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Abstract. This paper presents an approach to estimate the intrinsic
texture properties (albedo, shading, normal) of scenes from multiple view
acquisition under unknown illumination conditions. We introduce the
concept of intrinsic textures, which are pixel-resolution surface textures
representing the intrinsic appearance parameters of a scene. Unlike pre-
vious video relighting methods, the approach does not assume regions
of uniform albedo, which makes it applicable to richly textured scenes.
We show that intrinsic image methods can be used to refine an initial,
low-frequency shading estimate based on a global lighting reconstruction
from an original texture and coarse scene geometry in order to resolve the
inherent global ambiguity in shading. The method is applied to relight-
ing of free-viewpoint rendering from multiple view video capture. This
demonstrates relighting with reproduction of fine surface detail. Quan-
titative evaluation on synthetic models with textured appearance shows
accurate estimation of intrinsic surface reflectance properties.

Keywords: Free-Viewpoint Video Rendering, Image-Based Rendering,
Relighting, Intrinsic Images

1 Introduction

Free-viewpoint video rendering (FVVR) gives the user the freedom to choose the
viewpoint from which to view a captured scene [1–3]. FVVR has been applied
successfully in sports TV production [4, 5] and video conferencing [6] among
other applications. In FVVR, video from several cameras is used to reconstruct
scene geometry using Multiple-View Stereo (MVS), and appearance is repro-
duced by projectively texturing the scene with the original images [7].

Recently, FVVR research has shifted from straightforward reproduction of
the original scene to extending FVVR functionality [8, 9] with the goal of adapt-
ing it to other applications. In particular, the ability to relight an actor’s perfor-
mance for seamless compositing into arbitrary real-world and computer-generated
surroundings is highly desirable, and is termed Relightable Free-Viewpoint Video
Rendering (RFVVR).
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Convincing RFVVR requires estimation of the parameters of a bidirectional
reflectance distribution function (BRDF) for each point on the surface of a mesh
from the appearance. The final appearance of a scene is a function of multiple
parameters, including albedo, surface normals and specularity, as well as scene
lighting, making the estimation of these parameters ambiguous. In this paper we
address the problem of extracting intrinsic textures under arbitrary uncontrolled
lighting, which is poorly constrained and requires that scene lighting be inferred
together with the scene appearance.

The problem of fitting parameters (usually albedo and shading) to each pixel
of an image, for which scene geometry is not available, has been studied exten-
sively as intrinsic image extraction. This paper combines principles from intrinsic
image extraction with prior knowledge of the scene to resolve the global ambi-
guity between shading and albedo. RFVVR and intrinsic image extraction ap-
proach the same problem from two angles - the former is a top-down approach,
with knowledge of scene structure at its disposal, whereas the latter is a bottom-
up approach, which relies on local image structure to decompose into albedo and
shading images. In short, the coarse geometry available in RFVVR can be lever-
aged to resolve the global ambiguity present in intrinsic image reconstruction
methods.

The proposed method improves on previous RFVVR methods, which make
heavy use of the fact that albedo in a scene is likely to be piecewise constant.
The piecewise constant albedo assumption breaks down in the presence of multi-
albedo regions (such as wood or patterned fabric), and any subsequent surface
refinement or normal map extraction will be invalid for such regions. For this
reason, we propose a two-stage coarse-to-fine optimisation approach for albedo
and shading. We use a segmentation-based coarse albedo estimate to estimate
the lighting for the scene, after which the segmentation is discarded and we
resort to a surface-based bilateral filter technique to estimate per-pixel albedo
for complex materials. Finally, a highly-detailed surface normal map is extracted
using the refined albedo, shading and irradiance estimates.

2 Related Work

Our approach to relighting draws from recent contributions in RFVVR and
intrinsic image extraction. The availability of underlying geometry, and multiple
viewpoints of the same scene, can be used as a powerful aid to the extraction
of intrinsic images, which in the context of RFVVR are referred to as intrinsic
textures as they are intrinsic appearance properties over the surface manifold.

2.1 Free Viewpoint Video Rendering

A scene model is reconstructed using MVS, which is projectively textured from
the camera viewpoints [10]. To reproduce view-dependent aspects of appearance,
such as specularity, camera views are blended together at run-time depending
on viewpoint [11]. In the case of near-Lambertian scenes with accurate stereo
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reconstruction and camera calibration, a single texture per frame can be pro-
duced without sacrificing quality, as has been done for the results presented in
this paper.

2.2 Intrinsic Image Extraction

The problem of estimating albedo and lighting from an image, without knowledge
of geometry, has been extensively studied in computer vision as the problem of
intrinsic image extraction [12–15]. The interaction of physical objects with light
is governed by its intrinsic colours (albedo), specular properties, transmission
properties and surface normals. Any image of a physical scene can be decomposed
into intrinsic images corresponding to each material property.

No knowledge of global scene shape is available in these image-based tech-
niques, and they invariably require additional constraints (or assumptions) to
be introduced for good global solutions to be found. For example, Bousseau et
al. [16] has a user interact with the system to guide the process, whereas Barron
and Malik [17] use a set of shape and albedo priors based on general localised
properties of natural images.

2.3 Material Properties from Multi-View Video

RFVVR requires the estimation of shape and reflectance properties comprising
the scene [18, 19]. Once the underlying geometry and surface reflectance proper-
ties are known, arbitrary lighting conditions can be introduced in what is then
a conventional computer graphics rendering pipeline. This can be expressed as
estimating the parameters of a BRDF. Commonly-used BRDFs include the Lam-
bertian (diffuse reflection only) and Phong (a physically inaccurate, but simple)
reflection models. Throughout this paper, the Lambertian reflectance model is
used.

In this work, we combine prior shape estimates from MVS with intrinsic
image texture estimation to resolve the inherent global ambiguity. This replaces
the assumption of piecewise constant albedo [12] which has often been used in
RFVVR to constrain reflectance estimation. This assumption commonly fails in
natural scenes with textured surface appearance such as patterned fabric.

Active Lighting Controlling capture and lighting conditions allows highly ac-
curate models of albedo and lighting behaviour to be estimated, since it reduces
the number of unknown parameters. These systems are termed active illumina-
tion or light stage [18, 20]. This requires dedicated equipment, calibrated light
sources and calibrated cameras. Active lighting is less practical for dynamic
scenes, since it greatly increases the complexity of capture techniques. Einars-
son et al. [21] demonstrate high-quality image-based relightable free-viewpoint
video using a complex active capture system with time-multiplexed lighting.
High-speed synchronised illumination and cameras, and post-registration of the
images are required for reconstruction of reflectance properties and shape.
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Fixed Calibrated Lighting Passive techniques, which have a fixed lighting
arrangement for the duration of capture, are better suited to the problem of
dynamic scene relighting. Lensch et al. [22] introduce a robust method for the
extraction of time-varying BRDF given a coarse geometric model of a real-world
object. They propose extraction of surface normals as well as albedo in fitting
the BRDF to give the illusion of high-frequency geometry. Ahmed et al. [19] use
a similar technique for relighting of free-viewpoint video. They use calibrated
point sources to iteratively refine surface normals and albedos given coarse scene
geometry. A regularisation term is imposed on the surface normal to discourage
poor fits to the reference data. To help resolve ambiguity, a clustering method
based on the piecewise-constant albedo assumption is used.

Uncalibrated Lighting More recently, the radiance from irradiance problem
for Lambertian scenes is solved using spherical harmonics (SH) up to the second
order [23]. Wu et al. [24] perform mesh refinement against the original images
as opposed to normal extraction. Assuming a Lambertian reflectance model, the
authors construct segment-based albedo and radiance estimates for each frame
of the sequence. Local occlusion is used to resolve the radiance-from-irradiance
problem to high SH orders.

This approach is extended to non-Lambertian cases in the work of Li et al. [9].
After solving the Lambertian radiance-from-irradiance problem, specular regions
are used to localise light sources. The Phong model is fitted to the appearance.
The techniques of both Wu et al. and Li et al. are for application to dynamic
scenes, and temporal priors based on results from other frames form an important
part of their methods.

Our proposed intrinsic texture approach performs a full-resolution fit of
albedo and surface normal to the original texture. By contrast, Wu et al. and
Li et al. optimise over the surface based on piecewise-constant albedo, which
gives lower resolution due to the inherent smoothing of the regularisation. Our
method accurately estimates the irradiance map for isolated frames, meaning
that temporal priors from multi-frame sequences are not required.

3 Overview

We want to find albedo and surface normal textures for a coarse MVS scene re-
construction which give plausible results when rendered under arbitrary lighting
conditions. No prior knowledge of lighting is assumed; the scenes were captured
under unknown lighting conditions. To solve this problem, we propose first esti-
mating the global scene irradiance, then using this to initialise localised refine-
ment of albedo and shading, before finally fitting surface normals. An overview
of the pipeline is given in Figure 1.

To estimate scene lighting, we start by coarsely segmenting the mesh surface
into regions of similar albedo, making use of the observation that albedo is often
piecewise constant. Unlike previous methods, this initial segmentation does not
have to be accurate, and we make no attempt to refine it. Using this preliminary
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Fig. 1. Overview of the intrinsic texture extraction pipeline.

albedo estimate, we estimate the scene illumination which matches the shading
distribution over the surface of the mesh. This provides a starting point for
the albedo and shading texture extraction step, during which per-pixel albedo
and shading textures are estimated. Finally, using the shading texture, surface
normals are fitted to the lighting function. The normal map and albedo map can
be used in conjunction to allow relighting of the FVV frame.

In using a coarse albedo estimate to determine the low-frequency global light-
ing, we do not lose any generality when applied to scenes with complex textures.
The irradiance function is only recovered up to second order SH, meaning that
any high-frequency variations in albedo within each segment will not corrupt
the lighting estimate. Once the lighting has been estimated, the coarse albedo is
discarded. This approach is in contrast to the current state-of-the-art method of
first refining geometry based on a coarse albedo estimate, and then refining the
BRDF parameters [9, 24]. It is thus capable of achieving full image-resolution
albedo and surface normal maps for accurate surface detail.

4 Albedo and Shading Textures

The projectively textured, coarse MVS geometry is used to estimate the low-
frequency irradiance. This irradiance accounts for the large, attached shadows
at the scale of the MVS geometry, and is used to remove them from the original
texture (section 4.1). To recover the missing high-frequency shading, an intrinsic
image method is applied to the texture (section 4.2).

4.1 Low-Frequency Lighting Estimation

The global scene irradiance is reconstructed assuming Lambertian reflectance
and infinitely displaced lighting. Ramamoorthi and Hanrahan [23] show that any
irradiance map can be represented efficiently using spherical harmonics (SH)
up to the second order, which requires only nine coefficients. This makes SH
convenient for approximating the irradiance from a noisy set of samples.

The Lambertian reflectance model relates irradiance L to the radiance R
by equation 1. The scene appearance I is related to the irradiance by I(x) =
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A(x)L(x). V (θ, φ,x) is a visibility mask which can only take the values 0 and
1.

L(n(x),x) =

∫
Ω

max (u(θ, φ)ᵀn(x) , 0)R(θ, φ) V (θ, φ,x) dΩ (1)

u(θ, φ) is the unit vector in the direction of the spherical polar co-ordinates
(θ, φ), and n(x) is the normal at surface position x. The integral is over the
sphere Ω with incremental surface area dΩ = sin(θ)dθdφ. Under the assumption
of a convex scene, the dependence on surface position x in equation 1 disappears,
and this can be considered as a convolution of the radiance function with a large
low-pass filter, termed the clamped-cosine kernel (equation 2).

L(n) =

∫
Ω

max (u(θ, φ)ᵀn , 0)R(θ, φ) dΩ (2)

Due to this low-pass filtering, only spherical harmonics up to the second order
can be reliably extracted in the case of convex objects [23]. Wu et al. extract the
radiance function to higher orders by using the additional information provided
by local self-occlusions in non-convex objects. For our purposes a low-order SH
reconstruction of the irradiance suffices, since we rely on our intrinsic texture
technique to extract high-frequency albedo, shading and surface normals. The
lighting estimate is only used to globally balance the intrinsic albedo and shading
textures in our case.

The texture is first segmented by albedo, using the segmentation of Felzen-
szwalb et al. [25] adapted to work in the tangent space of the mesh. This gives a
set of materials, M . The material boundaries of this initial, coarse segmentation
do not need to be pixel-accurate, since it is only used to recover the irradiance
function. For each material u in M , an initial estimate of average albedo A′u
is given as the average colour of all texels (texture “pixels”) comprising that
material:

A′u =
1

|u|
∑
x∈u

I(x) ∀u ∈M (3)

In the case of monochrome lighting, this initial estimate of albedo is a scaled
version of the final albedo, Au, so that kuAu = A′u. The problem of finding
the correct ratios of material albedos Au to each other is now a problem of
determining the multipliers ku.

The per-material coarse shading estimate is given by:

Su(x) =
I(x)

A′u(x)
(4)

Making use of the fact that the low-frequency shading can be considered
as samples of the irradiance function, Su(x) can be projected along the coarse
surface normal nc(x) provided by the MVS scene reconstruction to give an
estimate L′u of the irradiance function at that point.
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Fig. 2. Local irradiance estimates (left and centre) for two materials (polar projection).
On the right, the intersection between the two irradiance estimates, Qij . Also shown
are the positions of the materials on the mesh surface, highlighted in cyan.

L(nc(x)) ≈ kuL′u(nc(x)) = kuSu(x) (5)

The sum of squared error in the overlap between the local irradiance estimates
L′u needs to be minimised by appropriate choices of ku. For two materials i, j ∈
M , let Qi,j be the binary support function giving the overlap between L′i and
L′j (Figure 2). The sum of squared error is given by:

E =
∑
i

∑
j>i

[∫
Ω

(kiL
′
i(θ, φ)−kjL′j(θ, φ))Qi,j(θ, φ)dΩ

]2
(6)

E =
∑
i

∑
j>i

[kibij − kjbji]2 (7)

where bij =

∫
Ω

L′i(θ, φ)Qi,j(θ, φ) dΩ (8)

A greedy algorithm with a least-squares update step for each ku is now used
to minimise E. All ku are initialised to 1. Since we are only interested in the
ratios of the multipliers, the first multiplier, k1, remains unchanged throughout,
otherwise only the trivial solution ku = 0 ∀u ∈ M would be found. Qi,j(θ, φ)
does not take into account local occlusion of the lighting.

Let kc represent the multiplier currently being optimised. Letting dj = kjbji,
the update step is given by:

kc ← argmin
kc

||kcbc − d||2 =
bᵀcd

bᵀcbc
(9)

In this way, we can iterate over all the multipliers except for k1, scaling the
albedos to optimise the material overlaps, until convergence. This gives a refined
estimate of the actual albedos Au up to a global scale factor. These albedos may
now be combined into a single coarse albedo estimate, Ac. The global irradiance
estimate L is then found as the best fit of the SH basis up to the second order
to L′ (equation 10).
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Fig. 3. Example intrinsic image decompositions (albedo and shading) using the pro-
posed modified bilateral filter.

L′(nc(x)) =
I(x)

Ac(x)
(10)

To test the effectiveness of this greedy approach, the order in which the ma-
terials were optimised was randomised. This was found to have no significant
impact on the resulting Ac(x). In the case of coloured irradiance, which is com-
mon in studio capture, the above can be done for each of the red, green and
blue channels independently. It should be noted that this method only works
on smooth meshes, since it relies on overlaps between per-material lighting esti-
mates. In particular, it gives good results for human actors, but it would degrade
for man-made objects with orthogonal faces.

4.2 Intrinsic Texture Extraction Filter

Our intrinsic texture extraction method builds upon the image-based method of
Shen et al. [26] to incorporate global lighting information and operate over the
surface of a mesh. To achieve this, a fast, bilateral filter based intrinsic image
decomposition method is introduced. The use of an adaptive FIR filter for in-
trinsic image extraction, rather than explicitly minimising an energy functional,
simplifies the method and is efficient in application to textures.

The contribution of Shen et al. [26] is an energy functional, which when
minimised splits an image I into its constituent albedo A and shading S images,
such that I(x) = A(x)S(x) (equation 11). It is show that this functional can
be well approximated using a modified bilateral filter to remove local shading
contributions from the original image.

E(A,S) =
∑
x∈P

(
A(x)−

∑
y∈N(x)

w(x,y)A(y)
)2

+
∑
x∈P

(I(x)/S(x)−A(x))2 (11)
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w(x,y)= exp

(
− [cos−1(Î(x)ᵀÎ(y))]2

σ2
i1

)
exp

(
− [luma(I(x))− luma(I(y))]2

σ2
i2

)
(12)

luma = 0.299× Red + 0.587×Green + 0.114× Blue (13)

In equation 11, N(x) is the neighbourhood of pixel x, and P is the set of
pixel positions. Equation 11 is made up of two parts. The first part imposes
a metric for similarity in albedo between pixels which flattens out regions of
similar albedo when minimised. The second part satisfies the condition that the
observed image matches the estimated shading and albedo: I(x) = A(x)S(x).
S(x) is not dependent on the neighbourhood of pixels except through A, so a
similar result can be achieved by minimising the following:

argmin
A

E(A) =
∑
x∈P

(
A(x)−

∑
y∈N(x)

w(x,y)A(y)
)2

(14)

Where S = I/A. This is equivalent to flattening out regions which are similar
according to the metric defined in equation 12. This can be performed efficiently
using a modified bilateral filter [27]:

A(x) =
1

u

∫
µ

I(µ) exp

(
−||x− µ||

2
2

σ2
w

)
exp

(
− [cos−1(Î(x)ᵀÎ(µ))]2

σ2
i1

)

× exp

(
− [luma(I(x))− luma(I(µ))]2

σ2
i2

)
dµ

(15)

In addition to the usual bilateral filter term which gauges similarity between
pixels by luma, the chromaticity similarity term from equation 12 is also present.
Some examples of image decompositions using this method are given in figure 3.
The variances σ2

i1 and σ2
i2 adapt to the local region, as described in Shen et al.’s

paper. u is a normalisation term to ensure the filter weights sum to unity.
The method of Shen et al. is based upon a local similarity metric, so it re-

quires additional high-level constraints in order to achieve a good global solution.
The same is true of the bilateral filtering based method described here. In the
original paper, these constraints are provided by a user via a stroke-based in-
teraction method, whereas we use the irradiance estimate from the MVS shape
reconstruction to provide automatic global albedo balancing.

The quality of the results depends on the choice of kernel size in equation 15.
Large kernels will have high variances σ2

i1 and σ2
i2, which will cause bleeding

between regions which have similar albedo. In addition, it will take a long time
to convolve large kernels with the image. Conversely, small kernels will not pick
up large shading gradients, even with a large number of iterations. Throughout
this paper, a 15x15 kernel was used.

Iteratively applying the kernel in equation 15 can reduce the computational
cost and bleeding effects of using large kernels whilst still allowing some global
shading effects to be extracted. The shading image is formed as S = I/A af-
ter every iteration. The colour component of A should be preserved between
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Fig. 4. Processing of original texture (a) to produce shading (e) and albedo (f) textures.
Coarse albedos (b) are rebalanced (c) to allow a global shading estimate (d), which
initialises the fine shading/albedo extraction method (equation 16). (g) shows part of
the original texture in texture space.

iterations, which is equivalent to enforcing Â = Î whilst preserving the RGB
“length” of each pixel of A. We found only a single iteration to be necessary for
the intrinsic texture results presented here.

This filter is adapted to work in the tangent space of the mesh by filtering
directly on the texture in texture space. Where sample points fall off the edge
of the triangle containing the centre of the filter, the sample point is offset to
the triangle containing the required texel. To prevent distortion from mapping
the surface onto the UV plane, the UV chart is split into individual triangles
(Figure 4g). This preserves the shape and relative size of each triangle between
the mesh and texture space. Figure 4 shows the result of albedo refinement on a
texture. It was found that increasing the luma variance σ2

i2 gives better results
in the case of texture filtering.

To account for the global scene lighting, the original image is first divided by
the irradiance estimate sampled using the coarse surface normals nc(x):

W (x) =
I(x)

L(nc(x))
(16)

The filter is then applied to W to obtain the albedo estimate A. The shading
texture S is formed from I and A.

5 Refined Surface Normal Estimation

Since both a global lighting estimate and a surface shading estimate are available,
it is possible to fit surface normals to the data. This is done by minimising an
error function defined against the shading texture, S, at each point on the surface
of the mesh x:

E
(
n(x)

)
=
∣∣∣∣S(x)− L (n)

∣∣∣∣
1

+ Λ (n,nc) (17)

nopt(x) = argmin
n

E
(
n(x)

)
(18)

The L1 norm was chosen for its robustness in the presence of noise. When
fitting surface normals, the MVS reconstruction gives a good indication of likely
normal fits. Large deviations of the fitted normals n from the coarse normals
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Table 1. Quantitative evaluation on synthetic datasets

Model Shading Acc. Colour Angle Irradiance MSE Time Taken

Smooth Sphere 0.911 3.162◦ 0.0059 102s

Rough Sphere 0.858 6.145◦ 0.0030 118s

Bunny 0.928 2.495◦ 0.0032 149s

Dragon 0.935 3.406◦ 0.0012 179s

Average 0.908 3.802◦ 0.0033 137s

nc are unlikely, and are therefore penalised using a regularisation term Λ. To
minimise this function, an exhaustive search of all possible fits in the direction
of the gradient of the irradiance function is performed.

The regularisation term Λ is a function of the angle between the two vectors,
defined as:

Λ (n,nc) =

{
λ
(
cos−1(nᵀnc)

)2
nᵀnc > 0

∞ otherwise
(19)

Where λ is determined experimentally. A value of 0.025 was used for all
examples in this paper.

Since there is no inter-pixel dependency in equation 17, it is a good target for
parallelisation. In our implementation, all surface normals are fitted in parallel
on a GPU using a GLSL fragment shader. In all, the normal fitting stage takes
of the order of 0.5 seconds to complete with a low-performance (Nvidia GeForce
GT 240) graphics card, for a 1024x1024 texel texture.

6 Results

Ground-truth albedo and shading information is not available for multi-view
sequences of actors. For this reason, a synthetic dataset consisting of multi-
view renders of textured meshes, for which ground truth is available, is used to
quantitatively evaluate the intrinsic texture method. Relit frames from public
multiple view reconstruction datasets are also qualitatively evaluated to assess
the performance for the target relightable FVVR application.

6.1 Quantitative Evaluation

A synthetic dataset was generated consisting of four models for evaluating the
quality of the albedo and shading intrinsic images (Figure 5). The bunny and
dragon models come from the Stanford 3D Scanning Repository. Each of these
models was textured with a complex image, making albedo and lighting ex-
traction comparatively difficult. A ray-tracer was used instead of a rasteriser to
achieve more realistic lighting, including inter-reflections and ambient occlusions.
A set of eight renders from virtual cameras arranged around the objects were
combined into a single texture, in the same way as images from physical cameras
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Fig. 5. Decomposition of synthetic textures and meshes into intrinsic textures. From
left to right: original texture, albedo texture, shading texture and surface normals. The
final row shows the result of omitting the local albedo/shading refinement stage.

are combined in the case of studio data. For each of the meshes, a low-polygon
mesh (less than 6500 vertices in all cases) was used to generate the texture
and provide coarse normals for irradiance and shading extraction. Ground truth
shading and albedo was used for quantitative evaluation, with results given in
Table 1. Our average runtime of 137 seconds per frame compares to 10 minutes
reported by Wu et al. [24] and 7-8 minutes by Li et al. [9].

Two metrics were used to measure the accuracy of the separation between
albedo and shading: shading accuracy and average colour angle, both measured
in normalised RGB space (all axes in the range 0 to 1). Shading accuracy is
given on a scale of 0 to 1 (equation 20).

shading acc. = 1− 1√
3|P |

∑
x∈P
||A(x)−AG(x)||2 (20)

Here, P is the set of all texel positions, and AG(x) is the ground-truth albedo.
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Fig. 6. Relighting of studio-captured data under general, uncalibrated lighting condi-
tions using our method (see supplementary video). From left to right: original texture,
albedo estimate, shading estimate and relighting under two different conditions. On far
right, result from Li et al. [9]. Note the preservation of facial detail with the proposed
method. Light spheres are shown on the top row.

The shading accuracy reflects the accuracy of the brightness of the albedo as
well as R:G:B ratio. The colour angle is a measure of the accuracy of the R:G:B
ratio only (equation 21).

avg. RGB angle =
1

|P |
∑
x∈P

cos−1
(
Â(x)ᵀÂG(x)

)
(21)

A colour angle of zero indicates that the R:G:B ratios in the albedo estimate
perfectly match those in the ground truth.

6.2 Qualitative Evaluation

The method was validated on three studio capture datasets and rendered under
various lighting conditions. The first two sequences [8] were recorded with 8
cameras at a resolution of 1920x1080, whereas the last sequence [24] was recorded
with 11 cameras at 1296x972. In all renders a high level of detail is achieved,
and challenging textures are faithfully reconstructed, as shown in Figure ??.
In particular, the faces of the actors are reproduced accurately, which is vital
for perceived realism. By using normal fitting rather than geometry refinement
(Figure 7), we achieve a higher resolution in our relighting results than in current
state-of-the-art methods [24, 9]. The supplementary video gives results for the
full sequences.

The main shortcomings of this approach are misclassification of high-frequency
dark albedos as shading, and noise in the extracted normal maps. The former is
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Fig. 7. Surface normals before and after refinement.

most obvious as the representation of the edges of the dancer’s t-shirt logo, and
some facial features, in the shading texture. The noise in the relit images results
because each texel in the extracted normal map is fitted independently of the
others, so no neighbour-based smoothing takes place.

7 Conclusions and Future Work

This paper introduces a new method for reconstruction of accurate high resolu-
tion albedo and surface normal textures from approximate multiple view scene
reconstruction with unknown illumination. The approach enables estimation of
albedo, shading and surface normals at the resolution of the original texture. Un-
like previous approaches, this approach does not assume regions of near-constant
albedo, but also works with rich, multi-albedo textures. A novel bilateral filter
approach is proposed for efficient shading refinement.

The proposed intrinsic texture estimation method is based on the observation
that RFVVR and intrinsic image estimation are complementary approaches to
appearance property estimation. It is shown that a global, low-frequency lighting
estimate obtained from an original texture and coarse scene geometry can be
used to initialise a local, high-frequency refinement step.

Intrinsic textures are applied to relighting of free-viewpoint rendering from
multiple view video capture. This demonstrates relighting with reproduction of
detailed surface appearance. Quantitative evaluation on synthetic models with
non-uniform surface appearance shows accurate estimation of per-pixel albedo
and normals.

A number of refinements to this method are possible. Improved global lighting
estimation by solving the radiance-from-irradiance problem taking into account
occlusions would give a more accurate global lighting estimate. Extension to
non-Lambertian surfaces would improve the generality of the approach. Finally,
additional temporal and spatial priors may further improve the quality of the
intrinsic textures.
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