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Hybrid modelling of non-rigid scenes from
RGBD cameras

Charles Malleson Member, IEEE, Jean-Yves Guillemaut Member, IEEE, and Adrian Hilton

Abstract—Recent advances in sensor technology have intro-
duced low-cost RGB video plus depth sensors, such as the
Kinect, which enable simultaneous acquisition of colour and
depth images at video rates. This paper introduces a framework
for representation of general dynamic scenes from video plus
depth acquisition. A hybrid representation is proposed which
combines the advantages of prior surfel graph surface segmen-
tation and modelling work with the higher-resolution surface
reconstruction capability of volumetric fusion techniques. The
contributions are (1) extension of a prior piecewise surfel graph
modelling approach for improved accuracy and completeness, (2)
combination of this surfel graph modelling with TSDF surface
fusion to generate dense geometry, and (3) proposal of means for
validation of the reconstructed 4D scene model against the input
data and efficient storage of any unmodelled regions via residual
depth maps. The approach allows arbitrary dynamic scenes to be
efficiently represented with temporally consistent structure and
enhanced levels of detail and completeness where possible, but
gracefully falls back to raw measurements where no structure
can be inferred. The representation is shown to facilitate creative
manipulation of real scene data which would previously require
more complex capture setups or manual processing.

Index Terms—Dynamic scene modelling, 4D reconstruction,
RGBD, video plus depth.

I. INTRODUCTION

S INCE the introduction of low-cost RGB video plus depth
(RGBD) sensors in 2010, it has become cost-effective

to capture a per-pixel depth map stream concurrently with a
standard video. Such sensors have been applied in a wide range
of applications by the computer vision community, including
in static and dynamic scene modelling.

Raw captured depth maps provide scene geometry from
a single point of view, but suffer from noise and missing
measurements. They are also not able to capture surface
regions occluded in the current frame, and the depth samples
are not temporally consistent, in the sense that there is no
known correspondence between surface points across frames.
Temporal consistency is a useful property for a dynamic
scene reconstruction, as it allows any edits to the content
to be propagated over time [1], [2]. An important goal in
content production from RGBD data is thus to process raw
RGBD sequences to produce more complete, less noisy surface
representations with temporal consistency (‘4D sequences’),
allowing content to be efficiently stored, and its shape, ap-
pearance or motion to be edited.
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Fig. 1. Overview of the hybrid reconstruction approach. RGBD data is
processed first with surfel graph modelling, then volumetric fusion, yielding a
dynamic 4D mesh sequence, together with a residual depth map to represent
any unmodelled regions.

The key idea of this work is to combine surfel (surface
element) graph modelling and volumetric fusion in a hybrid
approach to reconstructing and representing non-rigid scenes
captured from a single RGBD sensor (Fig. 1).

The surfel graph segmentation and model building approach
proposed by Malleson et al. [3] is extended and integrated
with volumetric surface fusion, allowing seamless, temporally
consistent meshes to be produced. The representation can
handle general scenes (multiple rigid and non-rigid objects,
including the background) without requiring specific prior
models or assumptions about scene content. The mesh repre-
sentation is efficient because the reconstructed reference shape
is stored for a single frame, while skinning weights and part
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motion trajectories are used to animate the mesh to produce
output frames. The approach provides a structured, temporally
consistent 4D scene representation, enabling subsequent ma-
nipulation and editing not possible with unstructured, noisy
raw depth maps. At the same time, it offers reduced storage
requirements, whilst allowing recovery of the full input depth
maps to within a specified noise threshold. This is facilitated
by residual depth maps, which allow the representation both
of any unmodelled geometry and of any inconsistencies which
may occur between the input and the modelled geometry.

The remainder of the paper is structured as follows. Sec-
tion II puts the work in the context of related work on dynamic
scene modelling and representation. Section III summarizes
the proposed hybrid reconstruction pipeline, including the
piecewise surfel graph modelling and volumetric fusion stages,
which are discussed in Sections IV and, V, respectively.
Model verification and residual depth maps are discussed in
Section VI, and in Section VII, an extensive evaluation is
presented on both real and synthetic data, including examples
of edits facilitated by the representation. Finally, conclusions
and future work are presented in Section VIII.

II. RELATED WORK

Multiple-view video has traditionally been used to cap-
ture full coverage of 3D scenes for reconstruction (e.g. [4],
[5]). While high quality models can be obtained from them,
adoption of multi-view video reconstruction systems has been
limited by the cost and complexity of operation of multi-
camera setups. On the other hand, non-rigid structure from
motion (NRSfM) approaches (e.g. [6]–[9]) attempt to recover
dynamic 3D shape and motion from a sequence of images from
a single, monocular RGB camera, making them usable with
standard video cameras and existing video footage. NRSfM
is, however, a highly challenging, under-constrained problem,
since absolute depth is not known beforehand. Our work
considers modelling of non-rigid scenes from single-view
RGBD cameras, which are now widely available (including on
some mobile devices). RGBD sensors offer low cost and sim-
plicity of use, and make dynamic 3D modelling considerably
easier than with monocular video. Some of the problems of
NRSfM, such as correspondence estimation and part/motion
segmentation are in common with our application, however,
the availability of a reliable estimate of per-pixel depth sim-
plifies the problem. Although depth maps from commodity
sensors tend to be noisy and incomplete [10], with a lower
resolution than current video cameras, their depth estimates
are more robust than those estimated from RGB images alone,
particularly in low-textured or repetitively textured regions.

Depth maps are natively output by typical commodity
RGBD sensors (e.g. Microsoft Kinect v1/v2) and cover only
the surface seen from a specific camera view (‘2.5D’ geome-
try). Certain low-level processing tasks can be performed using
the depth maps directly, such as bilateral filtering [11], motion-
compensated RGB-guided upsampling [12], depth-guided mat-
ting [13], and ‘deep’ compositing1. Displacement maps can
also be used to model certain classes of shape (e.g. the human

1Nuke https://www.foundry.com/products/nuke

head via a cylindrical parametrization [14]), but are generally
not well suited to representation of arbitrary shapes. Tasks
such as general dynamic scene editing require more complete
3D geometry with arbitrary topology, preferably with temporal
consistency.

A core aspect of temporally consistent modelling is obtain-
ing correspondences of surface points over time. Analogous to
2D optical flow between two RGB images (e.g. [15]), RGBD
scene flow estimates a per-pixel 3D translation (e.g. [16]–[18])
or translation and rotation (e.g. [19], [20]) between two RGBD
images. Frame-to-frame flow vectors can be propagated over
time to form long-term feature tracks [15], which we use as
an input to our modelling framework. We are agnostic as to
the source of these point tracks, and show results both using
the feature-assisted long-range optical flow of Sundaram et al.
[15] and on the primal-dual RGBD scene flow of Jaimez et
al. [17].

Surface meshes explicitly store oriented surfaces and are
widely used in the manipulation of models in 3D graphics
applications and media production. They are therefore a suit-
able target representation for 4D reconstruction. Although it is
possible to fuse surface measurements using meshes directly
[21], [22], it is relatively complex to maintain a manifold mesh
connectivity; as a result, explicit mesh generation is usually
only performed at the final stage of reconstruction, and 3D
and 4D reconstruction approaches typically use other repre-
sentations, including volumetric and point-based ones, often
with a form of graph structure to aid non-rigid deformation.

Volumetric approaches (e.g. [23], [24]) store an implicit
representation of the modelled surface, free space and unob-
served space in a scene. In a truncated signed distance function
(TSDF) approach, the scene is represented as a voxel (volume
element) grid, in which each voxel within a truncation region
on either side of the modelled surface stores an approximate
signed distance to the surface and a weight according to
measurement confidence. An explicit surface topology and
mesh connectivity can be extracted through implicit surface
triangulation using an approach such as marching cubes [25].
The spatial resolution and extent are usually fixed [26], though
implementations exist for efficiently handling larger scenes
using hierarchical data or partially allocated structures [27]–
[30]. Fusion of non-rigid geometry is typically achieved either
by using a piecewise-rigid segmentation [31] or a warping field
defined over a single reference volume [32], [33].

Inherently temporally consistent reconstructions can be
obtained by deforming a pre-generated template model of
a foreground dynamic object to match RGBD input using
volumetric representations offline [34] or in real-time [35].
In contrast, our method does not require prior scanning of
a template shape and attempts to recover the whole scene
without prior knowledge of shapes in the scene.

In DynamicFusion [32], Newcombe et al. perform real-time
online tracking and reconstruction of dynamic objects from
depth sensors without a template. Their approach is to warp
each input frame back to a canonical frame using a per-frame
volumetric warping field, and then perform TSDF fusion in
this frame. For efficiency, only sparse warping field samples
are estimated, and dense values are inferred by interpolation.
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The TSDF fusion weights take into account the confidence
in the warping field, which decreases with distance from
the warping field samples. The warping field is estimated
by optimizing an energy consisting of an iterative closest
point (ICP) [36] data term and a regularization term that
encourages smooth variation of the warping function (where
the transformation nodes are connected with edges in a hierar-
chical deformation graph). Our method also employs a signed
distance function representation for fusion of measurements,
as well as a graph structure controlling surface deformation,
but performs graph-based motion/deformation estimation prior
to dense volumetric surface fusion (offline), optimizing the
deformation globally over the entire sequence. Furthermore,
DynamicFusion performs a continuous warping of a single ref-
erence grid to integrate incoming frames, whereas our method
performs rigid transformations on each of a set of discrete
part grids (with softly overlapping assignment for fusion into
a composite grid representing the complete surface). New-
combe et al. [32] note that their method cannot handle fast
motion. Our method, however, can handle relatively large/fast
motion given appropriate point tracks (such as those from
large displacement optical flow [15]). It is also not clear how
well DynamicFusion would handle complete scenes including
background and possibly multiple disconnected objects, since
the examples they provide show only the foreground. The
proposed method is applicable to complete scenes, including
background/multiple objects. It is not clear what the storage
requirements for the DynamicFusion warping field are, but it
is likely to be greater than the compact per-part motion used
in the proposed method. Our discrete part-wise representation
may also aid manipulation, for example easily selecting a limb
or the head of a character. It is also not clear to what extent
4D scene editing would be supported by DynamicFusion.
Direct comparison with our method is not possible due to the
unavailability of a common test dataset or a publicly available
implementation of DynamicFusion.

Similar to DynamicFusion, Innmann et al. [37] propose Vol-
umeDeform, which incorporates sparse image features from
the RGB images as well as dense depth constraints, which help
in correct registration of scenes with low geometric variation.
In their Fusion4D approach, Dou et al. [38] perform online
reconstruction from multiple depth sensors for improved scene
coverage. In our work, a single RGBD sensor is used to
build a fused dynamic model of the complete scene observed
over time. Slavcheva et al. [39] propose KillingFusion, which
performs real-time, non-rigid reconstruction using TSDF fu-
sion without computing explicit point correspondences, instead
directly optimizing a warping field between TSDFs. Because
point correspondences are not computed, however, it does
not support applications which require texture mapping (e.g.
appearance editing).

In a point-based surface representation, points on the sur-
face (surface elements, or ‘surfels’) are stored, possibly with
additional properties such as normal, radius and confidence.
Free space and unobserved space are not explicitly modelled,
and there is no explicit connectivity between points. The
storage cost is relatively low compared to volumetric methods.
Keller et al. [40] demonstrate a surfel-based alternative to

online volumetric fusion, which uses a single unstructured set
of surfels representing a static scene. This point set is added
to or removed from incrementally. It is able to handle, to
a limited degree, dynamics in the scene, by re-labelling as
‘dynamic’ any model points inconsistent with the incoming
depth stream. However, it does not reconstruct the dynamic
regions.

In [3], a method for reconstruction of dynamic scenes from
single-view RGBD data based on a sparse set of temporally
coherent surfels (tracked 3D points) which are explicitly con-
nected using neighbourhood-based connectivity is proposed:
simultaneous segmentation, shape and motion estimation of
arbitrary scenes is performed without prior knowledge of the
shape or non-rigid deformation of the scene. This surfel graph
modelling is, however, limited in terms of the shape detail
reproduced, and does not natively output a surface mesh. As
a result, a subsequent dense surface reconstruction stage is
required in order to obtain a detailed surface mesh. In their
‘animation cartography’ approach, Tevs et al. [41] employ
surface charts with shared, tracked landmarks in multiple
graph structures. Probabilistic sparse matching is performed
on the landmarks, and dense correspondence is then estab-
lished for the remaining chart points by comparing landmark
coordinates. They note that their system does not perform
well on very noisy time-of-flight depth data and suggest using
additional cues (e.g. colour) for such data.

In this work, we propose a hybrid method for fusion and
representation of dynamic scenes from RGBD video which
uses the complementary strengths of multiple representations
at different stages of processing (see Fig. 1). Briefly, depth
maps provide input 2.5D geometry and are used along with
the corresponding RGB images to generate sparse point tracks
(Section IV) for dense surface integration (Section V) and to
store residual depth between the final output 4D model and
raw input (Section VI). An intermediate surfel graph structure
stores sparse, dynamic 3D geometry with neighbourhood-
based connectivity, and is used for efficient segmentation and
initial reconstruction of part shape and motion (Section IV).
The surfel graph representation drives a further intermedi-
ate TSDF volumetric implicit surface representation, which
is used to integrate noisy input depth measurements into
dense piecewise and global 3D geometry (Section V). The
volumetric representation is finally extracted to an explicit,
dense surface mesh suitable for dynamic scene rendering, as
well as editing of shape, appearance and motion. The key
contributions of this work are: (1) extensions to the surfel
graph modelling approach of [3] for improved performance
(Section IV), (2) combining surfel graph modelling with vol-
umetric TSDF modelling via soft part-wise fusion and global
fusion to produce efficient, editable 4D models of general
dynamic scenes (Section V) and (3) the proposal of criteria
for validating the resulting model against the raw input data
(Section VI).

III. OVERVIEW

A. Problem statement
Given a dynamic scene captured as a sequence of frames
F = {t0, ..., tmax} containing colour images C(t) and depth
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maps D(t) from a single, optionally moving RGBD sensor2,
we aim to extract an efficient, temporally consistent ‘4D’
model of the scene that is more complete and less noisy than
the raw input. The output model consists of a mesh with part
skinning weights and motion trajectories. A residual depth
map sequence may also be output to represent any unmodelled
regions of the input.

B. Overview of proposed approach

The proposed hybrid approach is summarized in Fig. 1.
Firstly, a raw surfel graph is established from the input RGBD
sequence. The raw surfel graph is a set of connected oriented
points, each tracked over part or all of the sequence. This
surfel graph is then fed to an iterative piecewise segmentation,
shape and motion estimation procedure (Section IV). Next, the
piecewise surfel graph model is used to configure moving part
volumetric grids. Depth measurements are softly assigned to
the parts by interpolation over the corresponding surfel labels
and integrated into volumetric part models using TSDF fusion
(Section V). The per-part local geometry at a reference frame
is then composited into a combined volume from which a
composite reference mesh is extracted. This mesh is assigned
skinning weights and animated based on the part models,
yielding an efficient, temporally consistent, editable mesh
representation.

To complete the output representation, a residual depth map
is computed, which retains any unmodelled regions in the input
as well as serving as a consistency check on the model.

IV. SURFEL GRAPH PIECEWISE MODELLING

This section describes the piecewise surfel graph mod-
elling stage (second row in Fig. 1), which builds on the
approach of Malleson et al. [3]. We briefly summarize surfel
graph modelling in Section IV-A; the reader is referred to
[3] for a detailed description. Next, we describe our pro-
posed extensions for improved performance: an alternative
regularization for the segmentation based on pairwise and
label costs (Section IV-B), concatenation of part models for
improved scene coverage (Section IV-C), removal of stretched
edges to support changes in topology (Section IV-D), and a
post-process to blend assignment weights between parts for
smoother-deforming geometry (Section IV-E).

A. Overview

Surfel graph modelling begins with a raw surfel graph
produced from the input RGBD sequence: long-range feature-
assisted optical flow [15] is performed on the RGB sequence
{C(t)} to provide a set P of sparse 2D point tracks p over a set
of frames Fp ⊆ F . These are lifted to 3D point tracks pp(t)
using the depth maps {D(t)}3. A surfel connectivity matrix,

2If the RGB and depth sensors are not co-located, as is the case with both
versions of the Kinect sensor, the depth map, D, is first re-mapped to the
RGB point of view as a pre-process.

3An alternative to this would be to generate 3D point tracks using RGBD
scene flow. Lifting 2D optical flow-based tracks [15] using depth was found
to produce more reliable output models than 3D tracks from RGBD scene
flow [17] (see supplementary material for details).

E, is established to form a surfel graph based on locality and
geodesic distance preservation over time [42]. Refer to the
supplementary material for further detail on the generation of
the raw surfel graph.

The raw surfel graph {P,E}, which is noisy and incom-
plete, is then simultaneously segmented into a set, M, of
piecewise-rigid parts, m. The segmentation is encoded in a
|P| × |F| matrix F with elements fp,m ∈ [0, 1] (supporting
soft assignment of a point to multiple parts). Each part contains
intrinsic modelled points, rmp (in the part’s local coordinate
frame) and a global motion sequence Tm(t) that represents
the dynamic pose of the part. A set of extrinsic modelled point
tracks qm

p , (in global coordinates) are defined as the part’s
intrinsic points transformed by the part pose. The full sequence
of input surfels pp(t) is thus compactly modelled by a fixed set
of local points, rmp , with part motions Tm(t). This modelling
process yields a compact, piecewise-rigid representation of
dynamic shapes, with increased surface completeness and
decreased noise compared to the input.

The goal of the piecewise surfel graph modelling stage
is: given the input surfel graph {P,E}, determine the
point-to-model assignment matrix F, motion trajectories
{Tm(t) ∀m ∈ M,∀t ∈ F}, and intrinsic shape points
{rmp }, so as to minimize a cost function E(F).

The output piecewise surfel graph model is produced by
iteratively alternating between graph-cuts optimization of the
segmentation F and re-estimation of part shape {rmp }, and part
motion {Tm(t)} with the current segmentation, until conver-
gence. The cost function includes data terms for modelling
fidelity as well as regularization terms, as described below.

B. Segmentation cost function

The data term includes a |P|×|M| matrix C with elements
c′p,m:

c′p,m =
1

|Fpm|
∑

t∈Fpm

∥∥qm
p (t)− pp(t)

∥∥2
2
+ βip,m (1)

where

ip,m =

{ |Fp|
|Fpm| − 1 if |Fpm| > 0

∞ otherwise.
(2)

This is the mean Euclidean distance between input point
tracks, pp(t), and modelled point tracks, qm

p (t), over the
common frames Fpm, with an incompleteness penalty, ip,m,
added to penalize point-to-model assignments where Fpm 6=
Fp. An empirical weighting factor β = 0.1 was used in all
experiments.

Regularization is used to encourage the labels of neigh-
bouring surfels to share the same label (keeping boundaries
short) and also to model the scene efficiently, with as few
parts as possible. There are different variations on graph-
cuts segmentation applicable to the application of surfel graph
modelling. Malleson et al. [3] use a formulation from the
non-rigid structure from motion literature [42] which enforces
part overlap (assigns points to more than one part at part
boundaries) and also encourages use of as few parts as possible
via an MDL (minimum description length) term, which adds
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Frame 1

Frame 2

MDL and overlap

(a)

Frame 1

Frame 2

MDL only

(b)

Frame 1

Frame 2

Pairwise only

(c)

Frame 1

Frame 2

Pairwise and MDL

(d)

Fig. 2. Segmentation characteristics under different graph-cuts cost functions.
a) Model-overlap and MDL b) MDL only (note the long boundary between
the two parts) c) Pairwise only (note that the left hand region is segmented
into two parts) d) Pairwise and MDL.

a fixed cost, MDLm, for each label that has at least one point
assigned to it. Delong et al. [43] propose a graph-cuts opti-
mization procedure which includes both pair-wise and label
cost (MDL) terms, and assigns each point to a single label.
When applied to the surfel graph modelling application, these
two formulations tend to have different behaviour in terms
of the shape and number of segmented parts, as illustrated
in Fig. 2. In our experiments, we found that pairwise plus
MDL [43] produced the best segmentation boundaries (due
to the pairwise smoothness term) while keeping the number
of models low (due to the MDL term). Therefore, unless
otherwise specified, the experiments in this work use the
pairwise + MDL formulation [43]. The labelling cost function
is as follows:

E(F) =

data cost︷ ︸︸ ︷∑
p∈P

c′p,fp +

smoothness cost︷ ︸︸ ︷∑
pq∈N

Vpq(fp, fq)+

label cost︷ ︸︸ ︷∑
m∈M′

MDLm (3)

where M′ is the set of models with one or more points
assigned to it and N are the edges in the surfel graph. In
this, the Potts smoothing term V adds a cost for each edge
connecting nodes with different labels:

Vpq(fp, fq) =

{
0 if fp = fq

λs otherwise
(4)

where fp and fq are the labels for points p and q, respectively.
The relative contributions of the smoothness and label costs
compared to the data term are controlled by tunable parameters
λs and MDLm, respectively.

C. Part concatenation for improved coverage

After initial convergence of the piecewise surfel graph
modelling stage, some approximately rigid surface regions

may be modelled by several partially overlapping parts, each
with incomplete temporal coverage. In order to improve the
completeness of the reconstruction, we propose to perform a
further set of iterations in which new parts, each generated
by concatenating/merging two existing parts, are added to
M. A new part is added for each pair of existing parts.
The set of points assigned to each new part model is the
union of points assigned to the two source models. Any
of these newly proposed models that perform as well as
their source models (e.g. because they belong to the same
approximately rigid surface region) will be selected instead of
the two source models on the grounds of lower MDL cost.
In all experiments, the concatenation and re-iteration of the
modelling is performed three times for improved coverage.
Examples of the improvement in coverage afforded by the
part merging are provided in the supplementary material.

D. Stretched edge removal

Pairs of surfels belonging to separate surfaces that are in
contact some of the time may be erroneously connected in
the surfel graph. In order to correct the topology of the
surfel graph, we propose to remove any edges which stretch
significantly in the modelled surfel graph (in the experiments a
stretch ratio threshold of 5:1 and an absolute stretch threshold
of 15 cm were used). Removal of these spurious edges helps
ensure that the topology of the final volumetric reconstruction
is correct (separate objects are not joined together). Processing
results with and without removal of stretched edges are shown
in the supplementary material.

E. Segmentation blending

The graph-cuts segmentation produces a hard assignment of
each point to a single part. This is not ideal for continuously
deforming objects such as cloth. In order to reduce the effect
of discontinuities at the boundaries between parts, we blend
the point-to-part assignments. Smooth blending between rigid
elements is common in the blend-skinning models widely
used in computer graphics to approximate non-rigid surface
deformation. This improves the perceptual quality when mod-
elling scene content such as deforming cloth, by reducing the
appearance of piecewise rigidity in the output while still using
a small number of parts. As well as improving perceptual
quality, it should also reduce the approximation error in most
cases (i.e. thin-plate bending). Blending of the assignment
weights would result in a smoother bending motion of the
simplified representation of the non-rigid object shown in
Fig. 2.

After convergence of the piecewise surfel graph segmenta-
tion, a post hoc blurring operation is applied to the weights
using a Gaussian kernel in the surfel graph edge domain.
More specifically, geodesic distances from each surfel point
are computed using Dijkstra’s algorithm, and used to weight
contributions from each model. Geodesic distances are used
to avoid blending the motion of surface regions which are not
directly connected.

In Fig. 3, an example of the raw result is shown alongside
the results after blurring with a standard deviation of 4 cm.
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Fig. 3. Gaussian blurring of the piecewise segmentation assignment of the
cloth in the Globe sequence. Left: raw segmentation result, right: after blurring
with std. 4 cm. The soft transition between parts leads to more natural-looking
output motion. Note that because geodesic distance in the surfel graph is used
for the blurring, the wall to the right does not get mixed with the right-hand
side of the cloth despite being close in Euclidean distance.

The amount of blur (standard deviation of the Gaussian kernel)
affects the perceptual representation quality as well as the
quantitative error. The evaluation section includes an empirical
evaluation of blurring kernel size.

V. VOLUMETRIC FUSION

Once the piecewise segmentation, sparse geometry and part
motion sequences have been generated by the surfel-graph
modelling stage, the next stage, volumetric TSDF fusion is
performed (third row of Fig. 1). The geometry obtained from
this volumetric fusion of the dense input depth maps is more
detailed than that which would be obtained by surface fusion
from only the sparse surfel graph geometry.

In the proposed approach, there are two stages of volumetric
fusion. First, signed distance fusion of the depth measurements
is performed in voxel grids for each part (intra-part fusion)
yielding local geometry for each part. Second, the part voxel
grids are composited in a global voxel grid to obtain the
complete scene geometry (inter-part fusion). Assigning part
‘skinning’ to the mesh extracted from the global voxel grid,
and animating the mesh using the part motion sequences,
yields a dynamic temporally consistent 4D mesh suitable for
editing or further analysis.

A. Per-part volumetric fusion

There are three components to the intra-part fusion process:
initial configuration of each part voxel grid, soft assignment
of depth map pixels to parts and fusion of the depth maps into
the part voxel grids, using the soft part assignments.

1) Part voxel grid configuration: A TSDF voxel grid is
generated for each part. The part grids are sized and initially
posed so as to enclose all the modelled surfels for that part
efficiently (refer to the supplementary material for details).
The relative pose of the part grid for each frame is obtained
simply by using the corresponding surfel graph part motion
sequence. Note that the RGBD camera motion need not be
explicitly modelled, but could be recovered, if desired, using
the inverse of the pose of the background part (typically the
largest part).

2) Soft depth to part assignment: As shown in Fig. 1,
part voxel grids overlap with one another, both when the
parts belong to the same non-rigid surface, and when separate
objects are close to one another. In such a multiple voxel
grid setup, depth measurements need to be selectively fused

Fig. 4. Visualization of depth map pixel to part soft assignment map by
scattered interpolation of surfel samples for the synthetic Lizard sequence.
Left: Piecewise surfel graph model. Right: Samples assigned to the part are
shown in blue (value 1), those not assigned are shown in green (value 0), and
the interpolated values are shown in gray-scale. Note that IDW with truncated
support offers a smooth and well-localised interpolation.

into only the corresponding part grid [31]. In this work we
propose a dense soft assignment, allowing depth pixels to be
integrated into multiple parts at the overlap between connected
parts. The soft assignment technique allows the assignment
of a given surface region to be shared between two or more
volumetric parts in arbitrary non-rigid scenes. Specifically,
a set of soft assignment maps A = {Am : m ∈ M}
is produced, where M is the set of parts. Each assignment
map is generated by using a sparse set of known assignment
values, produced by projecting the part assignment values
(between 0 and 1) from the 3D piecewise surfel graph into
the depth map. Because the surfel graph sample points are
irregularly distributed (rather than for instance forming a 2D
grid), a scattered data interpolation method is required. The
interpolation method needs to preserve the sample points
and vary smoothly between sample data points of varying
density without over/undershooting. It is also important to
prevent propagation of part assignment values across depth
discontinuities that may separate surface regions. Radial Basis
Functions (RBFs) [44], and inverse distance weighting (IDW)
[45] are two interpolation techniques which can easily be made
to respect depth edges by replacing the Euclidean distance with
geodesic distances. Radius-limited IDW [45] was found to
perform better than RBF, which suffers from over/undershoot
due to the irregular sampling of the projected surfels. An
example of a dense soft assignment map for one part is shown
in Fig. 4 and implementation details are provided below.

Given the input depth map D(t), modelled surfel positions
qp(t) ∀p ∈ P , and segmentation matrix F (with elements
denoted fp,m), the per-part soft assignment map Am(t) is
generated. For simplicity of notation, the dependence on time
and part are henceforth omitted. To begin with, there is a set
S = {ap(up)} of known 2D pixel coordinates up and assign-
ment values ap. The coordinates up are produced by projecting
all modelled surfel graph points qp into D. The assignment
values ap are obtained directly from the corresponding entry in
the surfel graph segmentation matrix: ap = fp,m. To eliminate
occluded or inaccurate samples, a check for consistency in
depth and normal is performed between the depth map and
the sample points. Note that the sample positions are the same
for each part, but their assignment values vary per part. The
assignment values a for all interstitial pixels u are estimated by
interpolation using inverse distance weighting with geodesic
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distances:

a(u) =


∑
up∈S

dg(u,up)
n
∑
up∈S

dg(u,up)
−nap if u 6∈ S

ap : up = u otherwise.
(5)

where dg(·, ·) denotes the geodesic distance, which is used
instead of Euclidean distance to prevent propagation of as-
signment values across object boundaries. An image-plane
geodesic distance is used, based on a graph of pixel nodes,
each connected to its neighbours that are within a depth
threshold. An inverse distance weighting power value of n = 4
was used in all experiments.

To avoid over-emphasis of densely sampled regions and to
increase efficiency, a grid sub-sampling is performed on the
set of projected sample points. This results in at most one
sample point per grid bin. By setting the grid bin width to the
input point track sampling density s, input sample density is
maintained, but more densely sampled regions in the modelled
surfel set (resulting from temporal extrapolation) are thinned
out. In practice, this leads to about half the samples being kept.
Note that there may still be regions with a significantly lower
sample density, for instance due to a lack of optical flow-based
input tracks in smoothly textured regions.

The IDW radius limit r is chosen to be large enough that
most pixels are supported by several samples, i.e. r = 5s,
where s is the assumed maximum sample spacing. The trun-
cated distance maps are efficiently computed by processing
only a region of interest window surrounding each sample
point. This leads to a speed-up of two orders of magnitude
in both the geodesic distance image computation and inverse
distance summing. The geodesic distances are efficiently com-
puted by pre-generating a distance map image for each sample
point up, and reusing these images to look up distance values
when populating the interpolated values in each assignment
map Am. We use the image-plane geodesic distance, with
4-neighbours (city block distance). Edges in the graph are
omitted if the depth difference between their nodes is more
than an empirical threshold of 25 mm. The geodesic distance
maps for each sample are computed by breadth-first search.

3) Intra-part fusion: For each frame, after obtaining the
depth-to-part assignment maps, the depth map is fused into
each part voxel grid in parallel on the GPU. The standard
TSDF update equations are used for measurement fusion into
each part grid Gm:

sk(u) =
wk−1(u)sk−1(u) + wm

k (u)smk (u)

wk(u)
(6)

and
wk(u) = wk−1(u) + wm

k (u) (7)

where smk and wm
k are the input TSDF and weight values

for the current frame. The weighting, wm
k , is set to the part

assignment value a(u) for the current part. This continuous
weighting from the soft part assignment map results in a
smooth falloff between connected parts, as illustrated in Fig 5.
This smooth fall-off is used in blending the parts into a
composite grid to obtain the global model, as described below.

Part A

Part B

Frame 1

Frame 2

Piece-wise surfel graph
Enclosing volumetric grid

(a)

Depth assignment to Part A

Depth assignment to Part B

(b)

Part A TSDF

Part A weight

Part B TSDF

Part B weight

(c)

Fig. 5. Illustration of intra-part volumetric fusion (2D slices). (a) Two frames
of piecewise surfel graph model showing part volumetric bounding boxes.
(b) Dense soft assignment maps for each part at each frame. (c) Volumetric
fusion showing TSDF and weight, along with implicit surface from each frame
(dashed) and combined (solid).

B. Composite volumetric modelling

Once the piecewise-rigid geometry for each part has been
generated, the part geometry is fused into a single composite
volumetric model representing the full dynamic scene (inter-
part fusion). This model is extracted to a mesh, which is
skinned (with linear blend skinning), and finally topologically
cleaned (filtered) to remove invalid faces. This final animated
mesh is a temporally coherent 4D representation of the dy-
namic scene.

1) Inter-part fusion: A composite voxel grid Gc =
{Sc,Wc} is generated, sized and posed so as to enclose the
grid volumes of the subset of part models, Mcr (“composite
reference”) which are valid (have poses) in an arbitrarily
chosen reference frame tcr (the middle frame of the sequence
was used in the experiments). See the supplementary material
for details.

The volumetric compositing is restricted to surface band
regions only, i.e. specifically excluding free space regions.
This is because incorporating free space regions at this stage
could cause sections of surface to go missing, or become
biased (shifted). Fig. 6 illustrates the TSDF grid compositing
procedure. The compositing is performed part by part using
tri-linear interpolation lookup into the part grids (in parallel on
the GPU). The procedure is formalised in Algorithm 1, where
φm(u) denotes the transform from Gc voxel coordinates to
Gm voxel coordinates (at the frame tcr) and ε is a tolerance
which ensures that free-space regions are not included in the
composite grid (ε = 1 mm in the experiments).

Algorithm 1 Volumetric compositing of part grids into the
composite grid (µ is the TSDF truncation distance)

for ∀m ∈Mcr do
for ∀u ∈ Gc do

if sm
(
φm(u)

)
< µ− ε then

sc(u) ←
[
sc(u) · wc(u) + sm

(
φm(u)

)
·

wm

(
φm(u)

)]
/
[
wc(u) + wm

(
φm(u)

)]
wc(u)← wc(u) + wm

(
φm(u)

)
end if

end for
end for
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Hard assignment compositing

Soft assignment compositing

(a)

Skinning weight

Weight grids (truncated)

(b)

Fig. 6. Inter-part fusion (2D slices). (a) Fusion of two part grids without
(top) and with (bottom) soft assignment weighting for intra-part fusion. Note
the relatively smooth transition between parts with the soft assignment. (b)
Composite mesh skinning by lookup into part SDF and weight grids.

A composite mesh with vertices V is then extracted using
marching cubes [23]. This ‘reference’ mesh shape is valid for
a single time instant tcr. This reference mesh is animated
to produce a 4D model over the sequence, as described in
the following section. Note that the reference mesh includes
dynamic as well as static regions in a unified representation,
e.g. the background geometry is also included in the mesh.

2) Linear blend skinning for composite mesh: In order to
animate the extracted mesh, a mapping between each vertex
and one or more part models needs to be established. The
|V| × |M| skinning weight matrix W encodes the weights
wi,m of assignment of each mesh vertex vi to each part model
m. While it would be possible to refer back to the surfel
graph model to estimate the assignment weights, it is simpler
to refer to the intermediate part grids. The skinning weights
are determined by looking up the weight in the voxel grids
for each part (at tcr), but setting the weight only if the point
lies in the surface band, not in free space:

wi,m =


wm(φm(vi)) if wm(φm(vi)) > 0 and

sm(φm(vi)) < µ− ε
0 otherwise

(8)

where φm transforms from metric vertex coordinates to part
m voxel coordinates. This is further illustrated in Fig. 6(b).

The vertex transform matrix TV
m(t) of the mesh vertices

under each model m at time t is determined as follows

TV
m(t) = Tm(t)T−1m (tcr)T

G
m (9)

where TG
m is the composite grid pose (which is defined at tcr).

The transformed vertices v′i are determined using a simple
linear blend as follows:

v′i =

∑
m∈M

wi,mTV
m(t)vi∑

m∈M
wi,m

(10)

3) Mesh filtering: The composite mesh may have topology
problems: if two disconnected parts are close to each other
in the composite reference frame, the composite mesh will
have the parts joined together. The skinning weights will be a
blend between the two parts in this case. Such incorrect mesh
topology can cause serious artifacts in the output especially if
the two parts are not close together for the whole sequence. To
mitigate this, a post-processing filter is applied to the skinned
mesh. Any vertex which has non-zero skinning weights for at
least one pair of non-connected surfel graph parts is removed.

Part CPart A
Part B

(a)

Composite grid and mesh

(b)

Part topology check

(c)

Fig. 7. Composite mesh topology check. (a) Piecewise surfel graph and
bounding boxes with three parts. Note that part A and B are connected, but
B and C are not. (b) Composite grid showing incorrectly fused part B and C
in the extracted surface. (c) Top: topology check on skinned mesh - any valid
blended regions need to be connected in the surfel graph. Bottom: invalid
vertices removed.

Refer to Fig. 7 for an illustration of the mesh filtering
approach.

VI. VERIFICATION OF DYNAMIC MODEL AND RESIDUAL
MODELLING

The dynamic mesh representation (referred to here as a 4D
representation) offers enhanced manipulability by virtue of its
part structure and temporally consistent vertex structure. By
contrast, no such structure exists in the 2.5D input depth maps.

In practice, the proposed geometric modelling will not
produce a fully complete 4D surface representation. It is
possible that some input pixels are not represented in the
model, for instance if there were no valid point tracks in their
vicinity. It is also possible that some regions of the model
produced can be inconsistent with the input, either because of
modelling error or measurement outliers.

As a sanity check, one can render a depth map of the
output model (for any given frame) from the point of view
of the depth sensor and compare it with the input depth
map. Such a rendering will reveal pixels for which no input
or model exists (for which only 2D information is present),
and input pixels that are not modelled (for which only 2.5D
information is present). Below we propose a criteria by which
to establish whether the input is consistent with the output,
and then propose to output residual depth maps alongside the
dynamic 4D mesh model as a fall-back for completeness of
representation in the event of the 4D modelling procedure
failing to model portions of the scene.

A. Input output consistency check

Certain assumptions are made about the depth capture
process. These are described below and illustrated in Fig. 8.
Firstly, most measurements di are reliable and fall within some
noise threshold n of the true depth dgt, except near depth
edges:

|di − dgt| < n(dgt) (11)

where n may be a function of distance (for instance based on
the noise standard deviation, which for the Kinect v1 increases
quadratically with depth [10]). For brevity, the dependence of
n on depth is omitted from the notation.

Low-confidence regions (e.g. due to poor surface reflectance
properties) are usually reported as missing (di = 0), but
occasionally lead to gross outliers, which can be either behind
or in front of the true surface. Secondly, on both sides of
depth edges, there is a band of pixels with some width b
whose depths are uncertain and could belong to either the
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TABLE I
CATEGORIES FOR CHARACTERIZATION OF CONSISTENCY OF RENDERED

MODEL DEPTH dm WITH INPUT DEPTH di , SUBJECT TO NOISE THRESHOLD
n AND DEPTH EDGE BAND CONDITION e(di).

Category Input Model Condition Modelling status
1 - - - 2D
2 X - - 2.5D
3 - X - 4D (consistency unknown)
4 X X |di − dm| < n 4D (consistent)
5 X X di − dm < −n,¬e(di) 4D (consistency unknown)
6 X X |di − dm| > n, e(di) 4D (inconsistent in edge band)
7 X X di − dm > n,¬e(di) 4D (inconsistent)

local foreground or background. Finally, very fine structures
smaller than a few pixels in width cannot be reliably captured,
and pixels associated with these are reported as missing or
fall on the surrounding background. These assumptions hold
reasonably well for practical active depth sensors such as the
Kinect.

Based on these assumptions, the modelling performance
may be characterised in terms of the pixel-wise agreement
between the input depth map and the depth map synthesised
from the model. There are seven categories, as listed in Table I
and illustrated in Fig. 8. Categories 1-3 cover cases where
depth for the input, the model or both are missing. For an
input pixel depth di and a modelled pixel depth dm to be
considered consistent, they must fall within a noise threshold n
of each other (Cat. 4). The presence of a measurement in front
of the model (Cat. 5) does not necessarily indicate that the
model is in error, merely possibly incomplete. A special case
is made for pixels lying within the depth edge band (indicated
by the condition e(di), which are inherently prone to being
inconsistent (Cat. 6). The depth threshold was set to 25 mm
and edge band to 4 pixels for all experiments. Away from
depth edges, the model and input are known to be inconsistent
if the input depth is significantly greater than the modelled
depth (Cat. 7). This may either be due to an outlier depth
measurement, or to error in the modelled surface.

An example input depth frame, and modelled rendering are
shown in Fig. 12, along with the input depth edge bands and
the colour coded category of each pixel as described in Table I.
Depending on the capture conditions, scene content and pro-
cessing settings, different proportions of the depth maps may
fall into each category. These proportions are an indication of
both capture quality (completeness of measured depth maps)
and modelling fidelity (completeness and consistency of the
model w.r.t. the input frames). In the evaluation section, these
are reported for various test scenes.

B. Residual depth maps

One of the purposes of the 4D modelling procedure is
to produce a less noisy and more complete model of the
input. However, as discussed in the previous section, some
of the input may not be represented in the 4D model, or the
model may be inconsistent with the input. In order to validate
the model w.r.t. the input and in order not to discard any
unmodelled input depth pixels, the concept of a ‘residual depth
map’ is introduced. A basic residual depth map simply stores
the difference dr between the input and modelled pixels:

dr = di − dm. (12)

If the residual depth is added to the modelled depth map
to form an ‘output depth’ do, the exact input is recovered
(including all input noise). It would be more useful to store
the ‘noise-floored’ difference d̂r, which zeros the differences
when the depths are consistent (category 4) but stores the exact
difference otherwise:

d̂r =

{
0 if (|di − dm| < n)

dr otherwise
(13)

If the noise-floored residual depth map is added to the
modelled depth map, the exact input is recovered wherever the
model is missing or inconsistent with the input, thus yielding
a depth map which uses the reduced noise modelled depths
where possible, but retains the completeness of the input.
Examples of the exact and noise-floored residual depth maps
are shown in Figs. 12(f) and 12(g), respectively.

An output depth do = dm+ d̂r has an error of up to n w.r.t.
the input:

|do − di| < n. (14)

For all pixels not associated with any very thin structures,
depth edges, or gross measurement outliers, it follows from
Eq. 11 that the bound on the error of do w.r.t. the true depth
is 2n:

|do − dgt| < 2n. (15)

It is, therefore possible for the model + noise-floored residual
depth representation to add at most 2n error to any given pixel,
however the average error level of the modelled depth may be
lower than to the (noisy) input depth (see Section VII-A).

Because the noise-floored residual depth map contains a
significant proportion of zero4 entries, it can be losslessly
compressed to a smaller file size than the input depth maps,
thus improving storage efficiency compared to raw depth maps
or exact residual depth maps.

VII. EVALUATION

We evaluate our proposed hybrid approach in terms of
objective and subjective fidelity of the output model (shape
and motion), completeness of the model representation w.r.t.
the input data, as well as computational resources, and final
storage cost. Unless otherwise specified, all the sequences are
processed with MDLm = 1 × 10−1 and λs = 1 × 10−1, and
no blurring of assignment weights is performed (σ = 0).

A set of test sequences covering a range of scene con-
tent and capture devices (real and virtual) were used in the
evaluation. This dataset has been made available for future
research into dynamic RGBD scene modelling5. Refer to
the supplementary video for visualizations of the full input
sequences and processing results.

4In the internal processing as well as the PNG format used for storage,
unsigned 16-bit values are used for depth maps, therefore a large constant
value is added to the difference maps to ensure that no negative values occur.

5Available: http://cvssp.org/projects/4d/dynamic rgbd modelling. To the
best of our knowledge, there are no publicly available datasets for dynamic
RGBD modelling which include real captures as well as synthetic data with
ground truth.
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Missing measurement

Depth edge band

Sensor noise level

Ground truth depth map

Measured depth map

Outlier (further)

Outlier (nearer)

Narrow structure

Ground truth geometry

Depth edge band

Sensor noise level

Modelled depth map

Measured depth map

Model

7   5    4    1   5     4  6    4      3      4       2    4   6       4         7    4Category

Fig. 8. Left: Consistency between ground truth and measured depth. Right: Consistency between measured depth and modelled depth (category numbers are
as described in Table I).

Fig. 9. Volumetric processing for the Lizard sequence. Left: Piecewise
surfel graph showing volumetric part grid initialization. Centre: Detail of part
meshes, where overlapping regions do not align exactly due to non-rigidity.
Right: Detail of the composite mesh showing a seamless merging of part
surface regions with a soft transition between parts. Colours indicate part
membership.

A. Synthetic sequences

Two synthetic sequences, Lizard (250 frames) and Globe
(300 frames) were generated using Blender [46] and clean
ground truth depth used for reference. For input to our method,
we simulated Kinect v1 capture artifacts (e.g. jagged edges,
holes and missing fine structures) using BlenSor (Blender
Sensor Simulation plugin for Blender) [47], along with depth-
dependent random noise and quantization according to [10].
A sample simulated depth map is shown in the top row of
Fig. 1.

Fig. 9 illustrates our pipeline on the Lizard sequence,
which contains a single articulated surface and background.
The piecewise surfel graph result is used to configure the
overlapping part volumes (left), and using the soft depth-to-
part assignment, depth measurements are fused to reconstruct
surfaces for each part (centre). The separate part volumes are
finally combined in the global volume (right). This composite
mesh, along with the part motion trajectories and skinning
weights, efficiently represents the dynamic surface of the
scene.

The Globe sequence contains multiple elements: a back-
ground which is moving w.r.t. the camera, a rotating globe, a
non-rigidly deforming cloth, and a flying rock. The globe is
a good test of the approach’s ability to extrapolate occluded
regions, and also to assess drift of the reconstruction on surface
regions which reappear having been occluded (after a full
revolution of the globe). Results from our full pipeline are
shown in Fig. 10. The segmentation into parts has worked
well, with the entire rigid background being assigned to a
single part, and the deforming cloth being segmented into
patches. The rock and globe are each segmented into a single
part. Despite the globe undergoing 1.5 revolutions over the
sequence, the full surface is reconstructed without noticeable

drift. Since the cloth comprises only three patches, fine scale
deformation of the cloth is not represented, and thus there is
significant residual depth in the cloth, particularly in the third
frame shown. Fig. 11 shows processing results over a range
of part segmentation blurring kernel widths σ. All σ values,
from 0 to 8 cm, produce similar values of the residual depth
(w.r.t. the noisy input depth) and residual RMS error (w.r.t. the
ground truth depth). Qualitatively, however, the deformation of
the cloth is smoother when blending is enabled. Note that the
RMS error in the noisy input depth for this scene (ignoring
missing measurements) is 5.0 mm, and the RMS error in the
reconstruction is 3.5 mm, i.e. the modelled depth is less noisy
than the raw depth. However, a drawback is that the fine ripple
deformations of the moving cloth are not represented in the
composite mesh model.

B. Real sequences

The approach was tested on several sequences recorded
using the Kinect v1 (structured light) and Kinect v2 (time-
of-flight) sensors. The Kinect v1 sequences include Dog (610
frames), Cat (251 frames), Paris (251 frames), Rabbit and
Deer (311 frames), and Turning (200 frames). The Kinect v2
sequences include Shirt (100 frames), Sitting (200 frames), and
Entrance (230 frames). We further test out approach on three
sequences from the University of Tsinghua Dynamic RGBD
dataset [34]: Puppet (300 frames), Pillow1 (370 frames), and
Pillow2 (419 frames).

1) Kinect v1: As discussed in Section VI, it is possible
to assess the completeness and consistency of the final repre-
sentation w.r.t. the input data. Fig. 12 shows the modelling
properties and residual depths for the Dog sequence. The
input depth (Fig. 12(b)) and its edge bands (Fig. 12(c)) are
used along with a rendering of the composite mesh model
(Fig. 12(d)) to classify the modelling status of each pixel
in the frame (Fig. 12(e)) according to the categories listed
in Table I. The proportion of points in each category over
the whole sequence is shown in Fig. 13, which also shows
the RMS residual6 between the input depth and the modelled
depth over time (for consistent - i.e. category 4 - regions).
This residual gives an indication of how closely the output
model matches the input. Fig. 12(f) shows the exact residual

6In the case of noisy depth (real sequences), the residual is the result of both
measurement error and modelling error (no ground truth depth is available).
In the case of noise-free depth (clean, synthetic sequences), the residual is
equivalent to modelling error.
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(a) Input RGB

(b) Raw surfel graph

(c) Piecewise surfel graph reconstruction

(d) Piecewise volumetric reconstruction

(e) Composite volumetric reconstruction

(f) Composite volumetric reconstruction (with texture)

(g) Residual depth, scale: −20 20mm

(h) Top view, from left to right: surfel graph, piecewise surfel graph,
and output mesh showing input depth for the current frame overlaid.
Note that the globe has been completed by the modelling process.

Fig. 10. Hybrid processing of Globe sequence using image-based point tracks
and simulated Kinect noise. A high quality segmentation and reconstruction
is produced by the proposed method and the globe has been faithfully
reconstructed as a single object for the whole sequence without noticeable
drift despite undergoing 1.5 revolutions.

depth between the output composite mesh model rendering
and the input depth map. Note the high-frequency random
noise. Fig. 12(g) shows the residual after zeroing of the low
amplitude values within an assumed noise threshold of 10 mm,
which is two standard deviations of Kinect v1 noise at typical
scene distances [10]7. Note that this omits the small residuals,
but stores regions not captured by the modelling process, in
particular the distant background (no model) and the tennis
ball (which - because it disappears from view - is not present
in the composite model for the whole sequence). Finally, for

7For simplicity, a fixed threshold is used, but in principle, a variable
threshold could be used to account for sensor noise that varies with scene
depth.

(a) σ = 0 mm

(b) σ = 4 cm

(c) σ = 8 cm

Fig. 11. Globe sequence processing with a range of segmentation blurring
weights. From left to right: surfel graph model showing blended assignments,
composite volumetric mesh, exact residual depth w.r.t. (noisy) input, exact
residual depth w.r.t. ground truth depth (i.e. reconstruction error) - scale:
−20 20mm. Across blurring radii, there is no significant difference
in output/input RMS residual or output/ground truth RMS error (at 5.0 mm
and 3.5 mm, respectively), but visually the deformation of the cloth appears
more natural.

(a) Input RGB (b) Input depth (c) Depth edge
bands

(d) Composite
mesh model render

(e) Modelling cat-
egories

(f) Exact depth
residual

(g) Noise-floored
depth residual

(h) Residual ignor-
ing edge bands

Fig. 12. Consistency between input and model for a frame of the Dog
sequence. Note that the hand, tennis ball and distant background in the input
are not captured by the composite mesh model in this frame, and therefore
the residual depth maps represent this geometry on a per-frame basis. Scale:
−20 20mm.

completeness, a third variant of the residual depth is shown in
Fig. 12(h), in which the depth edge bands have been omitted
as well. Unless otherwise specified, the residual depth maps
presented in the subsequent figures and numerical results are
the noise-floored versions. Scene edits on the Dog sequence
are presented in Section VII-D. Refer to the supplementary
material for results on the other Kinect v1 sequences (Cat,
Rabbit and Deer, and Turning).

2) Kinect v2: Results on the Puppet sequence are shown in
Fig. 16. Our approach recovers the the non-rigidly deforming
puppet and subject as well as the background. For comparison,
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Fig. 13. Modelling properties for Dog sequence. Top: Proportion of image
pixels in each modelling category (1-7) over time. Refer to Table I for
interpretation of categories. Bottom: RMS error in consistent (category 4)
regions. The lack of modelled regions at the start/end of the sequence is due
to the hand-held RGBD sensor not being aimed directly at the scene.

the results of Guo et al. [34] are shown, in which only the
puppet and the subject’s arm are reconstructed (with the aid
of a pre-scanned template). The results on the other Kinect v2
sequences (Shirt, Sitting, Entrance, Pillow1 and Pillow2) are
presented in the supplementary material.

C. Segmentation regularization

In Fig. 14, additional results are presented to motivate
use of the MDL plus pairwise smoothness regularization
(Equation 3), used throughout this work in place of the MDL
plus overlap regularization used in [3]. The sequence was
processed using each method, choosing regularization values
which produce the same number of final part models (i.e. 6
parts, as per the result in Fig. 10): MDLm = 1 × 10−1 and
λs = 1×10−1 for our approach (Equation 3), and MDLm = 1
for [3]. Note that because of the pairwise term, the proposed
approach leads to a more compact boundary between the
patches in the waving cloth. While the modelling error for the
visible point tracks is similar, at 3.1 mm for both, some points
on the floor have been misassigned to the rotating globe when
using the approach of [3]. Finally, we note that the processing
time for the piecewise surfel graph modelling iterations in our
approach is approximately half that of [3], owing to the simpler
graph-cuts formulation used. The effect of the weightings of
the MDL and smoothness terms on the number of part models
is discussed in the supplementary material.

D. Scene editing using the representation

The reference composite mesh is saved with per-vertex
colours in the PLY format. It can therefore be imported into
standard 3D graphics editing software (e.g. Blender [46]),
which is suited to creative manipulation of meshes. After the
edits are performed, the mesh can be saved back to PLY
and imported back into our software, where it is re-animated,
rendered from the point of view of the input camera position,
and finally composited with the input RGB frame to produce
an edited video sequence. Fig. 15 shows the original Dog
sequence, along with an edited version in which shape and
appearance (texture) have been edited in Blender, rendered
and composited back onto the image sequences. Note that the
edits need only be performed on the reference mesh and are
automatically propagated over the dynamic sequence.

(a) MDL plus overlap ([3])

(b) MDL plus pairwise (ours, Equation 3)

Fig. 14. Comparison of graph cuts segmentation performance on the Globe
sequence under the two regularization schemes (two frames shown). In (a),
note the irregular boundaries between patches on the cloth and the incorrectly
assigned surfels, such as the cluster from the floor marked ‘A’ which has been
assigned to the rotating globe part.

(a) Input sequence

(b) Scene edits composited into sequence

Fig. 15. Shape and texture editing of the Dog sequence - edits include a
leopard spot pattern, a protruding rhino horn, goggles, and studs on the collar.
The edits are performed on a single reference frame and propagated over the
sequence as a result of the temporally consistent 4D mesh representation.

E. Computation and storage considerations

1) Processing time: In our implementation, which is mainly
un-optimized single-threaded CPU code, the stages of pro-
cessing take of the order of minutes to hours for typical
sequences. Processing time varies depending on factors such
as image resolution, number of surfels, voxel grid dimensions
and number of frames (see the supplementary material for
further detail).

2) Storage cost: The surfel graph and piecewise surfel
graph (segmentation, intrinsic shape and motion) models are
stored in binary files as discussed in [3]. Images (input depth
maps and residual depth maps) are stored as 16-bit PNG
images (with compression enabled). Meshes are stored in PLY
format (with binary encoding), and the skinning matrix is
stored as a sparse matrix in a binary file. We report the total file
sizes after applying standard lossless (ZIP) file compression.
Fig. 17 shows, for various test sequences, the storage costs
of input depth map sequence, the raw surfel graph, the
intermediate piecewise surfel graph, the composite mesh (with
skinning), and residual depth maps. Note that in all cases, the
final output representation, which has a temporally consistent
structure, is smaller than the raw input depth maps. Using the
output representation (third columns in the chart), the input
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(a) Input RGBD (b) Piecewise surfel
graph

(c) Piecewise and volu-
metric reconstruction

(d) Composite volumetric reconstruction with
closeup of puppet

(e) Results of Guo et al.
[34] (using a template
shape)

Fig. 16. Hybrid processing of Puppet sequence comparing the result to Guo et
al. [34]. Although our result suffers from some reconstruction artifacts,
it reconstructs the entire dynamic scene including background without a
template.

Entrance

Shirt

Rabbit and Deer

Dog

Globe

0 20 40 60 80 100 120 140 160 180

Input depth maps
Piecewise surfel graph
Composite mesh
Mesh skinning matrix
Residual depth maps

Entrance
Shirt

Rabbit and Deer
Dog

Globe

0 20 40 60 80 100 120 140 160 180

Input depth maps
Piecewise surfel graph
Composite mesh
Mesh skinning matrix
Residual depth maps

Fig. 17. Storage cost of dynamic sequences using the hybrid approach (with
lossless ZIP compression). Note that the piecewise surfel graph files are
relatively small (e.g. 200KB), so they are barely visible on this plot.

depth can be reproduced to within the noise threshold specified
during processing, while the 4D model typically represents
approximately 80% of the observed scene area (refer to the
plots in the preceding section). Further processing such as edits
which require temporal consistency can be performed using
the output 4D mesh, and in applications which do not require
retention of the residual depth maps, an order of magnitude
compression is achieved w.r.t. the raw input depth.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a hybrid surfel graph + volumetric fusion
approach was proposed for modelling and representing general
non-rigid scenes from noisy RGBD sequences. The surfel
graph modelling approach of [3] was extended to improve its
performance and used as an intermediate sparse 4D represen-
tation to drive piecewise volumetric and composite volumetric
fusion for dense surface reconstruction. This approach outputs
a detailed, temporally consistent 4D mesh, along with residual
depth maps, enabling efficient representation of 4D data where
available, and gracefully falling back to unstructured 2.5D raw
depth for any unmodelled regions.

The method was demonstrated on complex dynamic scene
data from various sources including Kinect v1, Kinect v2 and
synthetic data, and shown to produce reasonable results. Ex-
amples of shape and appearance editing were also presented,
suggesting the method’s potential for use in 3D and video
content production applications. Future work could investigate
motion editing using the approach, e.g. by learning a reduced-
dimensionality motion parametrisation for a sequence.

The method has some limitations in terms of dynamic
surface reconstruction quality. In particular, while it is ef-

fective at removing high-frequency noise from the input, the
piecewise fusion loses some fine-scale non-rigid deformations,
e.g. of cloth. Future work could investigate the use of a
hierarchical/multi-scale version of the piecewise surfel graph
modelling approach, along with long-term re-identification of
partial point tracks, to ensure good large-scale consistency and
persistence of the reconstructed surface, while capturing fine-
scale, subtle deformations. Related to this, the method could
potentially be improved by performing a data-driven blending
of part assignment weights as part of the modelling optimiza-
tion itself, rather than using a fixed radius blur heuristic, which
may not optimally represent the deformation throughout a
dynamic scene. It would be interesting to investigate possible
use of machine learning approaches (e.g. deep learning) for
this. Another avenue of future work would be to extend
the approach to multiple RGBD views for improved scene
coverage and robustness. This would involve obtaining point
correspondences across views when generating the initial
surfel graph representation.
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