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a b s t r a c t

Here we present a novel, information-theoretic salient line segment detector. Existing line detectors
typically only use the image gradient to search for potential lines. Consequently, many lines are found,
particularly in repetitive scenes. In contrast, our approach detects lines that define regions of significant
divergence between pixel intensity or colour statistics. This results in a novel detector that naturally
avoids the repetitive parts of a scene while detecting the strong, discriminative lines present. We
furthermore use our approach as a saliency filter on existing line detectors to more efficiently detect
salient line segments. The approach is highly generalisable, depending only on image statistics rather
than image gradient; and this is demonstrated by an extension to depth imagery. Our work is evaluated
against a number of other line detectors and a quantitative evaluation demonstrates a significant
improvement over existing line detectors for a range of image transformations.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Line segments are an important low-level feature, particularly
where man-made structures are present. In many situations they
may be used in a similar manner to points, e.g. pose estimation [5],
stereo matching [9], or structure from motion [8]. This may often
be helped by using the duality between lines and points, resulting
in similar registration approaches for the two types of feature [26].
Further, there are tasks especially suited to lines, e.g. vanishing
point estimation for camera calibration [10], image resizing [17], or
structural graph matching [19].

Existing line detection methods either first use a derivative-
based edge detector and detect lines from the edges (e.g. [4] or via
the Hough Transform [6]), or they directly group pixels in the
image into line segments based on the magnitude and direction of
their derivative [49,14]. However, these all act locally on the
image, detecting a large number of lines, particularly in repetitive
scenes. This limitation is illustrated1 in Fig. 1: state of the art line
detection detects all lines regardless of their significance, whereas,
ideally, the non-repetitive lines denoting the geometrically sig-
nificant edges would be preferentially detected.

To address this, we propose to detect only the salient line
segments, an area that, to the best of the authors' knowledge, has
not been addressed in the literature. Instead, saliency detection

commonly refers to the computation of a saliency map (e.g. [31]),
with some work addressing salient edge detection [28] and salient
point detection [32]. In detecting only the salient line segments,
we propose an approach that is fundamentally different from
existing methods for line segment detection in that it is not
derivative-based: instead, it seeks informational contrast between
regions and thereby favours non-repetitive edges. The information
is expressed in terms of distributions of pixel intensities taken
from rectangles of a variable width, meaning our approach
operates over a larger scale than other detectors and so naturally
avoids repetitive parts of a scene.

We measure the contrast between the two distributions on
either side of the line using the information-theoretic Jensen–
Shannon Divergence (JSD). This measure has been used elsewhere
for edge detection [39], unlabeled point-set registration [50], and
DNA segmentation [25]. It has many interpretations, e.g. it may be
expressed in terms of other information-theoretic quantities such
as the Kullback–Liebler Divergence and Mutual Information, hav-
ing further interpretations in both statistical physics and mathe-
matical statistics [25], and is the square of a metric.

Our measure of line saliency may further be used as a saliency
filter on existing line detectors. This allows it to cull the non-
salient line segments computed by other detectors and localise the
position of salient lines under our saliency measure. It furthermore
increases the speed of salient line detection by orders of magni-
tude over the naive approach of determining the saliency measure
of every possible line segment on the image.

This distribution-based approach to line detection we propose
is highly generalisable, being applicable to any situation where
informational contrast can be found. As such, we implement an
extension for line detection in depth images, whereby lines that
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jointly delineate changes in surface orientation or texture are
detected. These are reprojected, allowing for 3D salient line
detection and hence potential multi-modal applications.

The contributions of this paper are as follows: firstly, a
distribution-based salient line segment detector is formulated
and implemented: the first known method for salient line seg-
ment detection. Secondly, the notion of saliency-based filtering is
applied to existing line detectors for efficient salient line detection.
Thirdly, an extension to depth imagery is implemented, allowing
for the detection of salient lines in 3D structures. An evaluation
shows that, when considering that we detect only a small number
of lines, our approaches significantly outperform the others in
terms of repeatability and homography estimation. It demon-
strates that they are representative of the underlying aspects of
the scene, with potential use for problems that benefit from fewer,
but more reliable, features e.g. [20].

The structure of the paper is as follows: in Section 2, we review
related work in line detection, edge detection, and line detection
in depth imagery. In Section 3 the methodology is described for
both salient line detection and saliency filtering, with the exten-
sion to depth imagery (and subsequently 3D by reprojection)
described in Section 4. In Section 5 a range of qualitative and
quantitative results are given, and in Section 6 our conclusions and
ideas for future work are presented.

2. Related work

Since we are unaware of any research into salient line detection
(or any line detection method that does not act locally on the
derivative of the image) we firstly review line segment detection,
before reviewing relevant edge detection methods. Finally, line
detection in other modalities (depth images, 3D data) is reviewed.

2.1. Line detection

Most early methods of line detection relied upon the Hough
Transform (HT) [6] to determine a set of lines from a set of edges
(typically extracted from the image by the Canny edge detector
[15]). The HT exhaustively searches the space of all possible
infinitely long lines, determining how many edge pixels are
consistent with each line; lines with a suitably large number of
edge pixels lying on them are returned as the output of the
algorithm. In its naive form there are many drawbacks, for
example it only depends on the magnitude of the gradient and
not the orientation, and leaves a problem of how to accurately
determine the endpoints of the lines. However, there are many
variants of the Hough Transform [30] that seek to solve some of
these problems.

Regardless of the approach to line detection, early methods
particularly suffered from the problem of setting meaningful
thresholds. This was addressed by the Progressive Probabilistic
Hough Transform (PPHT) [41] by Matas et al. where it is achieved

in a probabilistic manner: the threshold is expressed in terms of
the probability of the line occurring by chance. The idea was
extended by Desolneux et al. [21] who exhaustively search every
line segment on the image and define an a contrario model to
control the number of false detections. The latter part is a
straightforward extension: if there are N possible line segments
on an image and p is the probability of that line segment occurring
by chance, then accepting the line if poϵ=N guarantees, on
average, ϵ false detections per image.

However, Grompone von Gioi et al. [48] note that this model, in
its current form, is too simple. Given an array of line segments, the
model tends to interpret it as one long line, leading to unsatisfac-
tory results. This is not a fault of the a contrario model, but rather
that it is applied to each line individually. If instead it is applied to
groups of lines at a time it will segment a line into its components
in the correct manner, known as ‘multi-segment analysis'. How-
ever, this adds another layer of complexity, becoming OðN5Þ for an
N�N image.

Grompone von Gioi et al. subsequently implemented a linear-
time Line Segment Detector (LSD) [49]. It is based on both the a
contrario model and an earlier line detection algorithm by Burns
et al. [14]. It is a spatially based approach, starting from small line
segments and growing them. Furthermore, each segment has its
own line support region, constructed by grouping nearby pixels
that have a similar gradient, thus detecting lines of variable width.

The a contrario model has also been implemented in the
EDLines detector by Akinlar and Topal [4]. The approach performs
similarly to LSD but up to ten times faster due to its very fast edge
detection algorithm that simultaneously detects edges and groups
them into connected chains of pixels. Less processing time is
required for subsequent line detection, resulting in a real-time line
segment detector.

All line detection methods reviewed above are unable to detect
lines based on their significance or surroundings. Consequently,
they tend to return a large number of lines which does not capture
the general structure of the scene.

2.2. Edge detection in images

Similarly to approaches to line detection, many approaches to edge
detection act locally on the image. One of the earliest algorithms, the
Canny edge detector [15], convolves the image with a Gaussian filter
before computing themagnitude of the gradient at each pixel. Variants
have been proposed in particular for the convolution stage; notably Liu
and Feng [38] use an anisotropic Gaussian filter that only operates
perpendicularly to an edge. It is combined with a multi-pixel search to
detect longer edges than other approaches, culminating in the detec-
tion of short edge-line segments. Their results indicate superior
performance compared to existing edge detectors in the presence of
different levels of Gaussian noise. However, both approaches are
fundamentally derivative based, acting locally on the image regardless
of the structure of the scene.

Fig. 1. Left: Input image. Centre: LSD algorithm, [49], returning 1026 lines. Right: Our proposed approach, returning 75 lines, indicative of the broad structure of the scene.
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In contrast there exist some non-local edge detection methods. For
example, Holtzman-Gazit et al. [28] determine salient edges by
combining an edge preserving filter with a regional saliency measure
in a multi-scale manner. It complements existing approaches to
salient feature detection, e.g. [32,46] where salient point detection
is formulated in an information theoretic manner. Other approaches
to edge detection are more similar to ours in that they are distribu-
tion-based, in fact, the JSD has already been used for edge detection
[39] via a sliding window approach. For each pixel and each
orientation, the JSD is evaluated between a distribution from one
side of the pixel and the other. However, the method is not scale-
invariant, with the sliding window being a fixed size throughout the
algorithm. Further parameters have not been discussed e.g. how to
determine a probability distribution from a sliding window, and the
algorithm is only tested on one image.

An advantage of distribution-based edge detection is its natural
extension to colour images, as Ruzon and Tomasi [45] do. They use
the Earth Mover's Distance (EMD) between distributions which
formulates distance as a transportation problem; it represents the
minimum amount of work to ‘transport’ one distribution into the
other. Their method obtains good qualitative results but is very
time consuming (about 10 min per image) and furthermore is not
scale-invariant. The distribution-based approaches to edge detec-
tion reviewed here have proved promising, however they have
never been used for the detection of salient straight lines.

Edge detection is a very important low-level operation with
numerous applications. For example, the HT [6] may be used on an
edge map to detect line segments, however this has its own limita-
tions e.g. it does not take into account the orientation of the edges
detected. Edges may be locally chained into line segments directly [23]
however the approach detects many false positives since a meaningful
threshold has not been set. Computing a polygonal approximation to a
contour (i.e. a connected set of edge pixels) will determine a
representative set of lines for the curve. A range of algorithms have
been proposed [3,11,43], for example Parvez [43] relaxes a condition
that vertices of the approximating polygon need to lie on the contour,
and Bhowmick and Bhattacharya [11] relax the definition of a digitally
straight line: both of these allow for a polygon approximation formed
by fewer, more meaningful line segments. Bhowmick and Bhatta-
charya [11] furthermore propose a very quick algorithm relying only
on primitive integer computations; efficient algorithms have also been
proposed by Aguilera-Aguilera et al. [3] who use a concavity tree to
more quickly determine the vertices of the polygon approximation.
However, polygon approximation algorithms inherently approximate
curves by a set of lines, in contrast to our approach to detecting
straight lines that avoids curved segments completely.

2.3. Line detection in other modalities

In the 3D or depth imagery domain, there has been much
research on edge detection (e.g. [44]) with relatively little on
straight line detection.

Some research focuses on detecting lines in textureless 3D data.
For example, Stamos and Allen [47] detect planes in 3D and
determine lines as the intersection of these planes. Lin et al. [37]
convert a 3D model into a set of shaded images using a non-
photorealistic rendering technique that provides a strong percep-
tion of edges. 2D lines are detected on the shaded images using
the LSD algorithm [49] and reprojected to 3D where a line support
region is constructed. However, both approaches detect lines
based purely upon the geometry of the 3D scene. With respect
to textured 3D data, Chen and Wang [18] detect lines in 3D point
clouds that have been reconstructed by Structure-from-Motion
(SfM) by detecting and reprojecting lines in the images used to
generate the point cloud. It is difficult to apply this approach to
general 3D point clouds without manually creating a set of camera

locations with which to detect 2D lines from. Buch et al. [13]
extend the RGB-D edge detection method presented in [44] by
approximating each edge by a line segment. However, the length
of the line segment is a parameter of the algorithm, meaning all
detected line segments have the same length (in the image space).

The key novelty of our contribution lies in the distribution-
based approach to line detection that is proposed, resulting in a
method that naturally avoids the repetitive parts of a scene and
returns only the salient line segments present. This generalisable
approach allows for natural extensions into other modalities,
which is demonstrated via a depth extension. We are not aware
of any other methods that explicitly detect straight lines in depth
images in such a way that jointly delineates changes in surface
orientation or texture. Additionally, saliency filtering is proposed to
cull non-salient line segments obtained from other approaches,
thereby achieving significantly faster processing times.

3. Methodology

The methodology can be broadly split into two stages. The first
stage searches all possible lines on the image, calculating the
saliency value (Sval) of each line, and accepting it according to a
certain set of conditions. To do so requires the estimation of the
Jensen–Shannon Divergence (JSD) between two sets of data, as
outlined in Sections 3.1 and 3.2 details the first stage: how the JSD
relates to the saliency value of a line and how to compute a
putative set of lines from this. In the second stage the most
representative set of lines is determined from this putative set, as
outlined in Section 3.3. This is achieved using affinity propogation
[24], a fast clustering algorithm that works particularly well for
larger numbers of clusters. Hence the resulting algorithm returns a
representative set of lines for the scene. A flowchart of the
algorithm, along with intermediate results from each section, are
shown2 in Fig. 2.

The above algorithm has a high complexity (for an N�N image
it has OðN5Þ complexity) because it performs an exhaustive search
over all lines at all scales in an image. Therefore in Section 3.4, we
propose an alternative approach: a saliency filter on top of existing
line detectors that filters out non-salient lines. This allows it to
detect only the salient lines within seconds: orders of magnitude
faster than the above approach.

3.1. Estimating the Jensen–Shannon divergence

Let P and Q be discrete probability distributions, taking one of K
values (i.e. P ¼ fp1;…; pK g; piZ0 8 i; PK

i ¼ 1 pi ¼ 1). The entropy of a
probability distribution is defined as

HðPÞ ¼ �
XK
i ¼ 1

pi ln pi ð1Þ

The JSD between two probability distributions P and Q is subse-
quently defined as

JSDðP;Q Þ ¼H
PþQ
2

� �
�HðPÞþHðQ Þ

2
ð2Þ

It is closely related to other information-theoretic quantities such
as the Mutual Information (MI) or the Kullback–Liebler Divergence
(KLD) [25] and shares similar properties and interpretations.

2 Image by Russ Hamer, http://commons.wikimedia.org/wiki/File:Melton_-
Mowbray_St_Marys_SE_aspect.JPG. Licensed under CC BY-SA 3.0. Grayscale of
original.
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Indeed, for discrete random variables M and Z the MI is defined as

IðM; ZÞ ¼
X
mAM

X
zAZ

Prðm; zÞln Prðm; zÞ
PrðmÞPrðzÞ

� �
ð3Þ

where Prðm; zÞ denotes the joint probability of the event
ðM¼m; Z ¼ zÞ and Pr(m), Pr(z) are the marginal probabilities of
the events ðM¼mÞ and ðZ ¼ zÞ respectively. Then, if M is the
random variable associated with the distribution PþQ=2 and Z is a
binary indicator variable denoting which of P or Q a sample of M
was generated from, one sees that, by a little algebraic manipula-
tion [25], JSDðP;Q Þ ¼MIðM; ZÞ.

The MI has an information theoretic interpretation: it repre-
sents the average number of extra nats (bits taken to base e) that
need to be transmitted to encode the product distribution PrðM; ZÞ
from a code using only the marginal distributions. Subsequently,
the relationship between the JSD and MI shows that JSDðP;Q Þ is
bounded between 0 (when P and Q are the same) and ln 2 (when P
and Q are completely different). Grosse et al. [25] give further
statistical interpretations of JSDðP;Q Þ and Endres and Schindelin
[22] show it is the square of the metric.

In reality, one is never able to exactly know the distributions P
and Q, and instead it must be estimated from samples of data.
Assume there are N samples of data from both P and Q with counts
represented by n¼ fn1;…;nKg and m¼ fm1;…;mK g; respectively,
hence

PK
i ¼ 1 ni ¼

PK
i ¼ 1 mi ¼N. Then JSDðP;Q Þ may be estimated

by calculating the observed JSD: JSDobsðn;mÞ≔JSD n=N;m=N
� �

.
However, this is only an estimate, and it suffers from two
important limitations.

Firstly, there is a systematic bias in this naive approach (see
[25]), with JSDobs expected to be higher than the JSD of the true,
underlying distribution of pixel intensities (JSDtrue). This is parti-
cularly evident when P and Q are uniform distributions: JSDtrue is
zero but measurements n and m will most likely cause JSDobs to be
non-zero. The bias is particularly large when N is small, and tends
to zero as the sample size becomes arbitrarily large. Furthermore,
when N is small, there is a high probability that a given value of
JSDobs could have occurred by chance, and this needs to be
reflected in any estimate of JSDtrue.

Both of these problems may be solved by computing a Bayesian
estimate of JSDtrue. This directly avoids the problem of systematic
bias, and naturally accounts for smaller sample sizes N by assum-
ing and integrating over a symmetric Dirichlet prior. The Dirichlet
prior defines a prior probability for distributions P (respectively Q)
by a parameter α as Pðp1;…; pK ;αÞp∏K

i ¼ 1p
α�1
i . It is a general

prior since it is parameterised by α: α¼1 corresponds to a uniform
prior, α¼0.5 to Jeffrey's prior, etc. Informally, the magnitude of α
corresponds to the size of the prior, with larger values of α
representing a large prior belief that P (resp. Q) is evenly
distributed. With this prior, the Bayesian estimate for JSDtrue is
defined as follows:

JSDestðn;mÞ≔EðJSDðP;Q Þjn;m;αÞ ð4Þ

JSDestðn;mÞ ¼
Z
XAΩ

Z
YAΩ

JSDðX;YÞPðX jn;αÞPðY jm;αÞ dX dY ð5Þ

where the integral is taken over the space of all probability
distributions Ω (Ω¼ fω1;…;ωKg, ωiZ08 i, PK

i ¼ 1ωi ¼ 1).
We employ the results of Hutter [29] who calculates a Bayesian

estimate of the MI between two random variables M and Z given a
finite set of samples, and then modify his solution for the JSD. The
result for the MI is as follows: firstly, denote s0m;z as the number of
samples taking the joint value ðm; zÞ and let sm;z ¼ s0m;zþα. Denote
marginal sums sm;þ ¼P

zAZsm;z and sþ ;z ¼
P

mAMsm;z and let
sþ þ ¼P

zAZ
P

mAMsm;z . Then Hutter computes the Bayesian
estimate as

EðIðM; ZÞj sÞ ¼ 1
sþ þ

X
mAM

X
zAZ

sm;z½ψ ðsm;zþ1Þ�ψ ðsm;þ þ1Þ�ψ ðsþ ;zþ1Þþψ ðsþ þ þ1Þ�

ð6Þ

where ψ is the digamma function defined as ψ ðxÞ ¼Γ0ðxÞ=ΓðxÞ. As
previously stated, JSDðP;Q Þ may be reformulated in terms of
IðM; ZÞ, where M represents the mixture distribution PþQ=2 and
Z is a binary indicator variable denoting which of P or Q a sample
of M was generated from. Using these substitutions, Hutter's result
may be re-written to compute a Bayesian estimate of JSDðP;Q Þ
given a finite set of samples ðn;mÞ as follows:

JSDestðn;mÞ ¼ zðnÞþzðmÞ�zðnþmþαÞ
2ðNþαKÞ þψ ð2ðNþαKÞþ1Þ�ψ ðNþαKþ1Þ

ð7Þ

where we define zðxÞ≔PK
i ¼ 1ðxiþαÞψ ðxiþαþ1Þ and α is a

K-vector of all α's. Note that Eq. (7) applies directly to the data n
and m and hence may be computed with similar efficiency to the
naive JSDobs computation. Hence, small sample problems and
systematic bias may be naturally avoided as easily as directly
computing the observed JSD.

Determine 
putative set of 
line segments

Cluster using
affinity 

propogation 

Determine line 
segments above

saliency threshold

Fig. 2. Top: Pipeline of the algorithm. Bottom: an illustration of the effects of the different steps of the algorithm. (a) Input image. (b) All line segments above Sthresh
(6,480,144 segments returned). (c) Putative set of line segments (above Sthresh subject to the three further principles) (603 segments returned). (d) All line segments after
affinity propogation (52 segments returned).
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3.2. Computing a putative set of lines

The saliency of a line segment can be related to the previous
section in the following way. Suppose a line segment L has start and
end points at ðx1; y1Þ and ðx2; y2Þwith length JLJ . Let T be a rectangle
adjoining L lying on one side of L and B a rectangle on the other side.
We define the scale, s, of the line to be the width of each rectangle,
where s is allowed to vary, taking any value up to JLJ (See the left of
Fig. 3 for an illustration). Subsequently, n represents a histogram of
pixel intensities from T and respectively m from B. Denote the
estimated JSD between the two regions as JðL; sÞ≔JSDestðn;mÞ,
calculated according to the previous section. The left of Fig. 4 shows
two typical lines, their rectangles and their histograms. Particularly
evident in this image is how similar distributions either side of a line
in a repetitive structure (e.g. brickwork) are, and hence how these are
naturally avoided by our approach.

A significant problem with simply using the estimated JSD of
regions taken from either side of the line as a saliency measure is
its poor localisation. For example, let L be a line whose JSDðL; sÞ
value is particularly high. Then any line L0 � L also has a high
estimated JSD value, making it very difficult to determine the
endpoints of L.

We observe however that beyond the endpoints of a line JSDest

should be very low (since, by definition, there is no line there).
Thus, let LL and LR denote line segments taken from beyond left
and right endpoints of L, with adjoining rectangles TL, BL, TR and BR,
respectively (see the right of Fig. 3). Motivated by the desire to
keep JðL; sÞ high and JðLL; sÞ and JðLR; sÞ low, we use the following
measure of line saliency:

Salðl; sÞ ¼ JðL; sÞ�βðJðLL; sÞþ JðLR; sÞÞ ð8Þ
where β is empirically determined to be 0.25. The right of Fig. 4
shows an example of a localised line segment, where the

distributions on either side of the line beyond its endpoints are
similar, but are very dissimilar on either side of the segment itself.

A formulation of line saliency has now been defined, allowing
for the detection of salient lines under this saliency measure. In a
similar manner to [21], our measure of line saliency is evaluated
on all lines of the image by first evaluating it on all horizontal lines
of the image with pixel level precision (i.e. the start and end points
of the line are integer valued with the same y-coordinates). The
process is repeated on r evenly spaced rotations of the image.
However, computing all lines on an image whose saliency value is
higher than a given threshold does not, on its own, give mean-
ingful results. Fig. 2(b) demonstrates this: over 6 million segments
are returned across multiple scales—far too many to be of practical
value. Three further principles are employed in order to decide
whether to accept a given line segment:

�Local Maxima: The line has to be more salient than its
immediate neighbours. The neighbours are in five dimensions
corresponding to the scale s and the coordinates of the two
endpoints of line L.

�Maximally Salient: Maximal saliency is defined as in [21]: a
line segment is maximally salient if it does not contain a strictly
more salient segment and it is not contained in a more salient
segment.

�Scale Selection: Many feature detectors (e.g. [40,32]) search for
features that have a high response value at a particular scale.
However, we observe for our case that lines that are salient across
a range of scales are more desirable. Consider a line segment along
a jagged edge (e.g. Fig. 3). It may have a high saliency value Salðl; sÞ,
particularly so if s is large, however for small s the line is not
salient due to the jagged nature of the line. Kadir and Brady [32]
note this is an appropriate approach to scale selection for edges
since there is no associated scale in their tangential direction.
Hence, we introduce a lower threshold Jmin and only accept lines of

(x ,y )1   1

T

B

(x ,y )1   1
(x ,y )2   2(x ,y )2   2

S

S

T

B

S

S

TT

BB

RL

RL

||L|| ||L||

Fig. 3. Illustrations of the terminology used. The left part of the figure shows the terminology used when not considering JSDest beyond the endpoints of the line; the right
part illustrates all definitions and regions concerned in the calculation of Sal(l, s).

Fig. 4. Examples of pixel intensity distributions used in determining the saliency value of a line segment. Left: A comparison of distributions taken from either side of a
repetitive line and from a salient line – note the similarity of distributions for the repetitive (non-salient) line. Right: A salient line segment with its endpoints localised – the
distributions beyond the end of the segment are similar, but very different on either side of the segment.
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scale s if JðL; tÞ4 Jmin 8 tA ½smin; s�, where smin is the minimum scale
evaluated.

Thus, the algorithm proceeds by finding all lines ðL; sÞ on
an image with SalðL; sÞ4Sthresh and satisfy the three criteria
given above.

3.3. Determining a representative set of lines

From the algorithm in the previous section many overlapping
line segments remain (See Fig. 2(c)). We wish to cluster them and
determine the most representative set of lines. For this, we employ
the affinity propogation algorithm [24] for two main reasons:
Firstly, it does not require the number of clusters to be specified
beforehand. Secondly, it has been shown to be particularly
effective for situations where many clusters (450) are required
– classical approaches such as k-means or Expectation–Maximisa-
tion (EM) clustering require an unfeasibly large number of restarts
to obtain similar results [24].

For a given set of N lines L, affinity propogation finds a subset
R� L that is representative of L. Each line LAL is mapped to its
representative line by f, i.e. f ðLÞAR. Let d be a given distance
measure between two line segments. Then the objective of affinity
propogation is to find the mapping f that minimises the following:

XN
i ¼ 1

dðLi; f ðLiÞÞ s:t: f ðLiÞ ¼ Li 8LiAR ð9Þ

from which R may be immediately deduced. However, Eq. (9) may
trivially be solved by setting f equal to the identity map and R¼L,
since then each of the summands is equal to zero. This is solved by
letting dðLi; LiÞ ¼ c8 i, where c is a parameter of the algorithm.
Eq. (9) is efficiently approximated by the max-sum algorithm (see
[24] for more details).

It remains to define a distance measure d between two line
segments Li and Lj. d needs to address the subsetting issue
correctly: if Li is close to a subset of Lj, d should be small to reflect
the large likelihood of Li occurring if Lj does. Conversely, if Lj is
close to a subset of Li, d should be large. We use a variant of the
parameter-free distance measure presented in [33]: denote the
endpoints of Li as x1 and x2 and denote the closest points on the
line segment Lj to these points as y1 and y2 respectively. Then
define the distance from Lj to Li as

dðLi; LjÞ ¼
Z 1

t ¼ 0
J ðx1þtðx2�x1ÞÞ�ðy1þtðy2�y1ÞÞJ2 ð10Þ

¼ ðx1�y1Þ � ðx2�y2Þþ
1
3
Jx2�x1þy1�y2 J

2; ð11Þ

Eq. (11) is thus the integral of the squared distances between
corresponding points on the two lines defined by (x1; x2) and
(y1; y2).

3.4. Saliency filtering

The algorithm outlined in the previous sections exhaustively
searches across all lines in an image and widths of rectangle: for
an N � N image it has OðN5Þ complexity. Thus, an alternative
approach is proposed which consists of using existing line seg-
ments determined by a fast line segment detector (e.g. [41,49])
and returning only those that are salient under our definition of
line saliency. We furthermore localise the position of detected line
segments under our formulation of saliency. Thus, our saliency
filtering algorithm can be summarised as follows:

Inputs: Set L of line segments, parameters Sthresh, Jmin, smin.
Outputs: Set L0 of line segments.
For each line segment LiAL:
1. Determine sAf1;…; JLi Jg that maximises SalðLi; sÞ.
2. If SalðLi; sÞ4Sthresh4 ððJðLi; tÞ4 JminÞ8 tA ½smin; s�Þ, add Li to L0

and continue. Otherwise, go to the next line segment in L.
3. Perform hill-climbing on Li to localise its location and width.

The hill-climbing method ensures all detected lines are local
maxima, and five parameters of the line are altered to test for an
increase in SalðLi; sÞ. There are two for each endpoint of the line,
which are altered parallel to and perpendicular to the direction of
the line segment; the other parameter is s. Each parameter is
altered separately and it proceeds iteratively until a more salient
position can no longer be found.

4. Depth imagery extension

The line detection algorithm described in the preceding section
is not derivative-based; instead seeking informational contrast
between regions from either side of a line segment. It results in a
highly generalisable approach that may be applied to any situation
where informational contrast can be found. Hence, it may poten-
tially find applications in other modalities (e.g. colour or infra-red
imagery). Here, we implement an algorithm for line detection in
textured depth images, seeking lines that jointly delineate changes
in surface orientation or texture in the same natural framework.
Alternatively, if there is no texture associated with the depth
imagery (as is the case for many 3D scanners), the proposed
approach may detect lines that simply delineate changes in surface
orientation.

For our implementation, we detect lines in a 3D structure that
has been generated by multiple ‘Light Detection And Ranging’
(LiDAR) scans. In our case, these are coloured depth scanners that
obtain the depth by measuring the time delay of a signal as it is
transmitted and reflected off a 3D structure. The left of Fig. 5
shows an example of a 3D structure obtained by a LiDAR scanner.
It is clear that multiple LiDAR scanners are required to recover the

Fig. 5. Different representations of LiDAR data. Left: The 3D point cloud acquired from the LiDAR scan; Middle: A rendered spherical image taken from the location of the
LiDAR scanner; Right: A rendered cubic image taken from the location of the LiDAR scanner.

M. Brown et al. / Pattern Recognition 48 (2015) 3993–40113998



structure of the scene since only points that are visible by the
scanner are obtained.

It is initially tempting to detect lines directly from the LiDAR
data itself. Since this is a spherical scanner, data is implicitly stored
in a spherical image, similarly to the rendering in the middle of
Fig. 5. However, it is evident that lines are not straight in spherical
images, causing great implementation issues for our approach.
Instead, the data is reprojected into a cubic image (right of Fig. 5)
for each LiDAR scanner, with the centre of each cube at the same
location as each LiDAR scanner. There is still some distortion of the
lines at the edges of the cube, and to be robust to this, the cubic
projection is modified slightly so each face has a field of view of
1051, providing some overlap between faces.

The implementation for LiDAR scans proceeds as follows: for
each LiDAR scanner and for each face on its cubic projection, lines
are detected based on both the projected texture and surface
orientation. Any line that goes off the edge of the face is extended
onto its neighbouring face. Subsequently, these lines are repro-
jected back to the 3D structure, using the approach proposed by
Buch et al. [13]. Finally, 3D line segments are combined from
multiple LiDAR scans using a similar affinity propogation approach
as outlined in Section 3.3.

4.1. Line detection in textured depth imagery

For each face of the cube the algorithm proceeds in the same
way as in Sections 3.1–3.3 except for the representation of the
distributions m and n. Since our aim is to detect lines that jointly
delineate changes in texture or surface orientation (or just surface
orientation, if there is no texture data available), they need to
represent both the direction of the normals and optionally the
intensity of the projected depth image. The normals are estimated
from the depth data by a least squares plane-fitting approach from
a small neighbourhood about each point.

In constructing m and n, bi and bn bins are used to represent
the intensity and direction of the normals respectively, with an
extra bin when there is no data present, resulting in bibnþ1
dimensional histograms. The bi intensity bins are the same as in
the 2D implementation, while the normals are binned uniformly
across the surface of the sphere. The latter is a challenging
problem for general bn, so it is restricted to determining which
vertex of a given Platonic solid it is closest to. We use the regular
icosahedron (bn¼12), however bn¼8 and bn¼20 also gave good
initial results. In the case where there is no intensity data present,
lines are detected based purely on the direction of the normals,
resulting in a bnþ1 dimensional histogram.

From these constructions, lines are detected in the same way as
for the 2D implementation. However, if a resulting line may be
extended by a small amount such that it is partly off the image, it
is considered as being part of two faces. In this case, its endpoint is
extended along the neighbouring face and its saliency value is
computed here in pixel intervals. The new (cubic) position of the
line is deemed to be where this attains its maximum value. Note
that the area either side of the line is still well-defined in this case
(as the union of areas on each face) meaning its saliency and its
reprojection (in the next section) operate in the same manner.

4.2. Line reprojection

Line reprojection is required in order to convert lines detected
in the previous subsection into 3D line segments. This is not as
trivial as simply reprojecting the endpoints back since it may cause
large errors when the endpoints are slightly misaligned and fall on
different planes, or fail completely when there is no depth data
available at one point. Therefore, we use the approach proposed by
Buch et al. [13] which, for completeness, is briefly outlined here.

They propose to reproject lines according to the type of line it is –
whether the line is caused solely by a change in image intensity, a
change in orientation of the normals, or a change in depth. Fig. 6
shows these three cases. Each case relies on locally approximating
two planes (P1; P2) from rectangular regions either side of the line,
or a plane Pall from a rectangular region surrounding the line, each
by a RANSAC approach to plane estimation. The back-projected
plane of the 2D line needs to be considered here, which will be
denoted by PL.

If the distance between the centroids of the points in P1 and P2
is large, it is likely that the line is caused by a depth discontinuity –

in this case, the reprojected line is the intersection of PL and the
closest plane to the camera between P1 and P2. If the angle
between the normals of P1 and P2 is larger than a given threshold,
then the line is due to an orientation discontinuity. Here, PL is
intersected with both P1 and P2 and the mean is selected as the
reprojected line. Alternatively if the angle is sufficiently small the
line is due to a change in image intensities – the reprojected line is
thus the intersection of PL and Pall.

4.3. Line clustering in 3D

In this stage, reprojected lines from multiple LiDAR scans are
combined and clustered. This may be done using affinity propoga-
tion as previously defined – note that the distance between line
segments (10) is well-defined in any dimension. However, from
multiple LiDAR scans, some reprojected lines are more accurately
located than others (due to the relative positions between the
lines and the scanners). Hence, the distance dðLi; LjÞ (10) is
redefined as ~dðLi; LjÞ ¼ dðLi; LjÞ=AðLjÞ, where AðLjÞ denotes the accu-
racy of line Lj, in order to favour more accurate line segments.

To compute the accuracy, first define the vector from the
camera centre to the midpoint of Lj as v. Let n denote the normal
to the plane that Lj is on (If Lj lies on the intersection of two planes,
compute the accuracy with respect to each plane and take the
average). Denote the angle between v and n as θ and denote the
field of view per pixel as ϕ. Then the 3D distance subtended by one
pixel is given by

dP ¼
JvJ sin ðϕÞ
cos ðθþϕÞ ð12Þ

Subsequently the accuracy is defined as A¼ 1=d2P , measuring
how many (square) pixels subtend a square metre from the image.

5. Experiments

In this section we evaluate the performance of our proposed
approaches against other line detectors. We compare against the
Progressive Probabilistic Hough Transform (PPHT) [41] – a classical
method for line detection, and the state-of-the-art LSD algorithm

Texture Discontinuity

Orientation Discontinuity

Depth Discontinuity

Fig. 6. Illustration of the different types of lines from a textured depth image: The
top line is caused by a change in texture on the surface of the wall; the middle line
by a discontinuity in the orientation of the surface normals; the bottom by a depth
discontinuity.
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[49] by Grompone von Gioi et al. Three variants of our approach
are used: the full saliency detector Sal; a pure filtering approach
applied to LSD lines referred to as LSDF; and a filtering approach
with subsequent localisation using our saliency measure, referred
to as LSDF-Loc. We start by giving implementation details of our
approaches in Section 5.1 and describe the evaluation measures
used (repeatability and registration accuracy) in Section 5.2. Sub-
sequently results are presented, in Section 5.3 for 2D line detection
and in Section 5.4 for 3D line detection.

5.1. Implementation details

It was stated in the methodology section that the algorithm Sal
goes through each possible line segment ðL; sÞ, determining its
saliency value and accepting if it is above a given threshold and
satisfies a number of other conditions. Affinity propogation is
subsequently used to determine the most representative set
of lines.

In the first instance, all line segments are considered by
evaluating the saliency measure across all horizontal lines, then
repeating this process r times on evenly spaced rotations of the
image, where we take r¼45. To do so requires JSDestðn;mÞ to be
determined from a set of pixels. Here the pixel intensities are
bilinearly interpolated into 16 bins. The line segments beyond the
end of the line (LL and LR) are of a fixed length of 6 pixels. We use
Sthresh ¼ 0:3, Jmin ¼ 0:15 and smin ¼ 2. In the affinity propogation
stage, we have found the parameter dðLi; LiÞ ¼ 700 to be effective.

Since it is a particularly slow algorithm (OðN5Þ for an N�N
image) the image is initially downsampled to a width of 200 pix-
els, and detected lines are subsequently refined using the algo-
rithm outlined in Section 3.4 at its true size (in a coarse-to-fine
approach).

5.2. Evaluation measures

In this subsection the terms repeatability and registration
accuracy are defined. They are both measures that are defined
between sets of line segments detected on a pair of images under a
known homography.

5.2.1. Repeatability
For a pair of images with known homography relating them,

the repeatability for a set of line segments detected on each image
by a given detector is computed as follows: first, the known
homography is applied to one of the sets of lines. Define the
distance between two lines as the minimum Euclidean distance
between the lines' endpoints. Then, for each line projected under
the known homography, its nearest neighbour (NN) is computed
in the other set. If the distance between the two lines is less than a
given threshold, this is deemed a correspondence. Then the
repeatability is the number of correspondences divided by the
minimum of the number of lines in each set.

However, Hauagge and Snavely [27] note that this measure is
biased towards detectors that produce a lot of features, and a
measure that is invariant to the number of lines detected is
proposed. We proceed as follows: for each set of lines on an
image, order them in decreasing value of saliency. For LSD, the
lines are ordered in decreasing order of another response value –

the probability of detection in random noise. For PPHT the lines are
simply ordered by length. Then, for given natural numbers k up to
a specified limit (we take 150 here), take the first k lines in each
set. The repeatability of these k lines is subsequently calculated,
and a graph can be plotted of repeatability against the k most
responsive lines in each set (here, the repeatability is determined
within a distance threshold (t) of 5, 10, 15, and 20 pixels).

5.2.2. Registration accuracy
Here, a pair of images are registered by computing the homo-

graphy between them. The registration accuracy gives an indication
of the similarity between this and the ground truth homography.
Again, we perform this in a way that is invariant to the number of
lines detected, plotting the proportion of homographies recovered
within a threshold against the most responsive k lines. To compute
a homography, we implement the MSLD [51] descriptor for line
segments, allowing us to determine putative correspondences
between line segments in different images by the similarity of
their descriptor. The homography is subsequently recovered using
the Direct Linear Transform (DLT) with small sets of corresponding
endpoints, and using RANSAC to determine the homography with
the largest number of inliers.

The homography could have instead been calculated using line
correspondences, where a line is defined to be infinitely long and
information about its endpoints is discarded [52]. However, we
observed the results were poorer for this approach than point-
based homography estimation with line endpoints – this could be
for two reasons. Firstly, infinitely long lines discard valuable
information and are redundant in cases where a continuous line
is segmented in many places (as is often the case in urban scenes).
Secondly, we have good reason to assume the endpoints of the
lines are matched up reasonably accurately since the MSLD
descriptor has already matched line segments – this would not
be the case if the endpoints were not sufficiently aligned.

To determine the registration accuracy we aim to give a
measure of how accurate the recovered homography is against
the ground truth homography. To do so, one might decompose the
homography into rotation and translation parameters and com-
pare their errors, however this can only be done if the intrinsic
parameters are known (which they are not). We therefore resort to
other measures. Our measure of goodness-of-homography-
estimation is as follows: take a pixel on the first image and apply
the known homography and estimated homography to it and find
the squared distance between these two projected points. Take the
average of this over all pixels in the image. Then, do the same, but
in the other direction (i.e. with the inverse homography), and
square root the final result (to give an RMS error). Thus our
measure is an approximation to the following:

dðG;HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
XY

Z Y

y ¼ 0

Z X

x ¼ 0
JHðx; yÞ�Gðx; yÞJ2þ JH�1ðx; yÞ�G�1ðx; yÞJ2 dx dy

s

ð13Þ
where G and H are homography transformations and X and Y are
the number of rows and columns respectively in the pair of
images. We are unable to find a closed form solution to Eq. (13)
(note that Hðx; yÞ, Gðx; yÞ are non-linear since computations are
done via projective space), hence we resort to the approximation
outlined in the above paragraph. Finally, so as to be robust to
outlying homography estimates, we determine the proportion of
homography estimates such that ðdðG;HÞotÞ where t is equal to 5,
10, 15, and 20 pixels.

5.3. 2D line detection results

In this section, both qualitative and quantitative results are
presented across a range of imagery, with qualitative results
presented in Section 5.3.1. For a quantitative evaluation, the
performance of the line detectors is tested on a set of images of
building facades from [16] (Section 5.3.2); their robustness to
Gaussian noise from the same set of images (Section 5.3.3), and
their robustness to a range of image transformations from the
dataset presented in [53] (Section 5.3.4). Finally the performance
of existing line detectors at different scales is tested (Section 5.3.5).
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The repeatability and registration accuracy is determined between
pairs of images under their known homography (which has been
calculated manually for the building facade dataset [16], but is
known from the dataset presented in [53]).

5.3.1. Qualitative results
Qualitative results for 2D line detection are shown3 in Fig. 7. It

is noticeable that Sal naturally avoids repetitive areas in the brick
facades for the top two images, and detects the geometric
structure of the scene in the third image. In the fourth and fifth
images, Sal further avoids repetitive areas in the scene, while LSDF
and LSDF-Loc avoid them to a lesser extent. The sixth and seventh
images show the effects of compression and occlusion on line
detection respectively [53], where it can be seen that Sal detects
the broad underlying structure of the scene. This implies our
approach has potential applications for compression tasks, further
demonstrated by quantitative results in Section 5.3.4. The bottom
two images are of building facades from the experiments pre-
sented in Section 5.3.2.

Across the range of images, PPHT detects many erroneous lines,
largely due to the fact that it does not take into account the
direction of the gradient of pixels in its lines. LSD detects all line
segments on the image based purely on the local image derivative,
whereas Sal tends to detect the structurally important lines. LSDF
and LSDF-Loc avoid some of the repetitive areas and cull many
non-salient lines detected by LSD.

5.3.2. Quantitative evaluation on building facades
In this section, the performance of the line detectors is tested

on a set of 12 image pairs of building facades taken from the
dataset presented in [16], see the top of Fig. 9 for examples of the
dataset and Fig. 7 for some qualitative results. The average number
of line segments detected per image for this dataset is as follows:
PPHT - 634.9, LSD - 1738.7, Sal - 274.3, LSDF and LSDF-Loc - 1137.6;
with the average execution times: PPHT - 0.167 s, LSD - 0.182 s, Sal
- 325.96 s, LSDF - 6.05 s and LSDF-Loc - 14.02 s. The detection of a
large number of lines is potentially problematic in a registration
context since it can lead to fragmentation of prominent lines; the
detection of many similar, repetitive lines that are difficult to
match; or a significantly slower registration process if correspon-
dences between lines also need to be established. Therefore,
qualitative results for the top-50 lines are shown in Fig. 8 to take
account of the number of lines per detector. Here it can be seen
that, while PPHT and LSD detect the longer lines, there is more
repetition in their detections: Sal on the other hand provides a
more complete description given the same number of lines.

The quantitative results are shown in Fig. 9. The left-most
graph simply shows repeatability against threshold, without tak-
ing into account the number of features produced by each
detector. LSD performs the best, with LSDF and LSDF-Loc perform-
ing similarly for smaller thresholds, but slightly worse for larger
thresholds. The repeatability results for various thresholds are
shown on the first row of Fig. 9, where it can be seen that LSDF-Loc
performs the best, with LSDF close behind. For ko100, Sal per-
forms better than LSD. The second row shows results for registra-
tion accuracy, where similar conclusions can be drawn: regardless
of the threshold used, all three of our proposed methods (LSDF,
LSDF-Loc and Sal) perform better than other methods, while PPHT
consistently performs poorly.

5.3.3. Robustness to noise
Here the performance of the line detectors in the presence of

Gaussian noise is tested. The same dataset of building facades as used
in the previous section are used here, with varying levels of Gaussian
noise added to each image. The top section of Fig. 10 shows qualitative
results of line detection in increasing noise. With the exception of
PPHT, all methods detect fewer lines in more noisy images.

Again, the repeatability and registration accuracy are measured
for increasing levels of noise. In the first case, the repeatability of the
top k lines of the line detectors is measured for a threshold t of 10
and 200, and where k is equal to 50 and 100 (thus producing four
graphs), see the top four graphs in Fig. 10. For smaller levels of noise,
LSDF-Loc performs best, with Sal performing better for higher levels:
Sal records very little drop in performance in increasing noise.

In the second case, the proportion of homography estimates
less than a threshold t are measured in increasing noise. Again,
four graphs are produced, by varying t and k in the same manner.
It is observed in the bottom four graphs of Fig. 10 that Sal and
LSDF-Loc outperform the other methods, with Sal performing
better when only the top 50 lines are used rather than 100. This
shows the strength of salient line segment detection – its ability to
detect segments indicative of the underlying geometry of the
scene, unaffected by local perturbations of the image.

5.3.4. Robustness to image transformations
In this section, the performance of the line detectors is tested

across a range of image transformations, according to the dataset
by Zhang and Koch [53]. They include eight groups of transforma-
tions with six images in each group, with a known underlying
homography between images for each group. Three of the groups
are taken from [42]. Two example images from each group are
shown at the top of Fig. 11 with the results at the bottom.
Qualitative results for a compressed image and an occluded image
from the dataset are shown in Fig. 7 – it is observed that Sal more
easily detects the salient line segments than other approaches, and
explains its strong quantitative results (Fig. 11).

We solely test the repeatability for the top-50 and top-100 lines
here. It is observed that our approaches consistently outperform
PPHT and LSD. The only exceptions are in low texture and with scale
changes, where they obtain a similar performance. Particularly for
low texture this is not surprising – our approach is beneficial due to
its ability to naturally avoid textured areas, clearly giving no benefit
for low textured scenes. Sal performs particularly well for both
compression and blurring – transformations that remove fine
details but preserve the broad structure of the scene; consistent
with the idea that it detects the salient aspects of the image. Again,
LSDF-Loc often outperforms LSDF, however it will never perform as
well as Sal for some transformations (e.g. compression) where the
initial set of lines obtained by LSD are poor. Furthermore, the results
demonstrated here are, overall, better than those given in the
previous section, where Sal obtained a similar performance to LSD
with the top-100 lines selected.

5.3.5. Scale variant evaluation
In this section we compare the existing state-of-the-art line

detector, LSD, at different scales and compare to our proposed
approach Sal. To do so, an image is downscaled by a given
percentage and the LSD algorithm is run on the downscaled image.
Results are shown in Fig. 12, where LSD is tested on downscaled
images of 25%, 50%, 75%, and 100% (i.e. full resolution). The
quantitative results are performed on the building facade dataset
presented in [16]: exactly the same quantitative evaluation is
performed as in Section 5.3.2. The qualitative results show that,
at the higher scales, LSD detects fewer lines in repetitive structures
(particularly evident in the first image of Fig. 12). This is to be

3 Second image by Colin Smith, http://commons.wikimedia.org/wiki/File:Geor-
gian_House,_Farnham_-_geograph.org.uk_-_1622126.jpg. Third image by Tony
Atkin, http://commons.wikimedia.org/wiki/File:Buckland_Monachorum_Church_-
_geograph.org.uk_-_803201.jpg. Both images licensed under CC BY-SA 2.0 and are
grayscales of original.
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Fig. 7. Qualitative results of line detection on a range of images. From left to right: Input image, PPHT, LSD, Sal, LSDF, LSDF-Loc. Fourth and fifth images are from [7,2]; sixth
and seventh from [53]; eighth and ninth from [16].
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expected, as downscaling typically results in an image without fine
detail. It is further demonstrated on the quantitative results where
LSD at 75% and 50% perform slightly better than LSD at 100% (but
Sal still performs significantly better). However, LSD is scale-
variant, and it is difficult to know a priori the optimal scale. The
results suggest that a downscaling to 25% is too high a scale to be
of use, yet LSD at 50% still detects some fine-detail structures (e.g.
the windows of the church). Our approach, Sal, is scale-invariant,
allowing it to naturally avoid repetitive structures while detecting
lines of variable widths. Furthermore its generalisable formulation,
dependent on image statistics rather than image gradient, allow it
to be naturally extended to depth imagery.

5.4. 3D line detection results

In this section we evaluate our method for line detection for
LiDAR data as described in Section 4. The parameters used are the
same as for the 2D saliency detector, with the exception of the
prior α and the parameter dðLiLiÞ used in the affinity propogation

stage. In the first case α is decreased to 0.25 because the
distributions are split into many more bins and α¼ 1 is noticed
to favour uniform distributions too strongly for such a large
number of bins. For the second case, dðLi; LiÞ is in proportion to
the size of the model: 0.002 times the diameter of the bounding
box of the model is used for this. Whilst the approach described in
Section 4 describes line detection from an {intensity þ depth}
image, it can be just as easily implemented by reprojecting lines
using just the intensity or just the depth data separately. We shall
refer to results from these three cases as both, intensity, and depth
respectively. There are four datasets used: three of them from [35]
(Courtyard, Plaza, Reception)4 and one from the SCENE project [1]
(Room), all of which are shown in Fig. 13. They have been
generated from multiple LiDAR scans, with the largest, Plaza,
generated from seven scans.

Input Image PPHT LSD Sal LSDF LSDF-Loc

Fig. 8. The top 50 lines according to each line detector.
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Fig. 9. Quantitative results of line detection on building facades. Top: Example images from the dataset. Bottom: Left: Repeatability vs threshold; Top: Repeatability vs top k
lines selected for varying thresholds; Bottom: Registration accuracy vs top k lines selected for varying thresholds.

4 Courtyard refers to the Outdoor capture in Section 2 of the dataset presented
in [35]. Plaza and Reception are both in Section 5 of the dataset of [35].
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5.4.1. Qualitative evaluation
Qualitative results for these are given in Fig. 14 for lines detected

using just the depth component, just the intensity component, and

both components. A number of observations can be made here.
Firstly, there is always a circle detected on the ground beneath each
LiDAR scan – this is unavoidable since the scanner does not have
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Fig. 10. Top: Qualitative results. From left to right: Input image, PPHT, LSD, Sal, LSDF, LSDF-Loc. From top to bottom: zero noise, noise (s.d. 20), noise (s.d. 40). Bottom:
Quantitative results of line detection in noise. Top row: Repeatability against noise; Bottom row: Homography estimation within t against noise. Results are plotted for (t¼10,
k¼50), (t¼10, k¼100), (t¼20, k¼50), and (t¼20, k¼100).
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complete spherical vision, and the same happens when lines from
other line detectors are reprojected to 3D (see Fig. 15). Secondly
there is, for the most part, a reasonably high overlap between lines

from intensity and lines from depth – typically due to depth
discontinuities in the data. This may be observed particularly on
the windows of the Courtyard dataset where there is no data

Fig. 11. Top: Examples in the image dataset for eight groups of image transformations. For each group, there are six images in the dataset ranging from small to large
transformations, with the first and last images in each group shown here. Bottom: Results for each group of image transformations. The repeatability is measured, taking the
top 50 and 100 lines in each case (a) illumination (b) Rotation (c) Compression (d) Blurring (e) Occlusion (f) Low-texture (g) Viewpoint and (h) Scale.
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present on one side of the line, hence deemed salient by both the
intensity and depth approach. However, there are some important
differences, e.g. the edges of Room and Courtyard are crisply

detected by the depth approach and avoided by intensity. When
considering both, both geometric and textural lines are detected
within the same framework (particularly evident in Room).
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Fig. 12. Top: Qualitative results for LSD at different scales, compared to Sal. Bottom: Quantitative results from the dataset presented in [16], showing repeatability vs
threshold (Left); Repeatability vs top k lines selected for varying thresholds (Top); Registration accuracy vs top k lines selected for varying thresholds (Bottom).

Fig. 13. LiDAR Datasets. From left to right: Courtyard, Plaza, Reception, Room.
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5.4.2. Quantitative evaluation
Here, we give multi-modal results for when just the intensity

component and just the depth component are considered. Fig. 16
gives an example of such images: the depth component is rendered
in such a way that the colour represents the direction of the normal.

Any other 2D line detector, as used in the previous section, may
be used to detect lines on each face of a cubic image when just the
intensity or depth component is considered. Hence, for a single
LiDAR scan, we may consider only one of the components and
detect 2D lines using any other approach (e.g. PPHT, LSD) on each
face of its cubic image and backproject to 3D. However, using other
approaches, lines should not be combined from multiple LiDAR
scans using affinity propogation; this is designed to find a
representative set of clusters, rather than to cull a small number
of repeated segments from multiple views. Hence, for a fair

qualitative comparison, we compare reprojected line segments
taken from one component of just a single LiDAR scan.

Qualitative results from four LiDAR scans (one from each
dataset) are shown in Fig. 15. It can be observed that, similarly
to results in 2D (Fig. 7), Sal naturally avoids repetitive parts of the
scene where others do not, particularly for the brickwork near the
LiDAR scanner in the Courtyard dataset, and the tiled ceiling in
Reception. The reprojection to 3D further demonstrates the ability
of our approach to detect lines that are representative of the
underlying aspects of the scene. This results in an often greater
similarity between intensity and depth for Sal than there is for
other methods, further demonstrating its applicability for multi-
modal data.

Now quantitative results are discussed, between lines detected
solely from intensity and solely from depth for a 2D image across a

Input Data Depth Intensity Both

Fig. 14. Lines detected in each LiDAR dataset when considering just the depth component, just the intensity component, and both components respectively.
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change in viewpoint. The images are rendered from the point
cloud of a given LiDAR scan, with the camera located at the same
location of the LiDAR scan, and lines are detected based on the

intensity component of the image. The repeatability between these
lines and 3D lines that have been detected by another LiDAR scan
using the depth component is then measured, and results are

Fig. 15. Lines detected by each 2D line detector using just the intensity component in a cubic image of a single LiDAR scan, backprojected to 3D.
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shown in Fig. 17. They indicate that Sal performs the best,
particularly so for smaller numbers of lines. It demonstrates that
Sal detects lines that are often geometrically salient and are
potentially applicable for multi-modal registration (e.g. for the
case of registering an image to an untextured LiDAR scan).
Furthermore, we wish to emphasise that the results here are using
Sal only for the sake of comparison (by constraining it to only the
depth component), and that it has the other qualitative advantages
of being able to detect both textural and geometric lines simulta-
neously, as well as naturally combining line segments between
LiDAR scans.

6. Conclusions and future work

In this paper we have presented a novel, distribution-based
approach to line detection. Whereas other line detectors simply
detect lines based on the image gradient, our approach explicitly
takes into account the surroundings of a line, resulting in a line
segment detector that naturally avoids repetitive areas and returns
lines that are representative of the structure of the scene. Further-
more, its highly generalisable formulation makes it readily applic-
able to other modalities, as demonstrated by an extension to depth
imagery, where lines that jointly delineate changes in surface
orientation or texture are detected. For fast salient line segment
detection, a filtering approach is proposed, often yielding similar

results as the full saliency approach. The results indicate that our
approaches achieve superior repeatability across a range of trans-
formations compared to other line detectors and the multi-modal
results indicate that they naturally detects lines representative of
the structure of the underlying scene. Not only is it of potential use
in registration contexts as evaluated here, but also for compression
related tasks as demonstrated by its high repeatability under this
transformation.

There are potential areas for further improvements – in
particular, the good results obtained by filtering methods (LSDF
and LSDF-Loc) indicate that an approach that combines local and
regional information about a line has potential benefits. Such a
local and regional approach would have similarities with
approaches to the more general problem of saliency detection in
images. However since our approach is, to the best of our knowl-
edge, the first distribution-based approach to line detection, we
consider such a two-tier system beyond the scope of this research.

Future work will include the registration of lines between
different modalities (e.g. 2D and 3D). For this problem, the
correspondences between line segments need to be determined
– thus it is referred to as the Simultaneous Pose and Correspondence
(SPC) problem. It is a computationally expensive problem [20] (for
N 2D lines and M 3D lines, it has complexity OðM2NÞ) so any
method that has a high repeatability for a smaller number of lines
will be far more suited to this kind of problem. Hence it is
anticipated that the approach proposed here will be of great use

Fig. 16. Left: Intensity rendering, Right: Depth rendering (the colour represents the direction of the normal at that point).
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for the more general problem of pose estimation, not only for its
ability to detect the structure of a scene in a small number of lines,
but also its unified approach to line detection in multi-modal data.

Research data

To facilitate repeatable research, all data used here that is not
currently available as research data is now made available. Details
are available for the Room dataset at [36]; for the Courtyard, Plaza
and Reception datasets at [34]; and at [12] for images used that are
not part of any cited dataset.
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