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SECTION A. CORRELATION-BASED DNPRIOR AND INTEGRABILITY

The normalised correlation angle φph−g is:

φph−g = π−1
∣∣arcsin(nprj,x · tx)∣∣ ,

where tx = ((δx)2 + (z2 − z1)2)−
1
2 [δx, 0, (z2 − z1)]> and nprj,x = (n2x + n2z)

− 1
2 [nx, 0, nz]

>. The absolute value operator is
introduced for consistency with the original cosine-based formulation of the correlation angle in Equation (8) of the paper in
the φph−g range of [0, π2 ]. Normals outside of the range point into the surface and can be eliminated as inconsistent prior to
optimisation. Hence, we can write:
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=
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=
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δx2

(
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)2
1

1 + g2x,1

=
( z2−z1δx − gx,1)2

( z2−z1δx − gx,1)2 + ( z2−z1δx gx,1 + 1)2

=
eHorn1,dn

eHorn1,dn + ( z2−z1δx gx,1 + 1)2
.

The resulting relationship of the correlation-based DNprior Ecorrdn to EHorndn is complex:

Ecorrdn =
1

2π2

∣∣∣∣∣∣∣arcsin

√√√√ eHorn1,dn
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
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+
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
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SECTION B. MRF PARAMETER α OPTIMISATION

The graphs show the Middlebury depth accuracy at threshold of 90% as a function of relative data/smoothness weighting
parameter α for different priors and datasets. Middlebury accuracy of xmm at threshold th = N% indicates that N% of
reconstruction vertices lie within xmm of the ground truth:
Seitz, S., Curless, B., Diebel, J, Scharstein, D., Szeliski, R. ”A Comparison and Evaluation of Multi-View Stereo Reconstruction
Algorithms”, CVPR, pp.519-528, 2006.
The α parameter optimisation sweep is performed on data significantly corrupted by Gaussian noise (normalised noise variance
of 0.001 i.e. ±2072 intensity levels).
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Example intensity images for the synthetic objects from the main paper are presented below to give an indication of the
geometry, reflectance and the degree of corruption by Gaussian noise of these datasets.

sphere pear bunny
Further, we show the following mesh reconstructions (visualised with flat shading) for the noise corrupted synthetic data
corresponding to the depth/normal error analysis presented in Figure 3 and Table 1 of the main paper (parameters per
prior/dataset as in the paper).

ML Nprior Dprior corr.DNprior dist.DNprior
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SECTION C. SURFACE RECONSTRUCTION RESULTS

This section compares the performance of standard HS (ML) and the proposed Bayesian HS with different priors (Nprior,
Dprior, corr.DNprior and dist.DNprior) on real datasets shown below, specifically the four datasets from the main paper (teapot1,
teapot2, doll and vase) and four additional datasets (billiard, cup, mannequin and teddy). The datasets are versatile featuring ob-
jects that are smooth and (largely) untextured (teapots, billiard), heavily textured (cup, vase), of intricate geometry (doll), in pos-
session of fine structure (teddy) and uncommon reflectance properties by virtue of complex material (polystyrene mannequin).

teapot1 teapot2 doll vase

billiard cup mannequin teddy
In addition, the proposed integration-free approach to final surface assembly is compared against Poisson Surface Recon-

struction (M. Kazhdan, M.Bolitho and H.Hoppe, ”Poisson surface reconstruction” in SGP, 2006, pp. 61-70) and the method
of Nehab et.al from: D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi, “Efficiently combining positions and normals
for precise 3D geometry” pp. 536-543, ACM SIGGRAPH, 2005. As the differences in performance between the method of
Nehab et.al and the proposed approach without explicit integration are subtle some close-ups are presented at the end of the
section.

The order of result presentation (vertically, top to bottom):
A. depth maps;
B. RGB normal maps
and the final surfaces per reconstruction method for different integration approaches, viewing angles and shading:
C. no explicit integration (proposed) with flat shading1 (front)
D. no explicit integration (proposed) with smooth shading2 (front);
E. no explicit integration (proposed) with smooth shading (side);
F. Poisson Surface Reconstruction with smooth shading (front);
G. Poisson Surface Reconstruction with smooth shading (side);
H. Nehab et.al with smooth shading (front)
I. Nehab et.al with smooth shading (side).

Parameter α per prior is as specified in Fig.5 of the main paper. Reconstruction volume sizes are specified below per dataset.

1i.e. rendered using geometric normals
2i.e. rendered using photometric normals
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teapot1, Reconstruction volume |V |: 150mm× 200mm× 80mm;
ML Nprior Dprior corr.DNprior dist.DNprior
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teapot2, Reconstruction volume |V |: 120mm× 200mm× 120mm;
ML Nprior Dprior corr.DNprior dist.DNprior
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doll, Reconstruction volume |V |: 125mm× 125mm× 70mm;
ML Nprior Dprior corr.DNprior dist.DNprior
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vase, Reconstruction volume |V |: 190mm× 130mm× 120mm.
ML Nprior Dprior corr.DNprior dist.DNprior
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billiard, Reconstruction volume |V |: 60mm× 60mm× 35mm.
ML Nprior Dprior corr.DNprior dist.DNprior
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cup, Reconstruction volume |V |: 125mm× 125mm× 70mm .
ML Nprior Dprior corr.DNprior dist.DNprior
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mannequin, Reconstruction volume |V |: 210mm× 160mm× 100mm.
ML Nprior Dprior corr.DNprior dist.DNprior
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teddy, Reconstruction volume |V |: 170mm× 180mm× 80mm.
ML Nprior Dprior corr.DNprior dist.DNprior
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This is a closer look at the performance of the method of Nehab et.al (left-hand side) vs. no explicit integration (right-
hand side) (proposed). Both methods perform very well. On careful inspection of the close-ups however one will notice that the
proposed integration-free approach produces somewhat sharper features e.g. eyebrows, eye sockets, face-to-bonnet transition.
This is manifested through deeper feature shading in the meshes and more pronounced normal field fluctuation across the
surface (i.e. sharper colour variations around the features) in the rgb normal maps of the proposed method.

close up of reconstructed mesh: doll view nr. 1, DNprior, smooth shading

RGB normal map of the close-up

close up of reconstructed mesh: doll view nr. 2, DNprior, smooth shading

RGB normal map of the close-up
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SECTION D. SURFACE INTEGRATION FROM SURFACE NORMALS

This section compares the performance of five state-of-the-art direct normal field integration methods for surface assembly from
the reconstructed point cloud. The integrated point clouds are reconstructed by standard HS (ML) and the proposed Bayesian
HS with different priors (Nprior, Dprior, corr.DNprior and dist.DNprior).

The integration methods (vertically, top to bottom) are:
diffusion tensor (Diffusion);
energy minimisation (EM);
Frankot-Chellappa (FC);
least squares (LS);
M-estimator (M-est);
For further details of the integration methods and their implementation the reader is referred to:
A. Agrawal, R. Raskar, and R. Chellappa, “Surface reconstructions from a gradient field?”, pp.578-591, ECCV, 2006.
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Frontal view
ML Nprior Dprior corr.DNprior dist.DNprior
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ML Nprior Dprior corr.DNprior dist.DNprior
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Frontal view
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Frontal view
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Frontal view
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Frontal view
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Frontal view
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Frontal view
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Frontal view
ML Nprior Dprior corr.DNprior dist.DNprior

D
iff

us
io

n
E

M
FC

L
S

M
-e

st

Side view
ML Nprior Dprior corr.DNprior dist.DNprior

D
iff

us
io

n
E

M
FC

L
S

M
-e

st


