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Abstract

This report demonstrates the convergence of the family of nested Branch-and-Bound (BnB) algorithms pro-

posed in [1]. The family includes a baseline approach (calculating the inner bound with a constant accuracy

of εI = ε/τ), a deterministic annealing approach (setting the inner bound accuracy to εI = (UO − LO)/τ

where UO and LO denote respectively the outer upper and lower bounds) and a probabilistic annealing

approach (allowing the inner bound accuracy to vary based on how promising a branch looks, subject to

εI ∈ [ε/τ, (UO − LO)/τ]). We show that for any τ > 2 all three approaches are guaranteed to converge to

a solution whose cost is within ε from that of the global optimum. The analysis is split into two parts, first

establishing the optimality of the solution under the assumption that the algorithm terminates, then proving

the convergence of each algorithm.

1. Proof of optimality

Theorem S1 (optimality of solution): Consider any of the three proposed nested branch-and-bound

algorithms and a prescribed accuracy ε > 0. If the algorithm terminates, then the cost of the solution

returned is guaranteed to be within ε from the cost of the global optimum.

Proof: Let us denote by (r∗, C∗) a globally optimal solution with cost f ∗. Clearly, the optimal rotation

r∗ belongs to the initial rotation cube which by construction encompasses the entire rotation search space.

Further, since a rotation branch can only be discarded if its lower bound LI satisfies LI > UO, it is not possible

for the branch containing the optimal rotation r∗ to be discarded by the algorithm. So the optimal rotation r∗

must remain contained within one branch and must satisfy LO ≤ f ∗ ≤ UO, LO and UO being the outer upper

and lower bounds respectively. If the algorithm terminates, then we have UO − LO ≤ ε and it follows that the

returned solution, which has cost f res = UO, satisfies | f res − f ∗| ≤ ε. �
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2. Proof of convergence

Having established the optimality of any solution obtained under the assumption that the algorithm ter-

minates, we now demonstrate the convergence of all three algorithms (within an accuracy of ε). The proof

is similarly in spirit to that in [2], with additional complications arising from the nested structure of the pro-

posed BnB algorithms. In a nutshell, we start by showing that after a sufficiently large number of iterations,

there is at least one rotation branch of arbitrarily small size. Then, we express a bound on the difference be-

tween the inner upper and lower bounds. Finally, we show that under the condition that τ > 2, this provides a

sufficiently tight bound on the difference between the outer upper and lower bounds to guarantee convergence

of all three algorithms.

Lemma S1 (existence of an arbitrarily small rotation branch): For any δR > 0, there exists an integer

N such that after N iterations of the outer loop, there is at least one rotation cube of half side-length no

greater than δR.

Proof: Denote by kN the number of rotation cubes after N iterations of the outer loop, including in the

count any rotation cube that has been discarded. The algorithm starts with a single rotation cube (the entire

rotation space), i.e. k0 = 1. Each iteration sub-divides one rotation cube (the one with lowest upper bound)

into eight rotation sub-cubes, thus resulting in an additional seven rotation cubes after each iteration. After N

iterations of the outer loop, there are therefore exactly kN = 1 + 7N rotation cubes (some of which discarded).

Now consider the volume VΩR of the initial rotation cube ΩR. With our parametrisation based on the

axis-angle representation, the half side-length of ΩR is π and consequently VΩR = (2π)3. At any iteration,

the volume occupied by the union of all the current rotation cubes remains constant since the algorithm only

sub-divides existing cubes and the discarded rotation cubes are included in the count.

It follows that after N iterations the smallest rotation cube has a volume no greater than VΩR
kN

=
(2π)3

1+7N . The

half side-length of the smallest cube is therefore no greater than δR = π
3√1+7N

, which converges to zero and

can be made arbitrarily small by choosing N to be sufficiently large. �

Lemma S2 (bound on difference between inner upper and lower bounds): Let ωR denote a rota-

tion cube with half side-length δ(ωR) and ΩC denote the initial camera centre cube. Let LI(ωR,ΩC) and

UI(ωR,ΩC) denote the lower and upper bounds of the function f over ωR ×ΩC . We have

∀εR > 0 ∃δR > 0, δ(ωR) ≤ δR =⇒ UI(ωR,ΩC) − LI(ωR,ΩC) ≤ 2εI + εR, (1)

where εI is the prescribed accuracy of the inner BnB which is set according to the variant of the nested BnB

algorithm considered.
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Proof: The inner BnB algorithm computes the upper bound by optimising the function f with R fixed to

the centre R0 of ωR and C allowed to vary over ΩC , i.e. it minimises

k∑
i=1

∗

min
j∈{1...M}

max
{
0,∠(R0(Y j − C), Xi) − z(ε)

}
, (2)

with z(ε) = 0. Denoting by f
∗

the minimum value over ΩC and considering the accuracy εI of the inner BnB

algorithm, we have UI(ωR,ΩC) − f
∗
≤ εI .

Similarly, the inner branch-and-bound calculates the lower bound by optimising the function f with R

fixed to the centre R0 of ωR and C allowed to vary over ΩC , taking into account the maximum amount
√

3δ(ωR) by which the function can deviate within ωR. This is done by minimising (2) with z(ε) =
√

3δ(ωR).

Denoting by f ∗ the minimum value over ΩC and considering the accuracy εI of the inner BnB algorithm, we

have f ∗ − LI(ωR,ΩC) ≤ εI .

Combining the previous two inequalities results in:

UI(ωR,ΩC) − LI(ωR,ΩC) ≤ 2εI + f
∗
− f ∗. (3)

The cost functions optimised to determine the lower and upper bound differ at most by
√

3δ(ωR), i.e.

f
∗
− f ∗ ≤

√
3δ(ωR). It follows that

UI(ωR,ΩC) − LI(ωR,ΩC) ≤ 2εI +
√

3δ(ωR). (4)

Choosing δR = εR√
3

ensure that:

δ(ωR) ≤ δR =⇒ UI(ωR,ΩC) − LI(ωR,ΩC) ≤ 2εI + εR, (5)

which completes the proof. �

Theorem S2 (convergence of baseline algorithm): For any prescribed accuracy ε > 0 and an inner

bound accuracy set to εI = ε
τ

where τ > 2, the algorithm converges in finite time.

Proof: Under the assumption that τ > 2, we can define εR = ε − 2
τ
ε > 0. It follows from Lemma S2 that

there exists δR such that

δ(ωR) ≤ δR =⇒ UI(ωR,ΩC) − LI(ωR,ΩC) ≤
2
τ
ε + ε −

2
τ
ε = ε, (6)

which proves the tightness of the inner bounds.

Let us now hypothesise that the algorithm does not converge. From Lemma S1, after a sufficiently large

number of iterations, there is at least one rotation cube of size no greater than δR/2. With δR chosen to be

sufficiently small, it follows from the tightness of the inner bounds that the cube’s parent ωR of side-length
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δR satisfied UI(ωR,ΩC) − LI(ωR,ΩC) ≤ ε. However, ωR also had the lowest lower bound LO = LI(ωR,ΩC)

when it was removed from queue, so the algorithm should have terminated at that point. This shows that the

hypothesis of non-convergence made earlier is not plausible. �

Theorem S3 (convergence of deterministic annealing algorithm): For any prescribed accuracy ε > 0

and an inner bound accuracy set to εI = (UO − LO)/τ where UO and LO denote respectively the outer upper

and lower bounds at a given iteration and where τ > 2, the algorithm converges in finite time.

Proof: Let us denote by UO(0) and LO(0) the initial upper and lower bound (UO(0) is assumed to be finite,

e.g. being initialised to the value of the function at the centre of the search space). The accuracy of the inner

bound in the subsequent iterations is at most 1
τ
(UO(0)−LO(0)) (most likely less as the outer and inner bounds

will become tighter as the algorithm iterates). If τ > 2, then we can define εR = 1
2

(
1 − 2

τ

)
(UO(0)−LO(0)) > 0.

It follows from Lemma S2 that there exists δR such that

δ(ωR) ≤ δR =⇒ UI(ωR,ΩC) − LI(ωR,ΩC) ≤ α(UO(0) − LO(0)), (7)

with

α =
2
τ

+
1
2

(
1 −

2
τ

)
=
τ + 2

2τ
< 1. (8)

Let us hypothesise the algorithm does not converge. From Lemma S1, after a sufficient number of itera-

tions (n1) there is a cube of half side-length smaller than δR/2. Its parent had size smaller than δR, therefore it

satisfied UI(ωR,ΩC) − LI(ωR,ΩC) ≤ α(UO(0) − LO(0)). Further, the parent also had the lowest lower bound

when it was removed from the queue, therefore it satisfied LO(n1) = LI(ωR,ΩC). Since UO(n1) ≤ UI(ωR,ΩC),

we have UO(n1) − LO(n1) ≤ UI(ωR,ΩC) − LI(ωR,ΩC) and it follows that

UO(n1) − LO(n1) ≤ α(UO(0) − LO(0)) with 0 < α < 1. (9)

The previous result shows that after a finite number of iterations of the outer loop the outer bound dif-

ference has strictly tightened (it has scaled by a factor α strictly smaller than 1). From this point, the same

reasoning can be used to show that after another finite number of iterations, the bound will have tightened by

another factor of α, and so on every time another sufficient finite set of iterations are performed. It follows

that after a sufficient number of iterations nk, we must have

UO(nk) − LO(nk) ≤ αk(UO(0) − LO(0)) with 0 < α < 1. (10)

The constant α being strictly smaller than 1, the term αk(UO(0) − LO(0)) converges to zero as k grows. It

is therefore possible to choose nk such that αk(UO(0) − LO(0)) ≤ ε and it follows that the termination condi-

tion UO(nk)−LO(nk) ≤ ε has been met. This shows that the hypothesis of non-convergence is not plausible. �
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Theorem S4 (convergence of probabilistic annealing algorithm): For any prescribed accuracy ε > 0

and an inner bound accuracy set to εI ∈ [ε/τ, (UO − LO)/τ] where UO and LO denote respectively the outer

upper and lower bounds and where τ > 2, the algorithm converges in finite time.

Proof: This naturally follows from the convergence of the deterministic annealing algorithm since the

probabilistic annealing algorithms defines an inner bound difference which, at each iteration, is at least as

tight as that of the deterministic annealing algorithm. �
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