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Figure 1: A graphic representation of the proposed method. Helmholtz Stereopsis is used on the input reciprocal images to
compute the weights on a Markov Random Field graph. The output surface is obtained by performing global optimisation.

ABSTRACT
Many 3D reconstruction techniques are based on the assumption of
prior knowledge of the object’s surface reflectance, which severely
restricts the scope of scenes that can be reconstructed. In contrast,
Helmholtz Stereopsis (HS) employs Helmholtz Reciprocity to com-
pute the scene geometry regardless of its Bidirectional Reflectance
Distribution Function (BRDF). Despite this advantage, most HS
implementations to date have been limited to 2.5D reconstruction,
with the few extensions to full 3D being generally limited to a local
refinement due to the nature of the optimisers they rely on. In this
paper, we propose a novel approach to full 3D HS based on Markov
Random Field (MRF) optimisation. After defining a solution space
that contains the surface of the object, the energy function to be
minimised is computed based on the HS quality measure and a
normal consistency term computed across neighbouring surface
points. This new method offers several key advantages with respect
to previous work: the optimisation is performed globally instead
of locally; a more discriminative energy function is used, allowing
for better and faster convergence; a novel visibility handling ap-
proach to take advantage of Helmholtz reciprocity is proposed; and
surface integration is performed implicitly as part of the optimi-
sation process, thereby avoiding the need for an additional step.
The approach is evaluated on both synthetic and real scenes, with
an analysis of the sensitivity to input noise performed in the syn-
thetic case. Accurate results are obtained on both types of scenes.
Further, experimental results indicate that the proposed approach
significantly outperforms previous work in terms of geometric and
normal accuracy.
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1 INTRODUCTION
3D reconstruction techniques often rely on simplifying assump-
tions regarding the scene properties (e.g. surface appearance, its
reflectance model or its geometry) [Vogiatzis et al. 2006] or the
capture conditions (e.g. camera placement and motion or the illumi-
nation conditions) [Han and Shen 2015]. Among those, assumptions
on the surface reflectance are central to most reconstruction tech-
niques which usually either assume it follows a particular model
or is known a priori. Either type of assumption is problematic.
Estimating the specific surface reflectance properties of a scene
is very difficult in practice, as it requires estimation of the Bidi-
rectional Reflectance Distribution Function (BRDF) which is high
dimensional and hard to compute without dedicated apparatus (e.g.
a gonioreflectometer [Nevas et al. 2004; Ward 1992] or structured
light projector [Miyashita et al. 2014]). Consequently, restricting the
BRDF to follow a specific model is more commonly used, with the
Lambertian model being implicit in many algorithms. Under this
assumption, any deviations from the model (e.g. specular highlights
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in the case of the Lambertian assumption) result in some artefacts
or require a dedicated mechanism to reject outliers. Tackling this
restriction on surface reflectance is therefore critical to expand the
variety of scenes that can be reconstructed and advance the state
of the art in 3D reconstruction.

Helmholtz Stereopsis (HS) [Zickler et al. 2002] is a 3D recon-
struction technique that is agnostic to the scenes’ reflectance prop-
erties. It is based on Helmholtz reciprocity [Von Helmholtz and
Southall 1924], which consists in the formulation of a constraint
on the surface normal that is independent of the BRDF. Work on
this technique has been mostly limited to partial scene reconstruc-
tion (i.e. 2.5D reconstruction [Guillemaut et al. 2008; Roubtsova and
Guillemaut 2018]), while recent extensions to full 3D reconstruction
fail to guarantee global optimality [Delaunoy et al. 2010]. Further-
more, visibility is not handled in 2.5D reconstruction formulations
[Roubtsova and Guillemaut 2018] as all the cameras are confined to
one side of the object to avoid occlusions, while in 3D formulations
[Addari and Guillemaut 2019] it is computed approximately. This
is particularly problematic for generalisations to full 3D scenes
which may present severe occlusions and require a mechanism to
explicitly handle it.

In this paper, a novel approach based on HS is proposed together
with a technique to handle visibility in HS datasets. A graphic
representation of the proposed pipeline is shown in Figure 1. The
methodology consists in estimating the target surface by optimis-
ing a Markov Random Field (MRF) based on Helmholtz saliency
and normal consistency. The approach only requires a coarse ini-
tialisation to define the search space; this may be provided by a
Visual Hull (VH) or a rough reconstruction obtained from another
method. From this initialisation, two surfaces are found to rea-
sonably bind the search space and construct the MRF graph. An
energy function is then defined based on the quality and consis-
tency of the normals estimated using HS. As the energy function
used during optimisation is nonsubmodular, global optimality can-
not be fully guaranteed, however using a Tree Reweighted Message
Passing (TRW) algorithm allows to obtain a high quality solution
with partial guarantees on optimality [Kolmogorov 2013]. A new
visibility estimation approach is also proposed to tackle the lack
of geometric information on the scene. The method is based on
selecting the camera pairs that produce a surface normal with a
strong confidence measure for the hypothesised surface points. The
proposed approach is then evaluated qualitatively and objectively
against state-of-the-art results, significantly outperforming them
in terms of geometric and normal accuracy.

The rest of the paper is structured as follows. The next section
surveys the main 3D reconstruction approaches, highlighting their
dependency on the scene’s reflectance properties as well as the
state of the art in HS and its underpinning principles. Then, the
proposed methodologies are introduced, detailing the key concepts
of the reconstruction approach and the new visibility handling pro-
cedure used to enhance the results. A thorough evaluation follows,
comprising a qualitative analysis on both real and synthetic scenes
and quantitative assessment on the synthetic datasets. Finally, the
conclusions of this work are drawn and possible future directions
are discussed.

2 RELATEDWORK
2.1 3D Reconstruction Techniques
The most common 3D reconstruction techniques can be broadly
divided in three categories: Shape from Silhouettes (SfS), Multi-
View Stereo (MVS) and Photometric Stereo (PS).

SfS general principle consists in intersecting the set of visual
cones defined by backprojecting the object’s silhouette in each
image [Laurentini 1994; Liang and Wong 2010; Nasrin and Jabbar
2015]. Independence from the surface properties is the main advan-
tage offered by this class of methods as long as good background
segmentation can be obtained. They are however inherently lim-
ited as they only allow reconstruction of convex objects due to the
impossibility of visualising concavities in silhouettes.

Binocular and Multi-view Stereo methods [Seitz et al. 2006;
Szeliski et al. 2008] use point correspondences across images to
infer surface depth. Contrary to SfS they are not limited to the
reconstruction of convex objects. Nonetheless, the reconstructed
surfaces are often assumed to be Lambertian or sufficiently textured
to perform point matching across different views. This assumption
is the main drawback to classic stereo approaches as it is often vio-
lated. In [Lombardi and Nishino 2016; Oxholm and Nishino 2014]
surface reflectance is jointly estimated with scene geometry. The
technique consists in iteratively refining one term at a time by
relying on the previous estimate of the other term. This hinders
the results greatly, as each solution will only be as good as the
previously estimated other term.

A more reliable technique for surfaces with complex reflectance
is Photometric Stereo (PS) [Woodham 1980]. This family of ap-
proaches allows for reconstruction of non-Lambertian surfaces,
however the surface reflectance needs to be known a priori. There
are some exceptions such as [Chandraker et al. 2013], where image
gradients are used to perform surface reconstruction with unknown
reflectance. This method is however limited to isotropic BRDF. In
[Goldman et al. 2010], a set of predetermined BRDFs are used as a
basis and mixed to estimate surface reflectance and perform geo-
metric reconstruction, while in [Han and Shen 2015] a complex
set-up is presented to provide a very densely set of light and view-
ing directions. This allows to exploit specularities and shadows
produced to obtain the final solution.

In recent years Convolutional Neural Networks (CNNs) have
become ubiquitous in several computer vision applications. They
offer an important contribution to 3D reconstruction as they allow
for single-view scene computation. However, work in this area
is still constrained by the training data. In [Kar et al. 2015], the
proposed approach is solely able to perform reconstruction on
objects from a specific set of categories. In [Choy et al. 2016], the
limitation of object labels is overcome, however the results consist
in low resolution volumetric renditions of the analysed scenes.
Another contribution, proposed in [Firman et al. 2016], consists in a
probabilistic volumetric scene completion. Despite the potential of
CNNs based methods, they have yet to reach the level of accuracy
of other types of approaches when a larger number of images are
used.

None of these methods fully solve the problem for surfaces pre-
senting complex and varying reflectance. They mainly rely on sim-
plifying assumptions to constrain the problem. An alternative to
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Figure 2: Base HS set-up. A reciprocal pair of pictures is
taken by inverting camera and light positions. The surface
point BRDF is invariant in the two scenarios.

these techniques that allows to reconstruct surfaces with complex
BRDFs is HS.

2.2 Helmholtz Stereopsis
HS was first proposed by Zickler et al in [Zickler et al. 2002]. It con-
sists in using Helmholtz reciprocity [Von Helmholtz and Southall
1924] as a constraint to identify 3D points located on the surface of
an object and their corresponding normals. Helmholtz reciprocity
states that the measured BRDF at a surface point will stay constant
when inverting emittent and receiving directions. This BRDF in-
variance is exploited to compute surface information using multiple
pairs of images from which the point is visible. In its first formu-
lation, HS utilises a maximum likelihood formulation to find the
object’s surface, and no regularisation is performed to smooth the
obtained result, which can yield noisy and inconsistent solutions.

Before reviewing more recent work on HS, it is important to
introduce its main concepts, which will be referred to in the method-
ology section. A representation of the base set-up is shown in Fig-
ure 2. From this representation, it can be observed that given a
unit-strength point light source located at Or , the intensity of the
projection of point P measured at the viewing position Ol will be:

il = f (vr , vl ) ·
n · vr
|Or − P|2

(1)

where f (vr , vl ) is the BRDF at point P. Unit vectors vr and vl
respectively indicate lighting and viewing directions, while n is
the surface normal at point P. When switching camera and light
position, an equivalent equation can be found for the projection of
P at the viewing point Or .

As mentioned, Helmholtz reciprocity states that the BRDF of a
surface point remains invariant when inverting viewing and emit-
tent directions. In this set-up, this property translates to f (vr , vl ) =
f (vl , vr ). By applying substitution, the following can be obtained:(

il
vl

|Ol − P|2
− ir

vr
|Or − P|2

)
· n = w · n = 0 (2)

which indicates that vector w will be tangent to the surface and is
independent from the BRDF at point P.

By computing multiple vectors w from a series of reciprocal
camera light pairs for a fixed point P, the normal n can be obtained
as the vector perpendicular to all instances of w. Moreover, given
multiple hypotheses for the position of P, it is possible to compute
a confidence measure for each position, by measuring how reliable

the normal estimation is at each instance of P. In particular, if the
vectorsw are grouped as rows of amatrix, calledW, both the normal
estimate and its confidence score can be obtained by performing
Singular Value Decomposition (SVD):

SVD (W) = UΣVT (3)

the normal will be the last column of V, while the confidence mea-
sure can be obtained from the non-zero components of diagonal
matrix Σ.

Initial work on HS includes [Zickler et al. 2003] and [Tu and
Mendonca 2003], where a single pair of reciprocal images is used to
performHS. This is made possible by constraining the reconstructed
surface to have C1 continuity. In [Janko et al. 2004] radiometric
calibration is proposed to significantly improve normal estimation
through HS, while in [Guillemaut et al. 2004] the authors extend the
surfaces that can be reconstructed to strongly textured and rough
surfaces by computing HS on image patches instead of using single
pixel back-projection. Radiometric calibration is then proposed in a
different form in [Zickler 2006], where it is performed through the
observation of specular highlights across the Helmholtz image pairs.
Finally, in [Guillemaut et al. 2008] a different confidence measure
is proposed in the form of the radiometric distance function, which
considerably improves previous results using maximum likelihood.

An alternative to maximum likelihood for classic HS is first
proposed in [Roubtsova and Guillemaut 2017] and [Roubtsova and
Guillemaut 2018], where a maximum a posteriori formulation is
proposed in both white light HS and in a new approach named
colour HS, where the use of coloured lights paired with filtered
cameras allows to perform dynamic surface reconstruction. All the
aforementioned techniques are applied to 2.5D surfaces, and do not
handle visibility or occlusions in any way.

The first time HS is used to perform full 3D reconstruction is in
[Delaunoy et al. 2010], where gradient descent is proposed to per-
form the optimisation. The faces of the initial surface are iteratively
moved towards a lower energy solution. This method is prone to
optimising towards local minima, unless the initialisation is chosen
very close to the target surface. Two other approaches were then
proposed in [Addari and Guillemaut 2019], the first one consists in
fusing together multiple 2.5D surfaces taken from different points
of view, while the second one is based on volumetric optimisation
and uses a multi-labelled MRF to find the point in each voxel where
the surface is most likely to cross. Both methods use a maximum
a posteriori optimisation to produce their results, however global
optimality is not guaranteed in the first approach, while the second
approach fails to provide a good regularising term in its energy
function and is also impractical as it relies on Iterative Conditional
Modes (ICM) in its implementation, an exhaustive search optimiser.

3 METHODOLOGY
The key idea of the proposed methodology is to introduce a one
step approach to perform full 3D reconstruction from a coarse ini-
tialisation, providing a mechanism to perform global optimisation
and recover a solution with strong optimality properties through
the use of state-of-the-art MRF solvers. The target surface is ob-
tained through a maximum a posteriori approach using an MRF
graph. A new technique to handle visibility in HS datasets is jointly



CVMP 2019, Dec. 17–18, London, UK Addari and Guillemaut

l0

l1

ld-1

l2

l3

.
.
.

Figure 3: The labelling indicates 3D points positioned at
regular intervals between corresponding vertices from the
outer and inner surfaces.

proposed, based on selecting a small number of camera pairs that
produce the best HS confidence measure among all views.

The 3D reconstruction is performed through a pipeline that is
exemplified in Figure 1. The first step is to define the solution space
by producing two surfaces that contain the surface of the object.
The outer surface must encompass the object fully, although it is
not required to be a precise fit; while the inner surface must be
completely inside the surface of the object. Correspondences are
drawn between points on the two surfaces by performing surface
registration and are used to construct a multi labelled MRF graph.
Each pair of registered vertices from the two surfaces defines a node
in the graph, while the labelling corresponds to regularly spaced
intermediate points between the two vertices. In order to perform
the optimisation, an energy function is defined, based on an HS
confidence measure and normal consistency across the surface. By
minimising said energy function, the target surface is obtained.

3.1 Graph Construction
To initialise the method and identify the search space over which
the optimisation is performed, two surfaces are defined. The first
one corresponds to the outer boundary of the solution space and
must completely encompass the object. For instance, the VH of the
object or an accordingly dilated approximation, obtained from a
different technique, could be used. The second surface must instead
be completely inside the object, while maintaining a similar topol-
ogy to the outer surface; this can be achieved by carving the outer
surface.

In order to draw correspondences between the two surfaces,
the outer one is registered onto the inner one by using non-rigid
Iterative Closest Point (ICP) [Audenaert et al. 2019]. The use of a
non-rigid approach allows to match key features of the surfaces
despite their difference in scale. The result is a dense matching
between the two surfaces, where a point of the target surface is
necessarily found between each pair of registered vertices.

These correspondences are then used to construct an MRF graph.
Each pair of corresponding vertices between the two surfaces will
correspond to a node and its neighbours will be established depend-
ing on the surface topology. In practice, the surface is represented

as a 3D mesh from which each edge corresponds to a graph edge,
defining the neighbourhood of the two bound vertices. Each node
is then assigned a set of labels {l0, l1, ...ld−1}, where each label indi-
cates a 3D point on the segment connecting the two surfaces at the
node’s corresponding vertices. A labelling example is illustrated in
Figure 3. In particular, l0 will coincide with the vertex on the outer
surface, ld−1 with the corresponding vertex on the inner surface
and all the intermediate labels will be spaced regularly in between
them. In the following section, the energy function used to perform
the optimisation is detailed.

3.2 Energy Formulation
To reconstruct the target surface an energy function is minimised.
The function is composed of a data term, that expresses the likeli-
hood of finding the surface at a certain 3D point, and a smoothness
term which allows for a regular surface to be produced. The aim
of the optimisation process is to compute the label for each node
where the target surface is most likely to intersect the segment.
The 3D points defined by the labelling and the connections already
established between them are then used to reconstruct the output
surface.

The energy function is defined as follows:

E (L) = (1 − α )
∑
v ∈M

D (X (v, lv ))+

α
∑

v,w ∈NM

S (X (v, lv ),X (w, lw )) (4)

where L indicates the whole set of labels across all nodes, α is a
weighting factor to balance the effect of data and smoothness terms
and NM defines a property for which two vertices are neighbours
on the surfaceM.D and S are respectively the data and smoothness
terms, calculated for all the nodes and edges of the graph; while
the operator X (v, lv ) is used to identify node v 3D position when
it is assigned the label lv .

The data term is based on HS confidence measure, and computed
in a similar fashion to [Addari and Guillemaut 2019; Roubtsova and
Guillemaut 2018], with an additional term to prevent assigning
labels located outside the VH:

D (P) =




∞, if P < VH
1, if |vis (P) | < 3

e
−µ× σ2 (P)σ3 (P) , otherwise

(5)

where σ2 and σ3 indicate the second and third diagonal terms of
matrix Σ as computed in Equation 3 and vis (P) is the set of camera
pairs from which point P is visible. Points that are found to be
outside the VH are assigned an infinite weight, since the VH must
contain the object; while points that are not visible from enough
cameras are given a strongweight that still allows for self occlusions
to be reconstructed. The way visibility is handled in this approach
is explained in Section 3.3.

The smoothness term serves as a regularising weight to ensure
the surface is smooth and consistent with the photometric normals
calculated throughHS. It is based on a depth disparity measure, here
referred to as δ (V,W), calculated between pairs of neighbouring
nodes. δ (V,W) consists in the distance between a point and its
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Figure 4: Graphic representation of how the smoothness
term is computed. The point Wly is projected perpendicu-
larly to its estimated normal towards the segment ViVo and
the error is measured as the distance between the projection
and point Vlx .

predicted position based on the estimated normal of its neighbour.
It is calculated as follows:

δ (V,W) =
VW · n(W)
n(W) · s(V)

(6)

where VW indicates the vector connecting the two points and
s(V) is a unit vector representing the direction of the segment that
connects inner and outer surface at the node corresponding to point
V. The disparity error is computed as the difference between point
V and the projection of W perpendicular to its estimated normal
n(W) towards said segment. In Figure 4 it is shown a simplified
representation of the smoothness term calculation.

This term is a generalisation to a perspective sampling in full
3D of the depth disparity measure presented in [Roubtsova and
Guillemaut 2018]. Moreover, the error measure here presented is
more discriminative than the one presented in [Addari and Guille-
maut 2019], which is tied to the voxel size chosen and where strong
discontinuities do not result in a considerable error. In contrast,
the proposed distance penalises more heavily depth and normal
assignments which are inconsistent between neighbouring nodes,
being not bounded by the volume sampling resolution.

The smoothness term is then computed as the average of the
squared disparity terms for the two neighbours, and it is truncated
at a threshold of t2:

S (V,W) =



1
2 (δ (V,W)2 + δ (W,V)2), if δ (V,W) and δ (W,V) < t

t2, otherwise
(7)

The threshold is used to allow for natural discontinuities, and it is
also used where occlusions do not allowHS to produce an estimated
normal.

3.3 Visibility Computation
A probabilistic approach based on HS is here proposed to perform
visibility computation. In [Addari and Guillemaut 2019], visibility
is computed by approximating each point to the closest position
on the initialisation surface, and then using the same surface to
find occlusions. Similarly, in [Delaunoy et al. 2010] the surface
obtained at each iteration is used to compute visibility. In both cases,

Figure 5: Armadillo and Bunny dataset image with input
noise. The inset images showa comparison between the orig-
inal image and the one with input noise.

depending on the initialisation used or current solution, visibility
estimation is not robust and may consider cameras from which the
point is actually occluded. To avoid this, the following approach is
proposed.

A first selection of cameras is performed by approximating all
labels to their corresponding point on the outer surface, and comput-
ing occlusions for said point. A further selection is then performed
on these cameras by finding the k pairs that have the highest likeli-
hood of producing a good normal. In this paper, k was chosen to
be three since this is the minimum number of camera pairs needed
to perform HS. To do so, k pairs of the remaining cameras are iter-
atively selected randomly and the confidence measure is computed
for their corresponding W matrix obtained as shown in Equation 3.
The subset that minimises the following equation is then chosen:

min
c0, ...,ck−1

σ3 (Wc0, ...,ck−1 )

σ2 (Wc0, ...,ck−1 )
(8)

These cameras have a high likelihood of having full view of the
current point as they will have a strong agreement over the point
normal. Furthermore, selecting a fixed number of cameras for each
point provides the additional advantage of a more consistent con-
fidence score when computing the data term than using different
numbers of cameras for each point and speeds up computation.

3.4 MRF Optimisation
The final aspect taken into consideration in this methodology is
the technique that can be used to perform the final optimisation.
The energy function chosen to represent the problem violates the
submodularity constraint, and non submodular functions cannot be
properly minimised by classic graph-cut approaches as indicated in
[Kolmogorov and Rother 2007]. However, many techniques exist
to approximate the solution of a nonsubmodular function with
a high degree of confidence. The approach chosen in this paper
is TRW [Wainwright et al. 2005] in its more recent formulation
called Sequential Tree Reweighted Message Passing (TRW-S) [Kol-
mogorov 2006, 2013], which contrary to TRW guarantees that the
energy lower bound does not decrease during optimisation and
introduces the condition of weak tree agreement to identify local
maxima in the energy bound.
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Figure 6: Results obtained on the synthetic scenes from the evaluated methods.

4 EXPERIMENTAL EVALUATION
In this section the proposed approach is evaluated against the
following methods: ‘VH’ based on SfS; ‘Fused 2.5D HS’ and ‘3D
HS’ from [Addari and Guillemaut 2019] and an additional method
based on graph-cut which will be indicated as ‘Graph-Cut HS’. This
method is inspired by voxel carving from [Vogiatzis et al. 2007],
and it consists in estimating the voxel occupancy in a grid by per-
forming graph-cut on a binary labelled MRF. It is included here as
it provides a baseline, being a classical volumetric approach to 3D
reconstruction which we adapted to HS for comparison purposes.
The data term utilised here is the constant ballooning term and it
is only applied to outside voxels in order to avoid an empty solu-
tion. The smoothness term is applied at the edges of neighbouring
voxels and is based on the HS confidence measure. In particular, it
is computed as follows:

G (V ,W ) =



e
−µ× σ2 (P)σ3 (P) , if lV , lW
0, otherwise

(9)

where V andW are neighbouring voxels, P is the central point at
the boundary between the two voxels and lV indicates the labelling
of the node corresponding to V . In this method, the HS quality
measure is used as a regularising term for the surface and thus
calculated at the boundary. The optimisation is then performed to
compute the voxel occupancy and the 3D points at the boundary
are used together with the HS estimated normals to perform surface
integration.

4.1 Synthetic scenes
To produce a quantitative evaluation of the methods, the datasets
from [Addari and Guillemaut 2019] were used. They include two
synthetic scenes (Armadillo and Bunny) rendered with a physically
plausible engine so that Helmholtz reciprocity is respected. They
are both characterised by a specular BRDF. The dataset consists of
40 pairs of views acquired using cameras regularly sampled on a
sphere around the objects. All images were captured at a 1920×1080
resolution. For these scenes the analysis was performed by altering
the images with Gaussian noise to emulate a more realistic scenario.
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Figure 7: Error Maps for the synthetic scenes computed using Hausdorff distance.

In particular, a standard deviation of 0.1% of the full 16 bit image
range was used. The effect on the images can be observed in the
inset images in Figure 5.

The results for the synthetic scenes are presented side by side
with the Ground Truth (GT) in Figure 6. As it can be observed, the
‘VH’ method performs poorly, especially with regards to recon-
structing concavities. This is clearly shown by the lack of details
in both scenes. In comparison, the additional method ‘Graph-Cut’
is able to recover more surface details due to the use of HS for
normal estimation. This method, however, shows the limitations of
relying on conventional approaches such as the ballooning term
to regularise the HS saliency measure. The use of a separate step
to perform surface integration contributes to oversmoothing the
final results of this method. ‘Fused 2.5D HS’ achieves better results
with respect to the previous methods by introducing a tailored reg-
ularisation term enforcing the consistency of the depth and normal
estimates. Nonetheless, some artefacts are present on the surface
due to the fusion of the separately computed partial surfaces. While

this is somewhat mitigated by the use of Poisson surface recon-
struction, fine details present on the surfaces are lost in the process.
The results obtained by ‘3D HS’ overcome some of these limita-
tions by introducing a volumetric optimisation step on top of the
previous results. The use of ICM during optimisation is however
iterative and ultimately unable to fully retrieve minute concavities
present on the surfaces. As with the previous methods, ‘3D HS’ is
also further hindered by the use of Poisson surface reconstruction
after the optimisation is performed. The proposed method achieves
the complete retrieval of fine details from the surfaces such as the
shell grooves of the Armadillo and the facial features of the Bunny.

In Figure 7 a further comparative analysis can be done by ob-
serving the Hausdorff distance on specific areas of the scenes with
respect to the GT. In particular, it can be noted how critical areas
such as the shell of the Armadillo present minimal error in the
proposed approach as opposed to all other methods where its con-
cavities are not accurately reconstructed. Whereas in the Bunny
scene the main improvement can be observed in the ears, where
the error is significantly lessened.
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(a) Armadillo Geometric Accuracy
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(b) Bunny Geometric Accuracy

10 20 30 40 50 60 70 80 90 100
Percentage

0

10

20

30

40

50

N
or

m
al

 A
cc

ur
ac

y 
[d

eg
]

VH
Graph-Cut HS
Fused 2.5D HS
3D HS
Proposed

(c) Armadillo Normal Accuracy
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(d) Bunny Normal Accuracy

Figure 8: Geometric and Normal Accuracy graphs for the synthetic scenes.

To conclude the analysis on the synthetic scenes, we compute
the Middlebury geometric and normal accuracy [Seitz et al. 2006]
for all methods shown in Figure 8. These measures are performed
for each vertex in the resulting surfaces by selecting the closest
point on the ground truth and measuring the geometric and normal
differences. At the top, the scenes are analysed in terms of geometric
accuracy on all methods, while at the bottom the graphs show the
normal accuracy achieved. The graphs show how the geometric
and normal accuracies vary for each method as a wider percentage
of the surface is considered (shown on the horizontal axis). It can
be observed that the proposed method significantly outperforms
all other approaches by achieving a geometric accuracy at 90% of
0.17 mm and 0.32 mm respectively in the Armadillo and the Bunny
scenes. The normal accuracy is also significantly improved due to
the global approach to optimisation and the implicit performance
of surface integration during the MRF graph construction.

It must be noted that the results for the proposed approach pre-
sented in Figure 6 were rendered using the Helmholtz normals
estimated during optimisation. Performing the surface integration
jointly with the optimisation offers the unique advantage of preserv-
ing the photometric normals information at the same 3D locations
of all vertices in the final surface. An example of the difference
between performing flat shading and using the additional normal
information is shown in Figure 9.

4.2 Real scenes
To evaluate the approaches on real scenes, the dataset from [De-
launoy et al. 2010] was used. The two scenes (Fish and Dragon)
were chosen due to the strong specularities of the fish material and
the many self occlusions of the dragon. They are respectively com-
prised of 72 and 68 views acquired using a turn-table at a resolution
of 1104 × 828.

In Figure 10 the results obtained on these scenes from each
method are compared. As it can be appreciated, the ‘VH’ recon-
structions are particularly rough. This is due to a poor segmentation
of the data, which is especially challenging to obtain properly in
HS setups because of the change in lighting across different views.
The ‘Graph-Cut’ method fails to obtain a closed surface due to the
lack of views from the bottom side of the object, which results in
some artefacts on the lower part of the scenes. The ‘Fused 2.5D HS’
results are extremely noisy due to the superposition of multiple
2.5D surfaces that are incoherent. This can be observed especially
at the base of the tail fin of the Fish. The artefacts produced by the
fusion is partially mitigated in the ‘3D HS’ results, however the use
of Poisson surface reconstruction tends to smooth out some finer
details of the scene. Finally, the results from the proposed method
present an accurate reproduction of most minute aspects of the ob-
ject. In the Fish scene, the small cavity inside the eye is maintained
as well as the features on the side of the tail fin and the two small
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Figure 9: Comparison between using Flat Shading and
Smooth Shading using the estimated Helmholtz Normals.

concavities behind the dorsal fin. The high-frequency details of the
scales on the side of the object are also faithfully reconstructed,
while they are oversmoothed in the previous approaches due to
poor surface integration. In the Dragon scene, the scales motif on
the side is accurately reconstructed and more details can be seen
on the face with respect to what previous approaches achieved.

To summarise, the proposed approach produces significantly
more accurate results in comparison with the previous methods
considered. The disadvantages of a weak initialisation are overcome
with the use of the visibility handling approach, which also allows
to better handle occlusions.

5 CONCLUSIONS AND FUTUREWORK
In this paper, a BRDF independent approach for full 3D reconstruc-
tion was proposed. The method consists in a maximum a posteriori
optimisation based on HS. The method is initialised by defining a
solution space that fully encompasses the scene, represented as an
outer and inner surface. An MRF graph is then constructed inside
the solution space by assigning a node to each corresponding pair
of points on the surfaces; while the labelling indicates 3D points
in between corresponding nodes. An energy function based on
HS and normal consistency across neighbours is then computed
and minimised to obtain the output surface. Further, a new visi-
bility handling approach is proposed for HS datasets. Helmholtz

reciprocity constraints are used to compute a confidence score for
subsets of cameras, which allows to obtain visibility information.

The proposed approach allows to reconstruct scenes charac-
terised by complex and varying reflectance without prior knowl-
edge or assumptions about it, contrary to established techniques
such as MVS and PS. With respect to previous HS formulations,
this method does not require a fine initialisation and it computes
a solution that is partially guaranteed to be globally optimal. The
optimisation is not based on maximum likelihood, which does not
allow for surface regularisation and it avoids computing solutions
based on local minima which can happen when using iterative
approaches. The implementation is also more practical and efficient
with respect to the optimisation, contrary to previously proposed
approaches where exhaustive search methods were used. Finally,
the obtained surface is regularised directly during the MRF optimi-
sation by enforcing consistency across the estimated photometric
normals. This offers a strong advantage with respect to using addi-
tional surface integration techniques which tend to oversmooth the
surface, such as Poisson surface reconstruction. Such techniques do
not take full advantage of the normal information obtained through
HS due to recomputing the normals for the final topology.

Finally, the results here presented demonstrate that the overall
geometric and normal accuracy of this approach significantly out-
perform previous techniques based on HS. Sub-millimetre accuracy
is achieved on all synthetic scenes and normal fidelity is accom-
plished through the union of surface integration and HS normal
estimation. All results were computed on noisy input data, showing
that the proposed methodology is robust to it. This is attained as a
result of a discriminative regularising term.

In future work, the method could be extended to tackle capture in
less controlled scenarios. For example capture in outdoor conditions
provides a challenge due to the ambient illumination. Furthermore,
use of HS on dynamic scenes has been limited to 2.5D reconstruction
[Roubtsova and Guillemaut 2017] to date. The extension to full 3D
could be made possible via multi-spectral imaging using a larger
number of frequency bands or using temporal multiplexing.
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