
Pattern Recognition 93 (2019) 36–54 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

A family of globally optimal branch-and-bound algorithms for 2D–3D 

correspondence-free registration 

Mark Brown 

a , David Windridge 

a , b , Jean-Yves Guillemaut a , ∗

a Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford GU2 7XH, United Kingdom 

b School of Science and Technology, Middlesex University, London NW4 4BT, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 17 August 2018 

Revised 15 February 2019 

Accepted 4 April 2019 

Available online 4 April 2019 

Keywords: 

2D–3D registration 

Multi-modal registration 

Branch-and-bound 

Global optimisation 

a b s t r a c t 

We present a family of methods for 2D–3D registration spanning both deterministic and non- 

deterministic branch-and-bound approaches. Critically, the methods exhibit invariance to the underlying 

scene primitives, enabling e.g. points and lines to be treated on an equivalent basis, potentially enabling 

a broader range of problems to be tackled while maximising available scene information, all scene prim- 

itives being simultaneously considered. Being a branch-and-bound based approach, the method further- 

more enjoys intrinsic guarantees of global optimality; while branch-and-bound approaches have been 

employed in a number of computer vision contexts, the proposed method represents the first time that 

this strategy has been applied to the 2D–3D correspondence-free registration problem from points and 

lines. Within the proposed procedure, deterministic and probabilistic procedures serve to speed up the 

nested branch-and-bound search while maintaining optimality. Experimental evaluation with synthetic 

and real data indicates that the proposed approach significantly increases both accuracy and robustness 

compared to the state of the art. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

r  

n  

[  

a  

b  

v  

n  

j  

m  

m  

t  

d  

m  

n  

p  

t  

 

h  
1. Introduction 

This paper deals with the general problem of 2D–3D registra-

tion where given an image taken by a calibrated camera and a

3D model, the objective is to determine the pose of the cam-

era with respect to the model. While there exist established so-

lutions to this problem in the case where correspondences are

known, there are many situations where it is not possible to re-

liably extract such correspondences across modalities, thus requir-

ing the use of a correspondence-free registration algorithm. Ex-

isting correspondence-free methods rely on local search strategies

and consequently have no optimality guarantee. In this paper we

present a family of globally optimal solutions to the 2D–3D reg-

istration problem from points and lines without correspondences

and in the presence of outliers. Fig. 1 illustrates how these solu-

tions can be used within a 2D–3D registration pipeline. 2D–3D reg-

istration finds use in a range of tasks such as motion segmentation

[1] , object localisation and recognition [2] , with practical applica-

tions in many areas including vehicle navigation [3] , media visual-

isation [4] , medicine [5,6] and forensics [7] . 
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Despite considerable progress in feature extraction and single-

odality registration (e.g. 2D–2D or 3D–3D), the general 2D–3D

egistration problem remains challenging. While there exist tech-

iques to extract features in the 2D and 3D domains (e.g. corners

8] , salient features [9] or lines [10,11] ), it is an open problem to

utomatically establish correspondences between them. This may

e explained by a variety of reasons. First, feature appearance can

ary dramatically between 3D and its 2D projection due to the

on-linear nature of the transformation; a 3D feature may be pro-

ected from a large range of viewpoints and perspective distortion

ay occur as well as view-dependent appearance variations if the

aterial is non-Lambertian. Second, in the specific case of lines,

here are many scenes where it is difficult to establish correspon-

ences based on appearance, for example in highly repetitive man-

ade scenes or where low-width structures are present [12] . Fi-

ally, and more generally, correspondences of any feature type are

articularly difficult to hypothesise when the 3D model is untex-

ured, as is often the case if it is obtained by a laser range scanner.

The lack of feature correspondences renders traditional

ypothesise-and-test approaches (e.g. RANSAC [13] ) practically

bsolete due to the very high computational complexity of the

roblem. State-of-the-art approaches e.g. [14,15] search over the

ransformation space and scale cubically with the number of

eatures, but are not robust to the high rates of outliers required
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Diagram illustrating the pipeline for correspondence-free 2D–3D registration. The proposed nested Branch-and-Bound algorithms are the central part of the pipeline, 

enabling global optimisation from point and line features extracted from 2D and 3D data. 
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or the problem at hand. However, existing approaches only search

or local maxima and hence i) require a good initialisation and ii)

re sub-optimal, particularly for higher rates of outliers. 

In this paper we propose a globally optimal solution to this

roblem, achieved via a Branch-and-Bound (BnB) strategy. It recur-

ively searches the transformation space, bounding the objective

unction at each stage and discarding parts of the transformation

pace for which it is impossible for the solution to lie in. Even-

ually, the remaining transformation space is tightly bounded and

t may be concluded that transformations in the remaining space

ust be within ε of the globally optimal solution. Furthermore, the

pproach is not restricted to one feature type, but instead can be

pplied to the case where points, lines, or a mixture of each are

resent. 

Within the proposed BnB algorithm a nested BnB structure is

sed (similarly to Yang et al. [16] ), whereby an outer BnB searches

ver the rotation component, with an inner BnB searching for the

amera centre at each stage. It is in general faster than searching

he full 6D parameter space directly since large parts of the rota-

ion space may be unconditionally discarded, and since evaluating

ach bound is faster as features are only rotated once for the outer

nB. We extend upon this idea by proposing two extensions to the

ested BnB structure in order to speed up the convergence without

ompromising on the accuracy of the solution. 

In the first instance, a deterministic annealing procedure is im-

lemented that gradually increases the accuracy of the search as

he algorithm progresses. As such, early regions of rotation space

ay be more quickly evaluated, and the algorithm can focus its

earch at the later stages where it is nearing convergence. Sec-

ndly, we propose a probabilistic variant, whereby the inner BnB

f less promising areas of rotation space is evaluated to a lower ac-

uracy compared to more promising areas of rotation space. Both

pproaches result in a significant speed-up to the algorithm as

emonstrated across a range of experiments on synthetic and real

ata. 

The paper makes the following contributions. Firstly, we pro-

ose a globally optimal solution to this problem, achieved via a

ranch-and-Bound strategy. Its formulation readily allows for both

oint and line features to be used, allowing it to be applicable to

 broader range of scenes and also exploiting the complementar-

ty of these different types of features to improve registration ac-

uracy and robustness. Secondly, we propose novel formulations

hat allow for the speed-up of nested BnB algorithms while pre-

erving the optimality properties of the solution. The approach is

valuated against the state of the art where significant improve-

ents are demonstrated: our approach is more accurate and sig-
i  
ificantly more robust to high rates of outliers compared to exist-

ng approaches. 

The paper is based on our previous work [17] which it extends

n several ways. Firstly, the formulation is generalised to simulta-

eously allow use of both point and line features for globally op-

imal registration. This broadens the applicability of the method

ver our previous approach and improves its performance. Sec-

ndly, the methodology is further developed to include determin-

stic and probabilistic nested BnB formulations, resulting in a sig-

ificant performance speed up while preserving optimality. Finally,

he experimental evaluation is considerably improved through con-

ideration of a broader range of synthetic and real datasets, com-

arison against an additional RANSAC approach, and use of a more

ealistic evaluation protocol based on features obtained from re-

ently proposed 2D and 3D salient feature detectors (as opposed

o 2D features backprojected to the 3D domain which were used

n our previous work). 

The structure of this paper is as follows. Related work is dis-

ussed in Section 2 . Section 3 formally defines the scope of the

roblem before the proposed Branch-and-Bound approach is de-

ailed in Section 4 . Section 5 describes the deterministic and prob-

bilistic nested BnB formulations. The different approaches are

hen evaluated against the state of the art on synthetic and real

ataset in Section 6 . Finally, conclusions and avenues for future

ork are discussed in Section 7 . 

. Related work 

A traditional approach to the feature registration problem is

he hypothesise-and-test RANSAC algorithm [13] . RANSAC relies

pon hypothesising small sets of 2D–3D correspondences (of size 3

or the 6 parameter 2D–3D registration problem), determining the

ransformation parameters from the small set of correspondences,

nd verifying the transformation against the rest of the features.

ssuming there are N 2D features and M 3D features, there are a

otal of 
(

NM 

3 

)
hypothetical sets of size 3 correspondences to choose

rom. Assuming there are only kN inlying feature correspondences

where k is the inlier ratio, k < 1), there are a total of 
(

kN 
3 

)
sets of

ize 3 of inlying correspondences. As a result, the expected num-

er of correspondences that must be hypothesised before finding

n inlier set is O(( M 

3 ) 
3 ) . However, the hypothesis verification stage

equires projecting the 3D features onto an image plane and deter-

ining their nearest neighbours from the 2D features. Hence, for

D–3D feature registration where correspondences are unknown,

ANSAC has complexity O( M 

4 log N 

k 3 
) . 

The above analysis is too simple–in reality, a set of 3 inly-

ng correspondences may not lead to the optimal transformation
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due to noise. This was observed by Chum et al. [18] who pro-

pose an outer and an inner RANSAC loop, whereby whenever a

new best solution is found the inner RANSAC locally searches from

the smaller, inlying set of correspondences. It was more formally

addressed by Imre and Hilton [19] who minimise the total num-

ber of iterations within each stage of such a two-stage RANSAC

approach. Alternative extensions have been proposed to improve

the speed of RANSAC e.g. WALDSAC [20] that evaluates the poten-

tial correspondences of a transformation in an optimal order. How-

ever, no RANSAC variant is able to reduce the very high complex-

ity for this particular problem. The high complexity of RANSAC for

this problem has led to more recent approaches e.g. [14,15] that

search over the transformation space rather than potential corre-

spondences leading to lower complexity of O(N 

3 ) . 

Machine learning approaches have recently been applied to the

2D–3D registration problem. PoseNet [21] by Kendall et al. uses

a CNN for 2D–3D registration of an outdoor scene, where the

scene is obtained by Structure-from-Motion (SfM). Its accuracy is,

however, somewhat limited–an issue later addressed by Kendall

and Cipolla [22] , where the authors specifically focus on apply-

ing a geometric loss function to the network, thereby improving

the accuracy over their previous work. Conversely, a Random For-

est approach has been proposed by Shotton et al. [23] , however,

this is for the slightly easier task of registering a 3D scene to an

RGB-D image. ML approaches may also be applied to specific sub-

components of the 2D–3D registration problem, for example DSAC

[24] who replace the deterministic RANSAC hypothesis with a

smooth, differentiable objective function. However, RANSAC-based

approaches fundamentally scale poorly where correspondences are

unknown. 

In the next two subsections, we review specific approaches

that have been proposed in the cases of point features and line

features respectively. The authors are not aware of any approach

that explicitly uses points and lines within the same framework,

therefore these two types of approaches are discussed separately.

The section is concluded with a survey of branch-and-bound ap-

proaches that have been proposed to solve related geometry esti-

mation problems. 

2.1. Point-based methods 

One of the best, early approaches to 2D–3D registration using

points where correspondences are unknown is the SoftPosit algo-

rithm [14] . It locally searches the transformation space while si-

multaneously determining the correspondences between 2D and

3D points. At each iteration, multiple, weighted correspondences

are hypothesised based on the pose and points’ nearest neigh-

bours under the pose; and subsequently the pose is determined

from the multiple, weighted correspondences. An annealing pa-

rameter is used within the weighting that ensures the algorithm

converges towards hypothesising one-to-one correspondences as it

progresses. 

Moreno–Noguer et al. [15] have proposed a solution known as

BlindPnP , by modelling an initial set of poses by a Gaussian Mix-

ture Model and using each component to initialise a Kalman filter.

Potential 2D and 3D points are considered in turn by the model

to update the mean and covariance; eventually the algorithm de-

termines a solution with high confidence. It performs comparably

to SoftPosit in a similar amount of time except in large amounts of

clutter, where SoftPosit is outperformed by BlindPnP . 

An interesting solution has been proposed by Enqvist et al.

[25] who compute pairwise constraints between pairs of poten-

tial correspondences. By creating a graph of all possible pairs of

correspondences, the optimal solution is found by determining the

largest set of pairwise consistent correspondences, formulated as a

vertex cover problem. However, results were only given when cor-
espondences were hypothesised and the problem was inlier set

aximisation; it is unclear how it would perform if no correspon-

ences could be known between the 2D and 3D points. 

Other proposed solutions are a lot more restrictive, e.g. both

26,27] solve the problem where no outliers are present. Zhou and

hang [26] use this to obtain global information e.g. that the mean

f the 3D points should project onto the mean of the 2D points,

nd Marques et al. [27] view the problem as a correspondence per-

utation problem, which they solve by a convex relaxation proce-

ure. The assumption however is unreasonable in many scenarios,

here an algorithm that is robust to high outlier rates is required.

.2. Line-based methods 

An early solution to 2D–3D registration from correspondence-

ree lines is proposed by Beveridge and Riseman [28] who use a

ocal search procedure to iteratively arrive at local optima. They

nvestigate how easy the problem is; evaluating expected run-time

s a function of the number of lines and amount of clutter. Bhat

nd Heikkilä [29] systematically sample and rank the space of po-

ential poses however it is computationally inefficient for large

umbers of lines. Alternatively, the SoftPosit algorithm has been

xtended to use lines [30] . At each iteration, the algorithm finds

he nearest point of each 2D line for the endpoint of each 3D line.

his point assignment enables it to adapt to the original SoftPosit

lgorithm for points. 

Some approaches to registration using lines can make restrictive

ssumptions. It is not uncommon to assume a Manhattan World

here all lines are orthogonal, which may be used to speed up the

lgorithm e.g. by restricting the search space [31] . Alternatively, de-

ected lines may be viewed as edges on a graph, leading to a graph

atching approach [32] . However the graph structure is typically

ot preserved under a projective transformation, and the approach

s more suited to other tasks e.g. aerial image registration. 

All existing approaches to 2D–3D correspondence-free registra-

ion are heuristic, with no guarantee of optimality. In contrast, here

e present a globally optimal solution to the problem, achieved via

 branch-and-bound approach. By solving the problem in a glob-

lly optimal manner, our approach is demonstrably more robust

o high rates of outliers compared to the state of the art. Further-

ore, the approach naturally allows for both points and lines to

e used within the same framework, in contrast to the approaches

eviewed above. 

.3. Branch-and-bound methods 

Branch-and-bound solutions to geometry estimation in com-

uter vision have been proposed for a number of different prob-

ems, typically requiring novel derivations of bounds in each case. 

Many BnB approaches in registration rely on linear programming

LP) techniques to compute bounds, e.g. [33] , whereby bounds may

e computed as solutions to a LP. In a naive form they may only

e applied to linear transformations, so to be more widely appli-

able nonlinear constraints are relaxed into linear convex and con-

ave envelopes to compute upper and lower bounds respectively

e.g. [33,34] ). The optima of each envelope are determined as the

ounds for the region of space: as the size of the region decreases

he difference between the optima decreases and so the algorithm

onverges. LP relaxation techniques have been developed for com-

lex and highly non-linear problems e.g. [35] , where it is used for

nlier set maximisation where correspondences are unknown. With

espect to the 2D–3D registration problem, Jurie [36] approximates

erspective pose by orthographic pose (a linear transformation) to

reate a problem that may be solved by similar techniques without

he need for convex or concave envelopes. However, its use of the
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aussian error model results in an approach that is not robust to

utliers. 

Alternative BnB approaches compute bounds that are geo-

etrically meaningful . The earliest approaches are due to Breuel

37] who focuses mainly on 2D–2D registration problems with

p to 4 degrees of freedom. He derives geometrically meaningful

ounds that describe the maximum distance a feature can move

y under a bounded set of transformations. He also proposes the

se of matchlists: potential correspondences are kept when search-

ng new parts of the transformation space so as to speed up near-

st neighbour searches. The geometrically meaningful approach to

omputing bounds has been used for more complex problems, e.g.

wo-view translation estimation [38] and relative orientation es-

imation [39] . Geometric bounds have been non-trivially derived

or the group of 3D rotations by Hartley and Kahl [40] by con-

idering rotations in their minimal axis-angle representation. This

as allowed for globally optimal relative pose estimation [40] , and

D–3D registration [16] . In the latter case an outer BnB algorithm

earches over the rotation space while an inner BnB searches for

he translation. 

Recent BnB approaches have focused on creating efficient

earch mechanisms. For example, Parra Bustos et al. [41] propose

n efficient bounding mechanism for 3D rotations, based on the

nsight that a rotation leaves the magnitude of a point unchanged.

lternatively, a novel, efficient approach was proposed by Chin

t al. [42] . Unlike the majority of other approaches that search over

he transformation space, this explicitly searches over potential

orrespondences. Initially it hypothesises all correspondences, then

uns a tree search to determine which correspondences are invalid.

n A 

∗ algorithm is used to significantly speed up the search. While

ery good run-times are reported, it has not been tested for large

umbers of outliers–this may be significantly more challenging,

ince the search tree becomes exponentially larger with the num-

er of outliers. In [43] , Paudel et al. use a sum-of-squares optimisa-

ion framework to determine whether a point is an inlier for point-

o-plane registration and show how plane visibility conditions can

e used to boost registration. 

Very recently, in [44] Campbell et al. introduced an approach

or optimal 2D–3D alignment from point features. Unlike our ap-

roach which minimises a continuous objective function measur-

ng the misalignment between 2D and 3D features, Campbell et al.

ropose an inlier maximisation framework which solves for the

amera pose maximising the cardinality of the set of 2D features

hat are within a set inlier threshold from a projected 3D fea-

ure. Their approach also follows a Branch-and-Bound formula-

ion, introducing new bounds which are proved to be tighter than

hose used in our formulation. Similarly to our approach, theirs

uarantees global optimality, albeit for a different metric to that

onsidered in this paper. [44] presents the advantage of not re-

uiring an estimate of the proportion of inliers as it does not

equire trimming. However, it relies upon a user-defined thresh-

ld, which controls whether or not a match is classified as an

nlier. 

Our approach, originally introduced in [17] and extended here,

s the first globally optimal approach to 2D–3D registration us-

ng points and lines without correspondences. We use a similar

earch mechanism to the globally optimal 3D–3D registration algo-

ithm Go-ICP [16] , whereby an outer BnB searches over the rotation

pace, and an inner BnB searches over the camera centre. In con-

rast, our problem firstly requires the derivation of new bounds for

he 2D–3D problem. Unlike our original formulation which consid-

red either points or lines, the formulation is extended to simulta-

eously consider both types of features in the same optimisation

ramework. Secondly, we propose novel deterministic and prob-

bilistic implementations that allow for the speed-up of nested

ranch-and-bound algorithms. Thirdly we propose a more general
olution, extending the framework to use points and lines, allow-

ng for broader scene applicability. 

. Problem formulation 

Initially we give the problem definition for 2D and 3D features

n general, before moving onto the specifics for points and/or lines.

et there be N 2D features { �i } N i =1 
and M 3D features { � j } M 

j=1 
, and

enote the distance between a 3D and 2D feature as d ( � j , �i ).

he objective is to determine the pose of the camera that opti-

ally aligns the sets of features. The pose is an element of 3D mo-

ion space SE (3) = SO (3) × R 

3 , composed of a 3D rotation and 3D

ranslation. Hence, where no outliers are present, the objective is

o find the rotation R ∈ SO (3) and camera centre C ∈ R 

3 that min-

mise: 

N 
 

i =1 

min 

j∈{ 1 ...M} d(R (� j − C ) , �i ) . (1)

o make (1) robust to outliers, we use trimming : instead of min-

mising the sum over all 2D features it is minimised over the

mallest k values, where k represents the expected number of in-

iers. Without loss of generality, assume the terms of the sum in

1) have been re-ordered in ascending order, yielding the trimmed

bjective : finding R ∈ SO (3) and C ∈ R 

3 that minimise: 

k 
 

i =1 

∗

min 

j∈{ 1 ...M} d(R (� j − C ) , �i ) , (2)

here ∗ denotes the sum rearranged in ascending order (note this

epends upon R and C ). To apply (2) for points (denoted �(P) 
i 

and
(P) 
j 

) or lines (denoted �(L ) 
i 

and �(L ) 
j 

) simply requires the distance

easure to be defined. 

In the case of points, denote each 2D point by X i and each 3D

oint by Y j . It is initially tempting to use the Euclidean reprojec-

ion error as the most principled distance measure. However, such

 distance measure may still not be perfect where there are po-

ential errors in the location of both the 2D and 3D features, and

t makes bound computation difficult (and hence more time con-

uming) due to how it changes non-linearly with respect to the

ose of the camera. Instead, we use a more geometrically mean-

ngful distance measure. For convenience, assume the 2D point has

een reprojected onto the unit sphere i.e. X i ∈ R 

3 , ‖ X i ‖ = 1 where

 . ‖ denotes the � 2 norm. Then we define the distance between a

D point and 3D point as: 

(�(P) 
j 

, �(P) 
i 

) = ∠ (Y j , X i ) = arccos 

(
Y j · X i 

‖ Y j ‖ 

)
. (3)

In the case of lines, a suitable distance measure is less obvi-

us. Approaches to pose estimation from line correspondences (e.g.

45] ) often decouple the problem into the determination of the ro-

ation by using the direction of the 3D line, then determine the

amera centre by using an arbitrary point on a line. Inspired by

his approach, our line distance measure is a weighted sum of two

erms, where the first term is dependent solely on the rotation of

he 3D line, and the second term is the distance of a point on

he 2D line to the 3D line. With such a construction, the distance

ill be quite large when the rotation is incorrect regardless of the

amera centre–this is of use within the subsequent nested BnB ap-

roach, where it can potentially allow for unpromising areas of ro-

ation space to be discarded more quickly. 

Our line distance measure is as follows: for each 3D line, denote

ts normalised direction vector as d j . For each 2D line, denote its

idpoint as P i , and backproject the line, denoting the normal to

his plane as n i (see Fig. 2 for an illustration of these terms). In

he ideal, noiseless case, d j will lie on the backprojected plane and
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Fig. 2. An illustration of the terminology used in defining a distance measure for 

lines. �(L ) 
i 

denotes a 2D line, P i its midpoint and n i the normal to its backprojected 

plane. �(L ) 
j 

denotes a 3D line and d j its normalised direction vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

t

 

t  

a  

s  

t  

a  

s  

v  

f

 

 

 

 

 

 

b  

b  

b  

i  

�  

t  

t  

s  

e  

i  

l

 

g  

t  

S  

T  

l

4

 

a  

p  

r  

i  

g  

c

R  

w  

s

[  

N

 

s

‖  

P  

N

‖  
P i will lie on the projection of line �(L ) 
j 

. Hence, a suitable distance

between the lines is defined as: 

d(�(L ) 
j 

, �(L ) 
i 

) = λ
∣∣∣π

2 

− ∠ (d j , n i ) 

∣∣∣ + ∠ (�(L ) 
j 

, P i ) , (4)

where λ defines the relative weighting between the two terms.

∠ (�(L ) 
j 

, P i ) denotes the angle between P i and the nearest point

of the projected (finite) line segment �(L ) 
j 

; this point on �(L ) 
j 

is

either between the endpoints of �(L ) 
j 

or is one of its endpoints,

whichever is closest. This is low for lines that overlap slightly with

endpoints that are not well aligned (to account for occlusion), but

is higher when the lines are significantly further away. By using

this we are implicitly considering 2D lines as infinitely long but

3D lines as finitely long. This assumption has been made elsewhere

e.g. [46] due to the poor reliability of determining the endpoints of

a 2D line. 

In the case where both points and lines are present, we com-

pute a weighted sum of the two objective functions. Assuming

there are M 1 3D points and M 2 3D lines, the objective function

becomes: 

μ
k 1 ∑ 

i =1 

∗

min 

j∈{ 1 ...M 1 } 
d(R (�(P) 

j 
− C ) , �(P) 

i 
) 

+ 

k 2 ∑ 

i =1 

∗

min 

j∈{ 1 ...M 2 } 
d(R (�(L ) 

j 
− C ) , �(L ) 

i 
) , (5)

where k 1 and k 2 represent the expected numbers of inlying points

and lines respectively. For the relative weighting term we take

μ = 2 . This is on the principle that the line distance (4) is com-

posed of two equally weighted terms (after setting λ correctly).

The second of these is an angular distance which is comparable

to the point distance (3) ; hence, the line distance should be ap-

proximately twice that of the point distance. 

4. Branch-and-bound 

Branch-and-Bound (BnB) is a very general framework for global

optimisation. Assume the objective is to minimise some function

f over an N -dimensional bounded space � ⊂ R 

N . Assume further

that for any subset ω⊆� (hereafter, known as a branch ) a lower

bound and an upper bound may be determined for the minimal

value of f in this branch, and that these bounds converge as the

size of the branch tends to zero. For example, the upper bound

could simply be the value of the function at the midpoint of the

branch, and the lower bound could be the upper bound minus
ome expression for how much the function can deviate in an in-

erval of that size. 

These assumptions allow for the determination of a solution

o f whose value is within ε of the globally optimal solution, for

ny user-specified ε > 0. It relies upon recursively subdividing the

pace, calculating upper and lower bounds for each branch. Ini-

ially the input to the algorithm is simply the branch �, and, at

ny stage in the algorithm, there is a set of branches that are sub-

ets of �, each with a lower and upper bound to the minimum

alue f can take in that branch. At each stage of the algorithm the

ollowing two steps are performed: 

1. Determine the distance between the lowest lower bound and

lowest upper bound of the bounds in the set of branches. If this

distance is less than ε the algorithm terminates, outputting the

lowest upper bound and its branch. 

2. Otherwise, consider the branch that has the lowest lower

bound and subdivide it further, computing upper and lower

bounds for each sub-branch. 

The algorithm will converge because, eventually, the size of the

ranches considered will be sufficiently small that the distance

etween the upper bound and lower bound of a newly divided

ranch will be less than ε. When this occurs, the outputted value

s within ε of the globally optimal solution because the entirety of

has been (recursively) searched and so it is known that any bet-

er solution is no more than ε better than the one returned. For

he 2D–3D registration problem, optimisation takes place over the

pace SE (3). This space is unbounded, so it is assumed the cam-

ra centre is known to lie within a bounded set �C , which is typ-

cally a reasonable assumption when �C encapsulates a suitably

arge space. 

This section is structured as follows: in Section 4.1 , we give

eometrically meaningful bounds that describe how much the fea-

ures can be transformed by within a given neighbourhood and in

ection 4.2 how these are used to bound the objective function.

hen we describe the nested BnB structure in Section 4.3 . Finally,

ocal refinement techniques are detailed in Section 4.4 . 

.1. Geometric bounds 

Bounds are considered separately for the rotation component

nd camera centre component. Firstly, the rotation bound is com-

uted. Rotations are considered in the axis-angle representation : a

otation is represented by a vector r ∈ R 

3 whose direction spec-

fies the axis of rotation and whose magnitude specifies the an-

le (hence, ‖ r ‖ ≤π ). The rotation matrix that r represents may be

omputed via Rodrigues’ rotation formula: 

 = I + sin (‖ r ‖ )[ ̂ r ] × + (1 − cos (‖ r ‖ ))[ ̂ r ] 2 ×, (6)

here ˆ r = r / ‖ r ‖ . The notation [ v ] × for vector v ∈ R 

3 denotes the

kew-symmetric matrix representation of v , defined as: 

 v ] × := 

[ 

0 −v 3 v 2 
v 3 0 −v 1 

−v 2 v 1 0 

] 

. (7)

ote that [ v ] ×x = v × x for any vector x ∈ R 

3 . 

Lemma 1 : Let R 0 , R be rotation matrices and r 0 , r their corre-

ponding axis-angle representations. Then, for any point X ∈ R 

3 : 

 r 0 − r ‖ ∞ 

≤ δR ⇒ ∠ (R 0 X , R X ) ≤ εR , where εR = 

√ 

3 δR . (8)

roof. [40] has already established that ∠ (R 0 X , R X ) ≤ ‖ r 0 − r ‖ .
oting that 

 v ‖ = 

√ 

3 ∑ 

i =1 

v 2 
i 

≤
√ 

3 

k 
max 

i =1 
v 2 

i 
= 

√ 

3 

3 
max 

i =1 
| v i | = 

√ 

3 ‖ v ‖ ∞ 

, (9)
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Fig. 3. Left: When 
√ 

3 δC ≥ ‖ X − C 0 ‖ , the maximum angle is π by placing X − C 

behind (or on) the origin. Right: Otherwise, the maximum angle obtained is when 

X − C is at a right angle to C − C 0 . 
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t follows that ∠ (R 0 X , R X ) ≤ √ 

3 ‖ r 0 − r ‖ ∞ 

, which concludes the

roof. �

In the context of BnB, if one considers a branch as a cube of

otations r in their axis-angle representation where the centre of

he branch is r 0 and the cube has half side-length δR , then we have

 r 0 − r ‖ ∞ 

≤ δR . By the above result, it follows that for any rotation

 R ) within the cube and for any point X , ∠ (R 0 X , R X ) ≤ εR . 

Next, bounds on the camera centre are derived. 

Lemma 2 : Let C 0 , C ∈ R 

3 . For any point X ∈ R 

3 , let θ = ∠ (X −
 0 , X − C ) . Then: 

 C 0 − C ‖ ∞ 

≤ δC ⇒ θ ≤ εX −C 0 
C 

, (10)

here 

X −C 0 
C 

= 

⎧ ⎨ 

⎩ 

π i f 
√ 

3 δC ≥‖ X − C 0 ‖ , 

arcsin 

( √ 

3 δC 

‖ X − C 0 ‖ 

)
otherwise . 

(11) 

roof. Lemma 2 can be intuitively understood by referring to

ig. 3 . The bound is trivially satisfied in the case where 
√ 

3 δC ≥
 X − C 0 ‖ since π is the largest possible value allowed under our

xis-angle representation parametrisation. The rest of the proof

herefore assumes that 
√ 

3 δC < ‖ X − C 0 ‖ . The proof is conducted

y searching for the camera centre C that maximises the angle θ
nd verifying that the corresponding angle is no greater than the

ound defined in (11) . 

Consider the triangle with sides of length ‖ X − C 0 ‖ , ‖ X − C ‖ ,
nd ‖ C − C 0 ‖ (e.g. the triangle in the right diagram in Figure 3 ).

y the cosine rule one obtains 

 X − C ‖ 

2 < 2 ‖ X − C 0 ‖ ‖ X − C ‖ cos θ, (12)

ence cos θ ≥ 0, i.e. θ ∈ [ −π
2 , 

π
2 ] . Since sin θ is a strictly increasing

unction in this interval, obtaining an upper bound on sin θ will

ield an upper bound on θ . By the sine rule: 

in θ = 

‖ C 0 − C ‖ 

‖ X − C 0 ‖ 

sin (∠ (C 0 − C , X − C )) . (13)

ithout loss of generality X and C 0 may be assumed to be con-

tant (since we are searching for C maximising the angle), hence

he expression is maximised when ∠ (C 0 − C , X − C ) = 

π
2 . Conse-

uently 

in θ ≤ ‖ C 0 − C ‖ 

‖ X − C 0 ‖ 

≤
√ 

3 ‖ C 0 − C ‖ ∞ 

‖ X − C 0 ‖ 

≤
√ 

3 δC 

‖ X − C 0 ‖ 

(14) 
nd the result follows. � g  
.1.1. A uniformly continuous bound 

The function governing the bounds on the camera centre (11) is

ot uniformly continuous: the relationship between ε
X −C 0 
C 

and δC 

s dependent on X . This causes real difficulties for the algorithm: if

recision εC is desired and a point X is arbitrarily close to C 0 , an

rbitrarily small branch ( δC ) is required. Hence the algorithm will

ot converge in finite time. 

To alleviate this we modify the objective function slightly so

s to be uniformly continuous: when computing (2) we only take

nto account 3D features whose distance from the camera centre is

arger than a specified threshold ( γ ). For a suitably small thresh-

ld this is sensible in practice: in general very few features will be

ocated immediately in front of the camera. 

Note that an alternative way of addressing this issue is to re-

trict the search space to prevent camera centres from being lo-

ated within a very small distance from an existing 3D point as

roposed by Campbell et al. in [44] . 

By enforcing ‖ X − C 0 ‖ ≥ γ , we ensure that: 

rcsin 

( √ 

3 δC 

‖ X − C 0 ‖ 

)
≤ arcsin 

(√ 

3 δC 

γ

)
. (15) 

This now defines a uniformly continuous function since the re-

ationship between δC and εC is independent of X . More explicitly,

f a precision of εC ∈ ]0, π /2] is desired, one may set δC = 

γ√ 

3 
sin εC 

o guarantee a minimum branch size, hence guaranteeing the con-

ergence of the algorithm. 

By combining the above lemmas, the following result is ob-

ained: 

heorem 1. Let R 0 , R be rotation matrices and r 0 , r their corre-

ponding axis-angle representations. Further, let C 0 , C ∈ R 

3 . Then, for

ny point X ∈ R 

3 : 

 r 0 − r ‖ ∞ 

≤ δR ∧ ‖ C 0 − C ‖ ∞ 

≤ δC 

⇒ ∠ (R 0 (X − C 0 ) , R (X − C )) ≤ εR + εC , (16) 

here εR = 

√ 

3 δR and εC = arcsin 

(√ 

3 δC 
γ

)
. 

The proof follows by combining Lemmas 1 and 2 with the tri-

ngle inequality: 

 (R 0 (X − C 0 ) , R (X − C )) ≤ ∠ (R 0 (X − C 0 ) , R (X − C 0 )) 

+ ∠ (R (X − C 0 ) , R (X − C )) 

≤ εR + ∠ (X − C 0 , X − C ) ≤ εR + εC . (17) 

.2. Function bounds 

In this subsection, the bounds defined in Section 4.1 are related

o the objective functions described in Section 3 . Assume we are

inimising the trimmed objective (2) with the angular distance

easure for point features (3) . It is required to determine upper

nd lower bounds for (2) when the pose space SE(3) is bounded.

t each stage in the BnB algorithm, the pose space will be divided

p into cubes, where we consider jointly a rotation cube centred at

 0 of half side-length δR and a camera centre cube centred at C 0 of

alf side-length δC . 

To compute the upper bound for (2) using points (3) the ob-

ective function is simply evaluated at (R 0 , C 0 ) . To compute the

ower bound the expression is derived by evaluating the function at

(R 0 , C 0 ) and subtracting the maximum amount by which the func-

ion may deviate within that branch. Denote z(ε) = εR + εC and

ence, the lower bound is obtained as: 

k 
 

i =1 

∗

min 

j∈{ 1 ...M} max 
{

0 , ∠ (R 0 (Y j − C 0 ) , X i ) − z(ε) 
}
. (18) 

he lower bound for lines (4) is derived in a similar way; the an-

les for each of the two terms in (4) are bounded in the same
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Algorithm 1: Nested BnB algorithm to compute optimal rota- 

tion and camera centre. 

Input : 2D and 3D feature sets, initial rotationand camera 

centre cubes �R and �C , desired accuracy ε. 

Output : Optimal rotation r res and camera centre C 

res . 

Set U O = + ∞ , L O = 0 . 

Insert �R with priority L O into priority queue Q R . 

while ( U O − L O > ε) do 

Remove rotation cube with lowest lower bound from Q R 

and sub-divide into 8 sub-cubes. 

foreach sub-cube ω R do 

Compute upper bound U I and corresponding optimal 

C 

res 
I 

by calling Algorithm 2with r 0 at centre of ω R , 

rotation uncertainty εR = 0 , current best error U O 

andinner bound accuracy εI . 

Compute lower bound L I by calling Algorithm 2with r 0 
at centre of ω R , rotation uncertainty εR = 

√ 

3 δR , 

current best error U O andinner bound accuracy εI . 

if U I < U O then 

Set U O = U I , r 
res = r 0 and C 

res = C 

res 
I 

. 

Run local refinement (see Section 4.4) and update 

U O , r 
res and C 

res if better solution found. 

end 

if L I ≤ U O then 

Insert ω R with priority L I into Q R . 

end 

end 

Set L O to lowest lower bound value in Q R . 

end 

Algorithm 2: BnB algorithm to compute optimal camera cen- 

tre given rotation. 

Input : 2D and 3D feature sets, initial camera centre cube �C , 

rotation r 0 , rotation uncertainty εR , current best error 

U O , desired accuracy εI . 

Output : Lower and upper bounds L I and U I on error and 

corresponding optimal camera centre C 

res 
I 

. 

Set U I = U O , L I = 0 . 

Insert �C with priority L I into priority queue Q C . 

while ( U I − L I > εI ) do 

Remove cube with lowest lower bound from Q C and 

sub-divide into 8 sub-cubes. 

foreach sub-cube ω C do 

Compute upper bound U I using (18) with z(ε) = εR . 

Compute lower bound U I using (18) with 

z(ε) = εR + arcsin 

(√ 

3 δC 
γ

)
. 

if U I < U I then 

Set U I = U I and C 

res 
I 

= C 0 (centre of ω C ). 

end 

if U I ≤ U I then 

Insert ω C with priority U I into Q C . 

end 

end 

Set L I to lowest lower bound value in Q C . 

end 

 

c  

b  

w  

s  

s  
manner (by εR + εC ). Hence, the lower bound for (2) using lines

(4) is obtained as: 

k ∑ 

i =1 

∗

min 

j∈{ 1 ...M} 

(
max 

{ 

0 , λ
∣∣∣π

2 

−
(
∠ (R 0 d j , n i ) − z(ε) 

)∣∣∣} 

+ max 
{

0 , ∠ (R 0 (�
(L ) 
j 

− C 0 ) , P i ) − z(ε) 
})

. (19)

4.3. Nested branch-and-bound 

In a similar manner to [16] , we use a nested BnB structure for

efficiency: an outer BnB searches over the rotation space SO (3) and,

for each rotation branch, the upper and lower bounds are solved

by an inner BnB algorithm for the camera centre. In doing so, all

features may be rotated at the beginning of an inner BnB, leaving

only their translation component ( −R C ) to be added at each stage;

this is more efficient than directly implementing a full 6D search.

We shall now describe the computation of bounds in the inner BnB

algorithm. 

Firstly, the case for determining the upper bound of a rotation

cube is considered. To do so, the rotation is considered at the cen-

tre of the cube ( r 0 ) and the aim is to determine the minimum

value of (2) where r is fixed to r 0 and C is allowed to vary. The

upper bound used in the inner algorithm is simply the value of the

function at that point, i.e. computed using (18) with z(ε) = 0 , with

the lower bound computed using z(ε) = εC . There is an early bail-

out condition: if the inner lower bound is greater than the outer

upper bound then the inner BnB may terminate. This allows for

speed-up of the algorithm if the outer upper bound is small (i.e.

the algorithm is faster the closer it is to the optimal solution). 

Secondly the lower bound of a rotation cube is considered. The

same computation is performed as for the upper bound, but takes

into account the maximum amount the objective function can de-

viate within the rotation branch. Hence, the upper bound used

in the inner algorithm in this case is computed using (18) with

z(ε) = εR ; the lower bound with z(ε) = εR + εC . 

At this point we should point out some minor differences be-

tween our nested BnB implementation and that of Yang et al. [16] .

In [16] the authors compute the inner BnB to the same accuracy

as the outer BnB and return the (inner) upper bound as the bound

for that rotation branch. However, if the lower bound of a ro-

tation branch is being considered, clearly the inner lower bound

will be desired rather than the inner upper bound. Subsequently,

for the outer BnB to be calculated to an accuracy of ε the in-

ner BnBs will need to be computed to accuracy ε/ τ , where τ > 2;

this will ensure the difference between the outer upper and lower

bounds is less than ε, hence guaranteeing the convergence of the

algorithm. Detailed descriptions of the algorithms are provided in

Algorithms 1 and 2 and a proof of the convergence of the algo-

rithm is provided in a supplementary report [47] . 

4.4. Local refinement 

Similarly to other BnB approaches (e.g. [16] ) we locally opti-

mise the solution whenever a promising part of the search space

is found. If the output of the local optimisation results in a new

best solution (according to (2) ), the upper bound is updated with

the new solution. In our case, we use two refinement algorithms:

one with a large basin of convergence that does not assume cor-

respondences between features are known, and a more precise re-

finement requiring known correspondences. The first refinement is

called whenever a solution is within 50% of the current best solu-

tion and a local refinement has not been called in a neighbourhood

of this point. The second refinement is called whenever a new best

solution is found (similarly to [16] ) and uses the correspondences

given by the trimmed nearest neighbours. 
For the first local refinement algorithm with a large basin of

onvergence we use SoftPosit in the case of either points, lines, or

oth [14,30] . In the case where both points and lines are used,

e modify the existing SoftPosit algorithm; specifically, the as-

ignment matrix is adjusted to account for both points and lines

uch that it is impossible to assign any weighting to a point-line
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orrespondence. For the second algorithm we use EPnP [48] for

oints and the approach by Kumar and Hanson [49] for lines. For

oth points and lines we use the approach by Dornaika and Garcia

50] that is based on the Posit algorithm [51] . 

It should be noted that none of these algorithms directly min-

mise the objective function defined in (2) and if local refine-

ent does not result in a better function value the algorithm will

ot update its best solution. Furthermore, it is not necessary to

erform local refinement since the approach will still eventually

nd the optimal solution without it. Despite this, these refinement

echniques allow the BnB algorithm to more efficiently find and

iscard local optima and concentrate on finding the global opti-

um. 

. Deterministic and probabilistic nested branch-and-bound 

ethods 

In Section 4.3 a nested BnB was proposed, where the outer BnB

s computed to an accuracy of ε by computing the inner BnBs to

n accuracy of εI = ε/τ with τ > 2. However, it is not necessary to

lways compute the accuracy of an inner BnB to ε/ τ and there is a

rade-off here: calculating the inner BnBs to a high degree of accu-

acy (low εI ) will result in tighter upper and lower bounds mean-

ng the outer BnB will converge in fewer iterations, however each

nner BnB will take more iterations. 

In this section, we shall present two variants of the algorithm

hat take advantage of the above insight by computing the inner

nBs to different degrees of accuracy ( εI ). Under an appropriate

hoice of εI , both variants retain the global optimality of the ap-

roach by ensuring the outer BnB converges to within ε. A detailed

nalysis proving the convergence of both variants is provided in

ur supplementary material [47] . 

For proposed variants of the algorithm, the accuracy of the in-

er BnBs ( εI ) is a function of ε, the current outer upper and lower

ounds ( U O and L O ), and the current inner upper and lower bounds

 U I and L I ) at that stage of the algorithm. For the first proposed

ariant the accuracy is computed in a deterministic way; εI is large

t the beginning of the algorithm and gradually decreases as it

rogresses. For the second variant, εI is computed probabilistically

hereby branches that look promising are evaluated to a higher

egree of accuracy (lower εI ) than those that do not. 

.1. Deterministic BnB 

The deterministic BnB that we propose initially computes inner

nBs to a large εI , and gradually decreases it to ε/ τ with τ > 2 as

he algorithm progresses. Hence, it terminates to the same accu-

acy as the original algorithm, despite computing many previous

ranches to a worse accuracy. 

At any stage in the algorithm the outer upper bound ( U O ) and

uter lower bound ( L O ) are known. Then we deterministically take

I = 

U O −L O 
τ as the accuracy to use for the inner BnB. This is for two

easons: firstly, it guarantees the difference between U O and L O to

ecrease as better parts of the search space are explored, i.e. the

lgorithm will continue to converge. Secondly, it naturally leads to

 final accuracy of ε/ τ , guaranteeing the same accuracy as the orig-

nal algorithm. To begin with, εI is set to an arbitrarily large num-

er, hence U O is quickly set to a reasonable value after the first

nner BnB. 

.2. Probabilistic BnB 

We furthermore propose a probabilistic BnB formulation that,

nformally, calculates an inner BnB to a high degree of accuracy if

t looks promising (e.g. it will lead to a new best solution) and a
ow degree of accuracy otherwise. More formally, we shall deter-

ine the trade-off between the amount of time taken evaluating

n inner BnB and the expected benefit of taking that amount of

ime. 

We shall assume for simplicity that there are two outcomes of

nterest for evaluating an inner BnB. When using the inner BnB to

etermine an upper bound the outcome of interest is whether or

ot it leads to a new global upper bound–if it does, this will speed

p the algorithm (since there is an early bail-out condition, see

ection 4.3 ) or the algorithm may potentially converge (i.e. termi-

ate). When using the inner BnB to determine a lower bound the

utcome of interest is whether the lower bound is high enough

uch that the branch may be discarded as this will further narrow

he search space. 

The probabilities for the outcomes of interest vary depending

n the accuracy εI that is desired. Denote the probability that the

utcome of interest occurs as p ( εI ) and the time taken to evaluate

he inner BnB to an accuracy of εI as t ( εI ). If the outcome of inter-

st occurs, assume the rest of the BnB algorithm takes time t 1 and

ime t 2 otherwise (hence t 1 < t 2 is assumed). Hence, the expected

mount of time taken is: 

 = (t(εI ) + t 1 ) p(εI ) + (t(εI ) + t 2 )(1 − p(εI )) . (20)

o determine εI that minimises the expected amount of time taken

e set the derivative of (20) to zero to give: 

(t 1 − t 2 ) p 
′ (εI ) + t ′ (εI ) = 0 . (21)

e shall assume that t ( εI ) ∝ 1/ εI because all bounds derived are

rst order bounds that scale linearly with respect to the branch

ize. Hence, (21) may be re-written to give 1 

ε2 
I 

∝ p ′ (εI ) . Integrating

oth sides gives the relationship 

I = 

a 

p(εI ) + b 
(22) 

or constants a and b . To guarantee the convergence of the algo-

ithm, we constrain the maximum value of εI to be 
U O −L O 

τ with

> 2. Furthermore, we set a minimum value of εI as ε/ τ for all

nner BnBs so that the algorithm does not spend too much time in

n inner BnB. 

These conditions may be substituted into (22) such that, when

p(εI ) = 1 , εI takes its minimum value of ε/ τ ; and similarly when

p(εI ) = 0 , εI takes its maximum value of 
U O −L O 

τ . These allow for

he constants a and b to be determined, yielding the relationship:

I = 

(U O − L O ) ε

τ ((U O − L O − ε) p(εI ) + ε) 
. (23) 

Computation of p ( εI ): If the inner BnB is being used to deter-

ine the outer upper bound (UB), we are interested in the prob-

bility that the inner BnB will find a new outer UB, i.e. p ( εI ) is

he probability that the inner UB is found to be less than U O when

valuated to accuracy εI . Conversely, if the inner BnB is being used

o determine the outer lower bound (LB), we are interested in the

robability that the inner BnB will lead to this branch being dis-

arded, i.e. p ( εI ) is the probability that the inner LB is found to be

reater than U O − ε when evaluated to accuracy εI . 

In either case, the estimate is determined by firstly considering

he optimal value of the objective function in the inner BnB, de-

oted g . At this stage, all that can be said is that g lies between

 I and U I . However, we have observed it to have a tendency to lie

ignificantly closer to U I than L I , i.e. L I is a very pessimistic lower

ound. 

The reason for this is that the lower bound computation in

18) or (19) are computed as the sum of minima, but it is very

nlikely that the summands simultaneously obtain their minimum

t the same point in space. It is however true that any one of the
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summands obtains its minimum value within the branch, reduc-

ing the inner UB by an approximate value r where r = 

U I −L I 
k 

, since

the difference between the inner UB and inner LB is split between

the k summands. The other k − 1 summands are very unlikely to

also obtain their minimum value at this point in the branch, and

we assume each summand to reduce the inner UB by a uniformly

distributed amount from the interval [ −r, r] at this point in the

branch. 

As a result, we assume the expected value of g to be U I − r, and

its variance is that of sum of k − 1 uniformly distributed variables

from the interval [ −r, r] . Using the central limit theorem, we ap-

proximate the distribution of g as: 

g ∼ N 

(
U I − r, 

k − 1 

3 

r 2 
)

. (24)

To use the distribution of g to estimate p ( εI ) where the inner BnB

is being used to determine the outer UB, we use the approxima-

tion: 

p(εI ) = P 

(
g < U O − εI 

k 

)
. (25)

(25) may be computed using the error function. To determine εI 

requires solving (23) and (25) simultaneously–we use an iterative

approach to this with initial condition p(εI ) = 0 . 5 . Where the inner

BnB is being used to determine the outer LB, we take p(εI ) = P (g >

 O − ε − (k −1) εI 
k 

) and proceed in a similar manner. 

6. Experimental evaluation 

We compare between the three proposed approaches: BnB, BnB-

D for the deterministic BnB, and BnB-P for the probabilistic BnB.

They are furthermore compared to existing methods for 2D–3D

feature matching without correspondences. Specifically, we com-

pare against the traditional RANSAC [13] algorithm, SoftPosit [14] ,

and the state-of-the-art BlindPnP [15] approaches. 

The structure of this section is as follows. In Section 6.1 we give

implementation details for all approaches evaluated in this section,

and in Section 6.2 the evaluation measures (accuracy and speed)

are described. Subsequently results are presented, in Section 6.3 for

synthetic data and in Section 6.4 for real data. 

6.1. Implementation details 

BnB/BnB-D/BnB-P: Few parameters need to be set for our glob-

ally optimal approaches, and we use the same parameters for all

experiments with the exception of k (the expected number of in-

liers). For the synthetic data, k is set to the exact number of inliers

(unless otherwise stated); for real data it is fixed to 25% of the

total number of 2D features. In (4) we use λ = 0 . 3 , and, for the

uniformly continuous bound, we take γ = 0 . 1 . We set ε = 0 . 0025 k

for where only point features are used, and ε = 0 . 006 k for when

line features, or both point and line features, are used (with the

exception of in Fig. 4 , where ε is a free parameter). For all ap-

proaches, the parameter τ setting the inner bound accuracy εI was

set to the limit case τ = 2 . Experiments confirmed the converge of

all the BnB variants under this setting. 

RANSAC: The RANSAC algorithm [13] relies upon hypothesising

transformations from minimal subsets and determining how many

inliers there are with respect to the hypothesised transformation.

In our case there is no inlier threshold as trimming is used, there-

fore the transformation that minimises (2) is taken. Since minimal

samples of inlying features typically do not produce optimal trans-

formations in the presence of noise, we use the LO-RANSAC algo-

rithm [18] . Alternative, more efficient variants of RANSAC are in-

applicable in our case. For example, PROSAC [52] relies upon the
imilarity of feature descriptors to obtain a better evaluation or-

er, however we assume no feature descriptors are used. Alterna-

ively, WALDSAC [20] evaluates the potential correspondences of

 transformation in an optimal order–this is difficult to apply in

ur case where a trimmed objective function is used. To determine

he transformation from minimal samples we use the approach by

neip et al. [53] in the case of points, and the approach by Dhome

t al. [54] in the case of lines. We do not test against RANSAC in

he case where both points and lines are present. 

SoftPosit: The SoftPosit algorithm has been implemented for

oints [14] and lines [30] . We extend it to the case where both

oints and lines are present by adjusting the assignment matrix

sed, such that it is impossible to assign any weighting to a point-

ine correspondence. It is run from a number of random starting

oints in SE(3) covering the same space the proposed BnB algo-

ithms search from. 

BlindPnP: The BlindPnP algorithm [15] has only been proposed

or points. Furthermore, it is observed that BlindPnP relies upon

he ability to use pose priors on where the possible camera pose

ay be – represented by a Gaussian Mixture Model (GMM) of typ-

cally 20 components. In their experiments the pose is constrained

uch that the camera lies on a torus around the 3D scene. How-

ver, it is often unrealistic to assume such prior knowledge can be

btained, and it is difficult to alter their approach to work with a

ignificantly larger number of priors over a greater space of SE(3).

herefore, for a fair comparison, our approach was altered to use

hese pose priors for some of the synthetic experiments. 

.2. Evaluation measures 

Throughout the experiments we aim to measure the accuracy of

he available algorithms, and the speed of the approaches, where

ossible. 

Accuracy: The accuracy is defined as the proportion of experi-

ents from which an inlying solution is produced by an algorithm.

 solution is deemed an inlier if the distance between the ground

ruth and estimated rotation, and ground truth and estimated cam-

ra centre, are both less than a given threshold. 

For the rotation, the angle between the ground truth and es-

imated rotations is required to be less than 0.1 radians to be

eemed an inlier. The angle between two rotations R a and R b is

omputed by constructing R c = R 

T 
a R b , and computing the angle of

otation of R c in its axis-angle form [40] . 

For the camera centre, the relative error between the two cam-

ra centres (expressed as ‖ C true − C ‖ / ‖ C ‖ ) is required to be less

han a threshold of 0.1 to be deemed an inlier, the same as in [15] .

owever, we note that the relative error between camera centres

s coordinate system dependent, therefore we also use the absolute

rror between the camera centres ( ‖ C true − C ‖ ). It will be made

lear which error on the camera centres is used in each case. 

Speed: Timings are obtained by running the algorithms on

ervers with 2 × 10 core CPUs running at 2.6 GHz. Note that

imings should be interpreted with care as they can only provide

 coarse estimate of algorithm performance being influenced by

erver load at the time of the experiments. To complement this, we

lso include information on the number of iterations as this pro-

ides a more meaningful basis for comparing the different BnB al-

orithms proposed. Both run-times and numbers of iterations have

igh variance, hence we report the three quartiles, and give the

roportion of experiments that converged within an iteration limit

denoted T I ). 

.3. Synthetic data 

In this subsection, we compare against existing approaches for

ynthetically generated data. However, to fairly compare against
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Fig. 4. Median number of iterations (first column) and run-time (second column) with bar showing first and third quartiles, proportion of trials that converged within the 

iteration limit (third column) and proportion of inlying solutions (fourth column) for BnB, BnB-D , and BnB-P across different levels of desired accuracy, for a feature size of 

50. No local refinement is used here. Each experiment was terminated after T I = 7 . 5 × 10 6 inner BnB iterations if it had not already converged by then. 
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ifferent approaches requires certain assumptions be placed on the

ata for each approach. For example, BlindPnP places a prior on

he camera pose; assuming it to lie on a torus around and fac-

ng the 3D scene, represented by a GMM of 20 components. How-

ver, RANSAC searches all potential correspondences regardless of

ose priors, hence, to give a fair comparison against RANSAC there

hould be very little prior placed on the camera pose. Therefore,

his section is split into two subsections; the first where pose pri-

rs are used, and the second where significantly fewer assump-

ions are placed on the camera pose. 

.3.1. Pose priors 

Throughout this subsection the accuracy and speed of the ap-

roaches are tested where pose priors are assumed. For a fair com-

arison with [15] , the pose priors are generated in the same way as

n [15] ; and the relative error between camera centres will be used

n this section to determine whether a solution is an inlier. Our al-
orithms are modified to use pose priors in the following way: the

nput to our algorithm is a set of branches corresponding to each

ose prior. Hence, each pose prior is defined by an initial rotation

ranch (centred at the prior) with each branch initiating its own

amera centre branch (centred at the prior). Due to the potentially

arge running times, the proposed approaches are terminated af-

er T I = 7 . 5 × 10 6 inner BnB iterations if they had not already con-

erged by then. For a fair comparison, RANSAC is also terminated

fter T I iterations. SoftPosit and BlindPnP are run 20 times; from the

entre of each of the GMM components. 

We generate the 2D and 3D features in a similar manner to

15] : firstly, we randomly generate a set of 3D features (points or

ines) and randomly choose a camera position in SE(3) from the

orus. A proportion of these 3D features are deemed inliers and

re projected onto the image. Noise is added to their position (the

ndpoints in the case of lines) of variance 2 pixels. A number of

utlying 2D features are then randomly generated on the image
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Fig. 5. Proportion of inlying solutions for all algorithms tested. From top to bottom: using points, using lines, using both. From left to right: 60% inliers, 40% inliers, 20% 

inliers. 
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such that the number of 2D and 3D features is equal (none of the

algorithms require the two feature sets to be of equal size–we sim-

ply test in this way for simplicity). 

In this subsection, three sets of experiments are performed. The

first is without local refinement ( Section 4.4 ), and is to test the

proposed deterministic and probabilistic BnB algorithms in isola-

tion without being affected by the other aspects of the algorithm.

Secondly, experiments are performed with local refinement, across

a range of feature quantities and proportion of inliers. Finally, we

present results of varying the expected number of inlier features
 k ) from their ground truth, since this cannot be assumed to be

nown in practice. 

Without Local Refinement: Initially we test the three proposed

pproaches ( BnB, BnB-D , and BnB-P ) without local refinement. In

his case, we test for a feature size of 50 (either points, lines, or

5 of each) for 40% inliers, for varying levels of accuracy ( ε). 30

rials were performed in each case. The results are shown in Fig. 4 .

ue to the high variance of timings obtained, the quartiles of the

umber of iterations and run-time are shown, along with the pro-

ortion of trials to converge within the iteration limit. Based on
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Fig. 6. Median number of iterations (first column) and run-time (second column) with bar showing first and third quartiles, proportion of trials that converged within the 

iteration limit (third column) and proportion of inlying solutions (fourth column) for BnB, BnB-D , and BnB-P across different assumed inlier ratios, for a feature size of 90. 

Each experiment was terminated after T I = 7 . 5 × 10 6 inner BnB iterations if it had not already converged by then. 
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F  
he median number of iterations, BnB-P performs the fastest, how-

ver its iteration count has higher variance than BnB-D . Both pro-

osed approaches ( BnB-D and BnB-P ) use fewer iterations than the

riginal BnB . All methods perform similarly well in terms of the

uantity of inlying solutions obtained. As could be expected; all

lgorithms converge faster where a lower accuracy (higher ε) is

esired, often to the detriment of the quality of the solution. 

With Local Refinement: Next we test with local refinement

 Section 4.4 ), against all other algorithms. The feature sizes range

rom 40 to 90, with inlier rates at 60%, 40%, and 20%. 30 trials were

erformed in each case. Results are shown in Fig. 5 . From these

raphs it is seen that our approaches are consistently more accu-

ate than the state of the art. Interestingly, our approach some-

imes does not get the right solution with 20% inliers, despite be-

ng globally optimal. It is in fact observed that, in some cases, it

btains a solution whose function value (by (2) ) is lower than the

unction value of the ground truth solution, despite being an out-
ying solution! This is indicative of the intrinsic difficulty of the

roblem, and the capacity of noise to redefine the global mini-

um. Also of note is the observation that RANSAC performs better

han the state-of-the-art approaches SoftPosit and BlindPnP . This is

argely due to the fact that it is run for a very large number of

terations–the same number that the BnB approaches are run for–

n order to compare it against BnB. However, in doing so it per-

orms a much larger search than SoftPosit and BlindPnP , both of

hich search locally from one of the 20 pose priors and are or-

ers of magnitude faster than RANSAC. Furthermore, RANSAC has

 much higher complexity ( O ( N 

4 log ( N )) than SoftPosit and BlindPnP

 O ( N 

3 )). 

Varying Expected Inlier Ratio: A potential point of concern is

hat the expected number of inliers, k , cannot be known before-

and. We therefore run experiments to test how the proposed al-

orithms cope when k is varied away from the true inlier ratio. In

ig. 6 we show results for a feature size of 90, for 40% inliers, for
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Fig. 7. Median run-time with bar showing first and third quartiles (left column), proportion of trials that converged within the iteration limit (middle column) and proportion 

of inlying solutions (right column) for RANSAC, BnB, BnB-D , and BnB-P across different feature sizes for inlier ratios of 40% (rows 1, 3, and 5) and 60% (rows 2, 4, and 6), 

where no pose priors are used. Results are given for points (top two rows), lines (middle two rows), and both points and lines (bottom two rows). Each trial was terminated 

after 10 0 0 s if it had not already converged by then. All experiments were performed on the same machine. 

 

 

 

 

 

 

 

 

 

e  

i  

i  

i  

e  

(  

(  

t  

T  
varying expected inlier ratio (15%–50%). 20 trials were performed

in each case. From these graphs it appears that varying the ex-

pected inlier ratio has little effect on the accuracy of the results,

with the vast majority of trials converging on the correct answer

for the expected inlier ratio anywhere between 25% and 50% (com-

pared to the true ratio of 40%). It is only when the expected inlier

ratio is very small (15% – 20%) that the algorithms fail, and this is

mostly in the case of point features. However, the number of iter-

ations the approaches take can vary drastically with respect to the
xpected inlier ratio. In particular, when the expected inlier ratio

s higher than the true ratio, the number of iterations significantly

ncreases. This could be due to the fact that, when the expected

nlier ratio is at or less than the true ratio, the ground truth pose

stimate is sufficiently small to warrant the algorithm to terminate

i.e. the ground truth pose estimate has objective function value in

2) less than ε). Thus, the algorithm may only have to find a solu-

ion with function value less than ε, without explicitly verifying it.

his is not always the case, particularly where only line features
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Fig. 8. Top : The 3D models used in the 2D–3D dataset. Bottom : An example image from each model used in the dataset. From left to right: Cathedral, Courtyard, Reception, 

Room, Studio . 

Fig. 9. Qualitative result for solutions returned using all methods on an image from Reception dataset. Blue features are 2D, green are 3D. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article). 
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Fig. 10. Qualitative result for solutions returned using all methods on an image from Room dataset. Blue features are 2D, green are 3D. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article). 
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used. 
are used and the number of iterations increases more gradually

with the expected inlier ratio, however it is a contributing factor. 

6.3.2. No pose priors 

For a fair comparison against RANSAC that searches over the

correspondences (and therefore searches over a large volume of

SE(3)), we test our approaches over a much larger prior volume.

Specifically, the data is generated by first constructing a random

camera pose from the space � := SO (3) × [ −0 . 25 , 0 . 25] 3 . The in-

lying 3D features are generated such that they project onto the

camera and lie in [ −1 . 5 , 1 . 5] 3 \ [ −0 . 75 , 0 . 75] 3 . The outlying 3D fea-

tures are uniformly generated in [ −1 . 5 , 1 . 5] 3 and the outlying 2D

features are uniformly generated on the image plane. 

In this case, we do not test against BlindPnP since we are unable

to adjust their approach to operate over a significantly larger prior

search space. We also do not test against SoftPosit : it is observed

that SoftPosit performs very poorly when the 3D features are so

close to the camera centre since it relies upon approximating per-

spective projection by an orthographic projection. For this reason,

SoftPosit is also not used as a subroutine for the BnB approaches in

this section. 
Experiments are performed for larger numbers of features

 150 − 350 ) for 40% and 60% inliers. Each trial is terminated after

0 0 0 seconds if it has not already converged by then. Therefore, all

xperiments were performed on the same machine, and as such,

nly 10 trials were recorded in each case. Due to the high variance

f timings, the median, and lower and upper quartiles of the time

aken are recorded, along with the proportion of trials to converge

ithin the time limit, as shown in Fig. 7 . The proportion of inly-

ng solutions is also shown on the right of Fig. 7 , where an inlying

olution is defined such that the angle between the hypothesised

otation and ground truth rotation is less than 0.1 and the abso-

ute error between the two camera centres is less than 0.05. The

bsolute error is used here due to the camera centres lying in a

eighbourhood of the origin (where the relative error is not mean-

ngful). 

Based on these results it can be seen that our approaches

erform favourably to RANSAC, particularly in the case of lines.

ANSAC performs better using points than for lines; this may be

ue to the different minimal solvers used in each case. The pro-

osed approaches BnB-D and BnB-P result in a significant speed-up

ver the original BnB , particularly when both points and lines are



M. Brown, D. Windridge and J.-Y. Guillemaut / Pattern Recognition 93 (2019) 36–54 51 

Fig. 11. Proportion of inlying solutions (%) returned per 3D model and per feature type for each scene. 
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.4. Real data 

In this section, we evaluate the performance of the registra-

ion algorithms on real data. Specifically, we are interested in us-

ng the real dataset (as shown in Fig. 8 ) that comprises five mod-

ls with between 7 and 11 images with known projection matri-

es per model. The features used here are salient points ( Sal-P ) by

55] and salient lines ( Sal-L ) by [56] ; denoted Sal-PL where a mix-

ure of the two are present. State-of-the-art feature detectors are

lso used here as GFT and Harris for 2D and 3D points and LSD

or lines; referred to as GL -P, GL -L , and GL -PL . The top-120 features

re used in 2D and the top-240 used from 3D; except where both

oints and lines are used where we take the top-80 points and

op-80 lines in 2D, alongside the top-160 points and top-160 lines

n 3D. 

The BnB methods proposed here require priors to be placed on

he camera pose. This should not be seen as a significant barrier to

he method; indeed, Moreno–Noguer et al. [15] assume the camera

o lie on a torus around the object, and Svarm et al. [57] assume

he 3D ground plane is known, and the orientation of the image

ith respect to the ground plane. In our case, we assume the cam-

ra centre to lie in a cube of diameter 1.5 m in the case of the

ndoor models ( Reception, Room , and Studio ), and a cube of diame-

er 5 m for the outdoor Cathedral and Courtyard models. We place

o assumption on the rotation parameters. Each trial is run for a

aximum of T I = 5 × 10 6 iterations for RANSAC, BnB, BnB-D , and

nB-P. SoftPosit is run for a maximum of 10 0 0 iterations from ran-

om starting locations in the prior so as to take a similar amount

f time to the other tested methods. 

Firstly qualitative results are presented. Figs. 9 and 10 show

stimated poses obtained from all five approaches, using the six

ypes of features. The globally optimal approaches all perform bet-

er than the sub-optimal RANSAC and SoftPosit , particularly in the

ase of lines. Furthermore, Sal-L is more robust in comparison to

L-L due to the tendency of GL-L to detect multiple lines in a

imilar location, whereas the Sal-L features are more representa-

ive of the scene. The problem is mitigated for GL-PL where the
omplementarity of the two feature types results in a more robust

bjective function. 

Secondly, quantitative results are presented, where we firstly

easure the proportion of inlying solutions returned. For this we

se a threshold of 0.1 radians for the angle between the rotations,

nd for the camera centre threshold we use a function of the prior

ize of the camera centre, so as to obtain a fair evaluation be-

ween models. For the prior camera centre to have volume d , we

ake threshold t such that 4 
3 πt 3 = 0 . 025 d, i.e. there is only a 2.5%

hance of obtaining the correct camera centre by chance. For the

utdoor Cathedral and Courtyard with prior camera centre over a

olume 125 m 

3 the inlier threshold is about 0.91 m, whereas for

he indoor Reception, Room , and Studio it is 0.27 m. Fig. 11 shows

he proportion of inlying solutions returned for the sets of 2D–3D

eatures for each model. Note that we compare against the differ-

nt registration approaches outlined in this paper, and the different

eature types. 

It is observed that the proposed globally optimal approaches

erform significantly better than SoftPosit and RANSAC . In partic-

lar, SoftPosit never gets the correct solution–this is in part due

o the high rates of outliers, and partly due to SoftPosit perform-

ng poorly whenever 3D features are close to the camera. BnB-D

nd BnB-P generally perform better than BnB since they are able to

earch the transformation space more quickly and are more likely

o find the correct solution within the iteration limit. Lines are sig-

ificantly more robust than points, with some improvement when

onsidering both types of features in the GL-PL case. The Room

odel sees the highest proportion of inliers, where all images were

egistered correctly using certain approaches. 

In contrast to the previous quantitative results in this paper, we

lso measure the quantity of inlying solutions when varying the

nlier threshold. In doing so, we jointly measure the accuracy of

he proposed approaches and the accuracy of the detected features.

he rotation and camera centre inlier thresholds are both varied,

here the camera centre threshold is based on the ratio of the in-

ier volume to the total volume of the camera centre prior (where

he ratio was 0.025 for results presented in Fig. 11 ). The results
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Fig. 12. Proportion of inlying solutions obtained when varying the inlier threshold. There are two graphs for each feature, for the rotation inlier threshold and camera centre 

inlier threshold. 
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re given in Fig. 12 where results are given per feature type, and

veraged across all datasets. 

Similar conclusions may be made as from the tables in Fig. 11 :

he proposed globally optimal approaches significantly outperform

he sub-optimal RANSAC and SoftPosit ; and lines are much more

obust than points. Sal-L features are registered more accurately

han GL-L - this may be due to GL-L detecting repetitive lines in a

imilar location and causing ambiguity in determining a correspon-

ence, while Sal-L detects a more representative set. On the whole

owever, GL-PL appears to perform the best, despite features that

ave lower 2D–3D repeatability. Due to the fact that GL-P outper-

orms Sal-P we are led to believe this may be due to the proposed

alient points being less suited to registration than corners. 

. Conclusions and future work 

This paper presented the first globally optimal framework for

D–3D registration where feature correspondences are unknown.

his framework introduced a family of methods, covering both de-

erministic and non-deterministic formulations, which are appli-

able to points, lines or a combination of the two, thereby max-

mising the use of available scene information and broadening the

ange of practical registration problems that can be tackled. Being

ased on BnB optimisation, the approaches have intrinsic guaran-

ees on global optimality. Furthermore, the proposed deterministic

nnealing and probabilistic formulations of nested BnB algorithms

ave the advantage of allowing for greater efficiency without loss

f optimality. This has resulted in algorithms that are significantly

etter than the state of the art, both in terms of accuracy and ro-

ustness to high outlier rates. These advances have been demon-

trated and experimentally evaluated on a range of synthetic and

hallenging real datasets, where significant improvements can be

bserved. 

An interesting avenue for future work would be to explore dif-

erent ways to apply a BnB algorithm to the problem and their

ffects on performance. Bazin et al. [35] solve geometry estima-

ion problems using BnB by relaxing non-linear constraints into

inear convex and concave envelopes from which upper and lower

ounds may be computed by linear programming techniques. Chin

t al. [42] explicitly search over feature correspondences; initially

ypothesising all correspondences and running a tree search to de-

ermine which are invalid. It is unclear at this stage which class of

lobally optimal method is preferable. However, we have presented

he first globally optimal approach to the 2D–3D registration prob-

em that is significantly better than the state of the art for the spe-

ific problem. 
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atasets used for this research are freely available under the terms
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