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Abstract Helmholtz Stereopsis is a powerful technique for
reconstruction of sceneswith arbitrary reflectance properties.
However, previous formulations have been limited to static
objects due to the requirement to sequentially capture recip-
rocal image pairs (i.e. two images with the camera and light
source positions mutually interchanged). In this paper, we
propose colour Helmholtz Stereopsis—a novel framework
for Helmholtz Stereopsis based on wavelength multiplexing.
To address the new set of challenges introduced by mul-
tispectral data acquisition, the proposed Colour Helmholtz
Stereopsis pipeline uniquely combines a tailored photo-
metric calibration for multiple camera/light source pairs,
a novel procedure for spatio-temporal surface chromaticity
calibration and a state-of-the-art Bayesian formulation nec-
essary for accurate reconstruction from a minimal number
of reciprocal pairs. In this framework, reflectance is spatially
unconstrained both in terms of its chromaticity and the direc-
tional component dependent on the illumination incidence
and viewing angles. The proposed approach for the first time
enablesmodelling of dynamic sceneswith arbitrary unknown
and spatially varying reflectance using a practical acquisi-
tion set-up consisting of a small number of cameras and light
sources. Experimental results demonstrate the accuracy and
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flexibility of the technique on a variety of static and dynamic
sceneswith arbitrary unknownBRDF and chromaticity rang-
ing from uniform to arbitrary and spatially varying.
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1 Introduction

3D reconstruction has been an active research area in com-
puter vision in the past decades due to the high demand for
it in numerous industrial applications. For example, mod-
ern heritage preservation projects set high standards for
geometric accuracy on challenging data striving for sub-
millimetre resolution accuracy and impeccable global shape.
Real objects oftenhaveunknowncomplex surface reflectance
with a non-trivial (non-Lambertian) and possibly spatially
varying model. There is also much interest in capturing
dynamic often non-rigid deformation. This paper tackles the
combined challenge of dynamic scene reconstruction with
complex arbitrary spatially varying reflectance properties.

Shape-from-Silhouette (Baumgard 1974; Matusik et al.
2000; Lazebnik et al. 2007; Liang and Wong 2010) is a
classical geometric technique that is independent of surface
reflectance. However, the resolution of structural concavi-
ties in the visual hulls (Laurentini 1994) is poor compared
to intensity-based methods. The well-established intensity-
basedmethods for 3Dgeometry reconstruction such as binoc-
ular (Scharstein and Szeliski 2002) and multi-view (Seitz
et al. 2006) conventional stereo as well as photometric stereo
(Woodham 1989; Basri et al. 2007; Higo et al. 2010) have
demonstrated remarkable sub-millimetre geometric accura-
cies on tailored data. The known limitation of both methods
however is the inherent inability to deal with unknown sur-
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face reflectance. Conventional stereo requires Lambertian
(purely diffuse) bi-directional reflectance distribution func-
tion (BRDF) being unable to establish featurematches where
surface specularities occur. Photometric stereo on the other
hand requires the a priori knowledge of the BRDF that
must be acquired as pre-processing by a cumbersome and
often insufficiently accurate method. There has been work
focussing on combining the global accuracy of conventional
stereo with the high frequency detail obtained from shading
cues (Ahmed et al. 2008; Wu et al. 2011) or photometric
stereo (Vlasic et al. 2009; Anderson et al. 2011) to increase
modelling accuracy. However, the inherent limitations due to
complex reflectance remain. To our knowledge, Helmholtz
Stereopsis (HS) is the only technique in existence capable of
accurately modelling surfaces with an arbitrary BRDF. The
technique’s acquisition set-up, proposed in the seed paper by
Zickler et al. (2002), features reciprocal image pairs charac-
terised by themutually interchanged camera and light source.
The reciprocity at acquisition allows to formulate a depth
constraint with the dependence on the BRDF factored out
and hence an expanded range of applicability.

Standard HS has been shown to achieve excellent results
for rigid scenes with complex a priori unknown reflectance.
However, standard HS is not scalable to dynamic scenes
since it does not permit simultaneous acquisition of the mini-
mum of three reciprocal pairs due the performed swap of the
camera and light source. In this paper, we propose Colour
Helmholtz Stereopsis (CL HS) where wavelength multiplex-
ing is used to enable simultaneous capture of reciprocal pairs.
Signal separation is achieved by using three cameras and
three coloured light sources and treating each camera chan-
nel as a separate image (Fig. 5). The novel approach permits
instantaneous capture of three reciprocal pairs but it also
introduces a new set of challenges. The challenges are the
acute need for photometric calibration of capturing equip-
ment, signal dependence on surface chromaticity and the
ambiguity introduced by the drastically reduced number of
reciprocal pairs per point.

We address all these challenges by developing a com-
plete practical pipeline for CL HS. The pipeline includes
a generalisation of the white light photometric calibration
procedure from Jankó et al. (2004) to accommodate for chro-
matic characteristics of the cameras and multispectral light
sources. As surface colour will affect inter-channel compat-
ibility we propose a novel method for surface chromaticity
estimation. Spatially varying chromaticity in dynamic scenes
is addressed in a procedure for propagation of statically
estimated characteristics throughout the sequence. Together
the processes of chromaticity estimation and propagation
define a procedure for spatio-temporal chromatic calibra-
tion of the surface and permit chromatically unconstrained
dynamic scene reconstruction. The freedomof the directional
behaviour of surface BRDF (i.e. unconstrained surface mate-

rial) is inherently a given as the reflectance-independent HS
constraint is used for reconstruction. Further, to cope with
the reduced number of reciprocal pairs, we incorporate the
state-of-the-art Bayesian HS formulation from Roubtsova
and Guillemaut (2014a) into the pipeline. To the best of our
knowledge, our CL HS pipeline is the first approach capa-
ble of reconstructing dynamic scenes with arbitrary spatially
varying reflectance.

2 Related Work

The dominance of intensity-based reconstruction methods in
terms of accuracy and practicality is evident from their ubiq-
uitous use. Their conventional weakness is the reliance on
the knowledge of surface-specific BRDF to separate geom-
etry from reflectance in the sampled intensity response. The
original formulations of both conventional and photometric
stereo assume Lambertian reflectance. There has been note-
worthy work aiming to generalise both techniques to more
realistic cases.

Jin and colleagues (Jin et al. 2003, 2005) explicitly model
non-Lambertian behaviour of scenes for conventional stereo
at the expense of increased computational complexity. They
propose a novel model-to-image discrepancy measure for
non-Lambertian surfaces based on the more generic Ward’s
reflectance model (Ward 1992) and formulated via the radi-
ance tensor containing multiview reflectance observations
per surface patch. In Oxholm and Nishino (2014), instead of
explicit reflectance modelling, the approach aims for joint
global estimation of shape and reflectance properties from a
set of multiview images. Although the idea of joint infer-
ence of unknown parameters (i.e. shape and reflectance)
based on observable characteristics (i.e. intensity and the
illumination conditions) is plausible, the two estimates will
remain inherently linked and the shape cannot be expected
to be more accurate than the reflectance estimate whose
full complexity is difficult to model with a finite number of
images. Although conceptually interesting, non-Lambertian
multiview conventional stereomethods comparatively do not
deliver particularly accurate or high resolution results.

The topic of unconstrained reflectance has attracted even
more attention in photometric stereo as unlike conventional
stereo the technique is not fundamentally limited by the
Lambertian assumption. One early attempt was the so-called
photometric stereo by example (Hertzmann and Seitz 2005).
The idea is to find relationships between surface normals
and observed reflectance behaviour by sampling reference
objects of known geometry under different illumination. The
test object’s material is considered a linear combination of
reference materials. With the assumption not being funda-
mental, the work cannot claim to have universally solved
reflectance model dependence. In a more principled man-
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ner, Vogiatzis and Hernández (2012) address the difficulty
of non-Lambertian reflectance in photometric stereo by fit-
ting a Phong model (Phong 1975) based on the outliers from
the Lambertian model estimation procedure. For problem
tractability, the assumptions of monochromaticity and (spa-
tially and spectrally) constant specular model parameters
are made. In the formulation with the more complex Phong
reflectancemodel, the model’s invertibility issues are tackled
using the mentioned assumptions. The formulation is inno-
vatively non-Lambertian, but the scene reflectance model
allowed by the method is far from arbitrary but in fact limited
by the many assumptions made (Phong model, monochro-
maticity, constant specular components parameters etc.) in
pursuit of tractability and well-posedness of the mathemati-
cal formulation of the photometric stereo problem.

The aforementioned generalisation of conventional and
photometric stereo to specific more complex models (Ward,
Phong etc.) is not as fundamentally principled as the tech-
niques based on generic or at the very least very common
properties of the entire BRDF class. Specifically, these meth-
ods exploit various symmetries in the BRDF behaviour. In
the photometric stereo approach of Holroyd et al. (2008)
common half vector symmetries are utilised. The symme-
tries extend to some anisotropic microfacet-based models
(Cook and Torrance 1982; Ashikmin et al. 2000; Ngan
et al. 2005) but do not cover the entire class of physi-
cally valid BRDFs with the method having been found to
fail in the face of retro-reflection and surfaces with asym-
metric micro-geometries. Further, there has also been work
(Alldrin and Zickler 2008; Zhou et al. 2013) on exploit-
ing isotropy (i.e. rotation invariance about the normal) - a
symmetry which, although not generic, is common for a
majority of real-life reflectance models. The assumption of
isotropy in photometric stereo allows the construction of the
so-called iso-depth contours where all points are equidistant
from the image plane. In Zhou et al. (2013), impressively
accurate geometries of non-Lambertian surfaces are recon-
structed by propagation of sparse surface points obtained by
structure-from-motion along the constructed iso-depth con-
tours. Relying on isotropic reflectance to build continuous
iso-depth contours, these methods will also be sensitive to
cast shadows and inter-reflections, not to mention the obvi-
ous requirement of an isotropic, although otherwise arbitrary,
BRDF. In Tan et al. (2011), in addition to the wide-spread
isotropy property of the BRDF, its generic symmetry of
reciprocity is employed in the context of calibrated anduncal-
ibrated photometric stereo. Although clearly a step towards
generalisation to a wider class of BRDFs, the reliance of the
proposed system on non-generic isotropy through its joint
constraints with reciprocity still imposes limitations on the
type of reflectance. To the best of our knowledge, no photo-
metric stereo algorithm based solely on generic symmetries
of the BRDF has ever been proposed.

In contrast, the generic reciprocity is the sole core under-
lying symmetry in an independent reconstruction technique
of Helmholtz Stereopsis (HS). The use of the reciprocity
symmetry exclusively makes HS the only intensity-based
technique fundamentally independent of the BRDF. The sub-
sequent development of HS, after its introduction by Zickler
et al. (2002), included work on extensions for wider applica-
bility and increased geometric accuracy. Guillemaut et al.
(2004) propose modifications for accurate geometric recon-
struction of highly textured surfaces by HS. In Guillemaut
et al. (2008), a more physically meaningful HS constraint
resulting in a Maximum Likelihood (ML) surface is formu-
lated. In our recent work (Roubtsova and Guillemaut 2014a,
2015) Bayesian formulation of HS with a tailored prior
jointly optimising depth and normal information is shown
to produce superior results to the original ML formulation in
Zickler et al. (2002). Variational approaches optimising over
the entire surface (Delaunoy et al. 2010; Weinmann et al.
2012) have been proposed in order to extend HS to full 3D
reconstruction. In Weinmann et al. (2012) HS is aided by a
structured light technique to identify a consistent point set
defining the reconstruction volume.

A major limitation of HS has always been its controlled
set-up and the slow acquisition speed. Some of the impracti-
calities preventing the reconstruction technique from gaining
wider popularity are addressed by the HS inventors in the
follow-up papers. Firstly, Zickler et al. (2003) propose a
binocular variant of HS where geometry is reconstructed
from a single reciprocal pair by a differential approach. A
partial differential equation of depth as a function of sur-
face coordinates with prior initialisation produces a family of
solutions, the ambiguity ofwhich is resolved through amulti-
pass optimisation. Although an excellent example of applied
optimisation, binocular HS simplifies HS acquisition at the
cost of vastly increased computational complexity and intro-
duced reconstruction ambiguities. Another paper by Zickler
(2006) addresses automatic online geometric calibration of a
HS set-up using stable regions of interest: the texture-based
and the inherent to HS specularity-based features. The paper
proposes a method to avoid pre-calibration of the set-up but
does not deal with the bottleneck issue of tedious sequential
image acquisition limiting the scope of the technique to static
scenes.

The same paper also touches upon automatic radiometric
calibration of HS set-up using the inherent specularity-based
features. In Zickler (2006), the definition of radiometric cali-
bration is limited tomeasuring relative intensities of isotropic
light sources. Provided the assumptions of equal camera
responses and no spatial source intensity variation hold, such
limited calibration is sufficient. A more general radiomet-
ric set-up calibration for HS, which does not rely on these
assumptions, was proposed by Jankó et al. (2004). Using a
sequence of localised calibration planes Jankó et al. calibrate
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for a spatially varying joint parameter describing sensitivity
and radiance of a collocated camera and light source pair.

Unlike Zickler et al. (2003) who for HS simplification
modify the reconstruction algorithm only, we propose a
complete novel pipeline tailored for processing HS input
for the first time acquired using wavelength multiplexing.
Simultaneous multi-channel acquisition for dynamic scene
reconstruction is known from the well-established Colour
Photometric Stereo (CL PS). In Hernández et al. (2007)
and its later extension Brostow et al. (2011), CL PS is
shown to produce impressive reconstructions of dynamic
scenes with untextured (uniform albedo) objects, specifi-
cally cloth deformation and facial expression sequences. By
enforcing spatio-temporal smoothness, Jankó et al. (2010)
extend the technique to textured surfaces, hence allowing
spatial reflectance non-uniformity due to its chromaticity
component. Both works however are limited to a Lambertian
reflectance at each surface point, regardless whether chro-
maticity is uniform or allowed to be spatially varying across
the surface. The applicability of the extension of CL PS to the
non-Lambertian case from Vogiatzis and Hernández (2012)
is limited because it relies on the accuracy of the data-driven
fitting of a specular model whose variability is heavily con-
strained for mathematically tractability.

In contrast to the discussed state-of-the-art Colour Pho-
tometric Stereo techniques, the proposed Colour Helmholtz
Stereopsis (CLHS) is valid for any arbitrary spatially varying
BRDF. In this paper, we decouple the chromaticity compo-
nent of the BRDF from the component dependent only on
the illumination incidence and viewing angles (henceforth
referred to as the directional component). As in standard HS,
the directional component of BRDF in CL HS is made irrel-
evant by virtue of reciprocity at acquisition. In order to deal
with the non-uniformity of the chromaticity component of the
BRDF, we estimate chromaticity by integrating a novel cali-
bration procedure into the pipeline. This builds upon our pre-
vious work (Roubtsova and Guillemaut 2014b, 2015) where
static per-pixel surface chromaticity calibration permitted
spatially varying chromaticity in static single-shot recon-
structions only anddynamic scene reconstructionwas limited
to datasets with spatially uniform known chromaticity. The
current work generalises the scope to dynamic scenes with
spatially varying chromaticity by introducing an additional
procedure for temporal propagation of surface chromaticity
estimated in a reference frame. Spatio-temporal chromaticity
calibration allows any arbitrary a priori unknown chromatic
characteristics of the surface. Furthermore, likewise for inter-
channel signal consistency at acquisition, in the proposed
pipeline we generalise the previous work in photometric cal-
ibration of Jankó et al. (2004) to multiple multi-chromatic
cameras and light sources. Hence by combining the unique
properties of HS with a novel multi-spectral acquisition set-
up and calibration procedures we obtain a method uniquely

permitting dynamic scene reconstruction with fully arbitrary
spatially varying BRDFs i.e. unconstrained in terms of both
the directional and chromaticity components.

3 White Light Helmholtz Stereopsis

Since this paper proposes amulti-spectral variant ofHelmholtz
Stereopsis (HS), as a reference we first of all introduce and
formalise the theory of traditional White Light Helmholtz
Stereopsis (WL HS) together with its calibration procedure
from Jankó et al. (2004). Subsequently, we shall use the
same formalisation framework to present our novel Colour
Helmholtz Stereopsis (CL HS) formulation.

To introduce HS, let us define a perspective camera C and
a light source S centred at c1 and c2 respectively. In standard
HS reciprocal image pairs are acquired with any C and S
respectively first at locations c1 and c2 and then at c2 and c1
i.e. with the camera and light source mutually interchanged
(Fig. 1). As in Jankó et al. (2004) we define the concept
of Helmholtz camera R as a collocated camera and light
source at some position c. Traditionally, the collocation is
virtual by either the camera/light source swap or by using a
turntable to move the scene relative to the set-up (Fig. 1). Let
us define virtually collocated (C,S) pairs, R1 = (C1,S1)

and R2 = (C2,S2) located at c1 and c2 respectively. The
arrangement facilitates Helmholtz reciprocity as one image
of the reciprocal pair is obtained with C1 and S2 at c1 and c2
and the other with C2 and S1 at c2 and c1 respectively. Note,
in contrast to the state-of-the-art, the proposed method of CL
HS presented in the next section will be based on physical
collocation of C andS whichmeans two distinct cameras and
two light sources per pair of Helmholtz cameras (Fig. 4).

Regardless whether it is realised through physical or vir-
tual collocation, Helmholtz camera R is photometrically
characterised by its radiance and sensitivity functions, ρ and
σ respectively.With virtual collocation (i.e. a single pair of C
and S) the sensitivity distributions ofR1 andR2 will be the
same but the radiances may vary due to different light source

Fig. 1 Reciprocal intensity sampling in White Light Helmholtz
Stereopsis—virtual camera-light source collocation
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Fig. 2 Geometry of the photometric calibration procedure by Jankó et
al. for WL HS

orientations. With physical collocation the photometric dis-
tributions ofHelmholtz cameras are uncorrelated. Bothρ and
σ vary as a function of ray v from the surface point x to R
(Fig. 2).

Hence, intensity i1 at surface point x in the reciprocal pair
image I1 acquired withR2 as the light source andR1 as the
camera can be expressed (Jankó et al. 2004) as:

i1 = ρ2(v2)σ1(v1) fr (v2, v1)
v2 · n

‖c2 − x‖2 (1)

where ρ2(v2) is the radiance ofR2 along v2 and σ1(v1) is the
sensor sensitivity of R1 along v1. Intensity i2, which is the
projection of x in the other reciprocal pair image, is obtained
by interchanging the vector indices 1 and 2 in (1). Jankó et al.
(2004) propose a method for photometric calibration ofR in
traditional WL HS. Specifically, for R1 and R2 as in Fig.
2 Jankó et al. (2004) calibrate for the radiance to sensitivity
ratios:

μk(vk) = ρk(vk)
σk(vk)

, k = 1, 2 (2)

In WL HS the wavelength variable ω can be omitted from
the BRDF expression fr (v2, v1) at a given surface point
because of the constant spectral characteristics of sampling
illumination and the camera sensor. Since the sampling and
sampled frequencies are known to be constant, the reflec-
tion/absorption behaviour due to the chromaticity of the
sampled point is consistent and the BRDF varies only with
the local directional variables v1 and v2. The whiteness
of the sampling spectral characteristics ensures a sufficient
response for the widest range of surface colours. Reciprocal
intensity measurements i1 and i2 can be combined into a sin-
gle surface normal constraint eliminating the dependence on
theBRDF fr (v2, v1) at that point. The elimination is basedon
Helmholtz reciprocity (Helmholtz 1925) - the invariance of
optical behaviour inmedium of a light ray and its reverse. For
BRDF the implication first observed by Zickler et al. (2002)
is that: fr (v1, v2) = fr (v2, v1). Via this equality reciprocal
intensities i1 and i2 expressed as in (1) are linked, incorporat-
ing photometric calibration μ, to give the normal constraint:

Fig. 3 Maximum likelihood reconstruction in standard White Light
Helmholtz Stereopsis: a conceptual illustration

(
μ1(v1)i1
‖c1 − x‖2 v1 − μ2(v2)i2

‖c2 − x‖2 v2
)

· n = 0. (3)

The constraint is instrumental in the process of geometric
reconstruction whereby for each surface point the most plau-
sible depth is selected from a set of hypotheses. The principle
of depth selection is illustrated in Fig. 3. Depth hypotheses
dp are sampled along the projection ray rp to pixel p of the
virtual camera (an orthographic one is shown for simplicity).
For each dp constraints w · n = 0 as in (3) are acquired in
different reciprocal camera-light source configurations. As
originally described in Zickler et al. (2002), in standard HS
at least three constraints in the form w · n = 0 are required
in order to solve Wn = 0 where W is the constraint matrix
with w as rows. Singular value decomposition of W , i.e.
SV D(W ) = U�V�, gives a normal estimate n (the last
column of V ) and the confidence value for the estimate: σ2

σ3
where σ2 and σ3 are the second and third diagonal values of
� respectively. A high σ2

σ3
means that all constraints w are

confined to two dimensions (i.e. co-planar), as at hypothe-
sis dp,A in Fig. 3, with σ3 tending to zero. The normal to
the constraint plane in this case is well-defined. A low σ2

σ3
,

as at hypothesis dp,B in Fig. 3, would indicate a lack of
constraint coplanarity due to the arbitrary w orientations. In
reconstruction by HS, the depth hypothesis dp of the highest
confidence value with its corresponding normal n is assigned
to the surface location projecting to pixel p. In the standard
formulation of HS the depth assignment is performed in a
maximum likelihood (ML) manner i.e. optimising the depth
at each surface location independently.

4 Colour Helmholtz Stereopsis

We propose a novel approach that generalises Helmholtz
Stereopsis (HS) to dynamic scenes—Colour HS (CL HS). In
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Fig. 4 Reciprocal intensity sampling in Colour Helmholtz
Stereopsis—physical camera-light source collocation

Fig. 5 Experimental set-up of Colour Helmholtz Stereopsis

this section, the complete pipeline for CL HS featuring tai-
lored calibration procedures and data processing algorithms
is presented and formalised building on the notation pre-
sented in Sect. 3.

We expand the theory of WL HS to formalise CL HS.
In CL HS, the (C,S) pairs are realised by physical colloca-
tion (Fig. 4). The light sources such as S1 and S2 in Fig. 4
are characterised by different frequency spectra (Fig. 5). For
consistent frequency-independent response, chromaticity of
the reconstructed surface must be factored into the inten-
sity equation. Unlike WL HS, in CL HS the illumination
frequency ω cannot be omitted from the expression for the
BRDF at x: fr (v2, v1, ω). We propose to decompose BRDF
fr into its directional component fd(v2, v1), dependent only
on v1 and v2 (i.e. the viewing and illumination incidence vec-
tors respectively) and the component related to the surface
point chromaticity p(ω). We define the local chromatic con-
stant p1,2 as the reflectance coefficient due to the inherent
colour of a point when seen by camera C1 and lit by light
source S2. The camera is of importance due to possible dif-
ferences in spectral sensor characteristics. For the coefficient
to be 0, the illumination spectrum must exactly match the

point’s chromatic absorption spectrum. This is unlikely to
happen exactly, although the signal quality on non-dominant
channels will degrade for points of purer (R, G or B) colours.
Incorporating chromaticity p1,2, we can re-write intensity
equation in (1) for CL HS as:

i1 = ρ2(v2)σ1(v1)p1,2 fd(v2, v1)
v2 · n

‖c2 − x‖2 (4)

For CL HS the normal constraint from (3) becomes:

(
μ1(v1)i1

p1,2‖c1 − x‖2 v1 − μ2(v2)i2
p2,1‖c2 − x‖2 v2

)
· n = 0 (5)

Note that no assumptions are made about the directional
component of the BRDF fd - it can be arbitrary and uncon-
strainedly spatially-varying because due to the sampling
configuration in HS consistency of the directional compo-
nent within each reciprocal pair is guaranteed: fd(v2, v1) =
fd(v1, v2). The constraint in (5) is formulated bymaking use
of this fd equality, the knowledge of which stems from reci-
procity, a fundamental property of the BRDF, and not from
any surface homogeneity assumption.

Traditional HS set-ups feature just one camera-light
source pair where either the equipment moves relative to
the scene or the static scene is moved relative to the set-
up for reciprocal pair acquisition. CL HS we propose is a
static configuration consisting of three pairs of collocated
cameras and light sources. The cameras are each equipped
with an RGB sensor while the light sources all have different
RGB characteristics. Each collocated pair of an RGB camera
and a single-frequency-spectrum light source can be viewed
as a multi-spectral Helmholtz camera (or, alternatively, as
three single-frequency Helmholtz cameras of which only
two are used in the set-up, as the camera will never receive
the same frequency it transmits). The three light sources
in the set-up must have the minimum frequency overlap to
ensure signal separation. Signal separation allows simulta-
neous acquisition of the three required reciprocal pairs for
normal estimation and enables generalisation to dynamic
scenes.

An overview of the reconstruction pipeline for CL HS is
given in Fig. 6. Bayesian HS from Roubtsova and Guille-
maut (2014a) is the reconstruction core where depth labels
are assigned in a global optimisation based on the resid-
ual of SVD decomposition of sampled HS constraints and
a tailored prior. As well as the experimental set-up, Sect. 7
discusses Bayesian HS in more detail as a means of enabling
high reconstruction accuracy under the restriction of three
reciprocal pairs per frame. In contrast to WL HS, in CL
HS spatially distributed and camera dependent photometric
and chromaticity calibration parameters are essential to com-
pute HS constraints. Photometric calibration is particularly
important for CL HS due to the physically different cameras
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Fig. 6 Overview of the pipeline for Colour Helmholtz Stereopsis (CL
HS). The core part in the middle computes the point cloud by MRF
optimisation based on the data term from SVD decomposition of CL
HS constraints and a tailored prior. Depending on its resolution, the
generated point cloud is integrated into a mesh either by Poisson sur-
face reconstruction (low resolution point cloud) or, without explicit

integration, by direct meshing of vertices by proximity, based on the
known geometric relationships between them in the reconstruction vol-
ume (high resolution point cloud). The top and bottom branches of the
pipeline are respectively the photometric and chromaticity calibration
procedures essential for consistency in CL HS constraint formulation

and multi-spectral light sources of the approach. Note that
Helmholtz cameras in CL HS are essentially characterised
as a sensor of one light frequency spectrum and a transmit-
ter of another in different reciprocal pairs. Section 5 details
how we generalise the algorithm from Jankó et al. (2004) for
photometric calibration in CL HS and provides insights into
its application in practice. Section 6 introduces the spatio-
temporal procedure we devised for chromaticity calibration
applicable to both static and dynamic scenes. The proce-
dure eliminates intensity inconsistencies within the same
reciprocal pair by a priori estimating surface chromaticity
observedby each camera for the spectrumof each light source
and, if necessary, propagating the parameters to any unseen
frame.

5 Helmholtz Camera Photometric Calibration

Jankó et al. (2004) photometrically calibrate each Helmholtz
camera R1 using another Helmholtz camera R2 by linking
HS constraints, obtained by gradual displacement of a cal-
ibration plane, via the ray of incident illumination v2. In
the original paper, the calibration was performed in a highly
controlled environment with the plane translated in fixed
vertical increments with a single camera and a light source

Fig. 7 Geometry of the calibration procedure

suspended overhead and manually centred over the turntable
with the plane (Fig. 2). For photometric calibration in the
CL HS pipeline we went for a more freehand approach fea-
turing a hand-held calibration board which was randomly
moved within the reconstruction volume (Fig. 7). The cali-
bration board bore four black markers (Fig. 8) for 3D plane
localisation purposes. Specifically, detection, either manual
or automatic, of at least three of those markers in the cal-
ibration images allows one to determine both the position
and orientation of the calibration plane in 3D which defines
the plane’s surface points x and normal n in the calibration
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Fig. 8 Calibration boards as viewed by C1, C2 and C3

equations in this section. Our entire configuration consist-
ing of three multi-spectral Helmholtz cameras is calibrated
simultaneously.

As in Jankó et al. (2004) for every position j of the calibra-
tion plane Π j we establish a ratio of parameters μ1 and μ2

corresponding to theHelmholtz camerasR1 andR2 sampled
at a surface point x where rays v1 and v2 intersect (Fig. 7).
However, in CL HS, the resultant ratio κ is not the same as in
WL HS as it is derived from (5) rather than (3) incorporating
chromaticity:

κ(v1, v2 | Π j ) = p2,1
p1,2

μ1(v1)
μ2(v2)

= n�v2
n�v1

‖c1 − x‖2
‖c2 − x‖2

i2
i1

(6)

Effectively, in CL HS, we need to introduce the notion of
relative photometric parameter distributions μ′

1 = μ1
p1,2

and

μ′
2 = μ2

p2,1
capturing the radiometric properties of the acqui-

sition equipment as sampled on the calibration object of a
given reference chromaticity: p1,2 = pre f1,2 and p2,1 = pre f2,1 .
Thus κ(v1, v2 | Π j ) is a ratio of relative photometric dis-

tributions
μ′
1

μ′
2
. For simplicity, the chosen calibration object

is of spatially uniform chromaticity (except the masked out
black markers) i.e. pre f2,1 and pre f1,2 are constant for all surface
points.

Subsequently, point x on plane Π j is transferred onto
the plane in the new position Π j+1 by finding the inter-
section x′ of ray v2 with Π j+1. Hence for plane Π j+1 the

ratio κ(v21, v2|Π j+1) = p2,1μ1(v21)
p1,2μ2(v2)

is established sharing the
denominator with the corresponding relationship of plane
Π j . The shared denominator, togetherwith chromaticity con-
stancy, allows to obtain a photometric parameter relationship
r1(v1, v21) between two pixel locations (u1, v1) and (u21, v

2
1)

corresponding to rays v1 and v21 in the spatial photometric
distribution of R1:

r1(v1, v21) = κ(v1, v2 | Π j )

κ(v21, v2|Π j+1)
= p2,1μ1(v1)

p2,1μ1(v21)
= μ1(v1)

μ1(v21)
(7)

Let us consider a uniformly sampled grid of control points
m1 = [μ1(v1), μ1(v2), ..., μ1(vN)] sampled in the spatial
photometric parameter distribution μ1 (see Fig. 9). Equa-
tion (7) provides constraints on the set of control points of the
photometric map via bilinear interpolation in a linear system
of equations. We chose to use a simpler regularisation kernel
than Jankó et al. (2004) who perform bicubic interpolation

between control points. Specifically, the natural logarithm
of (7) is taken resulting in a single constraint on the control
points of the form:

λ1 − λ2 = (ai − bi)λ = δi (8)

where λ1 = ln(μ1(vx)) and λ2 = ln(μ1(v2x)) are the sample
point values (see Fig. 9), λ = [ln(μ1(v1)), ln(μ1(v2)), ...,
ln(μ1(vN))]� is the vector of variables (control points), ai
and bi are the bilinear interpolation coefficients from control
points to sample points and lastly δi = ln(r1(vx, v2x)). Per
sample point only four coefficients in interpolation vector
ai (or bi), specifically the ones corresponding to the four
closest control points (Fig. 9), will be non-zero. Each point
in the distribution is localised in the image domain by its
(u, v) pixel coordinates - hence the four grid control points
and the sample point coordinates are, respectively, (utl , vtl),
(utr , vtr ), (ubl , vbl), (ubr , vbr ) and (u, v) where due to the
grid sampling symmetry utl = ubl = u1; utr = ubr = u2
and vtl = vtr = v1; vbl = vbr = v2.With these definitions in
mind, the corresponding four non-zero bilinear interpolation
coefficients per sample point are defined as:

atl =
(

v2−v
v2−v1

) (
u2−u
u2−u1

)
,

atr =
(

v2−v
v2−v1

) (
u−u1
u2−u1

)
,

abl =
(

v−v1
v2−v1

) (
u2−u
u2−u1

)
,

abr =
(

v−v1
v2−v1

) (
u−u1
u2−u1

)
.

From a set of constraints as in (8) the resultant linear sys-
tem is:

(A − B)�(A − B)λ = (A − B)�Δ (9)

where A = [a0, a1, ..., aM]�, B = [b0,b1, ...,bM]� and
Δ = [δ0, δ1..., δM ]�. Having thus estimated all constrained
control points of the grid, a continuous photometric distribu-
tion can be obtained by bilinear interpolation between them.
In order to maximise the spatial coverage of the calibration,
interpolation does not require all four neighbouring control
points to be defined i.e. interpolation in the vertical or hori-
zontal direction only is also permitted.

It has perhaps not been made explicit in Jankó et al.
(2004) that Helmholtz cameras involved in a single recipro-
cal pair must be calibrated as a couple and not individually.
Also, in CL HS, any pair of photometric distributions
obtained will be relative to the calibration object (refer-
ence) chromaticity coefficients pre f1,2 and pre f2,1 as expressed
in the ratio of (6). Specifically, control point values m1 =
[μ1(v1), μ1(v2), ..., μ1(vN)]on the spatial photometric para-
meter distribution of Helmholtz cameraR1 are first obtained
by taking the exponent of λ from (9) and are subsequently
bilinearly interpolated to form a continuous photometric dis-
tribution μ1. Then the photometric distribution μ1,2 (i.e.
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Fig. 9 Estimation of the continuous spatially-varying pho-
tometric parameter distribution based on values m1 =
[μ1(v1), μ1(v2), . . . , μ1(vN)] of a regular grid of control points
defined in the image domain. For example, the sample point at (u, v)

corresponding to the sampling vector v2x will be expressed based on the

μ1 distribution values at the four corners (top-left, top-right, bottom-left
and bottom-right at respectively (utl , vtl ), (utr , vtr ), (ubl , vbl ) and
(ubr , vbr ) ) of its control point grid square weighted by the bilinear
interpolation coefficients. Vectors vx and v2x define two linked samples
in the photometric parameter distribution

distribution 2 derived fromdistribution 1) forR2 is expressed
by transfer of μ1 via (6):

pre f1,2

pre f2,1

μ1,2(v2) = 1

κ(v1, v2 | Π j )
μ1(v1) (10)

We can define the relative transferred photometric distri-

bution μ′′
1,2 = pre f1,2

pre f2,1

μ1,2 where the transfer is from R1 to

R2 and the relative aspect refers to the dependence of μ′′
1,2

on the reference chromaticity. Hence, the calibrated pair of
photometric distributions (μ1, μ

′′
1,2) as a whole retains the

dependence on the reference chromaticity of the calibration
object. The dependence is equivalent to calibrating ratios
μ′
1 = μ1

p1,2
and μ′

2 = μ2
p2,1

from Eq. (5) with p1,2 = pre f1,2

and p2,1 = pre f2,1 to result in:

(
μ′
1(v1)i1

‖c1 − x‖2 v1 − μ′
2(v2)i2

‖c2 − x‖2 v2
)

· n = 0. (11)

The equivalence of (μ1, μ
′′
1,2) to (μ′

1, μ
′
2) can be observed

by multiplying the homogeneous constraint in (11) through
by pre f1,2 . The relative photometric calibration parameters μ′

1
and μ′

2 fully calibrate the set-up for any surface of reference
chromaticity. In Sect. 6.1, it will be shown how the unde-
sirable dependence on the reference is neutralised in the HS
normal constraint by a corresponding relative chromaticity
estimation procedure removing all surface chromaticity lim-
itations.

Let us describe the procedure for distribution trans-
fer from μ1 to μ′′

1,2. Transferred control points m′′
1,2 =

[μ′′
1,2(v

∗
1), μ

′′
1,2(v

∗
2), ..., μ

′′
1,2(v

∗
N)] of the photometric cali-

bration of R2 are defined by a set of sampling vectors
[v∗

1, v
∗
2 ...v

∗
N] (the asterisk is added to differentiate the vec-

tors from those sampling the directly calibrated distribution).
The expression relating a point fromm′′

1,2 to the interpolated
photometric map μ1 of R1 is:

μ′′
1,2(v

∗
1) = μ1,2(v∗

1)
pre f1,2

pre f2,1

= 1

κ(v1, v∗
1 | Π j )

μ1(v1) (12)

where κ(v1, v∗
1 | Π j ) is a single constraint for parameter

transfer from R1 to R2. The constraint derived from sam-
pling geometry and observed intensities of a point defined by
the intersection of vectors v1 and v∗

1 on a given calibration
Π j is:

κ(v1, v∗
1 | Π j ) = n�v∗

1

n�v1
‖c1 − x‖2
‖c2 − x‖2

i2
i1

(13)

Note that v1 does not have to sample one of the control
points of the spatial photometric parameter distribution μ1:
any interpolated value of the distribution is a valid sample
for the parameter transfer onto R2. Just as in the direct cal-
ibration process, to maximise support in the transfer linear
system solved, multiple calibration planes Π j are used in
the transfer and non-control points μ′′

1,2(v
∗) /∈ m′′

1,2 of the
distribution μ′′

1,2 also give rise to constraints (13). For every
transfer sample, the computed κ constrains up to four control
points fromm′′

1,2 that are related to the sample point through
bilinear interpolation in thewaydefined in theN-dimensional
constraint vector ki (alongwith κ). The transfer linear system
solved is:
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Chromaticity
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propagated
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Reconstruction
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Photometric
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Fig. 10 Spatio-temporal chromaticity calibration pipeline. Chromatic-
ity in the reference frame is estimated per camera. The resultant
chromaticity maps (i.e. spatial chromaticity distributions) are aligned
with the reconstructed view. If a dynamic sequence is being recon-

structed, the aligned chromaticity maps are temporally propagated
throughout the dynamic sequence using dense point tracking by optical
flow

K�Km′′
1,2 = K�M1 (14)

where K = [k1,k2, ...,kM]� and M1 = [μ1
1, μ

2
1, ..., μ

M
1 ]

is a set of corresponding known M samples from the
previously directly calibrated distribution μ1. Values m′′

1,2
obtained through the transfer procedure described are dif-
ferent from m2 that could have been computed by direct
calibration of R2. The transfer procedure ensures mutual
consistency of m′′

1,2 and the directly calibrated m1. Just as
with the directly calibrated camera, the transferred control
points are bilinearly interpolated between to produce a con-
tinuous spatial distribution.

In contrast to Jankó et al. (2004), we have found that
for its accurate calibration a (multi-spectral) Helmholtz
camera must be observed in at least two (multi-spectral)
Helmholtz camera pairs as in Fig. 7. Jankó et al. (2004)
mention ill-posedness of the calibration problem when a sin-
gle Helmholtz camera pair is used due to constraints being
sampled along the projection ray and the linked samples
being along the same epipolar line. They however do not
deem multiple Helmholtz camera pairs essential using a
strong bicubic regulariser to address the ill-posedness. In
our case, we make the problem better posed by making
use of multiple pairs per multi-spectral Helmholtz camera
which are readily available in the set-up. The better posed-
ness allows us to work with a weaker bilinear regulariser thus
avoiding potential artefacts due to over-regularisation. Cal-
ibration of a multi-spectral Helmholtz camera rather than a
single-channel-sensitivity one, operates under the reasonable
assumption of the shared spatial sensitivity distribution of the
RGB sensors of a single physical camera C and simplifies the
problem from six to just three directly calibrated unknown
photometric distributions in the set-up (subsequently trans-
ferred for consistency onto their reciprocal pair partners as
discussed).

6 Surface Chromaticity Calibration

In this section, we propose a spatio-temporal chromaticity
calibration procedure applicable to dynamic as well as static
scenes. The overview of the procedure’s pipeline is presented
in Fig. 10. Its two main stages are the initial per camera
chromaticity estimation in the reference frame (Sect. 6.1)
and its subsequent temporal propagation (Sect. 6.2) to any
new frame provided sufficient overlap with the reference.
Both single-shot unseen (non-reference) static scenes as
well as entire sequences in dynamic scene reconstruction
can be served by the spatio-temporal chromaticity calibra-
tion approach. The method’s effectiveness in dynamic scene
reconstruction is demonstrated in Sects. 8.2.2 and 8.2.3 of
the evaluation.

6.1 Initial Spatial Estimation

In this section, a procedure for per-pixel chromaticity estima-
tion of the reconstructed surface is proposed. Since the three
light sources inCLHS are red (R), green (G) and blue (B), the
goal of the chromaticity calibration procedure is to compute
the triplet (p′

c,R, p′
c,G , p′

c,B) consisting of three chromaticity

coefficients relative to the reference (pre fc,R , pre fc,G , pre fc,B). The
triplet (p′

c,R, p′
c,G , p′

c,B) describes the relative reflectance
behaviour in response to red, green and blue illumination
spectra for a visible surface point x viewed by camera Cc
where c = {1, 2, 3}. It is assumed that the illumination spec-
tra relate to the spectral sensor characteristics of the three
cameras in the same way.

The calibration method is based on sampling the chro-
matic response of first a planar object with the chosen
reference chromaticity (pre fc,R , pre fc,G , pre fc,B) and then that of
the arbitrarily coloured object to be calibrated. Both the refer-
ence and the calibrated objects remain static during sampling
to facilitate per-pixel estimation. For sampling of chromatic
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(a) (b) (c)

Fig. 11 Reference and calibrated surface sampling for chromaticity estimation: a reference surface sampling; b calibrated surface sampling; c
per-pixel relative chromaticity estimation

response, both objects are sequentially exposed to red, green
and blue illumination from the same direction by changing
colour filters of a single static light source. The colour filters
used to sample chromatic response are subsequently intended
for data acquisition at reconstruction. The sum of the RGB
colour filter spectra defines white illumination in this con-
text. Let us formalise chromaticity estimation per pixel of
any Cc where c = {1, 2, 3} since each pixel in the procedure
is calibrated independently.

Consider the planar reference surface in Fig. 11a being
sampled by camera Cc for any c = {1, 2, 3} in the config-
uration of CL HS. A surface point on the reference object
xref with the orientation nref projects onto the camera sensor
pixel defined by vref1 . The point is illuminated by a single
light source Sl in the fixed position whose inherent radiance
distribution is sequentially coloured red (ρr ), green (ρg) and
blue (ρb) using filters for the purpose of chromatic response
sampling of xref . From (4) the image formation equations for
the per-channel intensity responses (ire fc(r),r , i

re f
c(g),g, i

re f
c(b),b) at

xref corresponding to the spectrum of illumination in each
case are:

ire fc(r),r = ρr (vref2 )σr (vref1 )pre fc,R fd(vref2 , vref1 )
vref2 · nref

‖c2 − xref‖2

ire fc(g),g = ρg(vref2 )σg(vref1 )pre fc,G fd(vref2 , vref1 )
vref2 · nref

‖c2 − xref‖2

ire fc(b),b = ρb(vref2 )σb(vref1 )pre fc,B fd(vref2 , vref1 )
vref2 · nref

‖c2 − xref‖2
(15)

Note that triplet (pre fc,R , pre fc,G , pre fc,B) is the chromaticity of
the reference surface. This reference chromaticity must be
the same as the chromaticity of the calibration plane in the
photometric calibration procedure from Sect. 5 in order to
ensure the reference independence of the CL HS pipeline as
a whole. Typically, the reference tends to be chosen in the
white spectrum of colours to maximise the channel response,
although theoretically it does not have to be. In addition, the

chromaticity of the reference object must be uniform since
otherwise there will be per-pixel variations in the reference
chromaticity, which would be impossible to reconcile with
the reference in the photometric calibration.

Now consider the calibrated surface point x with orien-
tation n in Fig. 11b sampled with the same three coloured
radiance distributions ρr , ρg and ρb in an identical configu-
ration of camera Cc and light source Sl . The point-to-sensor
projection is defined by vector v1 and the direction of
illumination by v2. Each such point x on the calibrated
object is also characterised by a triplet of image formation
equations (ic(r),r , ic(g),g, ic(b),b) defined by its chromaticity
(pc,R, pc,G , pc,B) in response to the same stimuli:

ic(r),r = ρr (v2)σr (v1)pc,R fd(v2, v1)
v2 · n

‖c2 − x‖2
ic(g),g = ρg(v2)σg(v1)pc,G fd(v2, v1)

v2 · n
‖c2 − x‖2

ic(b),b = ρb(v2)σb(v1)pc,B fd(v2, v1)
v2 · n

‖c2 − x‖2 (16)

Note that (pc,R, pc,G , pc,B) in (16) is an absolute chro-
maticity triplet independent of any reference.

The camera-to-light source geometry is identical within
each triplet of expressions in Eqs. (15) and (16) because both
the set-up and the scene are static during sampling of each
surface. Thismeans that the ratio of any two expressions from
(15) or (16) depends only on the relative ρ,σ products and
the corresponding per channel chromaticities. For example,
the red-to-green response ratio for the reference surface point
xref is:

ire fc(r),r

ire fc(g),g

= ρr (vref2 )σr (vref1 )

ρg(vref2 )σg(vref1 )

pre fc,R

pre fc,G

(17)

The equivalent ratio for the calibrated surface point x is:

ic(r),r
ic(g),g

= ρr (v2)σr (v1)pc,R
ρg(v2)σg(v1)pc,G

(18)
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Chromaticity is estimated per-pixel in the image domain of
Cc. Hence the idea is to link the reference and the calibrated
surface points projecting onto the same pixel as shown in Fig.
11c. In other words, in the sampling configuration employed
the projection vectors are the same: vref1 = v1, and Eq. (17)
simplifies to:

ire fc(r),r

ire fc(g),g

= ρr (vref2 )σr (v1)

ρg(vref2 )σg(v1)

pre fc,R

pre fc,G

(19)

meaning that the same point in the sensitivity distributions σr
and σg applies to the corresponding reference and calibrated
surface points, xref and x respectively.However, Fig. 11c also
shows that the illumination vectors vref2 and v2 are clearly not
the same because the sampled 3D points xref and x are not
identical.

An important simplification can be made to Eqs. (18)
and (19) given that the coloured radiance distributions ρr ,
ρg and ρb are realised by applying colour filters to a radiance
distribution of a single light source Sl . Colour filters can be
assumed spatially uniformwhichmeans that the radiance dis-
tributions ρr , ρg and ρb differ from each other by a constant
scale factor. For example, for one pair of distributions one
can write: ρr = kρg where k is a constant meaning that the
same relationship holds for any two spatially corresponding
samples of the distributions. With this in mind, the ratio in
(19) can be re-written as:

ire fc(r),r

ire fc(g),g

= kρg(vref2 )σr (v1)

ρg(vref2 )σg(v1)

pre fc,R

pre fc,G

= k
σr (v1)
σg(v1)

pre fc,R

pre fc,G

. (20)

Equivalently, (18) becomes:

ic(r),r
ic(g),g

= kρg(v2)σr (v1)pc,R
ρg(v2)σg(v1)pc,G

= k
σr (v1)
σg(v1)

pc,R
pc,G

. (21)

As a result of the simplification, Eqs. (20) and (21) can
be combined by substitution for k σr (v1)

σg(v1)
and one obtains

an expression for the ratio of two relative chromaticity
components p′

c,R and p′
c,G , defined against the reference

chromaticity components pre fc,R and pre fc,G , as a function of
directly measurable intensities:

p′
c,R

p′
c,G

=
pc,R
pre fc,R
pc,G
pre fc,G

= ic(r),r
ic(g),g

ire fc(g),g

ire fc(r),r

(22)

Three such ratios, e.g.
p′
c,R

p′
c,G

,
p′
c,R

p′
c,B

and
p′
c,G
p′
c,B

,:

p′
c,R

p′
c,G

= ic(r),r
ic(g),g

ire fc(g),g

ire fc(r),r

= c1

p′
c,R

p′
c,B

= ic(r),r
ic(b),b

ire fc(b),b

ire fc(r),r

= c2

p′
c,G

p′
c,B

= ic(g),g
ic(b),b

ire fc(b),b

ire fc(g),g

= c3

(23)

result in three homogeneous constraints constituting a homo-
geneous linear system of equations:

⎛
⎝ 1 −c1 0
1 0 −c2
0 1 −c3

⎞
⎠

⎛
⎝ p′

c,R
p′
c,G
p′
c,B

⎞
⎠ = 0. (24)

The system is solved by SVD decomposition of the con-
straint matrix with as the solution a normalised vector i.e. the
chromaticity coefficient triplet [p′

c,R, p′
c,G , p′

c,B]�.
Substitutionof the relative chromaticity coefficients p′

1,2 =
p1,2
pre f1,2

and p′
2,1 = p2,1

pre f2,1

, where pc,l is defined by the camera

c = {1, 2, 3} and light source l = {R,G, B}, together with
the relative photometric parameter distributions μ′

1 = μ1

pre f1,2

andμ′
2 = μ2

pre f2,1

fromSect. 5 intoEq. (5) instead of the absolute

values:

(
pre f1,2 μ1(v1)i1

p1,2 p
re f
1,2 ‖c1 − x‖2

v1 − pre f2,1 μ2(v2)i2

p2,1 p
re f
2,1 ‖c2 − x‖2

v2

)
· n = 0

(25)

results in the cancellation of the reference chromaticity from
the normal constraint equation. Hence a constraint where
both photometric and chromaticity calibration are relative to
the same reference chromaticity:

(
μ′
1(v1)i1

p′
1,2‖c1 − x‖2 v1 − μ′

2(v2)i2
p′
2,1‖c2 − x‖2 v2

)
· n = 0 (26)

is equivalent to the fundamental normal constraint of HS in
Eq. 5 formulated in terms of the absolute values not directly
accessible. To take advantage of this equivalence the same
reference chromaticity must be used in both the photomet-
ric calibration of Sect. 5 and the chromaticity estimation
described in this section.

Chromaticity describes only the relative inter-channel
relationship, not the absolute intensities, which means that
multiple colours map onto the same chromaticity (e.g. all
greyscale values are the same in terms of chromaticity). The
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estimation procedure describes each set of colours with the
same inter-channel relationship by a single colour from the
set, specifically the one corresponding to the normalised vec-
tor [p′

c,R, p′
c,G , p′

c,B]�. For example, due to this intensity
ambiguity, all greyscale colours map onto the RGB triplet
[ 1√

3
, 1√

3
, 1√

3
], which is the normalised vector expressing

inter-channel equality. It should be stressed that disambigua-
tion of colours with the same chromaticity is irrelevant for
reconstruction by CLHS. The normal constraint of CLHS in
Eq. (26) is homogeneous meaning that any consistent scaling
of chromaticity coefficients cancels out.

6.2 Temporal Propagation

The chromaticity calibration procedure described in the pre-
vious section is static with non-instantaneous acquisition,
mapping chromaticities to pixel locations in one particular
frame. For reconstruction of dynamic sequences with spa-
tially varying chromaticity per-pixel colour information is
needed for every frame. We propose to infer chromaticity
in each frame of the dynamic sequence from the original
single-frame calibration result using a chromaticity propa-
gation procedure.

6.2.1 Optical Flow Based Procedure

As pre-processing, the chromaticity map of the reference
frame must be aligned with the first frame of the dynamic
sequence in order to form the starting point for chromatic-
ity propagation. In the simplest case, the calibration would
immediately precede the dynamic capture and the calibra-
tion shot will be roughly the same as the first frame of
the sequence. Unaided perfect alignment occurs only in the
case of static reconstruction of the reference frame used for
chromaticity estimation. Any minor misalignment can be
corrected using optical flow techniques. However, one would
not wish to be limited to reconstruction of just the tailored
dynamic sequence and hence re-use of chromaticity data for
dynamic sequences featuring the same object but different
initial positions is desirable. The problem of larger view-
point variation with such untailored dynamic sequences is
solved by warping the calibration shot (the source) to the

initial frame of the dynamic sequence (the target) provided
a sufficient degree of overlap between the two. The warp-
ing procedure involves initialisation of corresponding feature
points in both the source and target and a transformation to
align the features. The nature of the transform used depends
on the surface being aligned. For (near-)planar surfaces, a
global homography may be sufficient whereas surfaces with
local curvatures require more sophisticated forms of warp-
ing. For alignment of non-planar surfaces, the user is required
to define a coarse grid whose vertices correspond to scene
features. Warping is then performed by local (piecewise)
homography with bicubic interpolation. Non-planar align-
ment is illustrated in Fig. 12 that shows the source and target
intensity images with the manually initialised feature grids
superimposed and the resultant warping of the source onto
the target. The approach has been found capable of coping
with a visually substantial difference between the source and
target. The alignment stage of the propagation process is the
only part of the pipeline requiring manual interaction for
feature matching. This requires minimal user effort and pro-
vides the ability to process multiple dynamic sequences with
substantially varying initial poses from a single calibration
result.

As the first stage of propagation, dense optical flow track-
ing is performed on the intensity images of the dynamic
sequence for each camera separately. We use the effi-
cient GPU implementation of optical flow from Sundaram
et al. (2010), which has the large displacement optical flow
(LDOF) (Brox et al. 2009) in its core. LDOF is a variational
techniquewith a continuous energy functional whose optimi-
sation is embedded into a coarse-to-fine framework allowing
one to estimate large displacements even for smaller scene
components (Brox et al. 2009). The ability of the algorithm
to cover a wide range of displacement amplitudes permits
freedom in the choice of motion speed and frame rates of the
tracked dynamic scenes.

Tracking produces per-pixel flowmaps (Baker et al. 2011)
that are used in our work to propagate the aligned chromatic-
ity calibration throughout the dynamic sequence, effectively
establishing the mapping of the calibrated chromaticities
to each frame. To ensure completeness of mapping cover-
age, backward flows are utilised rather than forward flows,

Fig. 12 Alignment of the reference frame to the first dynamic sequence frame (camera 2). The superimposed feature grids weremanually initialised
in the source and target frames. Local (piecewise) homography with bicubic interpolation is used to warp the source frame onto the target frame
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Fig. 13 Chromaticity propagation between a pair of adjacent frames. The backward and forward flow maps are computed based on intensity
images. The chromaticity of frame n + 1 is derived from that of frame n using the backward flow map

meaning that each pixel of the current frame is assigned the
chromaticity triplet (if defined) of the quantised to the near-
est pixel back-projection in the previous frame. The nearest
neighbour approach is chosen over higher order interpolation
in order to avoid colour blurring at region boundaries of the
chromaticity map. To illustrate the process, Fig. 13 shows,
for one particular camera, two adjacent intensity frames with
a substantial relative motion, propagation of chromaticity
between the two and the corresponding backward and for-
ward flow maps. The process of propagation hence provides
a spatially varying chromaticity estimate for each frame of
the dynamic sequence.

6.2.2 Propagation Error

It is true that optical flow computation is not an easy prob-
lem for real dynamic scenes which will inevitably introduce
errors into chromaticity propagation. The errors have not
been found prohibitive for the performance of the proposed
system because of several reasons. Firstly, optical flow is
known to err mainly in the uniform intensity regions due
to the inherent ambiguity. Since uniform intensity generally
correlates well with uniform chromaticity, a frame-to-frame
misprojection within a single constant intensity region may
not be noticeable in the propagated chromaticity map as
the chromaticity is also the same throughout the region.
Secondly, the Bayesian reconstruction core with a tailored
depth-normal consistency prior of the proposed system (see
Sect. 7.2 for details) offers a significant degree of robustness
to various signal perturbation such as chromaticity propaga-
tion errors and cross-talk (see Sect. 7.3).

There are several things that could potentially be imple-
mented to reduce the optical flow error, especially the drift
problem for longer dynamic sequences. The most obvious
device would be re-initialisation of the chromaticity map
at regular intervals in the sequence, particularly when the
subject pose changes significantly. Further, non-sequential

tracking methods can be used that exploit similarity of pose
within groups of not necessarily consecutive frames in a
sequence by constructing a minimum spanning tree. The
technique has been been successfully utilised for registration
of mesh sequences involving non-rigid surface deformation
(Klaudiny et al. (2012); Budd et al. (2013)) but can be
equally applicable in 2D tracking. Finally, the propagation
of chromaticity to a given frame can be robustified by mak-
ing use of the reconstructed geometry from the preceding
frames. Although propagation cannot be heavily based on
prior geometry projection due to the possibility of abrupt pose
variation, the error relative to the chromaticity prediction by
projection can certainly act as an extra term, in addition to
the optical flow cost, in the energy optimisation of per-frame
chromaticity estimate.

7 Implementation

In this section, we discuss the details of CL HS imple-
mentation at various stages of the pipeline from acquisition
to reconstruction. Further, cross-talk in the multi-spectral
acquisition system is discussed as a source of error with a
corresponding estimate of signal corruption and practical tips
to minimise its influence.

7.1 Acquisition

Figure 5 shows our acquisition set-up consisting of three
pairs of collocated RGB cameras Cc where c = {1, 2, 3} and
light sources Sl where l = {r, g, b}. Due to the use of RGB
cameras, each collocated pair is a multi-spectral Helmholtz
camera or a triplet of single-sensor-frequency Helmholtz
cameras Rc,l defined by the light spectrum transmitter col-
located with the RGB camera at position c and the camera
sensor of frequency channel l. Only two Helmholtz cameras
of each collocated pair are used at acquisition resulting in
a set-up consisting of the total of six Helmholtz cameras:
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(R1,r ,R1,g,R2,b,R2,g,R3,r ,R3,b). Sources Sl are given
different frequency characteristics by using red, green and
blue colour filters formaximal spectral separation. The filters
were chosen to match RGB channel spectra of the cameras
as much as possible and no ambient light is allowed. With
the set-up we simultaneously acquire three reciprocal image
pairs, each characterised by two Helmholtz cameras and two
RGB signal channels.

7.2 Reconstruction

Using these reciprocal pairs, constraints as in (5) are for-
mulated. The constraints can be directly integrated into the
original reconstruction pipeline proposed by Zickler et al.
(2002) in the seed paper introducing HS. However, standard
ML HS is known to be prone to noise due to the lack of
regional support in depth assignment. In the proposed CLHS
we are inherently limited to just three reciprocal pairs leav-
ing room for reconstruction ambiguity. Additional intensity
error may occur through channel cross-talk which we do not
explicitly compensate for in this work. Consequently, stan-
dardMLHS is inadequate in this case. In this work, we adopt
the Bayesian formulation of HS from our previous publica-
tions (Roubtsova and Guillemaut 2014a, 2015) where depth
assignment is performed by minimising the joint sum of data
(Edata) and prior (Eprior ) costs over all surface points. To
define a set of reconstruction variables, the surface is sam-
pled spatiallywith a grid of pixels p of an orthographic virtual
camera which determines the reconstruction view. The vir-
tual camera pixel grid defines spatial neighbourhoodsN (p)
where continuity is enforced by a prior in the optimisation
process. Depth hypotheses dp for each virtual camera pixel
p are sampled along its orthographic projection ray through
the scene. Bayesian HS seeks the optimum depth labelling
configuration fM AP in the set S:

f ∗
MAP = argmin

f ∈S

∑
p

((1 − α)Edata(p, dp)

+
∑

p′∈N (p)

αEprior (p, dp, p
′, dp′)) (27)

where α is a weighting factor for the relative contributions of
the two terms. The data term is computed via SVD decom-
position of the matrix consisting of three CL HS constraints
(5) instantaneously acquired with our set-up. Specifically,
the term is defined as the exponential decay with factor
μ = 0.2 ln(2) of the SVD residual quotient:

Edata(p, dp) = e
−μ× σ2(p,dp )

σ3(p,dp ) (28)

The chosen prior is based on the idea from Roubtsova and
Guillemaut (2014a) to enforce consistency between depth
d and normal n estimates of neighbouring points (please,

refer to the publication for more detail). The prior is uniquely
tailored to HS as this method inherently associates a normal
n with every depth hypothesis dp of virtual camera pixel p
via SVDdecomposition. The priorminimises the consistency
error between the geometric local surface curvature and the
photometric normal estimates:

Eprior (p, dp, p
′, dp′) = err(dp, np, dp′ , np′) (29)

The depth-normal consistency prior has been shown in
Roubtsova and Guillemaut (2014a) to result in the most
accurate depth maps compared to one-sided (depth-based or
normal-based) priors.

The optimisation process results in a point cloud of
oriented vertices whose resolution can be controlled by
embedding the reconstruction core into a coarse-to-fine
framework with both spatial and depthwise subdivision at
each iteration. By harnessing the joint advantage of the tai-
lored depth-normal consistency prior and the coarse-to-fine
approach one can generate such accurate high resolution
point clouds that can be meshed directly without explicit
integration as post-processing. The direct meshing is accom-
plished by knowing the proximity relationships between
vertices in the reconstruction volume. If the resolution of the
point cloud is insufficient for direct meshing, integration can
be performed by Poisson surface reconstruction (Kazhdan
et al. 2006). Note that the generated point cloud is only a 2.5D
sampling of the object with its back-side being occluded.
Poisson surface reconstruction requires a full 3D point cloud,
otherwise it is unable to close the surface, which distorts the
reconstructed view. Inspired by the approach in Vlasic et al.
(2009), for integration with Poisson surface reconstruction,
the 2.5D point cloud with the occluded back-end is extended
to obtain a watertight full 3D cloud taking normal orientation
cues from the contour of the object’s orthographic projec-
tion to the virtual camera. The point cloud extension to full
3D is implemented merely to make the integration problem
solvable by Poisson surface reconstruction and is not rep-
resentative of the true geometry of the occluded back-end.
The need for such speculative point cloud completion as well
as the danger that integration as a post-processing step may
introduce artefacts (e.g. point cloud over-smoothing) are the
reasons why this explicit surface integration should best be
avoided if possible. The relative performance of Poisson sur-
face reconstruction and the advocated no explicit integration
approach is compared on static scenes in Sect. 8.1.1 to sup-
port the statements made on the applicability of each.

7.3 Cross-Talk

Cross-talk occurs when a fraction of a signal intended for
one channel is received on another channel. In the presented
system based on wavelength-multiplexing cross-talk is the

123



Int J Comput Vis (2017) 124:18–48 33

RGB illumination signals exciting the wrong camera sen-
sors. The energy may be thus lost to other channel sensors
or received from an unintended stimulus. Either way the
received signal on each individual channel can be distorted
by cross-talk.

A way to spatially estimate cross-talk is to measure the
response of the three multi-spectral Helmholtz cameras in
the reconstruction configuration to red, green and blue light
reflected from a white surface. Assuming a perfectly white
surface, the signal of a given colour in theory should excite
a response only in the corresponding channel. The sum of
responses on the other two channels is cross-talk. Measuring
the response in the reconstruction configuration allows one to
estimate a spatial distribution of cross-talk percentage from
the total signal strength for a real-life scenario. Such a map
does not allow to correct for cross-talk at reconstruction as
the chromatic properties of the reconstructed surface will
change the distribution. However, the distribution can serve
as a good indication of the quality of the Helmholtz camera
configuration.

Let us consider an example acquisition equipment con-
figuration of three multi-spectral Helmholtz cameras (one
less advantageous than the actual reconstruction configura-
tion used) that helps provide practical suggestions for a better
set-up in terms of cross-talk. For each camera the cross-talk
percentage is measured under two signal wavelengths (the
third wavelength is the one the Helmholtz camera emits itself
and hence is irrelevant). Cross-talk is represented as a spatial
distribution of the percentage leaked signal from the total sig-
nal strength. Fig. 14 shows the six distributions in the three
camera reconstruction configuration with the corresponding
statistical metrics given in Table 1. Generally speaking, the
rms cross-talk observed in this configuration is about 1−2%
(which with an 8-bit camera sensor amounts to about 5 inten-
sity levels with a single light source in the test configuration).
As the general trend themeasured cross-talk percentage tends
to increase towards the outskirts of the frame as the total
signal strength there tends to be substantially weaker with
essentially a low signal-to-(cross-talk) noise ratio. The dras-
tic cross-talk percentage maxima given in Table 1 are not
reliablemeasurements as they occur at near-zero signal inten-
sity levels.

The cross-talk percentage expresses the relative signifi-
cance of signal leakage in perturbing reconstruction and is
co-determined by the local signal strength as well as the
overall camera-light source RGB spectra compatibility. To
minimise the effect of cross-talk at reconstruction the signal-
to-noise ratio must be kept high in the region of interest.
In other words the scene should be optimally illuminated.
From the distribution presented in Fig. 14 it is clear that the
blue light in the example configuration is oriented the most
advantageously with the scene well-lit in a clearly defined
spotlight where the locally observed cross-talk percentage
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Fig. 14 Spatial distribution of cross-talk as a percentage of the total
signal per pixel in an example reconstruction configuration

Table 1 Cross-talk statistics: rms andmaximum cross-talk percentages
of the spatial distributions presented in Fig. 14

HS camera 1 (red)

Stimulus rms cross-talk (%) max. cross-talk (%)

Green 2.14 60

Blue 0.87 40

HS camera 2 (green)

Stimulus rms cross-talk (%) max. cross-talk (%)

Red 1.54 53.85

Blue 0.88 40

HS camera 3 (blue)

Stimulus rms cross-talk (%) max. cross-talk (%)

Red 1.34 53.33

Green 2.12 60

is under 0.5%. The orientations of the green and red light
sources are inferior.

With a proper light source positioning resembling that
of the blue light in the example configuration, cross-talk is
unlikely to pose reconstruction challenges. In setting up the
reconstruction configuration care must be taken to ensure
that the scene receives the maximum amount of light from
all the three light sources in order to minimise the cross-talk
percentage (or equivalently to maximise the signal-to-noise
ratio) in the reconstruction volume. Such a configuration can
be easily achieved during scene framing by collocating the
spatial centre of the reconstruction volume with the optical
spotlight axes of all the projectors. Given such a configura-
tion, the system will be able to cope well with any residual
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cross-talk (e.g. the rms value of 1−2% in Table 1) by virtue
of the optimalBayesianHS reconstruction corewith its effec-
tive depth-normal consistency prior.

8 Evaluation

The methodology of CL HS is validated using real datasets
with the evaluation comprising static and dynamic scenes
versatile in the challenges they present.

In Sect. 8.1, the range of static objects was selected to
demonstrate accuracy of the algorithm and its ability to
cope with cases of different complexity. Shown in Fig. 18,
the objects are: 1. a reference chromaticity plane (“Plane”)
defined by the calibration board; 2. a plaster statue of a mon-
ster head (“Monster”) of not strictly uniform chromaticity;
3. a highly specular mug (“Mug”) of reference chromaticity
and 4. toy-dog (“Slinky”) which is highly heterogeneous in
terms of material, chromaticity, reflectance etc. and shows
geometric and radiometric complexity due to fine structure,
transparency, specular reflectance and pure colours of its var-
ious materials.

Having shown correctness of geometric reconstruction for
the more controlled static scenery sets, we subsequently val-
idate our claim of suitability of CL HS for dynamic scene
reconstruction. We are particularly interested in reconstruc-
tion of such scenes with complex reflectance properties as
these are inherently challenging for conventional and pho-
tometric stereo methods. In the dynamic scene evaluation
in Sect. 8.2 a range of temporal object deformations was
reconstructed featuring objects posing distinctive geometric
and photometric challenges. The objects are a highly spec-
ular laminated white sheet (“WLS”), a white glossy blouse
(“Blouse”), a woollen jumper with structural detail of its
approximately uniformly coloured knitwear (“Jumper”) and
a face showing reflectance complexity with its spatially vary-
ing chromaticity and non-Lambertian directional component
(“Face”). As will be explained in Sect. 8.2, the selection of
objects covers the full spectrum of possible surface chro-
maticity variation from uniformly reference chromaticity to
freely spatially varying.

For both static and dynamic scene reconstruction, each
Helmholtz camera was radiometrically calibrated as
described in Sect. 5 using a calibration board with mark-
ers to define the position of the plane in each calibration
shot. Position triangulation of any three of the four mark-
ers gives an anchor point and a normal to the calibration
plane defined by the board. The black localisation mark-
ers are masked out together with the background outside
the calibration boards in the images. Furthermore, data from
more than just one pair of planes Π j and Π j+1 is needed for
continuous calibration coverage of the reconstruction frame.
Using about 10 plane positions we directly calibrate for the

Fig. 15 Pairwise (per reciprocal pair) consistent photometric parame-
ter distributions in the region of interest for Monster. (R1,R2,R3) are
calibrated directly while (R2, R3 R1) are obtained by transfer

μ distributions of three multi-spectral Helmholtz cameras
(R1,R2,R3) (a simplification of the more difficult prob-
lem of calibrating six single-frequency-spectrum Helmholtz
cameras (R1,r ,R1,g,R2,b,R2,g,R3,r ,R3,b) made possi-
ble by the assumption of identical R,G and B sensors in a
single camera C). Figure 15 shows the photometric parameter
distributions in the region of interest for Monster used in the
reciprocal constraint computation: the first column distribu-
tions are the directly calibrated distributions of (R1,R2,R3)

while the second column are the partner Helmholtz camera
distribution obtained by transfer (R1 → R2, R2 → R3

and R3 → R1) from the directly calibrated (the transfer
is essential for photometric parameter consistency within a
reciprocal pair as described in Sect. 5). The maps are rep-
resented as heat maps to illustrate regional variation of μ

within the scope of the reconstruction frame. The obtained
photometric maps are invariant for all datasets acquired in
the same capture session (static datasets in case of Fig. 15).
An equivalent photometric calibration was performed for the
dynamic scenes capture session.

Further, reconstruction of each shot is performed from
three RGB images (three reciprocal pairs) instantaneously
acquired by cameras C1, C2 and C3 under concurrent multi-
spectral (RGB) illumination of S1, S2 and S3 as described in
Sect. 7. Throughout the evaluation we, as appropriate, com-
pare the following reconstruction methods:

1. VH: visual hull (i.e. shape-from-silhouette);
2. ML_HS_wPhCalib: standard (maximum likelihood)

Helmholtz Stereopsis with photometric calibration only;
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3. ML_HS_wPh&ChromCalib: standard (maximum likeli-
hood) Helmholtz Stereopsis with photometric and chro-
maticity calibration;

4. BayesianHS_w/oCalib: uncalibrated Bayesian HS;
5. BayesianHS_wPhCalib: Bayesian HS with photometric

calibration only;
6. BayesianHS_wPh&ChromCalib: BayesianHSwith pho-

tometric and chromaticity calibration.

We compare integration by Poisson surface reconstruction
against the proposed final mesh assembly from the cloud of
oriented vertices without explicit integration on static scenes.
Subsequently, the explicit-integration-free pipeline is used
throughout for all dynamic scenes.

8.1 Static Scenes

This section is aimed at demonstrating both quantitatively
and qualitatively the reconstruction accuracy of the proposed
framework in static scene reconstruction of various photo-
metric complexity.

8.1.1 Qualitative Evaluation

In Fig. 16 we qualitatively compare reconstructions of Plane,
Monster, Mug and Slinky using

1. VH (all);
2. fully calibrated ML_HS: i.e. ML_HS_wPhCalib (Plane,

Mug) or ML_HS_wPh&ChromCalib (Monster, Slinky);
3. BayesianHS_w/oCalib (all)
4. BayesianHS_wPhCalib (all)
5. BayesianHS_wPh&ChromCalib (Monster, Slinky)

Further, Poisson surface reconstruction is compared at
different point cloud resolutions to direct meshing without
explicit integration (the proposed alternative approach for
generating a continuous surface from point clouds). Note that
for Plane reconstructed with a single iteration of the coarse-
to-fine framework Poisson surface reconstruction produces
a much smoother continuous surface (used for quantitative
evaluation in Sect. 8.1.3). For high resolution meshes of
Monster, Mug and Slinky, there is either little difference
visually between the two integration approaches (e.g. Mon-
ster,Mug, fully calibrated Slinky) or directmeshing performs
better (e.g. under-calibrated Slinky) as the rim inaccuracies
of the 2.5D reconstruction do not affect its performance as
much as Poisson surface reconstruction. Based on the greater
robustness observation and also being mindful of the known
inherent risk of reconstructed point cloud alteration by an
explicit integration method, direct meshing without explicit
integration is consistently used in the remainder of this paper,

instead of Poisson surface reconstruction, to obtain the final
continuous surface from high-resolution point clouds.

Let us make qualitative observations on the relative recon-
struction method performance. The fully calibrated ML HS
clearly fails on all four datasets regardless of the surface inte-
gration method chosen. As Plane and Mug are characterised
by the system’s reference chromaticity (i.e. calibration object
chromaticity), for these datasets the system is fully calibrated
with just the photometric calibration. Some artefacts in the
uncalibrated reconstructions (e.g. the bent inwards bottom-
left-hand-side corner of Plane and the unnatural inflation of
Mug) relative to the calibrated ones are already apparent
visually. Full calibration for Monster and Slinky comprises
both photometric and chromaticity parameter acquisition as
their chromaticity is not the reference (or not uniformly so
in case of Monster due to staining of plaster). The visual dif-
ference between Monster reconstructions by Bayesian HS at
different calibration levels is subtle: a trained eye may notice
the slight retraction of the lower lip of the fully calibrated
result relative to the two under-calibrated ones. Analysis of
such subtle differences is postponed to Sect. 8.1.3 where
quantitative measurements against ground truth scans are
presented. The role of chromaticity calibration is however
more visible for the much larger local chromatic variations
of Slinky. Figure 17 shows the surface chromaticity maps for
Slinky obtained for each camera individually. They appear
to be largely in agreement about the chromatic properties of
the corresponding regions apart from some artefacts due to
intensity sampling at grazing angles, sensor saturations and in
the circular mirror region of the hind leg arguably having no
inherent chromaticity. Chromaticity does not disambiguate
between colours of different brightness and describes only
their hue and saturation. Hence the estimated chromaticity
will not match the colour of the object in the intensity images
exactly as effectively whole colour families characterised by
the same hue and saturation map onto the same chromaticity
value. In addition, the definition of white spectrum in the sys-
tem is the sumofRGBfilter responses rather than the absolute
white spectrum (approximated by unfiltered projector light).
Full (photometric+chromaticity) calibration is key to getting
a plausible result for Slinky. Photometric calibration is insuf-
ficient and is not even guaranteed to provide an incremental
improvement on the completely uncalibrated result in case
of non-reference chromaticity surface reconstruction as is
clearly demonstrated by the fact that BayesianHS_wPhCalib
performs as poorly as BayesianHS_w/oCalib. Recall that
photometric calibration is reference dependent and unless
it is used in conjunction with a chromaticity relative to the
same reference resulting in the cancellation of the reference,
the photometric calibration is not meaningful in the recon-
struction of non-reference chromaticity surface. For Slinky
the fully calibrated reconstruction is clearly superior showing
a plausible global shape and a substantial degree of structural
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Visual hull ML w/oCalib BayesianHSHS BayesianHS wPhCalib BayesianHS wPh&ChromCalib
(full calibration)

POISSON SURFACE RECONSTRUCTION

NO EXPLICIT INTEGRATION

Fig. 16 Static scene reconstruction with the fully calibrated ML
HS and Bayesian HS at different levels of calibration, using Pois-
son Surface Reconstruction for final surface assembly and without
explicit surface integration. The objects considered are: Plane res-
olution (spatially/depthwise): 3/0.5mm; Monster initial resolution
(spatially/depthwise)—1/0.5mm; final resolution—0.25/0.03125mm;

Mug initial resolution (spatially/depthwise)—1/0.25mm;
final resolution—0.5/0.015625mm; Slinky initial resolution
(spatially/depthwise)—1/1mm; final resolution—0.25/0.0625mm;
Visual hulls are also included for reference. All meshes are rendered in
flat shading (without the use of per-vertex photometric normals)
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Fig. 17 Spatial chromaticity estimation of Slinky for cameras C1, C2
and C3: intensity images showing pose and appearance under unfiltered
projector illumination in the reference (calibration) frame (top row) and
the estimated chromaticity maps (bottom row)

resolution on this highly challenging object. The dealt with
challenges of Slinky include its signal scattering fine “furry”
structure of the face, high frequency geometry in the accor-
dion torso and the highly specular multi-coloured plastic of
the rest of the body. BayesianHS_wPh&ChromCalib seems
highly promising for multi-chromatic object reconstruction
coping with substantial geometric and radiometric complex-
ity.

8.1.2 Ground Truth

Let us describe the methods used to acquire the ground
truth used in the quantitative evaluation (Sect. 8.1.3) on
static data. Since Plane is the calibration board as in Fig.
8 in one of its orientations not used in photometric cal-
ibration, its ground truth can be easily computed using
its markers as described in Sect. 5. The ground truth for
Monster and Mug was obtained by laser scanning with
the Creaform ZScanner 700CX (model VIUscan) whereas
Slinky was captured using the structured light 3D scan-
ning system David-SLS2. Due to the complex reflectance
properties of Mug and Slinky neither scanning system was
equipped to deal with, the surfaces had to be sprayed with
talc powder to make them diffuse for ground truth acquisi-
tion.

For the quantitative analysis, the models are aligned to
the ground truth reference using ICP whenever possible pre-
ceded by coarse feature-based alignment. Since Slinky is
only piecewise rigid, alignment of the model as a whole
to the obtained ground truth is impossible as the object
has deformed since the original capture. Only the rigid
plastic front and back of the torso could potentially be
aligned. Since model fragment alignment may be mislead-
ing, especially in the presence of global shape distorting
artefacts on the outskirts of the 2.5D reconstructions, we
do not quote any quantitative error metrics for Slinky.
The ground truth meshes for static data is presented in
Fig. 18.

8.1.3 Quantitative Evaluation

Quantitatively, the results are compared using the rms and
median unsigned (model)vertex-to-(ground truth)mesh dis-
tance. These global quality metrics are presented in Table 2
for CL HS reconstructions of Plane, Monster and Mug from
Fig. 16. The corresponding heat maps for the spatial error
distributions are shown in Fig. 19. Note that the measure-
ments for the particularly poor reconstructions by ML HS
are omitted because, due to the difficulty in obtaining a sat-
isfactory alignment for these meshes, any figures obtained
would not be meaningful. As there can be no doubt of
the inferiority of these methods from the qualitative com-
parison, the values are also not instrumental. Further, as
described previously, Plane and Mug do not require chro-
maticity calibration being characterised by uniform reference
chromaticity - photometric calibration suffices in this case
and BayesianHS_wPh&ChromCalib is redundant.

The advantages of calibration are confirmed quantita-
tively by Plane andMug datasets where Bayesian_wPhCalib
shows both rms and median scores improved relative to
BayesianHS_w/oCalib. The sub-millimetre rms errors on
Mug are impressive considering the reflectance complexity
of the object (see its appearance in Fig. 18).

For Monster partial (photometric only) calibration as
expected deteriorates the performance. The fact that the
scores of fully calibrated (BayesianHS_wPh&ChromCalib)
and uncalibrated (BayesianHS_w/oCalib) algorithms are
close on this object are to do with the retracted lip artefact of
BayesianHS_wPh&ChromCalib clearly visible in the corre-
sponding heat map in Fig. 19. The reason for the artefact is
the extreme difficulty in accurate estimation of chromaticity
inside the mouth and along the curvature of the lips due to
self-occlusions and self-shadowing. Through MRF optimi-
sation the effect of such chromaticity inaccuracies may be
non-local i.e. a more global distortion such as the observed
lip artefact. The positive observation is however that, for
this object not showing drastic deviations from the reference
chromaticity unlike Slinky, the uncalibrated algorithm is in
fact robust enough to produce 2.5 mm accurate reconstruc-
tions in the absence of the exact chromaticity estimates and
photometric calibration.

8.1.4 Comparison with Colour Photometric Stereo

In this section, the performance of standard Colour Photo-
metric Stereo (CL PS) is compared against CL HS on static
scenes involving Monster, Mug and Slinky. Standard CL PS
is void of photometric or surface chromaticity calibration.
Hence for fairness of experiment for Monster and Mug the
comparison is against uncalibrated CL HS as well. Due to
the extremely poor reconstruction quality of Slinky without
chromaticity calibration, a comparison of uncalibrated meth-

123



38 Int J Comput Vis (2017) 124:18–48

Fig. 18 Ground truth and appearance under RGB illumination for static objects: Plane, Monster, Mug and Slinky

Table 2 Global reconstruction error (rms andmedian) of the spatial distributions in Fig. 19 corresponding to Bayesian CLHS at different calibration
levels

Object BayesianHS_w/oCalib (mm) Bayesian_wPhCalib (mm) BayesianHS_wPh&ChromCalib (mm)

Plane rms median rms median rms median

3.06 1.34 2.24 1.18 – –

Monster rms median rms median rms median

2.48 1.53 2.58 1.71 2.50 1.62

Mug rms median rms median rms median

0.80 0.38 0.58 0.34 – –

ods would not be meaningful in this object’s case. Instead
fully calibrated CL HS is compared against CL PS with
a compensation for signal distortion due to surface chro-
maticity. The compensation, based on the same chromaticity
map used in CL HS, involves division of the observed per-
channel intensities at each pixel [ic(r), ic(g), ic(b)] by the
corresponding component of the pixel’s chromaticity triplet
[pc,R, pc,G , pc,B]where c is the camera used for CL PS. For
quantitative evaluation (possible for Monster and Mug only)
the ground truth in Fig. 18 is used. The scale of the photo-
metric stereo results is adjusted to the ground truth during
their alignment in order to be able to compare CL HS and
CL PS in terms of world metric units.

CL HS clearly outperforms standard CL PS on Mug
and Slinky (see Fig. 20). Due to its independence of the
reflectancemodel CLHS copeswith the specularities ofMug
substantially better thanCLPSwhile the superior accuracy of
global shape is facilitated by the method’s dual characterisa-
tion of the surface by both depth and normals. Quantitatively,
CL HS is better by just over 0.5 mm in its final rms scores
(Table 3). Although neither CL PS nor Cl HS cope fully with
the numerous heterogeneous complexities of Slinky, CL HS

resolves structural detail better and is not prone to flatness of
the global shape as much as CL PS. The virtual reconstruc-
tion camera of CL HS is not the same as the photometric
stereo camera meaning that some areas within the scope of
CL PS are difficult to reconstruct extremities for CL HS (e.g.
Slinky’s chest).

Qualitatively, it is not clear which method performs better
on Monster whose Lambertian reflectance model is exactly
tailored to CL PS. The reconstruction by CL PS is smoother
due to the normal integration as post-processing but visu-
ally somewhat inflated relative to CL PS. Quantitatively, the
spatial error distributions and the global metrics once again
indicate the superiority of CL HS.

8.2 Dynamic Scenes

We have shown accurate geometric reconstruction of sta-
tic scenes obtained from instantaneously acquired data,
which indicates the great potential of CL HS for dynamic
scene reconstruction. In this section, we evaluate the per-
formance of the proposed method on dynamic scenes fea-
turing non-rigid object deformation. The chosen datasets
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Fig. 19 Spatial unsigned reconstruction error distribution of Bayesian CL HS at different calibration levels relative to the ground truth in Fig. 18

are geometrically complex and/or exhibit reflectance behav-
iour characterised by a non-Lambertian possibly spatially
varying directional component of the reflectance model. Fur-
thermore, the scenes are classified into three categories in
order of increasing chromatic complexity: 1. uniform ref-
erence chromaticity; 2. uniform arbitrary chromaticity and
3. spatially varying chromaticity. Only the spatially varying
chromaticity case requires the use of the entire scope of the
pipeline in Fig. 6 whereas the other ones permit procedure
simplifications. Along with the snapshots of the dynamic
reconstruction results shown in this paper, as supplementary
electronic material, we provide a video containing recon-

struction results for full dynamic sequences (the video is also
available for download at http://cvssp.org/projects/colourhs/
video/).

8.2.1 Uniform Reference Chromaticity

Scenes with uniformly reference chromaticity do not require
chromaticity calibration being fully calibrated for by the
photometric calibration relative to the reference. In order to
evaluate performance of CL HS on photometrically complex
dynamic scenes independently of chromaticity calibration,
we first present the results for this class of datasets. The
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Fig. 20 A comparison of Colour Photometric Stereo (CL PS) and Colour Helmholtz Stereopsis (CL HS) on static scenes: Monster, Mug: both CL
PS and CL HS are uncalibrated; Slinky: CL PS with chromaticity compensation and fully calibrated CL HS

Table 3 Quantitative comparison of CL PS andCLPS: global accuracy
scores for some static scenes

Object CL PS error (mm) CL HS error (mm)

Monster rms median rms median

3.61 2.16 2.48 1.53

Mug rms median rms median

1.37 0.98 0.80 0.38

two datasets chosen feature non-rigid deformation of a
white highly specular laminated sheet (“WLS”) and a white
glossy blouse (“Blouse”). The input video sequences of 201
frames are included in the supplementary material video
together with the dynamic reconstruction results. Fig. 21
shows a sample set of five input frame sets (25 frames
apart) from each sequence and the corresponding recon-
structions by ML_HS_wPhCalib, BaysianHS_w/oCalib and
BayesianHS_wPhCalib. Note that since the objects are of

reference chromaticity like Plane and Mug in Sect. 8.1.3, the
chromaticity calibration branch of the pipeline in Fig. 6 is
not used.

The reflectance behaviour, particularly that of the lam-
inated sheet, is complex with its pronounced specularities
undoubtedly problematic for both conventional and photo-
metric stereo. Bayesian HS as before clearly outperforms
standard fully calibrated ML HS. Bayesian HS produces
results with a remarkable level of detail resolution (see
Blouse) and global accuracy. Due to themethod’s reflectance
model independence, even the most drastic non-Lambertian
behaviour (e.g. the specularites of WLS) and unconstrained
geometry are successfully coped with reproducing the folds,
creases and domes of the deforming objects in the recon-
structed meshes. Photometric calibration is also clearly
essential for global accuracy of the reconstructed mater-
ial patch as can be observed comparing the performance
of Bayesian HS with and without photometric calibration
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Fig. 21 Reconstruction, uniformwhite chromaticity dynamic datasets:
white laminated sheet andwhite glossy blouse. Input intensity images of
C1, C2 and C3 and the reconstruction results using ML_HS_wPhCalib,
BaysianHS_w/oCalib and BayesianHS_wPhCalib. Initial sam-

pling resolution (spatially/depthwise): 3/0.5mm. Final resolution
0.375/0.03125mm. The presented meshes rendered in flat shading
were assembled without explicit surface integration. Note that only a
portion of the scene was reconstructed due to framing
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on both Blouse and WLS. The characteristic global shape
errors without photometric calibration include the some-
what retracted material patch orientation and the oddly
enlarged and/or stretched prominent features. The uncali-
bratedmethod also seems to resolve the creases ofBlouse less
well. Upon close examination of the reconstruction videos
(see the supplementarymaterial), BayesianHS shows similar
temporal stability with and without calibration. Frame-by-
frame comparison however reveals a consistent blurring of
fine structural detail when the method is uncalibrated.

8.2.2 Uniform Arbitrary Chromaticity

If chromaticity is uniform but non-reference, relative pho-
tometric calibration is no longer tailored to the surface and
hence chromaticity calibration becomes essential. However,
if it is uniform or nearly so, an average estimate per cam-
era can be used instead of per pixel calibration. For the
class of uniform arbitrary chromaticity, fabric deformation
of a woollen jumper (“Jumper”) has been reconstructed.
Although the reflectance model in this case is simpler than
in Sect. 8.2.1, the fabric is characterised by a much greater
geometric complexity at the macro and the micro scales,
respectively the plait structures and the actual criss-crossing
of the knitwear thread. The dynamic sequence exhibits a suf-
ficient amount of variation in the motion type having both
fabric deformation and lateral translation.

Figure 22 shows the reference frame of chromaticity cal-
ibration and the estimated per-pixel chromaticity maps for
the captured jumper fabric. Subsequently, averaging is only
performed over the homogeneous (i.e. woollen fabric) por-
tions of the image but including inherent discolouration
thereof (gaps in the knitwear, staining). In order to approxi-
mately align the calibrated region with the first frame of the
dynamic sequence homography is performed for each cam-
era. The reconstruction is limited to the overlapping region
between the calibration reference frame and the dynamic

sequence frame. The alignment quality of the reference frame
to the dynamic sequence can be assessed by comparing the
warped intensity image in Fig. 22 to the first frame of the
dynamic sequence in Fig. 23. The overlapping area initialises
the region of interest for the reconstruction throughout the
entire sequence and is assigned the calibrated averaged chro-
maticity for each camera individually. Tracking is used to
propagate the overlapping region to subsequent frames in the
sequence hence providing a mask for the reconstruction. The
average chromaticity may be applied to a larger reconstruc-
tion area of the fabric in case its uniformity in all images is a
given. In thisworkwe do notmake that assumption and hence
reconstruct only the chromatically calibrated by an average
portion of the fabric. Average-based chromaticity maps per
camera in the region of interest are also presented in Fig. 22.

Figure 23 shows a sample set of 5 frames from the Jumper
sequence each reconstructed by ML_HS_wPh&ChCalib,
BaysianHS_w/oCalib, BayesianHS_wPhCalib andBayesian
HS_wPh&ChCalib. The full set of Jumper results with
the input and the reconstructed sequences per method
each featuring 200 frames can be found in the supple-
mentary material video. From the sample set in Fig. 23
ML_HS_wPh&ChCalib, although retaining the basic trend
line of the deformation, is clearly noisy and incapable of
resolving any geometric detail. Without chromaticity cali-
bration of Bayesian HS in the Jumper sequence, untailored
relative photometric calibration introduces abnormal feature-
inflating instability. Chromaticity calibration definitely mod-
erates the feature inflation of the partially calibrated result
settling in-between the uncalibrated and partially calibrated
results. Without ground truth it is not obvious whether the
fully calibrated or the uncalibrated reconstructed sequence
is more accurate as both look plausible. The accuracy of the
uncalibrated sequence depends on the validity of the assump-
tion that the photometric characteristics of the Helmholtz
cameras are near-identical in the region of interest and the
chromaticity is largely characterised by an equal response
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Fig. 22 Chromaticity calibrationwith parameter averaging for Jumper.
Left column: intensity images for cameras C1, C2 and C3 under unfiltered
projector light and the corresponding per-pixel chromaticity maps for
the reference frame. Right column: intensity alignment of the reference

(calibration) frame to frame 1 of the dynamic sequence (see Fig. 23)
initialising the region of interest for the reconstruction and the average-
based chromaticity map per camera in the region of interest

123



Int J Comput Vis (2017) 124:18–48 43

frame 1 frame 48 frame 78 frame 124 frame 167

ML HS wPh&ChCalib

BayesianHS w/oCalib
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Fig. 23 Reconstruction, uniform arbitrary chromaticity dynamic
dataset with average-based chromaticity calibration: Jumper.
Input intensity images of C1, C2 and C3 and the reconstruc-
tion results using ML_HS_wPh&ChCalib, BaysianHS_w/oCalib,
BayesianHS_wPhCalib and BayesianHS_wPh&ChCalib. Initial sam-

pling resolution (spatially/depthwise): 3/0.5mm. Final resolution:
0.375/0.03125mm. The presented meshes rendered in flat shading
were assembled without explicit surface integration. Note that only the
chromatically calibrated portion of the fabric was reconstructed

on all channels. The accuracy of the fully calibrated result
depends on how representative the average chromaticity
is of the entire surface of the fabric for the overall cal-
ibration balance with the relative photometric calibration.
Figure 22, showing the per-pixel chromaticity maps for
each viewpoint, exposes non-uniformities in the chromatic-
ity distribution. However, these are brought about by the
knitwear translucency as well as the transparencies through
the gaps in thewoven fabric and should best be ignored. Since
these non-uniformities contribute to the average it is but an

approximation of the true uniform chromaticity of Jumper.
Nonetheless, the assumption of the fully calibrated recon-
struction pipeline is more likely, instilling more confidence
in the accuracy of its result.

We have shown that, given approximately uniform chro-
maticity, material chromaticity averaging per camera still
permits reconstruction. The possibility for chromaticity cal-
ibration simplification is useful particularly if per-pixel
alignment and tracking is difficult as is the case with the
intricate structure of Jumper’s knitwear.
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Fig. 24 Spatial chromaticity estimation of Face for C1, C2 and C3:
intensity images showing pose and appearance under unfiltered projec-
tor illumination in the reference (calibration) frame (top row) and the
estimated chromaticity maps (bottom row)

8.2.3 Spatially Varying Chromaticity

Dynamic scenes with spatially varying chromaticity are the
most complex case for CL HS requiring full utilisation of the
processing pipeline without simplification of calibration. We
evaluate the performance in this case on a dynamic sequence
with human facial expressions (“Face”), which poses several
reconstruction challenges. Firstly, a sufficient degree of spa-
tial chromaticity variation is present due to facial features
(lips, eyebrows etc.) and natural skin imperfections as no
make-up was used in the capture to even out the skin tone.
Secondly, the face has a non-Lambertian reflectance model
with specular highlights. Thirdly, the dynamic sequence
offers a wide range of geometrically complex fast chang-
ing grimaces to thoroughly test both per-frame accuracy and
temporal consistency of the non-rigid deformation recon-
struction.

Figure 24 shows the appearance of the face in the calibra-
tion reference frame of each camera and the corresponding
estimated per-pixel chromaticity map that is essential for

accurate reconstruction given spatially varying chromaticity.
Each chromaticity map captures the spatial skin chromatic-
ity variation at the scale ranging from facial features to local
hyper-pigmentation. Skin chromaticity estimation is inher-
ently difficult due to sub-surface scattering violating the
assumption of a topical reflectance model (BRDF). Since
sub-surface scattering is directionally variant, it is not surpris-
ing that per-camera chromaticity estimates in Fig. 24 differ
from each other.

The calibration pose in Fig. 24 is significantly different
from the pose in the first frame of the dynamic sequence
(see Fig. 26). The result of aligning the reference chromatic-
ity maps to the first dynamic sequence frame by warping as
described in Sect. 6.2 are presented in Fig. 25. The figure also
shows optical-flow-based propagation of the aligned chro-
maticity maps through the sequence. Optical flow tracking
shows stability with the chromaticity maps staying constant
in the initial static part of the sequence. At the same time
during the part of rapidmotion from frame 29, the chromatic-
ity maps evolve accordingly with the chromaticity estimates
propagated to the new shots. The interior of themouth unseen
in the reference (calibration) frame acquires the colour of the
chromatically similar lips, which is not a bad guess for the
unavailable information. Propagation of chromatically dis-
tinct regions relative to each other is consistent as optical
flow errors tend to occur mainly within chromatically uni-
form areas.

Figure 26 compares reconstruction results usingML_HS_
wPh&ChromCalib, BaysianHS_w/oCalib, BayesianHS_
wPhCalib and BayesianHS_wPh&ChromCalib. As in pre-
viously presented results, fully calibrated ML HS is still
absolutely nomatch forBayesianHS.BayesianHS_wPhCalib
with a partial (photometric only) calibration does not offer
any apparent benefits over uncalibrated Bayesian HS as both
show severe global shape distortions.Untailored photometric

Fig. 25 Temporal chromaticity propagation within the dynamic sequence face for C1 (top), C2 (middle) and C3 (bottom)
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Fig. 26 Reconstruction, spatially varying chromaticity dynamic
dataset: Face. Input intensity images of C1, C2 and C3 and the reconstruc-
tion results using ML_HS_wPh&ChromCalib, BaysianHS_w/oCalib,
BayesianHS_wPhCalib and BayesianHS_wPh&ChromCalib. Initial

sampling resolution (spatially/depthwise): 1/0.5mm. Final sampling
resolution: 0.375/0.03125mm. The presented meshes rendered in flat
shading were assembled without explicit surface integration

calibration in the absence of chromaticity calibration makes
the algorithm more sensitive to noise with a decrease in
smoothness on the cheeks. Incomplete (as well as lack of)
calibration also causes a global distortion of photometric nor-
mal orientation. Although not flawless, the reconstructions
obtained with the fully calibrated pipeline are very good con-
sidering that the reconstructed surface exhibits sub-surface
scattering violating the assumptions of both the chromaticity

estimation procedure and Helmholtz Stereopsis in general.
Note how the fully calibrated Bayesian HS copes with the
specular highlights on the cheeks. The algorithm even cor-
rectly reconstructs the teeth that are the uncalibrated elements
of the scene, exposed in the course of the scene playing out.
The teeth are characterised by a specular reflectance model
and a chromaticitywith an approximately equal inter-channel
relationship. On the other hand, self-occlusions (e.g. by the
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nose) create difficult to reconstruct shadowed regions of low
intensity and result in artefacts such as the bump on the right-
hand side of the nose. Such self-shadowing is a common
problemwith acquisition set-ups consisting of a limited num-
ber of cameras.

A video showing 200 frames of the dynamic Face
sequence reconstruction by all compared methods is sup-
plied in the supplementary material. The fully calibrated
BayesianHS remains plausible throughout the sequence. The
slight deterioration in the lip reconstruction at the end of the
sequence is caused by the washing out of the region bound-
aries in the propagated chromaticity map towards the end of
the sequence due to drift (i.e. numerical error accumulation).
The observation is typical for tracking over long sequences.

9 Conclusion and Future Work

In this paper we have proposed Colour Helmholtz Stere-
opsis (CL HS) - a novel multi-spectral framework for
Helmholtz Stereopsis (HS) suitable for reconstruction of
dynamic scenes with complex unknown spatially varying
BRDFs. This significantly improves upon conventional and
photometric stereo which are inherently limited to surfaces
with simple or known reflectance models, but also upon stan-
dard HS which has till now been limited to static scenes.
Incorporation of wavelength multiplexing into HS for the
first time enables simultaneous acquisition of the minimum
number of reciprocal image pairs required for dynamic scene
reconstruction but also introduces an additional set of chal-
lenges due to sampling the BRDF of the surface at different
wavelengths.

To address the challenges, in this paper we decompose the
BRDF into a directional component dependent only on the
sampling geometry (i.e. the illumination incidence and view-
ing angles) and the chromaticity component. The arbitrari-
ness of the directional component is inherently guaranteed
by the core reciprocity principle of HS. In order to enable
an equally arbitrary spatially varying chromaticity compo-
nent, we have proposed a novel spatio-temporal chromaticity
calibration procedure. The procedure consists of spatial chro-
maticity estimation performed on a static reference frame and
the subsequent temporal chromaticity propagation based on
dense tracking by optical flow to transfer the estimated para-
meters to any unseen frame given a sufficient overlap with
the reference. Further, the chromaticity estimation procedure
complements our practical photometric Helmholtz camera
calibration, which addresses the problem of inter-channel
signal consistency in the multi-spectral acquisition set-up.
Specifically, the proposed photometric and chromaticity cal-
ibration procedures are tailored to each other by being both
relative to the same reference chromaticity, which cancels
out resulting in a universal reconstruction pipeline. Lastly,

we have implemented Bayesian HS in order to eliminate
the computational inadequacies of standard maximum like-
lihood (ML) HS in reconstruction with a minimal input of
three reciprocal pairs per shot characteristic of CL HS.

The proposed fully calibrated CL HS pipeline has been
validated quantitatively and qualitatively on both static and
dynamic real scenes of varying structural and photometric
complexity. Using CL HS we have obtained high qual-
ity results on dynamic deformation sequences of highly
non-Lambertian surfaces fundamentally challenging for the
established techniques. The obvious comparison of CL HS
against the establishedColourPhotometricStereo (CLPS)on
static scenes for ease of quantitative comparisonhas beenpre-
sented to illustrate the latter’s limitations in tackling complex
reflectance and geometry. CL PS has been shown to have an
inferior performance toCLHSby up to over 1mmhigher rms
error, quantitatively, and, qualitatively, by an obvious shape
distortion, both globally and locally. The performance of CL
HS on chromatically different scenes, ranging from uniform
white to spatially varying, validates the wide applicability
and accuracy of the method. The necessity of the proposed
full calibration procedure for arbitrary chromaticity surfaces
has been validated in a comparative evaluation against its
uncalibrated and partially calibrated pipeline variants. Quan-
titatively, the reconstruction accuracy of CL HS measured
as an rms error value on versatile static scenes with ground
truth is in the range of 0.5–2.5mm(the correspondingmedian
error range is 0.3–1.7mm)with the smooth untextured highly
specular object (Mug) showing the greatest accuracy. A com-
parison to the standard ML HS formulation has left no doubt
of the superiority of the proposed choice of the Bayesian
formulation. As the result after the extensive validation, we
can conclude that the CL HS framework presented in this
paper is the first widely applicable method with a practical
set-up of just three camera/light source pairs that is capable of
reconstructing dynamic scenes with arbitrary spatially vary-
ing reflectance i.e.with equally unconstrained directional and
chromaticity BRDF components.

In the paper several sources of error in our complex multi-
spectral system have been highlighted. While some (e.g.
cross-talk) have not been found dominant, others inspire
future work. One direction for future work could be an
improvement of the tracking results for chromaticity prop-
agation. At the moment, drift accumulated when tracking
over longer sequences distorts chromaticity maps which
negatively affects reconstruction by corruption of the HS
constraint formulation and consequently the depth/normal
estimates. Along with the obvious periodic chromaticity
re-estimation throughout the sequence, recent approaches
based on non-sequential tracking (Klaudiny et al. 2012;
Budd et al. 2013) could be used to reduce drift. Although
adding additional computational complexity, such methods
could help address, for example, the observed issue of region
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boundary resolution loss in the propagated chromaticity
maps.

Another avenue for future work would be to investigate
how the method could be made robust to specular high-
lights. Although HS is unaffected by specular reflectance
models provided the camera sensor is not saturated, specu-
lar highlights will impair tracking which is key in accurate
chromaticity propagation. The proposed framework has been
shown to cope with localised specularities (see the Face
dataset) but it will cause problems if larger areas are affected.
The problem of ubiquitous specular highlights remains an
open problem for the proposed system requiring a custom
tracking approach, not relying on intensitymatching, in order
to prevent tracking failure. The additional tracking robust-
ness could be provided by involving the estimated prior
geometry in the tracking constraint. Unfortunately, however,
saturations also cause errors in spatial chromaticity estima-
tion introducing pseudo surface colours already in the initial
state of the spatio-temporal chromaticity calibration proce-
dure. If choosing a different calibration frame is not possible,
such regions affected by extreme specular reflection could be
removed prior to chromaticity estimation. These regions can
be subsequently filled in based on chromaticity of the sur-
rounding areas.
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