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Abstract: We propose a multi-view framework for joint object detection and labelling based on pairs of images. The
proposed framework extends the single-view Mask R-CNN approach to multiple views without need for ad-
ditional training. Dedicated components are embedded into the framework to match objects across views by
enforcing epipolar constraints, appearance feature similarity and class coherence. The multi-view extension
enables the proposed framework to detect objects which would otherwise be mis-detected in a classical Mask
R-CNN approach, and achieves coherent object labelling across views. By avoiding the need for additional
training, the approach effectively overcomes the current shortage of multi-view datasets. The proposed frame-
work achieves high quality results on a range of complex scenes, being able to output class, bounding box,
mask and an additional label enforcing coherence across views. In the evaluation, we show qualitative and
quantitative results on several challenging outdoor multi-view datasets and perform a comprehensive compar-
ison to verify the advantages of the proposed method.

1 INTRODUCTION

Multi-view object detection and labelling is a com-
plex problem which has attracted considerable inter-
est in recent years and has been employed in many
application domains such as surveillance and scene
reconstruction (Luo et al., 2014). Compared to single-
view data, multi-view data provides a richer scene
representation by capturing additional cues through
the different viewpoints; these can help tackle the
problem of object detection and labelling more ef-
fectively by resolving some of the visual ambigui-
ties. However, dealing with multi-view features is
challenging due to large viewpoint variations, severe
occlusion, varying illumination and changes in reso-
lution (Chang and Gong, 2001).

Multi-view detection and labelling suffer from
two important limitations: First, few datasets for
multi-view object detection and tracking are avail-
able; Second, most approaches follow a tracking-by-
detection methodology which ignores the coupling
between detection and tracking. Beside, existing
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Figure 1: Illustration of the advantages of proposed ap-
proach (right) compared to the classical Mask R-CNN for-
mulation (left) in the case of two views from the Football
dataset. By incorporating multi-view information within
the network, the proposed approach is able to reduce mis-
detections while at the same time producing more consistent
object labelling across views.

methods for multi-view object detection and labelling
usually rely on videos, as tracking objects in both
spatial and temporal domains has been shown to be
beneficial due to the complementary cues they afford.
However, being able to detect and consistently la-
bel objects across image views (without use of tem-
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poral information) remains an important task in its
own right with many practical applications. These in-
clude for example multi-view scene modelling from
a hand-held camera where no temporal information
is available or processing of CCTV data acquired
at a low frame-rate where temporal information is
too coarsely sampled. Further, multi-view image ap-
proaches are important to enable processing of key-
frames in multi-view video datasets, which in turn can
be used to guide multi-view video processing. It is
thus essential to develop effective algorithms for pro-
cessing multi-view images.

A major challenge with processing multi-view im-
ages as opposed to videos relates to the changes
in object location and appearance which are usually
significantly larger across views than across frames.
This makes detection and tracking across views sig-
nificantly more difficult in practice. Furthermore,
many multi-view approaches solve the detection and
tracking tasks separately, with the detection algorithm
serving to initialise multi-view tracking. This sequen-
tial approach suffers from the limitation that errors at
the detection stage propagate to the later stages of the
pipeline, affecting tracking performance and making
the approach sub-optimal.

In recent years, deep learning based approaches
have achieved impressive performance in various
single-view tasks such as classification, object de-
tection and semantic segmentation (He et al., 2017;
Levine et al., 2018; He et al., 2016). However, due to
the lack of multi-view data, existing multi-view track-
ing approaches cannot achieve end-to-end deep learn-
ing. Most of the existing approaches for multi-view
tasks use 3D convolution networks to train a model
or classify objects in the 3D domain. However, for
multi-view tasks, it is time-consuming and computa-
tionally expensive to obtain multi-view object track-
ing results with a 3D convolution network. On the
other hand, many methods combine deep learning
components separately for object detection or features
trained from person re-identification.

To overcome the problem of the limited num-
ber of multi-view datasets and connect detection with
labelling, we propose a new approach which inte-
grates an existing trained single-view network with
multi-view computer vision constraints. This new
joint multi-view detection and tracking approach does
not require further training thereby avoiding the need
for annotated multi-view training datasets which are
currently scarce. Our approach extends Mask R-
CNN (He et al., 2017), a state-of-the-art approach for
single-view image classification, detection and seg-
mentation. The proposed framework consists of two
branches, each with weights set as in the original

Mask R-CNN network, which are integrated with ad-
ditional components to enforce epipolar constraints,
appearance similarity and class consistency thus al-
lowing matching of instances between two views.
Moreover, our multi-view framework incorporates a
new branch for the label output compared with the
single-view method. Figure 1 illustrates the ad-
vantages of the multi-view extension which is able
to leverage multi-view information to reduce mis-
detections while at the same time adding label infor-
mation compared to a traditional Mask R-CNN im-
plementation.

Our approach makes the following key contribu-
tions. First, it extends a single-view deep learning
network to multiple views without further training for
pairs of images, introducing a framework for classi-
fication, detection, segmentation and labelling. Sec-
ond, we improve the performance in multiple object
detection and labelling by jointly solving these two
tasks and integrating them into a common framework.

The remainder of this paper is organised as fol-
lows. In Section 2, we review related work on object
detection as well as multi-view object tracking. The
proposed methodology is then presented in Section
3. Section 4 experimentally evaluates the approach
showing qualitative and quantitative results based on
pairs of views obtained from a range of challeng-
ing multi-view datasets and comparing against estab-
lished approaches. Conclusions and future work are
finally discussed in Section 5.

2 RELATED WORK

Object detection: Object detection has been play-
ing a fundamental role in a wide variety of tasks
such as classification and object tracking. Thus we
do not intend to conduct a thorough review here, but
instead we concentrate on deep learning based tech-
niques and joint detection methods, which are most
relevant to our work. We refer the reader to recent
surveys for a more comprehensive review (Zhao et al.,
2018; Li et al., 2015; Hosang et al., 2016; Neel-
ima et al., 2015). Region proposal generation is typ-
ically the first part in the object detection pipeline,
where deep networks have been adopted to predict
the bounding boxes and generate regions (Sermanet
et al., 2013; Erhan et al., 2014; Szegedy et al., 2014).
Based on those techniques, Girshick et al. proposed
the R-CNN, which adopted an end-to-end training to
classify the proposed regions (Girshick et al., 2014).
To improve the detection efficiency, He et al. pro-
posed the SPP-net with shared information, together
with pyramid matching to correct geometric distor-



tion (He et al., 2015). It also should be mentioned
that the use of the shared information in object detec-
tion has also been applied in (Dai et al., 2015; Gir-
shick, 2015; Ren et al., 2015), in which real-time pre-
diction has been achieved. Based on Faster R-CNN
(Ren et al., 2015), He et al. further developed Mask
R-CNN (He et al., 2017), which achieves state-of-
the-art performance for object detection and semantic
segmentation. Besides, several works have made use
of information from other images or views, aiming to
improve the detection accuracy by sharing informa-
tion among views. For examples, Xiao et al. built a
single deep neural network for labelling re-appearing
objects (Xiao et al., 2017). In this architecture, detec-
tion and identification cooperate together with shared
convolutional feature maps to improve the result. In
(López-Cifuentes et al., 2018), a multi-camera system
is built to refine the bounding box for object detection.
In their work, a graph representation is proposed by
connecting different components together. Although
multi-view cues can help to improve the detection,
this is an area which remains relatively unexplored.

Multi-view tracking: Multi-view tracking is a
broad area encompassing camera calibration, object
detection, person re-identification, object tracking,
etc. The existing literature on multi-view tracking,
however, mostly incorporates several features and
hand-crafted pipelines to combine the temporal and
spatial information on multi-view videos (Luo et al.,
2014). Ristani et al. used correlation clustering op-
timization to find trajectories based on the combina-
tion of appearance and motion features (Ristani and
Tomasi, 2018). They then use post-processing to
globally refine the result. Multi-view tracking com-
bines several cues for representation and uses vari-
ous strategies to solve the tracking problem. Xu et
al. used a trained DCNN to represent the appearance
of people, and combine geometry as well as motion
to build a model. Then for each cue, a composition
criterion is set and then jointly optimised to achieve
correct tracking (Xu et al., 2016). Hong et al. also
combined multiple cues into a sparse representation
(Hong et al., 2013). Then they treated multi-view
tracking as a sparse learning problem. On the other
hand, Morioka et al. explored a colour-based model
to identify object correspondences among different
views (Morioka et al., 2006).

From previous works, it is clear that deep learn-
ing dramatically improves the performance for object
detection. However, most of the existing object de-
tection techniques focus on single-view images which
can be affected by pose, occlusion, etc. In contrast,
the multi-view object detection approach considered
in this paper can address this problem by exploit-

ing additional cues from other views. Further, multi-
view tracking methods mostly rely on initial detec-
tion result and are limited to videos, making those
techniques unsuitable for tasks lacking temporal in-
formation. We instead propose a method which can be
used across views without temporal information. Our
method leverages the superior detection performance
achieved by recent single-view deep learning archi-
tectures and extends them to the multi-view domain
through embedded components sharing information
between pairs of views.

3 METHODOLOGY

In this paper, we propose to extend a pre-trained
single-view detection network to a multi-view frame-
work with embedded components for object detec-
tion and labelling, thus capitalising on the advan-
tages of recent deep learning architectures while at the
same time overcoming the shortage of labelled multi-
view datasets that prevent direct training of multi-
view architectures. Our framework is built based on
Mask-RCNN (He et al., 2017) for extracting candi-
date bounding boxes. We enforce the epipolar geom-
etry to constrain the locations of instances matched
across two views, and compute an efficient person re-
identification feature to measure the appearance sim-
ilarity between matched instances. The Hungarian
algorithm is used in combination with a confidence
strategy to identify matching pairs and assign labels
in polynomial time without the requirement to know
the number of matching pairs. In our approach, we
jointly optimise instance detection and labelling for
optimal performance. In this section, we provide a
description of the framework in the case of pairwise
detection and labelling, leaving the generalisation to
three or more views to future work.

3.1 Framework Overview

The proposed multi-view framework for object detec-
tion and labelling extends the classical Mask R-CNN
approach by scaling it to multiple branches respon-
sible for the processing of the different input views
(two branches corresponding to two calibrated input
views considered in this paper). The weights used for
each branch of this extended framework are obtained
from the original Mask R-CNN which was trained on
the COCO dataset (Lin et al., 2014). The input to
the network consists of two calibrated images of the
scene captured from different viewpoints. The output
for each input image consists of class, bounding box,
mask and label information.



Figure 2: Overview of our proposed framework. First, candidate bounding boxes for each branch are extracted from a pair of
images respectively utilising a pre-trained Mask R-CNN. Then based on these candidate bounding boxes, an energy function
is defined by combining class, distance and appearance similarity matrices. Then the result characterising the class, bounding
box, mask and label for pair of images are extracted by solving a constrained global assignment problem.

The two input images are first each fed to the deep
learning network of their corresponding branch to ex-
tract convolutional features. The backbone for feature
extraction is composed of a 50-depth Resnet and a
feature pyramid network (Lin et al., 2017). Then a re-
gion proposal network generates candidate bounding
boxes based on the convolutional features. A confi-
dence score is obtained for each candidate bounding
box. Then based on each candidate bounding box, the
class is obtained using a fully-connected layer and the
mask is obtained using a fully convolutional network
(Long et al., 2015).

The key contribution is the introduction of em-
bedded components which are used to link the two
branches and enforce multi-view constraints. This is
a critical step to ensure that the branches are able to
cooperate when detecting and labelling objects. This
is achieved by defining an energy function enforc-
ing epipolar constraints, appearance similarity and
class consistency amongst pairs of candidate bound-
ing boxes between two input images. To efficiently
solve the problem, this multi-view detection and la-
belling task is treated as a global optimisation prob-
lem with unknown number of assignments. The entire
framework is illustrated in Figure 2.

3.2 Energy Formulation

Let us denote by I1 and I2 the two input images
from two views fed to the pipeline. For each im-
age, convolutional features are extracted by a 50-
depth Resnet. Subsequently, based on the convolu-
tional features, the region proposal network gener-
ates a number of candidate bounding boxes and cor-
responding confidence scores for each image. Each
bounding box represents a candidate instance. Within

each branch, these initial processing steps are sim-
ilar to those in Mask-RCNN. Let us denote by M
and N the number of candidate bounding boxes
for the two images I1 and I2 respectively. The
sets for candidate bounding boxes extracted from I1
and I2 are B1 = {b11,b12, ...,b1i, ...,b1M} and B2 =
{b21,b22, ...,b2 j, ...,b2N} respectively, where b1i de-
notes the i-th instance in I1 and b2 j denotes the j-th
instance in I2. To optimally match instances across
the two views, we combine class, distance and ap-
pearance features to represent each instance.

Distance matrix: To measure the distance be-
tween two instances across the two views, first we
represent the location of each instance with two
points: the mid-point of the top line segment and the
mid-point of bottom line segment of the correspond-
ing bounding box. The location of an instance in I1
can be represented as (xt

1i,y
t
1i), (x

b
1i,y

b
1i) and similarly

as (xt
2 j,y

t
2 j), (x

b
1 j,y

b
1 j) in I2. Then we use the epipo-

lar geometry to measure the consistency between the
two instances from I1 and I2. For a given point x in
one view, there is an epipolar line l = Fx in the other
view on which the corresponding point x′ must lie,
where F is the fundamental matrix relating the two
views (Hartley and Zisserman, 2003). F can be ob-
tained either directly from the calibration information,
if available, or otherwise indirectly by establishing a
sufficient number of correspondences across views.

More specifically, for the i-th instance in I1, the
epipolar lines lt

1i, lb
1 j in I2 can be calculated as:

lt
1i = F12(xt
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t
1i,1)
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where F12 represents the fundamental matrix from I1
to I2. We denote by D12(i, j) the distance between



Figure 3: Epipolar geometry for distance measurement. The
left image shows a bounding box in View 1 with the two
points representing its location. The right image shows the
two corresponding epipolar lines in View 2 inferred from
the two points in View 1. In the right image, the instance in
the yellow box denotes the correct correspondence while the
instance in the red box corresponds to an incorrect match.

the top and bottom epipolar lines inferred from the i-
th instance in I1 and j-th instance in I2. Conversely,
D21( j, i) denotes the distance between the top and
bottom epipolar lines inferred from the j-th instance
in I2 and i-th instance in I1.

Then for each pair (i, j), the distance between the
i-th instance in I1 and the j-th instance in I2 can be
calculated as:

D(i, j) = D12(i, j)+D21( j, i), (3)

where D denotes the distance matrix. An example for
distance measurement can be seen in Figure 3. As
illustrated in the figure, an object far from the cor-
responding epipolar lines will have a large distance
value compared to the correct matching object.

Appearance similarity matrix: To match in-
stances between two views, distance is not sufficient.
An efficient feature that can properly represent ap-
pearance in multiple views is therefore necessary. For
multi-view instance labelling, the viewpoint change
can be quite large. The appearance feature should
therefore be robust to large viewpoint change and
variation in illumination. In our method, we use a
feature called Local Maximal Occurrence (LOMO)
feature and its metric learning for feature similar-
ity measurement. It was first proposed by Liao et
al. for person re-identification (Liao et al., 2015).
The LOMO feature is an efficient feature combin-
ing a colour descriptor and a scale invariant local
ternary pattern (SILTP). It uses a Retinex algorithm
(Jobson et al., 1997) to handle illumination variation
and extracts the maximal occurrence horizontally to
overcome viewpoint change. In our method, we re-
size all the candidate bounding boxes to 128× 48 as
the same size used in person re-identification. Then
the extracted LOMO feature for instances in I1 can
be represented as H1 = (h11,h12, ...,h1i, ...,h1M) and
H2 = (h21,h22, ...,h2 j, ...,h2N) in I2. According to the
metric learning in (Liao et al., 2015), the appearance

similarity between two instances in two views can be
calculated as:

Z(i, j) = (h1i−h2 j)
TW (Σ

′−1
I −Σ

′−1
E )W T (h1i−h2 j),

(4)
where Z denotes the appearance matrix, W represents
a subspace, Σ

′−1
I and Σ

′−1
E represent the covariance

matrices of intrapersonal variations and the extraper-
sonal variations respectively. The above-mentioned
parameters used for appearance similarity calculation
were set to the values originally proposed in (Liao
et al., 2015), that is no additional training was per-
formed. The value in Z will be low when two in-
stances are similar.

Class similarity matrix: An additional consider-
ation for multi-view tracking is that the two instances
in I1 and I2 belonging to a pair should belong to the
same class. The class for a candidate bounding box in
I1 can be represented as C1 = {c11,c12, ...,c1i, ...,c1M}
and C2 = {c21,c22, ...,c2 j, ...,c2N} in I2. Therefore,
we define the class matrix C as

C(i, j) =
{

0 if c1i = c2 j
σcls if c1i 6= c2 j,

(5)

where σcls is used to penalise inconsistent class as-
signments.

Energy function: Finally we combine class, dis-
tance and appearance matrices as the representation
of similarity between two instances in two views.
Then the energy function for multi-view detection and
tracking can be defined as E and be represented as:

E = wD ·D+wZ ·Z +wC ·C, (6)

where wD, wZ and wC are the weights for distance,
appearance and class respectively. The weights wD,
wZ and wC are all set to 1 in this paper.

3.3 Global Optimisation

Matching pairs across the two views are extracted by
minimising the energy function defined in the previ-
ous section. We regard this as an assignment problem
as an instance in one view can only have at most one
matched instance in the other view. However, this is
not a classical assignment problem in the sense that
the number of matching pairs are unknown. There-
fore, to further constrain the problem, eligible pairs
are required to satisfy the following two conditions.

Condition 1 (similarity): In practice, not all in-
stances in one view will have a corresponding in-
stance in the other view due to the visibility from dif-
ferent viewpoints. Therefore, a similarity threshold
denoted by λ is introduced to prevent instances that
are not sufficiently similar from being matched. This
can remove candidate object pairs with large distance



or appearance similarity. The value λ varies based
on various factors such as instance resolution, illu-
mination variation and distance between viewpoints.
This condition is set to prescribe a minimum similar-
ity to avoid selecting non-matching pairs. Therefore,
we only consider the elements in the energy matrix E
with values smaller than λ so that elements with val-
ues larger than λ are ignored.

Condition 2 (confidence score): In Mask R-
CNN, each candidate bounding box is generated
with a confidence score. We define the con-
fidence score set as S1 = {s11,s12, ...,s1i, ...,s1M}
corresponding to each bounding box in I1 and
S2 = {s21,s22, ...,s2 j, ...,s2N} corresponding to each
bounding box in I2. Due to different resolutions and
viewpoints, the same instance may have a low con-
fidence score in one view while having a high confi-
dence score in another view. Compared with detect-
ing instances from a single view, multiple views can
provide a richer source of information for detection.
In particular, we consider pairs of scores jointly in-
stead of single confidence scores. We define two con-
fidence thresholds for each pair: βn and βh. βn is iden-
tical to the confidence threshold used in Mask R-CNN
and accounts for the possibility that an object may
only be visible in one view. In contrast, the threshold
βh is introduced to help recover an object which may
have a low confidence score in one view but a high
confidence score in the other view. For each pair, we
adopt the strategy that if the sum of confidence scores
is higher than 2βn or if either of the scores is larger
than βh, then the pair is regarded as eligible.

The global optimization problem can be formu-
lated as an assignment problem with two additional
conditions that are introduced to handle the unknown
number of assignments. More specifically, this is
achieved by finding the set of assignments P that min-
imises the previously defined energy function com-
bined with a term aiming to maximise the number of
assignments, namely

∑
i, j∈P

E(i, j)+(G−|P|) ·λ

s.t. (1) S1i +S2 j > 2βn or S1i > βh or S2 j > βh

(2) E(i, j)< λ

(7)

where G=min{M,N} represents the maximum num-
ber of assignment in a M×N matrix, |P| denotes the
cardinality of the set of chosen assignments (from
a maximum of G possible assignments) and λ is
the threshold on the pairwise similarity mentioned
in condition 1. Solving this equation, we can cor-
rectly match objects in two views and extract the mis-
detected bounding box in one view with the additional
cues from the other view.

Figure 4: Illustration of the process to extract matching
pairs in the presence of a low confidence score in one view
in the case of the football dataset. All three example match-
ing pairs shown are correctly detected across views despite
the low confidence score in some of the views which would
have resulted in mis-detections using the classical Mask R-
CNN approach applied to each view individually.

We use the Hungarian algorithm to find the opti-
mal assignment number K = |P| and the correspond-
ing optimal assignments P. The Hungarian algorithm
is widely used in assignment problems as it achieves
the optimal assignment with minimum cost. How-
ever, in this method, the number of potential pairs is
unknown which means not all the assignments are eli-
gible. This prevents direct application of the Hungar-
ian algorithms which would also consider the pairs
with values exceeding the threshold λ or having a low
confidence scores when trying to achieve the mini-
mum cost, thereby resulting in assignments which do
not satisfy the imposed constraints.

To overcome this problem, we first cap all val-
ues in E at λ. Clamping the values ensure that the
assignments corresponding to hypotheses that do not
meet the constraints all bear the same penalty. Then
we apply the Hungarian algorithm on the updated ma-
trix and compute the optimal G = min{M,N} assign-
ments by applying the Hungarian algorithm. From the
G assignments, only assignments with a value smaller
than λ and satisfying the confidence score mentioned
in condition 2 qualify. Thus we remove the assign-
ments which have a value λ or which do not satisfy
the confidence score condition. We then obtain K as-
signments, each assignment representing a match be-
tween two views.

Finally, the single instances that only can be seen
in one view with no corresponding pair in the other
view are then extracted based on the confidence score
βn in the same manner as in the classical Mask R-
CNN formulation. An example for pairs assignment
with a low confidence score in one view is shown in
Figure 4. It demonstrates that our system can cor-
rectly assign pairs even when one of them has a low
confidence score.



Table 1: Details of the different datasets used for evaluation.

Datasets View Number Pairs of Images Image Resolution
Campus 3 90 360 × 288
Terrace 4 180 360 × 288
Football 5 100 1920 × 1080
Basketball 4 180 360 × 288

4 EXPERIMENTAL EVALUATION

In this section, we start by introducing the
datasets, the methods used for comparison and the
metrics used for performance evaluation. Then we
demonstrate the qualitative and quantitative perfor-
mance for labelling multiple objects between views
to show the advantages of the proposed multi-view
framework in the context of a range of scenes with
different degrees of complexity.

4.1 Evaluation Protocol

Datasets: Multi-view image datasets of scenes con-
taining multiple objects are required for qualitative
and quantitative evaluation. Due to the lack of ded-
icated multi-view image datasets, we instead use four
challenging multi-view video datasets namely Cam-
pus, Terrace, Basketball and Football from which we
extract a number of image pairs distributed across
the sequences. The Campus, Terrace and Basketball
datasets are from EPFL (Fleuret et al., 2008). For the
Campus and Terrace, we use the corresponding first
sequences. The Football dataset is from (Guillemaut
and Hilton, 2011). These four datasets are challeng-
ing due to the wide baseline, severe occlusions, vary-
ing illumination and small object scale in some cases.
These datasets are well suited to evaluated the perfor-
mance and robustness of the proposed approach under
operating conditions with varying degrees complex-
ity.

The proposed method is applied on single frames.
For a fair evaluation, each dataset is sampled using
a fixed interval which is dependent on the length of
the sequence. More specifically, we extract 10 frames
from the shorter 100-frame Football video which con-
tains five viewpoints. With C2

5 = 10 possible camera
pair combinations for each frame, this results in a total
of 100 pairs of images in this dataset. Similarly, we
extract 30 frames for each of the Campus, Terrace and
Basketball resulting in a total of 90, 180 and 180 im-
age pairs respectively. The details for these datasets
are listed in Table 1. For each dataset, ground truth is
generated by manually annotating the selected frames
according to the guidelines from VOC2011 annota-
tion (VOC, ).

Comparison: Limited work has been conducted

in multi-view detection and labelling in the image do-
main as most works tend to focus on video analysis
and rely on the available temporal information. This
severely limits the number of baseline approaches
that can be used for comparative evaluation in the
context of images only. Our approach is compared
against two approaches: one based on a sequential
tracking-by-detection approach; another one based
on the probabilistic occupancy map approach (POM)
(Fleuret et al., 2008). The tracking-by-detection ap-
proach uses the same components as in our proposed
approach but in a sequential manner instead of the in-
tegrated framework we proposed. Instead of directly
embedding components into the architecture to con-
nect multi-view cues and jointly optimize detection
and labelling between two views, the sequential ap-
proach first generates bounding boxes for each image
in a pair using the classical Mask R-CNN approach
before further processing to perform the labelling. We
also compare our method with the well-established
probabilistic occupancy map (POM) (Fleuret et al.,
2008) approach which is applied to pairs of views us-
ing the default settings recommended by the authors.
Object detection is restricted to the area of interest to
allow a fair comparison with the POM method.

Evaluation metrics: Performance is evaluated
based on the selected set of pairs of images for all
datasets considered. In this paper, we use precision
and recall to quantitatively evaluate the performance
for multi-view multi-object labelling. Specifically, we
first define the correct labelling number. To measure
the correct labelling number, we calculate the inter-
section over union (IoU) between the detected bound-
ing box and the ground truth for each instance. We
denote by δ the threshold for the IoU with δ set to 0.5.
Instances appearing in only one view are regarded as
a correctly labelled object if the IoU is larger than δ.
For objects appearing in both views, if the IoU val-
ues for both are larger than δ and they share the same
label, we regard them both as correct. If they do not
satisfy the above conditions or only satisfy one con-
dition, we regard them both as false positive objects.
Then, the precision is defined as the ratio of correctly
labelled instances to all detected instances while the
recall is defined as the ratio of correctly labelled in-
stances to all ground truth instances. The quantitative
result for each dataset is based on pairs of views in all
datasets. We then use the mean value for all combi-
nations of pairs which includes not only pairs defined
by adjacent views but also between views in opposite
directions.



Table 2: Quantitative result for multi-view tracking in the Campus, Terrace, Basketball and Football datasets.

Campus Terrace Basketball Football
Precision Recall Precision Recall Precision Recall Precision Recall

POM (Fleuret et al., 2008) 72.01 70.26 67.81 49.90 59.04 22.21 49.93 17.51
Sequential framework 95.65 93.84 79.26 75.71 77.42 70.06 78.36 70.25

Proposed 95.25 94.29 79.24 78.30 73.26 72.33 79.14 73.94

Figure 5: Qualitative result for the POM, the sequential approach and the proposed method. From left to right, we demonstrate
the results in the Campus, Terrace, Basketball and Football datasets. For each pair of images, the instance with same label is
represented in the same colour.

4.2 Quantitative Analysis

The quantitative results for multi-view labelling are
listed in Table 2. In the implementation, we discard
the candidate bounding boxes with confidence score
lower than 0.1 before matching to improve the effi-
ciency. The similarity threshold was set to λ = 300

for Football, λ = 400 for Basketball and λ = 450 for
Campus and Terrace, these being mainly influenced
by the baseline separating viewpoints and image res-
olution. From the table, we can see that the proposed
method outperforms both the sequential and the POM
approaches in all datasets in terms of the recall met-
ric. This indicates that the proposed approach is able



to recover objects which are otherwise undetected by
the other approaches. In terms of precision, the pro-
posed approach outperforms the POM approach on all
datasets, while it performs overall similarly to the se-
quential approach. The gain in precision is most ap-
parent in the case of the Football dataset, thus demon-
strating the advantage of leveraging multi-view cues
and closely coupling the detection and labelling as the
complexity of the scene increases.

4.3 Qualitative Analysis

Qualitative results for multi-view labelling are shown
in Figure 5. This provides an illustration of the perfor-
mance of the proposed framework with outputs show-
ing the class, bounding box, mask and label on the
Campus, Terrace, Basketball and Football datasets,
with two pairs of images provided for each dataset re-
spectively. Results indicate that the proposed method
performs well even under large viewpoint change,
varying illumination and small instances. Moreover,
the proposed method can also be applied in labelling
objects in multiple classed by replacing person re-
identification appearance feature with other features.
We demonstrate some qualitative results on pairs of
images including a variety of common object classes
in Figure 6. The pair in first row in Figure 6 is ex-
tracted from the multi-view car dataset (Ozuysal et al.,
2009), while the other three pairs of images were cap-
tured as part of this project.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have extended a state-of-the-art
single-view deep learning network into a joint multi-
view detection and labelling framework without need
for additional training. This is achieved by intro-
ducing a new architecture that extends a pre-trained
network to multiple branches with additional com-
ponents linking the different branches and enforcing
multi-view constraints on the geometry, appearance
and semantic content. By leveraging multi-view cues
and closely integrating them into the proposed archi-
tecture, we demonstrate that it is possible to recover
object instances which are otherwise hard to detected
in single views. The proposed network has the added
benefit of providing coherent multi-view labelling of
the detected instances.

In future work, we will extend the method to
multi-view videos. We anticipate that the temporal
information present in multi-view videos will provide
additional cues to resolve existing ambiguities and

further improve object detection and labelling perfor-
mance. Another interesting direction for future work
would be to train an end-to-end deep neural network
for multi-view object detection and labelling. This
would remove the current reliance on heuristics, but
would require access to large annotated multi-view
datasets which is currently problematic.

Figure 6: Results for the proposed method applied to pairs
of images containing various common object classes.
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