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Abstract

While the accuracy of multi-view stereo (MVS) has con-

tinued to advance, its performance reconstructing challeng-

ing scenes from images with a limited depth of field is gener-

ally poor. Typical implementations assume a pinhole cam-

era model, and therefore treat defocused regions as a source

of outlier. In this paper, we address these limitations by in-

stead modelling the camera as a thick lens. Doing so al-

lows us to exploit the complementary nature of stereo and

defocus information, and overcome constraints imposed by

traditional MVS methods. Using our novel reconstruction

framework, we recover complete 3D models of complex

macro-scale scenes. Our approach demonstrates robust-

ness to view-dependent materials, and outperforms state-

of-the-art MVS and depth from defocus across a range of

real and synthetic datasets.

1. Introduction

Passive scene reconstruction continues to be an actively

researched problem. Often, a multi-view stereo approach is

taken to overcome occlusion and achieve complete scene

modelling. Despite the advances made in conventional

works and the recent adoption of deep learning, the per-

formance of MVS remains heavily dependent on the scene

content. Accurate correspondence between viewpoints is

only possible when surfaces are uniquely textured and con-

sistent in appearance. As a result, materials with periodic

textures or complex light interactions such as sub-surface

scattering cannot be reconstructed without heavy reliance

on handcrafted or learnt scene priors.

An additional limitation, often overlooked in literature,

is the simplification of the image formation process. This

pinhole camera model traditionally used in MVS only con-

siders the scene projection, and assumes images are free

from all optical aberrations. While some aberrations such

as lens distortion can be detected during calibration and cor-

rected, defocus as a result of a finite aperture cannot. As a

result, the scene is implicitly limited to the depth of field

Figure 1. Top row: Example focal stack input images used by our

approach from our real-world 16 view Temple dataset. Bottom

row: This object is very challenging for MVS [54] (left), multi-

view DFD performs much better [3] (middle) but the proposed

achieves the best result (right). Notice the better recovery of the

roof ornament, sharper edges and improved surface details.

(DoF) of the camera where pixels can be considered ac-

ceptably sharp. Consequently, macro-level reconstructions

where the DoF is shallow are not theoretically possible.

From this perspective, defocus can usually be considered

an undesirable artifact. However, given accurate camera pa-

rameters, its formation on the image plane can be modelled

from simple geometric principles and related to scene depth.

The exploitation of this phenomena for scene reconstruction

is known as depth from defocus (DFD), and is a well esta-

bilished area of research. Since focus analysis is monocular

in nature, DFD techniques are suitable for recovering com-

plex materials and textures that would otherwise be chal-

lenging for multi-view stereo. However, traditional imple-

mentations only achieve partial reconstructions because ad-

ditional views are not used.

Considering these complementary properties, it is clearly

advantageous to combine these two approaches into a uni-

fied framework. This reasoning is consistent with biolog-

ical studies as noted in [26], where defocus information is

shown to improve stereo matching in human vision. While

some previous works have explored this idea, no work that

we are aware of has performed a study in a multi-view
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context to recover complete 3D models. In this paper, we

present exactly this, and demonstrate the benefits of com-

bining an accurate defocus camera model with standard

MVS projective geometry principles.

Our proposed MRF-based framework combines both

cues while retaining their individual advantages - the con-

vexity and stability of defocus vs the enforced geometric

consistency and high reconstruction fidelity of MVS. As

input, we take posed multi-view focal stacks which focal-

sweep the volume of interest from relatively sparse view-

points. The limited availability of this type of data makes

the application of a deep learned-based approach difficult,

and motivates our more traditional methodology. We show

how stereo information can be applied to finite aperture im-

ages with significant defocus without violating traditional

pinhole assumptions. Surprisingly, our approach indicates

stereo correspondence can improve reconstruction even in

the presence of view-dependent materials (see Figure 1).

Unlike previous works, we avoid iterative estimation of

defocus parameters by modelling the camera as a thick lens

[3]. This defocus model is well suited for combining with

multi-view observations, since the blurring response is ex-

plicitly calibrated relative to the projective center of the

camera; making for elegant integration into our framework.

In contrast to [3], who achieve 3D reconstructions using

only defocus cues, we demonstrate how including stereo in-

formation helps recover higher accuracy geometry.

In our evaluation we compare performance to state-of-

the-art MVS and DFD on novel multi-view datasets, and

achieve superior results reconstructing scenes containing

specular and reflective surfaces. In summary, this paper

presents the following:

1. A framework unifying a thick-lens defocus model with

multi-view stereo

2. An iterative algorithm to overcome the limitations a

narrow DoF imposes on reconstruction fidelity

3. Comparative evaluation of performance on complex

datasets to state-of-the-art MVS and DFD

The remainder of this paper is structured as follows. Sec-

tion 2 discusses previous work. Section 3 briefly analyses

the formation models of each cue. Section 4 explains the

proposed approach, and section 5 performs a comparative

evaluation. Section 6 concludes the paper.

2. Previous Work

In this section, we survey related work. Here, stereo-

based and focus-based reconstruction approaches are cov-

ered, and we include works considering these cues individ-

ually or in combintation. To clarify the often interchanged

terminology used in focus-based reconstruction and to keep

the survey concise, we largely exclude approaches which

evaluate the structure of a scene from a focal stack based on

the response of a focus measure e.g. [46].

2.1. Multi­View Stereo

Perhaps one of the most widely understood reconstruc-

tion principles, MVS recovers 3D structure by identifying

corresponding features from images of the scene taken at

different viewpoints. Using geometric constraints arising

from the pinhole camera model, 3D points can be triangu-

lated from two or more of these features according to the

pose of each view. Broadly speaking, the quality of recon-

struction largely depends on three factors.

Scene Representation: How surfaces are modelled not

only affects the resolution of the final result, but also places

restrictions on the reconstruction algorithm. For instance,

voxel-based [63, 41, 27, 30, 14] and mesh-based [37, 15]

representations allow for a globally optimal result, since

all views can be evaluated jointly. Alternatively, view-

dependent methods [54, 62] only use a subset of the in-

put images to recover a depth map of each viewpoint.While

they do not impose the strict initialisation of voxel-based

and mesh-based methods, they require post processing and

produce potentially less robust results.

Feature Matching: At the heart of all MVS algorithms

is a similarity metric used to identify corresponding points

between images. Classical metrics implement per-pixel

comparisons such as sum of squared differences (SSD) [36]

and normalised cross correlation (NCC) [37, 7, 21]. Some

works exploit perspective distortion to also estimate surface

normals [7]. More recent approaches generally use feature

descriptors to extract richer information from the source im-

ages. Though initially hand-crafted [61, 62], the advent of

deep learning introduced data-driven feature extraction with

convolutional neural networks (CNNs) [69, 67].

Regularisation: To overcome the real-world limitations

of standard MVS assumptions, most approaches use a regu-

larisation framework to enforce scene priors. A popular tra-

ditional approach involves formulating these priors as part

of an energy function, and solving with a Markov Random

Field (MRF). Early deep learning works followed a similar

idea, though recent approaches regularise with learnt priors.

Of particular interest to this survey is view-dependent

methods. Many conventional approaches were able to pro-

duce compelling results despite the limitations of traditional

feature matching, often resulting in creative methodologies

[70, 40, 62]. Notably, PMVS [21] combine matched patches

rather than point clouds, and refine the final mesh using

an energy optimisation to impose smoothness constraints.

COLMAP [54], arguably one of the best performing con-

ventional MVS methods, combines a structure from motion

calibration with a view dependent reconstruction pipeline to

produce high quality 3D models.



More recently, deep learning-based approaches have

seen widespread success. SurfaceNet [29] introduced the

first method trained end-to-end based around a voxel grid.

DeepMVS [28] instead generates a plane sweep volume and

aggregates matched features from an arbitary number of

images. MVSNet [67] introduces differentiable homogra-

phy warping, and R-MVSNet [68] improves the memory

efficency with a recurrent architecture. PointMVSNet [11]

adopts a coarse-to-fine approach with multi-scale features.

CasMVSNet [24] develops a memory efficent cost volume

and adapts it to existing methods. Though not advertised

as MVS, neural radiance fields [45] achieve dense implicit

reconstructions. Other notable works include [42, 34].

2.2. Depth from Defocus

By modelling the point spread function (PSF) of the

camera, depth information of the scene can be leveraged

from the formation of defocus on the image plane. DFD is

a field of research that approaches this idea in many differ-

ent and creative ways. Though techniques exist for evalu-

ating depth from a single defocused image [9, 2, 8, 31], we

primarily focus on methods that require several defocused

images captured with circular apertures.

Acquisition: A convenient method for capturing multi-

ple defocused images is with a lightfield camera [59]. How-

ever, lightfield cameras can only capture the scene at a lim-

ited resolution. With conventional camera lenses, there are

two main approaches to generate differently focused im-

ages - with varying aperture size [50, 44, 55] or focusing

distance [20, 47]. Changing the aperture size is often sim-

pler, but the scene reconstruction volume is limited due to

the relative blur exhibiting a symmetrical transfer function

[43]. Although focal stacks largely overcome this ambigu-

ity, refocusing the camera in this way introduces scale and

translational differences between images and subsequently

requires correcting [65, 58, 4, 3]. Some methods [25] vary

both the aperture size and focus setting to capture dense in-

formation about the camera PSF.

PSF Modelling: Most approaches assume a convolu-

tional formation model, allowing the PSF to be approxi-

mated as a 2D kernel. Two popular choices include the

Pillbox [65, 18] and Gaussian [20, 4, 51] functions. These

methods do not consider many of the abberations present

in optical systems, so some works [31, 44] instead directly

measure the blurring response of the camera. Other works

do not model the PSF explicitly, instead depending on a

data driven approach [25, 8, 19]. In many cases, a thin

lens defocus model is assumed despite the fact this model

does not hold in real-world optical systems. [39] improves

reconstruction accuracy through iterative refinement. [49]

considers a model beyond a thin lens, and formulates sub-

aperture disparity relative to the entrance pupil in a colour

coded-aperture camera. [3] proposes a formal calibration of

Figure 2. Difference in image quality between a pinhole aperture

(left) and a deblurred focal stack generated by our method (right).

The small aperture image is degraded by diffraction blurring aris-

ing from the wave-like nature of light. This is not the case with

larger apertures, capturing brighter and more detailed surfaces.

a thick lens camera model, and applies it to capturing and

reconstructing multi-view focal stacks.

Aside from [16] who utilise deep learning, most works

adopt an MRF-based or numerical optimisation framework.

Moreover, the overwhelming majority of DFD methods dis-

cussed only achieve single-view reconstructions. This is in

part due to limitions modelling the PSF, as well as a lack of

publically available datasets. To our knowledge, [3] is the

only attempt at 3D reconstruction using only defocus cues;

by fusing multiple single-view reconstructions together.

2.3. Hybrid Approaches

We will now discuss previous works that take advantage

of multiple reconstruction cues. Most existing methods for-

mulate their combination of stereo and defocus in an MRF

framework. One approach is to combine cues with defo-

cused stereo pairs [35, 52, 10]; often expressing the relative

blurring kernel in terms of pixel disparity. [57] apply coded

apertures in this way. [1] instead uses defocus to constrain

stereo matching. Other methods apply single-image defo-

cus constraints to better recover discontinuities [64, 23].

Alternative to pairwise-stereo, some methods use light-

field cameras to combine cues [38, 59, 60], though recon-

structions are limited to a very narrow baseline. [5] consider

multiple viewpoints, but do not apply this to 3D reconstruc-

tion. [12] is the only approach we know of to use deep

learning for combining cues. However, as with all works

discussed, reconstructions remain limited to a single view.

Finally, shading cues have been proposed in combination

with defocus [13], stereo [66] and both [60] to alleviate the

texture requirements of these cues.

2.4. Summary

Though many works have proposed methodologies con-

sidering stereo and defocus separately, far fewer have at-

tempted combining them. Those who have limit reconstruc-

tion to a single view, foregoing complete scene modelling.

In this paper, we fill this gap and evaluate the benefits of

these cues in a multi-view context.



Figure 3. Overview of our approach illustrating the iterative nature of the proposed pipeline. Defocus and stereo costs are generated from

the calibrated focal stacks and synthetically deblurred images respectively, then combined according to the value of α. This weighted sum

is input to an MRF framework, where spatial consistency is enforced according to second order smoothness priors. The output from the

MRF is the estimated depth, which is used in the next iteration to re-generate pinhole images of the focal stacks. As iteration increases, α

is updated and the effective resolution of the pipeline doubles. This process continues until the maximum number of iterations has been

reached. To generate 3D models, the depth and normal maps from each viewpoint are converted to point clouds, and merged together.

3. Image Formation

Though stereo and defocus cues operate on very different

principles, the image formation assumptions made by each

cue can be generalised easily; allowing for a brief analysis

of their differences. [53] provide a more in-depth analysis.

For simplicity, we ignore the effects of lens distortion as this

can be corrected computationally. The formation of a pixel

y on image I can be described [20]

I(y) =

∫

k(y,x) r(x) dx, (1)

where r(x) defines the radiance of the projected world co-

ordinates x and k describes the PSF of the camera. Given

the same scene and camera pose, the only differences in this

context between cues is how the camera response k is mod-

elled. As previously discussed, a pinhole camera is typi-

cally assumed in most MVS methods. In this case, k is

equal to a Dirac delta and the projected image represents the

incident radiance. However, in reality, small apertures give

rise to diffraction blurring and degrade the overall sharpness

of the image. An example of this can be seen in Figure 2.

Defocus models instead take into account a finite aper-

ture. Usually, Equation 1 is approximated as a convolution

and k is modelled as a kernel that best represents the aper-

ture shape. The size of the blurring kernel σ is related geo-

metrically to scene depth relative to the camera pinhole d,

σ(d) =
γav

2

(

1

d− w
+

1

v
−

1

f

)

(2)

according to a constant γ, aperture a, focus setting v, focal

length f and pupillary magnification offset w as defined by

the thick lens defocus model. For a thin lens model, w = 0.

We refer the reader to [3] for further details.

From the above, it is clear neither cue models the light re-

flected from a scene point beyond a simple projective trans-

form. In other words, the light transport of the scene is not

considered prior to the final surface interaction. While this

is detrimental to MVS in the presence of view-dependent

materials, defocus information remains coherent due to its

monocular nature. Since defocus is a camera-centric phe-

nomena, the reconstruction principles of DFD can be gen-

eralised across many complex scenes with little regard to

their content provided sufficent defocus-variant texture is

present [17]. At the macro-scale magnification explored in

this paper, this limitation is not a concern.

4. Methodology

Our approach combines defocus and stereo information

to leverage the benefits of both cues to generate complete

3D models of macro-scale scenes. The proposed pipeline

can be broken up into two sequential stages.

Reconstruction: Using stereo and defocus cues, we re-

construct per-viewpoint depth maps as shown in Figure 3.

As input, we take multi-view focal stacks captured and cal-

ibrated using the approach proposed in [3]. These images

have a narrow DoF, making them unsuitable for direct stereo

matching. As part of our pipeline, we deblur these focal

stacks via non-blind deconvolution, and perform matching

on the synthetically sharpened images. The two cues are

then jointly optimised to find the surface estimate, which is



refined in subsequent iterations. Our approach can be sum-

marised as follows:

1. Calculate an initial thick-lens DFD reconstruction

2. Deblur the input focal stacks using the camera model

and estimated depth to approximate scene radiance

3. Find corresponding points from synthesised radiance

4. Combine defocus and correspondence information and

recalculate surface at higher resolution

5. Repeat steps 2, 3 and 4 until maximum resolution or

iteration reached

Point Cloud Fusion: The point clouds from each view

are combined to produce the final 3D model. We enforce

consistency checks on each reconstructed point to reduce

noise, before applying screened Poisson surface reconstruc-

tion [32] to generate the final triangular surface mesh.

4.1. Energy Function

As in [3], we formulate depth recovery of each view as a

discrete labelling problem of N labels, which we generalise

here to exploit both defocus and stereo cues. Each cue is

represented as a data term in our energy function,

E(x, n) = (1− α(n))
∑

p∈ν

ΦD(xp) +

α(n)
∑

p∈ν

ΦS(xp) +
λ

2n−1

∑

(p,q)∈ǫ

Ψpq(xp, xq).
(3)

Here, α is a scalar value between 0 and 1, and weights the

contributions of the defocus term ΦD and the stereo term

ΦS . We linearly modulate its value with increasing iteration

up to a maximum of 0.5. The value of λ controls the amount

of pairwise smoothness applied by Ψpq , which encourages

second order smoothness as described in [48].

In our framework, we assume each pixel represents a sur-

face and model it as a tangent plane. During reconstruc-

tion, the candidate search space of each surface is indepen-

dently reduced as a function of iteration n. Unlike tradi-

tional MRF formulations, this approach allows for high res-

olution reconstructions without requiring a corresponding

Figure 4. Materials simulated in our synthetic datasets: stone Ar-

madillo (left), gold Bunny (middle) and wooden Dragon (right).

number of labels; reducing memory usage and computa-

tional load. As n increases, the effect of the smoothness

term is decreased to enable the recovery of higher fidelity

surface details. Equation 3 is minimised using α-expansion

[6, 56]. We will now explain each of the terms in Equation

3, with particular emphasis on the novel stereo term.

4.2. Defocus Term

To integrate defocus information into our framework, we

implement the defocus term defined in [3]. First, harmonic

texture components are removed from the focal stacks [17].

By assuming a convolutional image formation model, the

defocus observed on the image plane as a function of scene

depth d can be described by Equation 2. From this, the

defocus term determines the relative blur between pairs of

images in the reference view focal stack. For focus settings

i and j, this relative blur is defined

σij(d) =
√

|σi(d)2 − σj(d)2|. (4)

Given a candidate label depth dk, the defocus term gener-

ates a photometric cost by blurring the sharper image to

match the other according to Equation 4. We denote this

blurring according to a defocus operator ◦,

φD(xp) =
∑

{ij}∈ΩD

∑

k

(σij(dk) ◦ Ia − Ib )
2
, (5)

{a, b} =

{

{i, j} σi(d) < σj(d),

{j, i} otherwise.
(6)

Here, I is an input image and ΩD defines the set of image

pairs. In practise, ◦ models defocus as a diffusion process

which is equivalent to a Gaussian PSF. Further details of

this term can be found in [3]. Finally, the generated cost

volume is normalised according to

ΦD(xp) = 1− exp

(

−
φD(xp)

µD

)

, (7)

where µD is the mean of φD.

4.3. Stereo Term

While the defocus term has a stable response in the pres-

ence of defocus-variant texture, it does not necessarily per-

mit the recovery of high frequency surface detail. This is

a consequence of the nature of defocus blur; surface details

are attenuated by the aggregation of photons in out-of-focus

regions. The stereo term is intended to improve the fidelity

of the reconstruction by integrating correspondence infor-

mation from synthetically deblurred images.

To this end, we deblur the input focal stacks according

to the current surface estimate. This is achieved via non-

blind deconvolution using a Wiener filter. Patches are then



Figure 5. Top row: Poisson surface reconstruction results on the synthetic wooden Dragon dataset for each method tested. Bottom row:

error maps when compared to the ground truth mesh ranging from 0mm (blue) to 0.5mm (red) error.

extracted from auxillary views taking into account the ori-

entation of the surface, and compared to the reference view.

In our implementation, one view from either side of the ref-

erence view is used to improve robustness to occlusions. Let

us now look in detail at how a single pixel p is processed.

4.3.1 Focal Stack Deblurring

For each iteration, the input focal stacks are deblurred ac-

cording to the current surface estimate. This is the case not

only for the reference view, but the auxillary viewpoints as

well. For pixel p, the first step is to determine its depth dp

by raytracing and intersecting the estimated surface. Using

the thick lens camera model, we then determine which im-

age from the focal stack I exhibits the least amount of blur

at p by minimising Equation 2 for all images. To prevent the

filter from becoming unstable where the surface estimate is

inaccurate or resolution too coarse, this value is divided by

2 and truncated to a maximum value. We denote the mini-

mum blur of pixel p as σp.

Next, a Wiener filter is utilised to implement a spatially

variant deconvolution. A PSF kernel of size σp is generated,

and its corresponding Fourier transform Kσ(ω) calculated.

The deconvolution kernel in the frequency domain G(ω)
necessary to sharpen p is

G(ω) =
K∗

σ(ω)

|Kσ(ω)|2 + ǫ
, (8)

where ∗ represents complex conjugation, and ǫ is a constant

representing the inverse signal-to-noise ratio (SNR). By set-

ting this to a small value, we implicitly assume a relatively

noise-free image. This is not an unreasonable assumption

given the large aperture used during the capture of the focal

stacks. A square patch wp is then extracted from the im-

age where p appears sharpest. The size of wp is determined

according to σp. Finally, the deblurred pixel p̂ is calculated

p̂ =

∣

∣

∣

∣

∣

∣

∣

∣

F−1
(

Wp(ω).G(ω)
)

∣

∣

∣

∣

∣

∣

∣

∣

, (9)

with F denoting a Fourier transform and Wp(ω) = F(wp).
This spatially variant deconvolution is performed for all

valid pixels in all relevant input views.

4.3.2 Patch Matching

Now the focal stacks have been deblurred, correspondence

information can be acquired. Assuming p is in the reference

view, we define a square support patch wp centred around p,

and cast rays through every pixel within it into world-space.

The ray corresponding to p is sampled along according to

the candidate labels. The remaining rays are intersected

with planes centred at each sample with normals equal to

that of the surface. When projected into the auxillary views,

the shape of the resulting support patch will distort to better

resemble the appearance of the surface in those views. To

account for subpixel sampling arising from this projection,

we implement bilinear interpolation. Our matching cost be-

tween the patch in the reference view wp and a patch in the

auxillary view wq is defined by the pixel-wise comparison

φS(xp) =
∑

{j}∈ΩS

∑

p

(

wp − wj
p

)2
, (10)

where ΩS defines a vector of auxillary views. Similar to

the defocus term, Equation 10 is normalised to produce the

final stereo term, where µS is the mean of φS :

ΦS(xp) = 1− exp

(

−
φS(xp)

µS

)

. (11)

4.4. Smoothness Term

The purpose of the smoothness term is to ensure the re-

constructions remain coherent in textureless or saturated re-

gions while retaining surface edges. The general form of

such a function can be written [56]

Ψpq(xp, xq) = min (Ψmax, Vpq(xp, xq)) . (12)

The above enforces pairwise smoothness between two pix-

els p and q taking labels xp and xq respectively, with the



Armadillo Bunny Dragon

Gold Stone Wood Gold Stone Wood Gold Stone Wood

COLMAP [54] 0% 0.9289 0.9904 0.9893 0.7996 0.9578 0.9585 0.7819 0.9186 0.9193

1% 0.9285 0.9906 0.9872 0.7900 0.9566 0.9553 0.7724 0.9162 0.9150

CasMVSNet [24] 0% 0.9093 0.9645 0.9642 0.8621 0.9462 0.9456 0.8313 0.9010 0.9017

1% 0.9128 0.9624 0.9636 0.8518 0.9505 0.9463 0.8270 0.8990 0.9007

PointMVSNet [11] 0% 0.7778 0.8759 0.8894 0.7853 0.8962 0.8939 0.7542 0.8374 0.8634

1% 0.7964 0.8919 0.9159 0.8011 0.8883 0.8942 0.7609 0.8421 0.8684

Multi-View DFD [3] 0% 0.9880 0.9888 0.9755 0.9411 0.9502 0.9374 0.9276 0.9346 0.9276

1% 0.8903 0.7224 0.6420 0.7908 0.7147 0.6681 0.7791 0.6520 0.6071

Proposed 0% 0.9541 0.9906 0.9887 0.8740 0.9590 0.9536 0.8893 0.9494 0.9454

1% 0.9278 0.9265 0.9276 0.8028 0.8852 0.8871 0.8488 0.8503 0.8792

Table 1. F-score results (τ = 1mm) on point cloud outputs for our synthetic dataset with 0% and 1% additive Gaussian noise. Bold indicates

top performer for each material and noise level.

Figure 6. Point cloud accuracy and completeness histograms on the synthetic stone Bunny dataset (left). Since our method produces many

more points than the MVS methods, our apparent accuracy suffers due to normalisation. We therefore present the same analysis on the

Poisson meshes (right) where the resolution of vertices is more consistent.

truncation preserving discontinuities. Following [3], we

define Vpq as a second-order prior and exploit the tangent

plane surface model. For two world-points P and Q corre-

sponding to labels xp and xq respectively, we define Vpq

Vpq(xp, xq) =

(

1

δ(n)(N − 1)

∣

∣

∣

∣

(Q− P ) · qn

pr · qn

∣

∣

∣

∣

)2

, (13)

similar to the definition proposed in [48]. Here, qn is

the normal of the surface related to pixel q, pr is a ray

cast through pixel p and δ(n) is the metric distance be-

tween labels. This expression penalises label assignment

based on the curvature of the surface, enabling a smooth

piece-wise linear reconstruction. In our framework, we set

Ψmax = 0.1 and λ = 10000.

4.5. Point Cloud Fusion

To filter out significantly erroneous points in the point

cloud outputs, a post-processing correspondence check is

performed. Our implementation requires each point to cor-

respond in at least two adjacent views to within 1mm. We

also exclude corresponding points where the difference in

normal vectors exceeds 30 degrees. All remaining points

are then subject to screened Poisson surface reconstruction

to generate a complete mesh of the scene.

5. Evaluation

To evaluate our approach, we compare performance

on synthetic and real data to three view-dependent MVS

approaches; PointMVSNet [11], CasMVSNet [24] and

COLMAP [54]. Instead of operating on focal stacks, these

methods take pinhole images as input. When operating on

real data, these pinhole images are captured with an f/22

aperture (see Figure 2). All synthetic and real inputs are 16-

bit images with a resolution of 2184x1464 pixels, although

the MVS methods require 8-bit input images instead.

PointMVSNet and CasMVSNet were run pre-trained

with 128 labels on an Nvidia RTX 3070 with 8GB of

VRAM, and point clouds were combined using code from

[22] as instructed by the authors. Due to memory restric-

tions, the input images were downsampled to a quarter res-

olution. Otherwise, parameters were left largely at their de-

fault values. We also compare to a re-implementation of

multi-view DFD [3], by setting α = 0 in Equation 3. In all

cases, our approach and DFD use a visual hull initialisation

for the first iteration, but is then disabled for all subsequent

iterations. The MVS methods do not use this visual hull in-

formation. Aside from this, all calibraton information and

auxillary views are kept consistent between methods.



Figure 7. Point cloud (left columns) and Poisson surface mesh (right columns) results from each method on real datasets. Here, we show

reconstructions on the Owl dataset from [3] (top row), and the datasets we captured - Bauble (middle row) and Temple (bottom row). The

many specularities present in our datasets makes photometric consistency difficult to determine, resulting in sparse point clouds from the

MVS methods. In all cases, the proposed approach recovers stable geometry and detailed surfaces.

5.1. Synthetic Data

We generated several multi-view synthetic datasets us-

ing the Stanford Armadillo, Bunny and Dragon to verify our

approach. These datasets consist of 24 views, and simulate

several challenging materials as seen in Figure 4. Gaussian

noise has been added to better reflect real-world conditions.

For DFD and the proposed approach, we generate 5-image

focal stacks for each viewpoint with a narrow DoF to simu-

late a finite aperture. Figure 5 qualitatively demonstrates the

difference in performance on the Dragon. Quantitive evalu-

ation was performed by comparing the reconstructed point

clouds with the ground truth geometry, using the F-score

metric proposed by [33]. Table 1 presents these results. In

many cases, the proposed approach outperforms MVS and

DFD, and otherwise performs competitively.

Figure 6 presents histograms showing accuracy and com-

pleteness for each method on the stone Bunny dataset. We

present results on the point clouds and Poisson meshes to

better understand the performance of each approach. Our

method improves accuracy over DFD alone (α = 0), and

achieves a high degree of overall completeness. This is par-

ticularly apparent in Figure 5 when generating the final sur-

face mesh, showing comparitively fewer significant errors.

Figure 8. Selected pinhole (aperture f/22) images from Owl (left),

Bauble (middle) and Temple (right) datasets.

5.2. Real Data

To compare these methods on real data, we captured two

multi-view, multi-focus datasets using the technique pro-

posed in [3]: Bauble (18 views) and Temple (16 views).

These objects exhibit view-dependent properties, making

them difficult to reconstruct using conventional methods. A

qualitative comparison of performance on these datasets can

be seen in Figure 7, with their appearance in Figure 8. Our

approach produces stable and complete reconstructions; re-

covering details absent from the other methods. We also

compare performance on the Owl dataset from [3], which

is better suited for MVS. The proposed outperforms DFD,

and performs as well as or better than the MVS approaches.

6. Conclusion

In this paper, we have developed a framework that uni-

fies the benefits of stereo and defocus information to better

recover geometry from finite aperture images. We proposed

a novel method to overcome the traditional limitations of

MVS, and experimentally proven its effectiveness across

many synthetic and real materials. Though our stereo term

alone would struggle in comparison to the advanced MVS

algorithms we have compared against, in combination with

defocus information it produces compelling results on chal-

lenging macro-scale scenes. In future work, we intend to

explore how to combine these cues in a spatially-variant

manner, to improve performance in the presence of occlu-

sion and signficant non-Lambertian surfaces.
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