G. Gentile, K.V. Georgiou, On the dynamics of a vertically driven damped planar pendulum, R. Soc. London Proc. Ser.

A Math. Phys. Eng. Sci. 457 (2016) (2001) 3007–3022.
[5] P.M. Battelino, C. Grebogi, E. Ott, J.A. Yorke, E.D. Yorke, Multiple coexisting attractors, basin boundaries and basic sets, Phys. D 32 (2) (1988)

296–305.
[6] J.A. Blackburn, H.J.T. Smith, D.E. Edmundson, Transient chaos in a parametrically damped pendulum, Phys. Rev. A 45 (2) (1992) 593–599.
[7] J.A. Blackburn, H.J.T. Smith, N. GrZnbech-Jensen, Stability and Hopf bifurcations in an inverted pendulum, Am. J. Phys. 60 (1992) 903–908.
[8] F. Bonetto, G. Gallavotti. G. Gentile, Spin–orbit resonances: selection by dissipation, unpublished, 2003.
[9] A. Celletti, L. Chierchia, On the stability of realistic three-body problems, Commun. Math. Phys. 186 (2) (1997) 413–449.

[10] A. Celletti, A. Giorgilli, U. Locatelli, Improved estimates on the existence of invariant tori for Hamiltonian systems, Nonlinearity 13 (2) (2000)
397–412.

[11] L. Cesari, Sulla stabilità delle soluzioni dei sistemi di equazioni differenziali lineari a coefficienti periodici, Atti Accad. Italia, Mem. Cl. Sci.
Fis. Mat. Nat. 11 (6) (1940) 633–692.

[12] L. Cesari, J.K. Hale, A new sufficient condition for periodic solutions of weakly nonlinear differential systems, Proc. Am. Math. Soc. 8 (1957)
757–764.

[13] Sh.-N. Chow, J.K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften, vol. 251, Springer, New York, Berlin,
1982.



1988 M.V. Bartuccelli et al. / Nonlinear Analysis: Real World Applications 9 (2008) 1966–1988

[14] S. Evoy, D.W. Carr, L. Sekaric, A. Olkhovets, J.M. Parpia, H.G. Craighead, Nanofabrication and electrostatic operation of single-crystal silicon
paddle oscillators, J. Appl. Phys. 86 (1999) 6072–6077.

[15] G. Gallavotti, G. Gentile, Hyperbolic low-dimensional invariant tori and summation of divergent series, Commun. Math. Phys. 227 (3) (2002)
421–460.

[16] R.A. Gambill, J.K. Hale, Subharmonic and ultraharmonic solutions for weakly non-linear systems, J. Ration. Mech. Anal. 5 (1954) 353–394.
[17] G. Gentile, M. Bartuccelli, J. Deane, Bifurcation curves of subharmonic solutions and Melnikov theory under degeneracies, Rev. Math. Phys.

19 (3) (2007) 307–348.
[18] G. Gentile, G. Gallavotti, Degenerate elliptic resonances, Commun. Math. Phys. 257 (2) (2005) 319–362.
[19] P. Goldreich, S. Peale, Spin–orbit coupling in the solar system, Astron. J. 71 (6) (1966) 425–438.
[20] P. Goldreich, S. Peale, The dynamics of planetary rotations, Ann. Rev. Astron. Astrophys. 6 (1970) 287–320.
[21] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, sixth ed., Academic Press, San Diego, 2000.
[22] C. Grebogi, E. Ott, J.A. Yorke, Basin boundary metamorphoses: changes in accessible boundary orbits, Phys. D 24 (1–3) (1987) 243–262.
[23] J. Guckenheimer, Ph. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences,

vol. 42, Springer, New York, 1990 (Revised and corrected reprint of the 1983 original).
[24] J.K. Hale, Periodic solutions of nonlinear systems of differential equations, Riv. Mat. Univ. Parma 5 (1954) 281–311.
[25] J.K. Hale, P. Táboas, Interaction of damping and forcing in a second order equation, Nonlinear Anal. 2 (1) (1978) 77–84.
[26] J.K. Hale, P. Táboas, Bifurcation near degenerate families, Applicable Anal. 11 (1) (1980) 21–37.
[27] D.Y. Hsieh, Variational method and Mathieu equation, J. Math. Phys. 19 (5) (1978) 1147–1151.
[28] D.Y. Hsieh, On Mathieu equation with damping, J. Math. Phys. 21 (4) (1980) 722–725.
[29] D.P. Howson, R.B. Smith, Parametric Amplifiers, McGraw-Hill, Maidenhead, 1970.
[30] S. Laederich, M. Levi, Invariant curves and time-dependent potentials, Ergodic Theory Dyn. Syst. 11 (2) (1991) 365–378.
[31] T. Leiber, H. Risken, Stability of parametrically excited dissipative systems, Phys. Lett. A 129 (1988) 214–218.
[32] V.K. Mel’nikov, On the stability of a center for time-periodic perturbations, Trudy Moskov. Mat. Obšč. 12 (1963) 3–52.
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