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Here we present a novel, histogram-based salient point feature detector that may naturally be applied to
both images and 3D data. Existing point feature detectors are often modality specific, with 2D and 3D
feature detectors typically constructed in separate ways. As such, their applicability in a 2D-3D context is
very limited, particularly where the 3D data is obtained by a LiDAR scanner. By contrast, our histogram-
based approach is highly generalisable and as such, may be meaningfully applied between 2D and 3D
data. Using the generalised approach, we propose salient point detectors for images, and both untextured
and textured 3D data. The approach naturally allows for the detection of salient 3D points based jointly
on both the geometry and texture of the scene, allowing for broader applicability. The repeatability of
the feature detectors is evaluated using a range of datasets including image and LiDAR input from indoor
and outdoor scenes. Experimental results demonstrate a significant improvement in terms of 2D-2D and
2D-3D repeatability compared to existing multi-modal feature detectors.
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1. Introduction

Light Detection And Ranging (LiDAR) scanners have been used
to obtain 3D data for decades, but it is only in recent years that
they have seen more widespread applicability due to the high
computational capacity required to cope with such large datasets.
However, the integration of LiDAR scans with data from other
modalities (e.g. images) remains a difficult problem, with many ap-
proaches relying on line features for their registration (Liu and Sta-
mos, 2012; Wang and Neumann, 2009), which may not always be
available. This causes significant bottlenecks in practical applica-
tions such as digital film production, where LiDAR scans and im-
ages are captured on-set to obtain data about the scene, but sub-
sequently need to be manually registered during post-production.
The problem is further exacerbated by the high resolution and
large scale of the data, requiring scalable methods for registration
that are robust to the diverse, multi-modal aspect of the data.

To address this, here we propose a point feature detector that
may be naturally and meaningfully applied between both 2D and
3D data. Feature detection is a typical first stage in many regis-
tration pipelines (Li et al.,, 2010; Liu and Stamos, 2012; Wu et al,,
2008b), whereby considering only a small subset of discrimina-
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tive features in each dataset the registration parameters may be
obtained in a relatively straightforward manner. However, obtain-
ing suitably repeatable features between both 2D and 3D data is
a particularly challenging problem due to the large heterogeneity
between the two modalities.

Instead, existing point feature detection methods are typically
centred around images. Recent advances in 3D data acquisition
(e.g. Microsoft Kinect) has resulted in a significant interest in 3D
feature detection (Guo et al, 2014; Tombari et al., 2013b). How-
ever, it is clear that the majority of 2D and 3D feature detectors are
constructed in very separate ways. The more popular 2D feature
detectors are based on the derivative of the image, and provide
a principled approach to scale selection using scale-space theory
(Lowe, 2004; Mikolajczyk and Schmid, 2004). Yet, very few may
be extended to operate on 3D data, with many 3D feature detec-
tors based on surface curvature (Tombari et al., 2013b), and since
the traditional scale-space approach typically cannot be applied to
3D data without altering the geometry. The differences between
2D and 3D feature detectors are further exacerbated by the range
of existing 3D data types (point cloud, volumetric, mesh, textured /
untextured), leading to different 3D feature detectors for each case
(Guo et al., 2014; Tombari et al., 2013b; Yu et al., 2013).

As such, it is very difficult to use existing point feature de-
tectors jointly across 2D and 3D due to the incomparable nature
of their constructions, and the limited scope to which 3D detec-
tors may be applied. Applications such as registration, that would
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typically rely on point feature detectors, instead use other tech-
niques in the 2D-3D case (e.g. learning a bag of features across
multiple viewpoints (Tombari et al., 2013a), or Mutual Information
alignment (Mastin et al., 2009)). These approaches are not as gen-
eral as their feature-based counterparts; often making restrictive
assumptions about the scene, or requiring a good initial alignment.

To address this issue, here we propose a more general ap-
proach to point feature detection, based on the Kadir-Brady (KB)
saliency detector (Kadir and Brady, 2001). Its histogram-based ap-
proach does not exclusively depend upon data-type specific quan-
tities such as derivatives or curvatures. Instead, it defines a salient
point as having a high information content (as measured by the
entropy of its histogram) at a particular scale. This histogram-
based approach allows it to be formulated across different modal-
ities in a more meaningful manner than other feature detec-
tors due to the vast array of ways in which histograms may be
constructed.

Based upon the KB saliency detector, and inspired by the suc-
cess of the 2D Harris corner detector (Aanes et al., 2012; Harris
and Stephens, 1988) we propose a novel extension to the 2D KB
saliency detector. Whereas the original KB saliency detector con-
structs a histogram of pixel intensities in a circular region, we pro-
pose a derivative-based approach whereby the histogram is con-
structed based on the distribution of eigenvalues of the second
moment matrix. This allows our approach to detect salient points
with respect to the derivative of the image, where it may operate
in a more general manner than a typical corner detector and avoid
repetitive parts of the scene.

By using the generalisable histogram-based approach of the KB
saliency detector, the above approach may be naturally extended
to 3D data by constructing a histogram based on the 3D sec-
ond moment matrix (Sipiran and Bustos, 2010). Furthermore, the
histogram-based approach allows for the detection of salient points
based on both the geometry and texture of the scene by construct-
ing a 2D histogram based on the texture of the 3D surface, and
combining the 2D and 3D histograms. This allows it to operate in
a meaningful manner regardless of whether or not the 3D data is
textured, and is able to combine the best of both sets of features
for textured data.

The contributions of this paper are three-fold. Firstly, a general-
isation to the KB saliency detector is formulated, demonstrating its
broad applicability to operate wherever histograms may be mean-
ingfully constructed within a metric space. Secondly, in light of this
generalisation, we propose a 2D derivative-based KB saliency de-
tector based on the second moment matrix. Thirdly, the derivative-
based KB saliency detector is naturally extended to 3D, where it
may operate on both textured and untextured 3D data. It is, to
the best of our knowledge, the first 3D feature detector to operate
based on both the geometry and texture of the scene simultane-
ously. The proposed detectors are evaluated in a 2D-2D and 2D-3D
manner where it is shown to be more repeatable than existing de-
tectors (Harris 2D and 3D (Harris and Stephens, 1988; Sipiran and
Bustos, 2010), and SIFT 2D and 3D (Lowe, 2004; Zaharescu et al.,
2012)).

This paper is structured as follows. In Section 2 we describe
related work in point feature detection between 2D and 3D. In
Section 3 a description of the KB saliency detector is given, along
with proposed extensions and modifications (Kadir et al., 2004;
Shao and Brady, 2006; Shao et al., 2007). In Section 4 we pro-
pose a generalisation of KB saliency. The generalisation is subse-
quently implemented for a 2D derivative-based KB saliency detec-
tor (Section 5), and a 3D KB saliency detector (Section 6) that may
operate on textured or untextured 3D data. In Section 7 results
will be given, involving qualitative and quantitative results in both
2D and 3D; finally, conclusions and future work are presented in
Section 8.

2. Related work

There has been a significant amount of research in point feature
detection; both in 2D (Li et al., 2015; Tuytelaars and Mikolajczyk,
2008) and in 3D (Guo et al., 2014; Tombari et al., 2013b). Here
we aim to give a brief overview of point feature detection in each
modality, describing and comparing the mechanisms involved.

2.1. 2D point feature detection

A significant number of 2D point feature detectors may be
categorised as derivative-based. The early Harris corner detector
(Harris and Stephens, 1988) is a prime example, based on the sec-
ond moment matrix M (made up of the partial derivatives of the
image in a neighbourhood of the point). When both eigenvalues of
M are large, it implies a corner is present; a ‘corner measure’ is
constructed accordingly. Alternatively, the Hessian matrix may be
used (Beaudet, 1978) as the basis for a feature detector. It detects
‘blob’ structures, where a point is of relatively high or low inten-
sity compared to its immediate surroundings. The eigenvectors and
eigenvalues describe the size and shape of the blob, with the de-
terminant of the Hessian typically used as a response value.

In the case of both the Harris and Hessian detectors, they
may be made affine-invariant by constructing the matrices from
image derivatives over an elliptical regions (Mikolajczyk and
Schmid, 2004). Furthermore, they may be made scale-invariant by
constructing the matrices over ellipses of varying size while con-
volving with a Gaussian kernel (Mikolajczyk and Schmid, 2004).
It is observed that detecting keypoints based on the magnitude
of the scale-normalised Laplacian of Gaussians (LoG) produces the
highest percentage of correct scales. This has led to the popular
SIFT detector (Lowe, 2004) that detects keypoints by the magni-
tude of the Difference of Gaussians (DoG). DoG is approximately
equal to the scale-normalised LoG by the heat equation, hence this
approach allows for LoG estimation without the need for deriva-
tives to be computed. However, the DoG response is large for
edge-like structures, so SIFT subsequently culls edge responses us-
ing the ratio of eigenvalues of the Hessian. The traditional Gaus-
sian scale-space approach has its limitations since it blurs both
noise and fine detail (e.g. edges); this has been addressed by
Alcantarilla et al. (2012) who use a non-linear scale-space that re-
spects the natural boundaries of the image.

A secondary category of point feature detectors are those that
are intensity-based. These detectors typically operate over a neigh-
bouring set of pixels, but disregard the derivative of the im-
age. As such, they are often more robust to noise (particularly
salt-and-pepper noise) than derivative-based feature detectors. An
early intensity-based approach is the SUSAN detector (Smith and
Brady, 1997); it defines a Univalue Segment Assimilating Nucleus
(USAN) as a set of neighbouring pixels that have a similar intensity
value to a centre pixel. Corners are subsequently defined where the
number of pixels in the USAN is small. Region detectors typically
fall into the intensity-based approaches category; for example, the
MSER detector (Matas et al., 2002) detects regions where pixel in-
tensities inside the region are either higher or lower than those on
its boundary.

A subset of intensity-based approaches are the histogram-based
feature detectors that detect feature points via histogram construc-
tion. The Kadir-Brady saliency detector (Kadir and Brady, 2001) is
an example of this; it constructs a histogram of pixel intensities
in a neighbourhood of a point, salient points are detected where
the distribution of pixel intensities has a high entropy at a partic-
ular scale. It will be discussed in greater detail in the next sec-
tion, where it forms the basis of the proposed 2D-3D point feature
detector.
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Using the histogram-based approach, a keypoint may be de-
tected based on the idea of self-similarity, (or lack of it) to its
neighbours. Maver (Maver, 2010) looks for similar histograms of
pixel intensities in radial and tangential regions so as to detect
keypoints that exhibit different types of symmetry. Conversely,
Lee and Chen (2009) look for a point whose histogram is sig-
nificantly dissimilar from its immediate neighbours. Tombari and
di Stefano (2014) use a similar idea, but where histogram compar-
ison is only performed on the k-nearest neighbours and a compu-
tationally efficient implementation is proposed. The notion of self-
similarity is very useful for multi-modal registration, since scenes
may often exhibit a similar structure between modalities but lack
similar finer features. Tombari and di Stefano (2014) show their ap-
proach to be of potential use for cross-spectral image registration,
and Shechtman and Irani (2007) construct a self-similarity descrip-
tor for cross-spectral imagery and sketch-based retrieval.

The majority of 2D point feature detectors are focused
purely within the 2D domain. There is evidence to suggest that
histogram-based approaches are a promising avenue for multi-
modal feature detection due to their general formulation. However,
this has never been applied in a 2D-3D context, where the his-
togram construction process may more generally result in feature
detection based on both the geometry and texture of the 3D data.

2.2. 3D point feature detection

Approaches to point feature detection in 3D vary depending
upon the type of data being used. For volumetric 3D data many
2D feature detectors may be naturally extended, e.g. 3D SIFT
(Flitton et al., 2010). Indeed, a performance evaluation of volumet-
ric 3D feature detectors (Yu et al., 2013) show extensions of fa-
miliar 2D feature detectors (Harris, Hessian, MSER, etc). However,
other representations of 3D data (point cloud or mesh) create diffi-
culties since points are non-uniformly sampled, points may or may
not be textured, and a scale-space may not be so naturally con-
structed. Point cloud representations are however the subject of
this paper and as such feature detection for this representation will
be reviewed here.

Similarly to 2D feature detection, the Harris corner detector has
been naturally extended to operate on 3D data (Sipiran and Bus-
tos, 2010). For each point, a best fit tangent plane is first deter-
mined. Each neighbouring point is projected onto the plane and
assigned an ‘intensity’ value for each point as its distance to the
plane. The 2D Harris corner detector may be applied to this set of
intensity values, resulting in the 3D Harris corner detector.

Second derivative-based approaches in 3D typically mani-
fest themselves through curvature-based approaches, while avoid-
ing any mention of a Hessian matrix. For example, Chen and
Bhanu (2007) propose an approach that locally estimates a
quadratic surface around each vertex and uses this to obtain the
principal curvatures. They then assign a Shape Index (SI) to each
vertex based on the maximum and minimum principal curvatures.
Points are detected based upon whether its SI is significantly big-
ger or smaller than the mean of a neighbourhood of SIs.

Alternative approaches may not be derivative-based at all, tak-
ing advantage of the unordered point cloud representation of the
data. For example, Zhong (2009) proposes Intrinsic Shape Sig-
natures (ISS), based on the eigenvalue decomposition of the 3
x 3 covariance matrix around a point. They subsequently cull
points whose ratio between successive eigenvalues are similar,
then rank feature points in proportion to the smallest eigenvalue.
Learning-based approaches have also been proposed, for example
by Teran and Mordohai (2014), who learn across a set of geometric
attributes using a random forest. The approach allows for specific
point detection to match the criteria observed during the training
phase, resulting in a more flexible approach.

Scale-space approaches to 3D feature detection have been pro-
posed in a number of ways. Castellani et al. (2008) propose to de-
tect point features by using the Difference of Gaussians (DoG) on
the set of 3D points, determining a point’s saliency by how far
it moves along its normal under the DoG operator. However, this
type of approach has been criticised since it obtains a scale-space
representation by altering the geometry of the scene. Alternatively,
a scale-space may be constructed by convolving other attributes of
the 3D data. Such an approach is taken by Zaharescu et al. (2012):
they detect keypoints in a generic way that is applicable to scalar
functions of 2D manifolds, e.g. mean curvature, or the intensity (if
the data is textured). However, it cannot detect keypoints based
jointly on geometry and texture. Their approach is similar to SIFT,
computing a scalar function at each point, using a DoG operator
on the scalar function and rejecting keypoints for which the ratio
of the eigenvalues of the Hessian are large.

An approach that is very similar to SIFT is the Viewpoint Invari-
ant Patches approach of Wu et al. (2008a), that is only applicable
to textured 3D models. They propose to compute a local tangent
plane to each 3D point, onto which a neighbouring texture patch
may be orthographically projected. The 2D SIFT detector and de-
scriptor may be subsequently applied on the texture patch to al-
low a framework for 3D-3D registration. Wu et al. furthermore ap-
ply their approach in a 2D-3D scenario (Wu et al., 2008b), where
SIFT features are detected in both 2D and 3D data. They determine
putative feature matches that are refined by warping the 2D SIFT
features such that they approximately match the same form of the
orthographic VIP SIFT features.

A histogram-based approach to 3D point feature detection was
prosed by Fiolka et al. (2012), who extend the KB saliency de-
tector (Kadir and Brady, 2001) and construct a histogram based
on the distribution of normals. However, their approach only de-
tects salient features based on the geometry of the scene and
does not detect those based on any available texture; as a re-
sult it does not provide a unified approach to salient point de-
tection in 3D. An earlier version of this work was published in
Brown et al. (2014) based on the mean curvature, however this
was a purely geometry-based KB saliency detector. In this paper
we a) propose a derivative-based 2D KB saliency detector, and b)
in contrast to both Fiolka et al. (2012) and Brown et al. (2014), we
consider both the geometry and texture of the scene, allowing for
salient point detection based on both attributes of the data simul-
taneously. Our framework for generalisable salient point detection
is evaluated between 2D and 3D on a range of synthetic and real
data.

3. The Kadir-Brady saliency detector

Here an outline of the Kadir-Brady (KB) saliency detector
(Kadir and Brady, 2001) and its extensions and various implemen-
tations (Kadir et al., 2004; Shao and Brady, 2006; Shao et al., 2007)
are given.

The KB saliency detector (Kadir and Brady, 2001) is originally
based on the principle that the parts on an image that are highly
complex are salient. Scale-invariance is achieved by measuring
the complexity across a range of scales and only selecting points
whose complexity is peaked with respect to their scale. To further
localise its scale, it is required that the point is statistically dissim-
ilar across its neighbouring scales, known as inter-scale saliency.
The saliency of a point is therefore the product of two terms: its
complexity and its inter-scale saliency. Finally, salient points are
clustered into salient regions so as to be more robust to noise.
These three stages of the KB saliency detector (complexity esti-
mation, inter-scale saliency, and clustering) are now described in
more detail:
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Fig. 1. An example of four distributions of pixel intensities from the image. The distributions on the left have a relatively large entropy and change significantly over scale.
The distributions on the right lie in an approximately uniform part of the image, having low entropy and not changing over scale, hence will not be deemed salient by the

approach. Image taken from (Mikolajczyk et al., 2005).

Stage I: Complexity estimation. The complexity of a given
point (p) at a particular scale (o) is determined by its entropy. En-
tropy is, however, defined for a probability mass function (pmf) P
taking one of K values (i.e. P={py,..., px}. pi = 0 Vi, YK, p; = 1),
and is defined as:

K
H(P) = - pilnp (1)
i1

Informally, the entropy of a pmf gives a measure of how ‘spread
out’ it is: it is maximised for the uniform distribution and min-
imised when the pmf is 1 for one bin and zero for all other bins
(Shannon, 1948). We take 0In0 = 0 (since lim,_ o xInx = 0).

To meaningfully apply the concept of entropy to a point p at
scale o, a histogram of pixel intensities is first constructed from
all pixels within a distance o5 from p; denoted {vy o, ..., Vk g}
The histogram is normalised to obtain a (frequentist) pmf, denoted
(D165 -+ Do} 1. XK Di o, = 1. Then the entropy of point p at
scale o is defined as the entropy of the frequentist pmf:

K
H(p,os) = — Z Vi, log (i)i,(rs) @)

i=1

Stage II: Inter-scale saliency. Similarly to other feature detec-
tors, only features whose response value is peaked in scale-space
are sought-after; i.e. only features whose entropy is peaked in
scale-space are kept. Furthermore, it is necessary for the feature
to be statistically dissimilar across scale. Based on this, the pmf is
compared to the pmfs of the neighbouring scales, and the saliency
is weighted by how dissimilar the pmfs are. Thus the weighting
function is constructed as:

2 K
O ~ ~
WP, 05) = —5—5 > |lio, — Dio, , 3)
o — (7571 o
ol

The coefficient is used so as to be scale-invariant.

ol-o2 |

From these two stages, a set of keypoints - those whose en-
tropy is peaked in scale-space - are obtained. They have a saliency
value of H(p, o5) x W(p, o). An example of histograms obtained

for the first two stages is given in Fig. 1, where the advantages of

determining salient points as those with a high entropy and dis-
similarity across scale are demonstrated.

Stage III: Salient regions. From the previous stage a great deal
of salient points are returned by the detector (typically hundreds
of thousands); far too many to be of use in any practical appli-
cation. Hence, a simple clustering algorithm is proposed. In the
original paper (Kadir and Brady, 2001) a rather complicated clus-
tering algorithm, dependent upon two user-defined parameters, is
proposed. However, code provided on the author’s webpage uses a
greedy clustering algorithm: it iteratively takes the point with the
highest saliency value and removes all other points within its scale,
continuing in this fashion until no points are left. We have found
the greedy clustering algorithm to be better in practice, as well as
more general since it is parameter free.

A deficiency in the above approach is that it is not affine-
invariant: histograms are computed in a circular region around a
point, rather than the full range of potential elliptical regions. This
was addressed in Kadir et al. (2004) where a full, time-consuming
search over all ellipses in the image is implemented. Alternatively,
in Shao and Brady (2006), the authors propose to first detect
affine-covariant salient regions using the original KB saliency de-
tector, then adapt these to make them affine-invariant.

In (Shao et al., 2007) Shao et al. provide a number of improve-
ments to the algorithm that significantly increase its robustness.
They do not change any fundamental aspect of the approach, in-
stead computing desired quantities in a more accurate and princi-
pled manner. Specifically,

i) The weighting W(p, o) is more accurately computed, re-
flecting the ratios of the number of pixels at each scale. Let
there be N; pixels within o from p. Then the weighting is
determined as:

Ny .
W(p,os) = N N, No ; |Vi,z75 - Vi,oHi

N K

s+1 ~ ~

_ E Ui -7 4

+ Ns+1 N, - | 1,051 i,05 ( )

ii) The histogram is sampled differently so as to weight pixels
towards the centre of the circle more than those towards the
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edge. A Gaussian weighting is initially suggested; instead a
computationally inexpensive alternative is proposed where
a pixel is weighted twice as much if it is within o,_; and
three times as much if within o,_».
iii) Partial volume estimation: some pixels are only partly
within the circle. In this case, they contribute to the his-
togram in proportion to how much of the pixel is inside the
circle.
Parzen windowing: the histogram is convolved with a Gaus-
sian to obtain a smoother pdf. Bilinear interpolation is sug-
gested as a computationally inexpensive alternative.

=
-

The proposed modifications of Shao et al. (2007) result in some
improvement to the performance of the KB detector, as evaluated
on the dataset of Mikolajczyk et al. (2005). Hence, Shao et al
demonstrate the potential of the approach as a repeatable feature
detector, but do not demonstrate its broad applicability. In the next
section, we generalise the KB detector and show how it may be
broadly applied across different modalities.

4. The generalised Kadir-Brady saliency detector

The original KB saliency detector was limited in its construc-
tion and as such was only applicable to images. In this section
we propose a much more general formulation that allows it to be
applicable in a multi-modal manner. Subsequently, we propose a
derivative-based reformulation in the 2D domain, and a 3D formu-
lation that naturally accounts for both the geometry and texture of
the scene.

To generalise the KB saliency detector, we observe that much of
its construction is based on a very general concept: points whose
entropy is peaked across scale are regarded as salient. To illustrate
how widely this concept may be applied, we shall formulate the
KB saliency detector in a more general manner for points lying in
a metric space.

To this end, let M be a set and d : M x M — R be a metric,
i.e. let (M, d) be a metric space. Define a ball of radius o centred
atpe M as
B> (p) :={xe M :d(p.x) <0} (5)
representing the set of elements of M within o of p. Finally, as-
sume a mapping F may be constructed from each element of M
to an K-dimensional positive vector, i.e. F: M — R*K. Construct-
ing F as a specifically vector-valued function will allow for broader
applicability where multiple attributes of the data are taken into
account (e.g. geometry and texture).

From the above constructions the key components of the KB
detector may be defined, allowing for generalised KB saliency de-
tection in (M, d). The probability mass function for an element
p € M at scale o is determined by computing a weighted sum
over mappings (F) from all points in ball By, (p) and normalising:
explicitly, the pmf is {D; 4, ..., Uk o}, Where

quBgs p) W(q, p)Fl (Cl)

Y51 Yqer,, o (@ P)F; (@)

where the weighting w(q, p) is constructed to favour points
closer to p. A Gaussian weighting is originally suggested by
Shao et al. (2007) but discarded due to considerations of computa-
tional efficiency. However, this consideration does not necessarily
hold since the weightings may be precomputed, and relative gains
in efficiency are always application dependent. In this paper, we
use a Gaussian weighting since it leads to a more principled and
robust approach:

Ui,(rs =

(6)

—lla—pll
2

w(gq,p)=e )
With the construction of the pmf (Eq. (6)), the entropy of a
point p € M at scale o is well defined, and is the same as Eq. (2):

K
H(p7 0's) = - Z 171'.05 lOg (f/i.as) (8)
i=1

Subsequently the inter-scale saliency, W(p, o), is defined as in
Eq. (4). Finally, the saliency of a point p € M at scale o is de-
fined as the product of H(p, o) and W(p, o). Salient points are
subsequently clustered by iteratively taking the point with the
highest saliency value (py) and removing all other points within
Bas (pH)

As an example, for the 2D KB saliency detector, the metric
space is (RZ, %), representing the image plane under the Eu-
clidean norm. A ball By (p) is simply a circle of radius os cen-
tred at p. The mapping F takes the intensity of a pixel and maps
it to the index of the histogram bin (i.e. if the intensity of pixel
p is I(p) then F(p) =(0,...0,1,0,...,0), with a 1 in the I(p)th
element of the vector). However, the more general construction
where F is a multi-valued function allows for pixels to contribute
to multiple bins. This not only extends the KB saliency detector to
other modalities but provides additional advantages, e.g. for bilin-
ear interpolation, or where points have multiple attributes (such
as where 3D points contain information regarding geometry and
texture).

Based on the above formulation, the generalised KB saliency de-
tector may be applied to a range of multi-modal data. In the next
two subsections, we construct a derivative-based 2D KB saliency
detector, as well as a 3D KB saliency detector that naturally oper-
ates on both the geometry and texture of the scene. In both cases,
the approaches are elegantly incorporated within the generalised
KB saliency framework by simply defining the metric space and
constructing the mapping F.

5. Derivative-based 2D Kadir-Brady saliency detector

The original 2D KB saliency detector was constructed based on
the distribution of pixel intensities in a neighbourhood of a point.
Whilst this gives some indication of some of the more complex,
salient parts of the image, it fails to detect the geometrically salient
aspects. In particular, it rarely detects corners, for which the neigh-
bouring complexity of pixel intensities varies little with scale. As a
result, the original 2D KB saliency detector fails to detect repeat-
able features between 2D and 3D (see the results in Section 7.5);
focusing more on the texture of the scene rather than the geome-
try.

In light of this limitation for the original KB saliency detector
and based on the preceding generalisation, in this section we pro-
pose a derivative-based KB saliency detector. Specifically, the his-
togram mapping F is modified to be a function of the derivative
of the image at any given pixel. This allows for high-derivative
points within a low-derivative neighbourhood (e.g. corners) to be
deemed salient; an important outcome in low-textured scenes.
However, it is more general than a typical corner detector, deter-
mining salient points wherever a change in image derivative with
respect to scale occurs, and avoiding noisy or repetitive parts of the
scene.

The derivative-based KB saliency detector is formulated as fol-
lows: the metric space is (R2,L2), the same as the original KB
saliency detector. The mapping F is a function of the derivative of
the image (specifically, the second moment matrix). Denote the in-
tensity of a pixel p as I(p) and its derivatives in the x and y direc-
tions as I(p)x and I(p), respectively. For a fixed scale o, construct
the second moment matrix (Harris and Stephens, 1988) centred at
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Fig. 2. An example of four distributions of second moment matrix eigenvalues from the image. The distributions on the left have a relatively large entropy and change
significantly with scale, and are likely to have a high saliency value. Conversely, the distributions on the right, while having a relatively large entropy, do not change

significantly over scale, and are likely to have a lower saliency value.

Fig. 3. Example output of the proposed derivative-based KB saliency detector. Left: Input image. Middle: A heatmap indicating the magnitude of the eigenvalues of M(p).
The intensity of magenta represents the relative magnitude of the first eigenvalue, with blue representing the second eigenvalue. Right: Salient points detected based on a

histogram of the eigenvalues. The size of the circle represents its scale.
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where w(q, p) is a Gaussian weighting function designed to favour
—la-p|?

points closer to p, e.g. w(q,p) =e 202 . In constructing the ma-
trix, we cap the derivatives at 50 pixels to give a more perceptu-
ally meaningful approach that favours all large changes in image
derivative to the same extent.

For constructing the derivative-based KB saliency detector, we
are interested in the eigenvalues A; and A, of M(p) that describe
the derivative of the image. In qualitative terms, when A; and X,
are both large, p is a corner; when A > A,, p is an edge; and
otherwise p has little change in derivative in any direction. To con-
struct the histogram mapping F, the eigenvalues of M(p) of all pix-
els on the image are normalised and discretised to lie in a rp x 1p
histogram. Subsequently, F maps the eigenvalues of M(p) to the
bins of the rp x rp histogram (hence, the codomain of F is R”l%).
Bilinear interpolation is performed, meaning at most four elements
of F will be non-zero.

An example of histograms constructed using the proposed
derivative-based 2D KB saliency detector is given in Fig. 2, and a
heatmap of the relative magnitudes of the eigenvalues of M(p)

alongside the output of the proposed detector is given in Fig. 3.
It can be seen that the approach detects salient points where the
histogram of eigenvalues changes with respect to scale. This allows
it to detect a range of derivative-based structures within the scene
while naturally avoiding the repetitive areas.

6. The 3D Kadir-Brady saliency detector

For 3D KB saliency detection, we shall define the metric space
and histogram construction from Section 4. Such a general for-
mulation allows for a large range of potential implementations;
of note is its applicability to both textureless and textured 3D
data within the same framework. More concretely, we may use
a histogram mapping F that describes both the geometry and
the texture of 3D data, rendering it equally applicable regard-
less of whether the 3D data is textured. In this section, we
describe the histogram construction based purely on geometry
(Section 6.1), on texture (Section 6.2), and on both (Section 6.3). An
example of histograms constructed using each approach is shown
in Fig. 5.

Regardless of histogram construction, the metric space used
here is simply (R3,L2), i.e. consider all points to lie in 3D space
under the Euclidean norm. If the 3D data were a mesh the geodesic
distance may be used instead, however this is slower to compute
and not as widely applicable.
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6.1. Geometry-based 3D KB saliency detector

Initially, we describe the approach taken based purely on the
geometry of the 3D data. To do so, we project the local surface of
the 3D data to an image and apply the same techniques as per-
formed previously (construction of the second moment matrix); a
similar approach has been taken for the construction of the 3D
Harris corner detector (Sipiran and Bustos, 2010). The image is
taken to be a tangent plane to the 3D data, and the ‘intensity’
value of the image represents the distance of the 3D data to the
plane. We take a purely derivative-based approach in this subsec-
tion; an intensity-based geometric KB detector may not be con-
structed since the ‘intensity’ value of every point onto its own tan-
gent plane is always zero.

Our derivative-based geometric KB detector is more formally
constructed as follows: for a point p € R3, first determine a least-
square tangent plane at p. Construct an orthonormal frame for the
tangent plane as {t;, t,, n}, where n is the normal to the plane.
Then, for a fixed scale o, consider the neighbouring set of points
{q € B5(p)}. Project each point onto the plane, yielding local (u, v)
coordinates ((q —p) -t;, (q — p) - t;) and define its ‘intensity’ value
I(q) as the directional distance from q to the plane, computed as
(q — p) - n. The second moment matrix may thus be constructed in
the same way as Section 5 as:

-1

NpP)=| ) wiap)
qeB; (p)
I(q); I(q)ul(q)u)
x (q.p) (10)
qE@W ap <I(q)u1(q)v 1(q),
~llg-plI2

where, similarly to Section 5, w(q,p) =e 202 . The eigenvalues
of N(p) are subsequently used in the histogram mapping F, in the
same manner as performed previously. Note that the orthonormal
frame {t;, ty, n} is not unique - there is ambiguity in the directions
of t; and t,. However, the eigenvalues of N(p) are rotationally in-
variant and therefore this ambiguity will not affect the desired out-
come. Hence, we have avoided the need to construct a unique and
unambiguous orthonormal reference frame that often plagues 3D
feature detectors (Guo et al., 2013; Petrelli and di Stefano, 2012).

However, the derivatives I(q), and I(q), required in Eq. (10) may
not be estimated as easily as for the 2D detector, where the in-
tensity values of a pixel’s immediate neighbours may be used
to determine the derivative. Instead, we compute a Gaussian
weighted average from a set of neighbouring points, similarly to
Zaharescu et al. (2012). To compute the derivatives I(q), and I(q)y
from a non-uniformly sampled set of 2D points {r € B,(q)} each
with intensity I(r); firstly, denote the derivative for the 2D point
q as g := (I(q)y, I(q)y). Then note that, for a point r lying suffi-
ciently close to q, the following relationship holds by definition of
the derivative:

g'(q-r) ~I(q) —I(r) (11)

We may use Eq. (11) to determine g by solving the weighted least-
squares equation:

argmin Y wir.a)(I(@) - 1) ~ ' (¢ - @)’ (12)
£ 1@

wherezw(r, q) is a Gaussian of small variance, e.g. w(r,q) =
—llr—q|]

e 2(%)° so that the local derivative estimates of I(q) are computed

over a tighter region than that from which N(p) is constructed.

Eq. (12) is solved by ‘stacking’ each weighted equality in (11) to

form an over-determined system of the form Ag = Db, from which

the least-squares solution to (12) is given by g = (ATA)~"1ATb.

Subsequently, computing the gradient (I(q)y, I(q),) for every
neighbouring point projected onto the tangent plane allows for
the matrix N(p) to be constructed and its eigenvalues to be com-
puted. To construct the mapping F, the eigenvalues of N(p) of all
points in the data are normalised and discretised to lie in a rg x
r¢ histogram, where bilinear interpolation is performed. An exam-
ple of the proposed geometry-based KB saliency detector is shown
in Fig. 4 alongside a heatmap of the eigenvalues of N(p). The ap-
proach detects a range of geometrically significant structures in a
scale-invariant manner, while avoiding the more repetitive areas of
the model.

6.2. Texture-based 3D KB saliency detector

We propose two texture-based 3D KB detectors: an intensity-
based approach and a derivative-based approach, both of which
will be evaluated in Section 7.5. For the intensity-based approach,
the mapping F is exactly the same as in the original 2D KB im-
plementation: taking the intensity of a point to its histogram
bin while applying bilinear interpolation. Where the 3D data is
coloured, the greyscale value is computed via the equation I =
0.299R + 0.587G + 0.114B. The histogram is assumed to be of the
same size (K) as the original intensity-based 2D KB implementa-
tion.

To obtain the mapping F for the derivative texture-based 3D KB
saliency detector, we adopt essentially the same approach as the
geometry-based 3D KB saliency detector in the previous section.
The local surface of the 3D data is projected onto a tangent plane,
and the second-moment matrix (Eq. (10)) may be constructed
again. However, rather than using the intensity value of a pro-
jected point I(q) as the directed distance between q and the tan-
gent plane, the greyscale value of the point q is used instead. The
intensity differences (I(r) —I(q)) in Eq. (12) are capped between
—50 and 50 pixels, similarly to the 2D approach in Section 5, so as
to give a more perceptually meaningful distance. The eigenvalues
of N(p) (where I(q) represents the intensity of point q) are subse-
quently normalised to lie in a rp? histogram.

6.3. Geometry and texture based 3D KB saliency detector

Our framework naturally allows for the extension to detect
salient points based on both the geometry and texture. Given that
the two histograms may be constructed based on the geometry or
the texture, their joint histogram may be constructed. The intensity
texture-based KB detector may be combined with the geometry-
based KB detector to produce a Krg2 histogram. Alternatively, the
derivative texture-based KB detector may be combined with the
geometry-based KB detector, to produce a rp2r¢? histogram. Bilin-
ear interpolation is again performed in these histograms.

An example of histograms constructed based on the geometry,
derivative-based texture, and both, is shown in Fig. 5. The his-
tograms based on both are the joint histogram of the geometry and
the derivative-based texture histograms. They are relatively large
and, in general, sparse; exhibiting a very high entropy only when
caused by both the geometry and texture. However, this approach
is able to detect salient points based on either the geometry and
texture, since in either case a relatively high entropy is observed
at a particular scale.

7. Experimental evaluation

In this section we evaluate the performance of our proposed
generalised salient point detector against other approaches, with
both 2D and 3D data. Qualitative and quantitative results are given,
where the final aim is to detect highly repeatable, sparse features
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Fig. 4. Example output of the proposed derivative-based KB saliency detector. Left: Input 3D data. Middle: A heatmap indicating the magnitude of the eigenvalues of N(p).
The intensity of magenta represents the relative magnitude of the first eigenvalue, with blue representing the second eigenvalue. Right: Salient points detected based on a

histogram of the eigenvalues. The size of the sphere represents its scale.
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Fig. 5. An example of the derivative-based histogram distributions from 3D data when considering geometry, texture, and both. The point on the right has a large distribution
of eigenvalues based on texture but not based on geometry, whereas the point on the left has a relatively larger distribution of eigenvalues based on geometry (as well as
texture). In both cases, the resulting joint histogram (based on geometry and texture) is relatively sparse.

between 2D and 3D, that may be of use in the subsequent regis-
tration stage. For comparison against our approaches, there exist a
large number of feature detectors in both 2D and 3D (Guo et al.,
2014; Tuytelaars and Mikolajczyk, 2008), however we focus specifi-
cally on comparing against feature detectors that may be meaning-
fully constructed in both 2D and 3D. We shall first introduce the
detectors in each modality before describing how they are evalu-
ated: firstly between 2D and 2D, and secondly between 2D and 3D.

In 2D, we consider five detectors. Firstly, the traditional Harris
corner detector (Mikolajczyk and Schmid, 2004). However, it is ob-
served that, for small numbers of features, Harris does not detect
a suitable spread of features, with many corners detected in the
same area (see Fig. 9). Therefore, we secondly evaluate the Good
Features to Track algorithm (GFT) Shi and Tomasi (1994) to obtain
a better, more representative set of corners. Thirdly, we evaluate
against the state-of-the-art SIFT detector (Lowe, 2004). The final
two detectors evaluated are the proposed derivative-based KB de-
tector (Section 5), referred to as KBD, and the original intensity-
based KB detector (Shao et al., 2007) (referred to as KBI) so as to
experimentally justify the construction of the proposed KBD detec-
tor formulated in Section 5.

In 3D, there are optional detectors available to compare against
depending upon if the texture of the data is used. For untex-
tured 3D data, we consider four detectors: Harris (Sipiran and
Bustos, 2010), SIFT, SURE!(Fiolka et al., 2012) and the proposed
derivative-based geometric KB detector (Section 6.1), referred to as
KB-G. In 3D, Harris is not scale-invariant and performs non-maxima
suppression, therefore typically detects a better spread of corners
in 3D than its 2D counterpart; hence there is no need for a 3D
Good Features to Track detector. For untextured 3D data, SIFT de-
tects keypoints based upon the mean curvature, and will be re-
ferred to as SIFT-G. Both Harris and SIFT-G are implemented in
Point Cloud Library.? Harris is extended to 3D (Filipe and Alexan-
dre, 2014) by replacing image gradients by surface normals from
which a 3D covariance matrix is constructed. The response value
is then a function of the determinant and trace of the covariance
matrix (similar to 2D). SIFT is extended to 3D (Hdnsch et al., 2014)
using either the curvature of a point or the intensity (if the 3D

T Code available from https://github.com/torstenfiolka/sure3d
2 http://pointclouds.org/
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point cloud is textured). A Difference-of-Gaussians (DoG) may be
applied solely on this attribute of the point cloud (curvature or
intensity) that does not change the position of the points. Local
maxima and minima may then be found by comparing to a point’s
k-nearest neighbours, subsequently points with low curvature are
rejected as they are deemed unstable.

For textured 3D data, there are additional detectors that may be
evaluated against. SIFT may detect features on textured data based
on the intensity (referred to as SIFT-T). Alternatively, the KB ap-
proaches may be used to detect features based purely on the tex-
ture, with the intensity-based KB detector referred as KBI-T and
the derivative-based KB detector for textured 3D data referred to
as KBD-T. Only the KB approaches allow for both the texture and
geometry to be combined (Section 6.3), referred to as KBI-B and
KBD-B.

From the above 2D feature detectors (Harris, GFT, SIFT, KBI,
and KBD) we firstly evaluate their repeatability in a 2D-2D sce-
nario (Section 7.4). Subsequently, alongside the 3D feature detec-
tors (Harris, SIFT-G, KB-G, SURE, SIFT-T, KBI-T, KBD-T, KBI-B, and KBD-
B) we evaluate their repeatability between 2D and 3D. For untex-
tured 3D data, we use six 2D-3D point combinations: Harris-Harris,
GFT-Harris, SIFT-SIFT-G, KBI-KB-G, KBD-SURE and KBD-KB-G. For tex-
tured data there are a further five 2D-3D combinations: SIFT-SIFT-T,
KBI-KBI-T, KBD-KBD-T; and where both geometry and texture are
considered by KB: KBI-KBI-B and KBD-KBD-B. Thus, where the 3D
data is textured, a total of 11 2D-3D feature detector combinations
will be evaluated, to compare the effects of considering the geom-
etry, texture, or both, of the textured 3D data.

7.1. Implementation details

For the proposed KB detectors two parameters are user-defined:
the number of bins for the mapping F (K, rp and rg), and the
number and range of scales (o). For the number of bins of KBI
we take K =16 in both 2D and 3D. For the proposed derivative-
based approaches (KBD) we use rp = ¢ = 4; hence, both KBI-B and
KBD-B have the same total number of bins of 256. The number
of scales is 12 in all cases. For the range of scales in 2D we take
o1 =3 with o5 =3 +0,_1. This is similar to the parameters of
Shao et al. (2007) whose experiments show that a gap of 3 pixels
between scales performed the best. In 3D, the scale is defined in
proportion to the size of the model. First, denote the length of the
diagonal of the bounding box of the model as L. Then, for the syn-
thetic data, o; = 0.004L whereas o; = 0.003L for real data (since
features are relatively smaller for the more complex real data).
Subsequent scales are defined by o = so;, the same as the mesh
saliency approach by Lee et al. (2005). In determining the param-
eter o in both the 2D and 3D case, we run experiments to justify
our choice of parameters (shown in the appendix). For the con-
struction of matrices M(p) and N(p) in Egs. (9) and (10), the size
of the ball B, (p) is taken to be o = 5.

For a fair comparison, the other approaches (SIFT, GFT,
Harris, and SURE) are altered, where possible, to align with
these user-defined parameters. For SIFT in 2D the parameters
provided by Vedaldi and Fulkerson (2008) are used and by
Mikolajczyk et al. (2005) for Harris; and the parameter for GFT
is defined such that no two corners are within 16 pixels of each
other. In 3D, the fixed scale of Harris is set to o1, and for SIFT-G,
SIFT-T, and SURE, 12 scales are used, with the smallest set to o .

7.2. Datasets

Three datasets are used: a 2D-2D dataset from Mikolajczyk
et al. (2005) (shown in Fig. 6); a synthetic 2D-3D dataset (shown
in Fig. 7); and a real 2D-3D dataset (shown in Fig. 8).

The 2D dataset is taken from Mikolajczyk et al. (2005). It is a
set of six groups of six images, with the known homography be-
tween each image in a group provided. Each group of images has
undergone a certain transformation (blurring, scale, JPEG compres-
sion, lighting, and viewpoint (twice)), from small to large trans-
formations. The first and last images in each group are shown in
Fig. 6.

For synthetic data, we use six untextured 3D models. The first
four models in Fig. 7 are from the Stanford 3D Scanning Repos-
itory.®> For each of these four models, 50 images were rendered
using POV-Ray using a random rotation matrix (Arvo, 1992) and
translation such that the model is centred in the image, using a
point light source at the same location as the camera. The latter
two models are the 3D reconstruction provided by Guillemaut and
Hilton (2011) of the dinosaur and temple from Middlebury’s multi-
view reconstruction dataset (Seitz et al., 2006). In this case, 50 im-
ages with their known projection matrix from the model are pro-
vided as part of the dataset, so there is no need for rendering using
POV-Ray.

For real data (Fig. 8), we use five textured 3D models,
obtained by a colour LiDAR scanner. All have been obtained
from Kim (2014) with the exception of room, which is from
Klaudiny et al. (2014). The number of points and the dimensions
of the 3D models is tabulated below (Table 1):

For each model, a set of between 7 and 11 images have been
taken of the scene and manually aligned. This has been achieved
by picking pairs of image and scene points, and using the approach
by Penate-Sanchez et al. (2013) to determine the pose and focal
length of the camera. An example image of each model is shown at
the bottom of Fig. 8. Note that for certain models this does not en-
capsulate much of the scene (e.g. courtyard), making 2D-3D point
detection more difficult.

7.3. Evaluation measure

The performance of a point detector (either in 2D-2D, or in 2D-
3D) is measured by its relative repeatability. To define this, we shall
first define the repeatability between two sets of points (2D-2D or
2D-3D) as follows: first apply the known transformation (homogra-
phy, or projection matrix) to one set of points, discarding any that
do not lie within the image boundary of the other set of points.
For 2D-3D evaluation, occlusions may be handled in the case of
the synthetic 2D-3D dataset, the 3D mesh is known and hence
occluded points may be discarded; however often real data is in
the form of a point cloud and this is not possible. From one set
of 2D points {p; € ]Rz}j»":1 and the other set of transformed points
{q; € Rz}?il (transformed under a homography, or a projection ma-
trix), and given an inlier threshold t, define an inlier as a point pair
(p, q) for which i) the nearest neighbour to p from the set {q,»}{.‘i1
is q and vice-versa; and ii) ||p — q|| < t. The repeatability is subse-
quently defined as the number of inliers divided by min(N, M).

It has been observed in the literature (e.g. Hauagge and Snavely,
2012; Tombari et al., 2013b) that the repeatability measure is bi-
ased towards detectors that produce a lot of features, and a mea-
sure that is invariant to the number of points detected is pro-
posed. Therefore, we compute the relative repeatability: for each set
of points, order them in decreasing value of their response value.
Then, the repeatability may be determined from the top-k points,
and a graph may be plotted of repeatability against the k most re-
sponsive features in each set. Furthermore, this is a more useful
measure for the purposes of sparse 2D-3D registration, where large
numbers of features will not be of use due to the computational
complexity of such a registration problem.

3 http://graphics.stanford.edu/data/3Dscanrep/
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Light (leuven)

Viewpoint (graffiti) Viewpoint (wall)

Fig. 6. Examples in the 2D-2D dataset from six groups of image transformations. For each group, there are six images in the dataset ranging from small to large transfor-
mations, with the first and last images in each group shown here.

Fig. 7. Top: The 3D models used in the synthetic 2D-3D dataset. Bottom: An example image from each synthetic model used in the dataset. From left to right: armadillo,
buddha, bunny, dragon, dino, temple.

1Tk

Fig. 8. Top: The 3D models used in the real 2D-3D dataset. Bottom: An example image from each model used in the real dataset. From left to right: cathedral, courtyard,
reception, room, studio.

Table 1
3D models information.
cathedral ~ courtyard  reception  room studio
Number of vertices 522,018 672,342 772,536 524,873 348,592

Bounding box diameter (m) 67.2 279 17.6 5.34 7.80
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Fig. 9. Qualitative 2D results. The top-150 features are shown in each case. The top two images are from the synthetic 2D-3D dataset, third to fifth from the 2D-2D dataset
(Mikolajczyk et al., 2005), with the bottom four from the real 2D-3D dataset. Many images were cropped from their original dataset for ease of presentation in this figure.
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Fig. 10. Quantitative 2D-2D results across a range of image transformations. The relative repeatability is measured for the top-100 point features in each case. An inlier

threshold of 3 pixels is used. Example images from this dataset are shown in Fig. 9.

7.4. 2D point detection

Qualitative results for the set of five 2D point detectors are
shown in Fig. 9, for a selection of images across the three datasets
used. It is immediately noticeable, by the size and shape of the
features, that Harris is affine- and scale-invariant; SIFT, KBI and
KBD are scale-invariant, and GFT is neither, being a very parameter-
dependent approach. SIFT, and in particular Harris, evidently have
a tendency to detect the same feature at multiple scales and very
similar locations: this motivated the use of GFT to obtain a better
spread of features (Section 7). KBI and KBD naturally detect a better
spread of points than Harris and SIFT, while retaining a parameter-
free approach to scale selection.

As a qualitative comparison between the KB approaches; KBD
detects more corners than KBI (e.g. on the cathedral) while still
detecting blob-like structures (e.g. windows in the third from top
image) due to the necessary change in derivative present in such
features. In contrast, KBI does not detect as wide a range of point
feature types as KBD and often detects many edges (e.g. the cathe-
dral). While edges may be regarded as salient, a point on an edge
is poorly localised along the edge and is not useful for registration
purposes.

Quantitative results for 2D point feature detectors are given in
Fig. 10 for the 2D-2D dataset (Fig. 6). The top-100 features are de-
tected in each image, and an inlier threshold of 3 pixels is used.
It is observed that no feature detector performs the best across
all transformations. Harris performs particularly well for scale and
JPEG compression changes, but very poorly across a change in

viewpoint. GFT generally performs very well across the range of
transformations. Importantly, KBD outperforms KBI across a num-
ber of transformations, justifying our proposed reformulation of
the 2D KB detector.

7.5. 3D point detection

7.5.1. Qualitative results

Qualitative results for the 3D feature detectors are shown in
Fig. 11 for synthetic data and Fig. 12 for real data.

For the untextured synthetic data, Harris, SIFT-G, KB-G, and SURE
may be used. In Fig. 11, the scale-covariant Harris detector success-
fully detects a number of small-scale corners but often in repetitive
places (e.g. the leg of the armadillo). KB-G is more robust than SIFT-
G, detecting a wider range of points, e.g. on the armadillo and dino.
By contrast, SIFT-G has a tendency to detect smaller, less mean-
ingful features, e.g on the bunny. SURE typically detects corner-like
structures where there is a wide distribution of normals, however
it often detects large features and misses smaller corners e.g. on
the dragon. As a comparison between features detected in 3D and
the qualitative 2D results (Fig. 9); 3D Harris correlates quite well
with 2D GFT, however it is clear the scale-covariance of GFT is an
issue on the dragon. SIFT and SIFT-G often do not detect geomet-
rically meaningful entities, with some 2D SIFT features detected
off the model. KBI and KBD have some qualitative correlation with
KB-G, but KBI often detects edges and avoids corner-like structures
(particularly so on the dino).
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Fig. 11. Qualitative 3D results for all models from the synthetic dataset. The top-200 points are shown in each case. The size of the sphere indicates the scale of the point.

Qualitative results for real data are given in Fig. 12, where
points are detected based on geometry (Harris, SIFT-G, KB-G), tex-
ture (SIFT-T, KBI-T and KBD-T), or both (KBI-B and KBD-B). Similar
conclusions may be drawn from the geometry-based approaches
as for the synthetic results (Fig. 11): Harris is limited by its scale-
covariance, KB-G is generally more robust than SIFT-G, and SURE
typically detects larger features and misses the finer detail. For
texture-based detectors, few qualitative distinctions can be made

between SIFT-T and KBD-T, however KBD-T detects more textural
corner-like structures than SIFT-T (the same as in 2D in Fig. 9).
Similarly to the 2D results, KBI-T detects more edge-like struc-
tures - particularly on the pavement on the cathedral. Interest-
ingly, texture-based feature detectors often detect geometrically-
significant features (e.g. corners on the cathedral, and the table-leg
in the room) due to a natural change in colour on the model sur-
face, or the lighting conditions. Finally, it is clear that both KBI-B
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Harris SIFT-G SIFT-T

it
il i)

Harris

Fig. 12. Qualitative 3D results for cathedral and room from the synthetic dataset. The top-400 points are shown in each case. The size of the sphere indicates the scale of
the point.
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Fig. 14. Qualitative 3D results for varying quantities of features on the armadillo model. The left shows results for GFT and Harris, with KBD and KB-G on the right.

and KBD-B detect points based on both the geometry (corners of
the cathedral) and texture (carpet and picture in room).

7.5.2. Quantitative results

Quantitative results for the synthetic dataset are presented first.
For each model-image pair, the relative repeatability is computed
using the top-k 2D points and the top-2k 3D points (since it is
expected half the 3D points will be occluded by the model), for
k varying between 20 and 100. It is computed for inlier thresh-
olds (t) of 3 and 6 pixels and averaged across all images of the
model. Results are given in Fig. (13), where, given the 3D data is
untextured, a comparison is made between Harris-Harris, SIFT-SIFT-
G, GFT-Harris, KBD-SURE, KBI-KB-G, and KBD-KB-G.

It is observed that, in general, GFT-Harris and KBD-KB-G perform
the best; between them having the highest repeatability across all
six models. Both have repeatabilities of at least 30% for (relatively)
large numbers of points; sufficiently high for subsequent 2D-3D
registration. KBI-KB-G performs quite well, but never as well as
KBD-KB-G. This is perhaps surprsing in comparison to the results
of KBI on the 2D-2D evaluation (Fig. 10) - the derivative-based KB
formulation is evidently more indicative of geometry rather than
texture based on these results. Harris-Harris, SIFT-SIFT-G, KBD-SURE,
and KBI-KB-G perform similarly poorly, rarely obtaining a repeata-
bility of above 20%. Comparing between 3 pixels and 6 pixels as
the inlier threshold; GFT-Harris performs slightly better than KBD-
KB-G for the smaller threshold, the reverse is true of the larger
threshold. However, the increase in inlier threshold from 3 to 6
typically results in a repeatability increase by a factor of around 2,
regardless of detector or dataset.

Fig. 13 shows that, in general, the repeatability increases with
respect to the number of points detected. However, this is not the
case with GFT-Harris which, in some circumstances, shows a de-
crease in repeatability for increasing numbers of points - particu-
larly so on the armadillo, and to a lesser extent on the dino and
dragon. Fig. 14 shows qualitative results on the armadillo for GFI-
Harris and KBD-KBG for smaller quantities of points. For very small
quantities of points (20 in 2D and 40 in 3D) GFT-Harris has a high
correlation due to the relatively small number of well-defined cor-
ners on the model (toes, fingers, and ears) and hence the relative
ease at which they are detected by a corner detector. For a higher
quantity of features (60 in 2D and 120 in 3D) there are insufficient
corners in the scene and so it becomes unclear why certain fea-
tures should be detected by the corner detectors. By contrast, our

saliency-based approach is more broadly defined than a corner de-
tector allowing KBD and KBG to admit a wider range of features.
As a result, it is relatively unlikely our approach will have a higher
repeatability for small numbers of features (since salient points are
not as narrowly defined as corner points) but conversely the defi-
nition of saliency extends to larger numbers of features.

Next, quantitative results for the real dataset are presented. For
each model-image pair, the relative repeatability is computed using
the top-k 2D points and the top-2k 3D points, with the exception
of the larger courtyard and reception datasets where the top-4k 3D
points are used, since here it is expected the majority of the 3D
points will not be projected onto the image. k is varied up from 20
to 200. Similarly to the synthetic dataset, the relative repeatability
is computed for inlier thresholds of 3 and 6 pixels.

Results are presented in Fig. 15, where a comparison is made
between all 11 approaches (as described at the beginning of
Section 7). Between the different models, the best results are ob-
tained on reception and room, with repeatability rates of over 30%
in some cases. However, the other three models only obtain re-
peatability rates of between 15% and 25%. Between the different
point detectors, KBD-KBD-T and KBD-KBD-B generally perform the
best across all models. GFT-Harris performs nearly as well except
on the more textured models room and studio. KBI-KBI-T more of-
ten outperforms KBI-KBI-B, further demonstrating that KBI does not
detect geometrically significant features in 2D. Similarly to the syn-
thetic dataset, SIFT-SIFT-G Harris-Harris, and KBD-SURE do not per-
form well in general.

As a comparison between the methods proposed here (KBD-KB-
G, KBD-KB-T, and KBD-KB-B), KBD-KB-G generally does not perform
as well except on the cathedral model. It is perhaps surprising that
KBD-KB-T consistently performs well, particularly on courtyard and
reception where there is little discriminating texture; however as
observed in the qualitative results, geometric features are often ac-
companied by a change in texture. Furthermore, the scale selection
process within the KB detector allows it to naturally avoid repeti-
tive parts of a scene. KBD-B consistently performs well regardless
of the scene, outperforming the other approaches on the cathedral
and studio.

8. Conclusions and future work

In this paper we have presented a general approach to 2D-
3D salient point feature detection, based on the information-
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Fig. 15. Results on the real dataset. On the left shows the relative repeatability of the detectors for an inlier threshold of 3 pixels; on the right an inlier threshold of 6 pixels
is used. k varies between 20 and 200. The graphs are ordered such that a graph of inlier threshold 3 pixels is shown above that of inlier threshold 6 pixels.
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theoretic Kadir-Brady saliency detector (Kadir and Brady, 2001).
The histogram-based framework developed allows for a uni-
fied approach to feature detection in 2D, and both textured
and untextured 3D data. Intensity-based and derivative-based ap-
proaches were proposed, where the derivative-based approaches
were shown to be superior since image derivatives are more in-
dicative of the underlying geometry of the scene. The results also
show the proposed approach to be more repeatable than exist-
ing feature detectors that have 2D and 3D implementations (Harris
and SIFT) across a range of image and LiDAR data, from both in-
door and outdoor scenes. Furthermore, its ability to naturally op-
erate on textured or untextured 3D data allow the approach to de-
tect features based on both attributes simultaneously, increasing its
robustness and widening its applicability.

There is scope for improvement in our method; in particular,
the qualitative results show our approach to occasionally detect
edges as salient. While there may be some salient properties re-
garding the edges, a point on an edge is not well localised along
the edge and may not be as useful for geometry estimation. This
could be addressed in a similar manner to Tombari and di Ste-
fano (2014) where histograms are compared between neighbouring
points, rather than between neighbouring scales. Alternatively, one
may consider other attributes to construct a histogram from, other
than the first derivatives of the image. However, while the second
derivatives of the image have had considerable success in feature
detection via SIFT (Lowe, 2004), the blob-like features they detect
are generally more indicative of texture rather than geometry.

Future work will include the registration of points between im-
ages and 3D LiDAR data. In many cases, correspondences between
features cannot be automatically determined, and need to be es-
tablished alongside registration parameters. It is a computationally
expensive problem (Moreno-Noguer et al., 2008), so any method
that has a high repeatability for a smaller number of points will
be more suited to this kind of problem. We furthermore plan to
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integrate our approach with line features (Brown et al., 2015) de-
tected in both 2D and 3D, so as to obtain a more complete scene
description and make the subsequent registration process more ro-
bust due to the complementarity of these features.

Research data

The authors confirm that the indoor and outdoor 2D-3D
datasets generated as part of this research are freely available
under the terms and conditions detailed in the license agree-
ment enclosed in the data repositories. Details of the data and
how to obtain access are available for the Room dataset at
Klaudiny et al. (2014); and for the Cathedral, Courtyard, Reception,
and Studio datasets at (Kim, 2014).
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Appendix A. Effect of scale parameter setting on repeatability

Here we present repeatability results when varying the choice
of o1 in both 2D and 3D. The results in 2D are shown in Fig. 16
comparing results for KBO and KBD on the 2D-3D synthetic dataset.
The results for KBO show some variability depending on the choice
of o1, with better results observed on the buddha and the dragon
with o = 4 but this choice of parameter gave worse results on the
dino. The choice of o1 makes very little difference on KBD however.

The results for varying o in 3D are given in Fig. 17. The choice
of o affects the different approaches in a very similar way, with
o1 = 0.3% the diameter of the bounding box giving the poorest re-
sults and o7 = 0.5% giving slightly stronger results than oy = 0.4%.
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Fig. 16. 2D-3D repeatability results where o is varied between 2, 3, and 4 pixels in 2D. Only KBO and KBD are shown here because the other 2D feature detectors use a
different approach to scale selection. The default parameter is used for scale selection in 3D (Section 7.1) in these experiments.
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in 2D (Section 7.1) in these experiments.

These results demonstrate that our choice of o4, while not opti-
mised per dataset, gives a relative indication of the performance of
the approaches and hence supports the overall conclusions of this
paper.
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