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Abstract—3DTV production of live sports events presents a
challenging problem involving conflicting requirements of main-
taining broadcast stereo picture quality with practical problems
in developing robust systems for cost effective deployment. In this
paper we propose an alternative approach to stereo production
in sports events using the conventional monocular broadcast
cameras for 3D reconstruction of the event and subsequent
stereo rendering. This approach has the potential advantage
over stereo camera rigs of recovering full scene depth, allowing
inter-ocular distance and convergence to be adapted according
to the requirements of the target display and enabling stereo
coverage from both existing and ‘virtual’ camera positions
without additional cameras. A prototype system is presented with
results of sports TV production trials for rendering of stereo and
free-viewpoint video sequences of soccer and rugby.

Index Terms—3DTV, 3D video, free-viewpoint video, multiple
view reconstruction, camera calibration, image segmentation

I. INTRODUCTION

Recent box-office success of stereo 3D movies has led to an
increased demand for the production and delivery of 3DTV
content with events such as the 2010 soccer world-cup being
used to promote 3DTV services. Sports broadcast provides a
context in which the viewing experience may be enhanced
by stereo 3D. Currently stereo broadcast production of live
sports events is achieved by using multiple stereo camera
rigs alongside the conventional 2D cameras. In the 2010
world-cup seven additional stereo camera rigs were used in
each stadium to provide 3DTV coverage. Production using
dedicated stereo camera rigs significantly increases costs and
introduces technical problems in maintaing accurate alignment
of zooming stereo camera pairs. The resulting stereo footage
also has a fixed inter-ocular distance and convergence at the
time of capture. This prevents stereo adjustment in post-
production for retargeting to displays of different size to
maintain a consistent depth perception. Changing the inter-
ocular distance in stereo camera views requires knowledge of
the scene depth which is challenging to reconstruct from the
closely spaced stereo camera pair.

In this paper we present an alternative approach to stereo
3DTV production based on multiple widely spaced monocular
cameras such as those used in a conventional 2D soccer
broadcast. The approach directly reconstructs the scene ge-
ometry from the camera views. Recent advances in multiple
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view reconstruction are exploited to provide a 3D scene
proxy for subsequent stereo rendering. This allows full control
of stereo rendering parameters in post-production avoiding
any distortion between camera views due to camera zoom
lens distortion or misalignment. Stereo inter-ocular distance
and convergence are controlled in post-production allowing
retargeting to different displays. The challenge in this approach
is to maintain the visual quality of conventional 2D broadcast
whilst allowing stereo rendering.

A prototype system for stereo 3DTV and free-viewpoint
sports broadcast production is presented which uses the exist-
ing monocular match cameras. Production trials for soccer and
rugby demonstrate a visual quality comparable to conventional
2D production with full control over viewpoint and stereo
rendering in post-production. If the stereo pair is rendered
from the viewpoint of a broadcast camera the 2D video can
be augmented with 3D depth information from the 3D scene
proxy allowing stereo rendering without loss of visual quality.
This system demonstrates the potential of this approach for
use in 3DTV production without a requirement for additional
stereo camera rigs.

To date most multiple view video systems have been de-
veloped for studio applications with a fixed capture volume,
controlled illumination and backgrounds. Live outdoor events
such as sports present a number of additional challenges
for both acquisition and processing. Multiple view capture
systems in sports such as soccer must cover the action taking
place over an entire pitch with video acquisition at sufficient
resolution for 3D scene analysis and production of desired
stereo or free-viewpoint virtual camera views. The system
presented in this paper is based on use of the live broadcast
cameras as the primary source of multiple view video. In
a conventional broadcast for events such as premier league
soccer these cameras are manually operated to follow the
game play zooming in on events as they occur. Advances are
presented in real-time through the lens camera calibration to
estimate both the camera pose, focus and lens distortion from
the pitch lines. A 3D scene proxy is then reconstructed at each
frame starting with a volumetric reconstruction followed by
a view-dependent refinement using information from multiple
views. Production trials for both international soccer and rugby
matches provide a qualitative evaluation of both stereo and
free-viewpoint rendering from the conventional 2D broadcast
match camera input. Results demonstrate stereo 3D and free-
viewpoint rendering with a visual quality comparable to the
captured monocular broadcast video.
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II. BACKGROUND

A. Methodologies for Stereo and Free-viewpoint Video

Two principal methodologies have been investigated to
rendering novel views of scenes captured from two or more
camera viewpoints: interpolation and 3D reconstruction.

Interpolation: View interpolation directly estimates the
scene appearance from novel viewpoints without explicitly
reconstructing the 3D scene structure as an intermediate
step [1], [2], [3]. This avoids the requirement for explicit
3D reconstruction but is in general limited to rendering
viewpoints between the camera views. Interpolation has
the advantage of circumventing inaccuracies in explicit
reconstruction due to errors in camera calibration. The
quality of rendered views is dependent on the accuracy of
correspondences used to align multiple view observations.
Extrapolation of novel views has also been investigated based
on the colour consistency of observations from multiple views
without explicit reconstruction [4]. A comprehensive survey
of image-based rendering techniques for novel view synthesis
is given in [5].

Reconstruction: Reconstruction of the 3D scene structure
from multiple view images is commonly used as a basis for
rendering novel views. Given multiple views of a dynamic
scene such as a moving person a number of approaches have
been used for reconstruction: visual-hull; photo-hull; stereo;
and global shape optimisation. Visual-hull reconstruction
intersects silhouette cones from multiple views [6], [7],
[8], [9], [10] to reconstruct the maximal volume occupied
by the scene objects. This requires prior segmentation of
the foreground scene objects, such as a person, from the
background. The photo-hull [11] is the maximal photo
consistent volume between multiple views. An advantage of
the photo-hull is that it does not require prior segmentation
of the foreground. Stereo reconstruction from multiple views
has been used to reconstruct dynamic scenes of moving
people [12], [13]. Dense correspondence from stereo ensures
reconstruction of surfaces which align the multiple view
images reducing artefacts in rendering of novel views.
However, stereo correspondence requires local variation in
appearance across the scene surface and is ambiguous in
regions of uniform appearance. To overcome this limitation
research has investigated the combination of volumetric and
stereo reconstruction in a global optimisation framework to
ensure robust reconstruction in areas of uniform appearance
and accurate alignment of images from multiple views [14],
[15]. A comparison of approaches for reconstruction of static
scenes from multiple views is presented in [16].

B. Multiple View Studio Reconstruction

Over the past decade there has been extensive research in
multiple camera systems for reconstruction and representations
of dynamic scenes. Following the pioneering work of Kanade
et al.[12] introducing Virtualized RealityT M there has been ex-
tensive research on acquisition of performances to allow replay

with interactive control of a virtual camera viewpoint or free-
viewpoint video. This system used 51 cameras over a 5 meter
hemisphere to capture an actors performance. Reconstruction
is performed by fusion of stereo surface reconstruction from
multiple pairs of views. Novel viewpoints are then rendered
by texture mapping the reconstructed surface. Other multiple
camera studio systems with small numbers of cameras (6—12)
have used the visual-hull [17], [18] and photo-hull [19]. Real-
time free-viewpoint video with interactive viewpoint control
has also been demonstrated [17], [20].

Recent advances have achieved offline production of free-
viewpoint video with a visual quality comparable to the
captured video. Zitnick et al.[13] presented high-quality video-
based rendering using integrated stereo reconstruction and
matting with a 1D array of 8 cameras over a 30◦ arc. Results
demonstrate video-quality rendering comparable to the cap-
tured video for novel views along the 30◦ arc between cameras.
High-quality rendering for all-round 360◦ views has also been
demonstrated for reconstruction from widely spaced views
(8 cameras with 30-45◦ between views) using global surface
optimisation techniques which integrate silhouette constraints
with wide-baseline stereo [14], [15], [21]. This approach
refines an initial visual-hull reconstruction to obtain a surface
which gives accurate alignment between widely spaced views.

C. Multiple View Reconstruction in Sports

Initial attempts have been made to transfer studio-based
reconstruction methodologies to acquisition and reconstruction
of outdoor events. The Virtualized RealityT M technology [22]
was used in the EyeVision1system to produce virtual camera
sweeps as action replays for Super Bowl XXXV in 2001.
Thirty motorised camera heads slaved to a single manually
controlled camera were used to produce sweep shots with
visible jumps between viewpoints.

More recently a number of groups have investigated vol-
umetric [23] and image-based interpolation techniques [24],
[25], [26] for rendering novel views in sports. Grau et al.
[23] used a texture mapped visual-hull reconstruction from
15 camera of a soccer pitch to render novel views of the
players. Interpolation of novel views between the real cameras
without explicit 3D reconstruction has also been investigate in
the context of sports. [24], [25], [26]. Inamoto and Saito [25]
allow free-viewpoint video synthesis in soccer by segment-
ing the observed camera images into three layers: dynamic
foreground (players); pitch; and background (stadium). Mor-
phing is achieved by interpolation along the corresponding
intervals of the epipolar line for the foreground layer. A
layered representation for the spatio-temporal correspondence
and occlusion of objects for pairs of views is proposed in [24]
and applied to soccer view interpolation.

Germann et al. [27] recently proposed articulated billboards
as an intermediate 3D proxy for rendering novel viewpoints
of players in sports matches. This approach only requires
two views in which the players skeletal pose is aligned in
order to interpolate intermediate views based on a billboard
representation of each body part. Currently manual interaction

1EyeVision www.ri.cmu.edu/events/sb35/tksuperbowl.html

www.ri.cmu.edu/events/sb35/tksuperbowl.html
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is required to pose the articulated billboard limiting the use to
free-viewpoint rendering of players in a single static frame or
short sequences.

LiberoVision2recently introduced a commercial system for
interpolation between pairs of match camera views in soccer
broadcast. This system has the advantage of only using the
existing broadcast cameras. The Piero3 system developed by
BBC R&D allows annotation of the broadcast video footage
together with limit change in viewpoint using player billboards
to extrapolate views around a single camera.

The system presented in this paper aims to allow 3D
proxy reconstruction for stereo and free-viewpoint rendering
of live action from informative viewpoints which add to the
broadcast coverage of a sporting event. The system allows
rendering of viewpoints on the pitch such as the referees
or goal keepers view of events using the broadcast match
cameras together with additional auxiliary cameras to increase
coverage if available. This system has introduced automatic
methods for online calibration, segmentation, reconstruction
and rendering of stereo and free-viewpoint video for sports
broadcast production.

III. SPECIFICATION OF REQUIREMENTS FOR SPORTS TV

There are three critical issues for use of stereo and free-
viewpoint video in sports TV broadcasts: visual quality; tim-
ing; and cost. In this section we identify the requirements
and constraints for use of free-viewpoint video in sports TV
production.

A. Visual Quality for Broadcast Production

The hardest technical constraint for stereo and free-
viewpoint video of novel views in TV sports production is
visual quality. Broadcast video quality equivalent to the live
footage from the broadcast cameras is ideally required to
be acceptable to the viewing public. In stereo production
artefacts caused by a misalignment or distortion of views from
stereo camera pairs may result in loss of depth perception
and discomfort to viewers. The production of stereo views in
post-production avoids the artefacts in stereo capture due to
mismatching of zooming cameras but may introduce additional
distortion due to errors in reconstruction of the 3D scene
proxy. It is therefore important that the 3D proxy used for
stereo rendering is sufficiently accurate to render the scene
without visual artefacts. High-definition (HD) cameras are
now widely used for acquisition at live sports events together
with increasing use of HD transmission to the viewer. Stereo
rendering needs to achieve HD quality for rendering of full-
screen shots.

B. Production Requirements on Timing

The time taken to produce stereo or free-viewpoint video is
critical to the potential uses in broadcast. From a production
standpoint stereo video would ideally be available at video
broadcast rate (< 40ms/frame) with 100% reliability on visual

2LiberoVision www.liberovision.com
3Piero www.bbc.co.uk/rd/projects/virtual/piero/

Fig. 1. Typical stadium broadcast camera layout for a major sporting
event. Out of 26 cameras 1-4,10,11,19,20 provide potentially useful views, 5-
8,18,21 are high-speed cameras and the remainder are at pitch level providing
insufficient coverage for calibration or reconstruction.

quality allowing the sports producer to select stereo video
streams for 3DTV broadcast as with conventional 2D broad-
cast. In practice due to both algorithm reliability and compu-
tational delay there are four critical time points where stereo
and free-viewpoint video could be exploited in production.

Live Action: Video-rate capture, reconstruction and ren-
dering for live stereo 3DTV broadcast with only a few
frames delay.
Action Replay: Within seconds of an event happening
(e.g. a player is fouled), and a novel view is offered in
place of conventional instant replays.
Action Review: Within a few minutes, such that a novel
view can be presented during half time or immediately
after a match finishes.
Match Analysis: After many minutes, such that a novel
view sequence made available for use as part of a post-
match analysis programme (which may be later that day
or week).

C. Acquisition Requirements

Production of sports events such as soccer for live broadcast
typically use 12-18 match cameras at key locations around the
stadium. In the 2006 FIFA World Cup4 26 HD cameras were
used for coverage at each stadium as illustrated in Figure 1.
The main broadcast cameras are typically located one side and
on the ends of the stadium to avoid disorienting the viewer
with switches to reverse views. All cameras are manually
controlled by individual operators to cover both the action on
the pitch and the crowd. This leads to the problem that even
with 15-20 broadcast cameras only a small number will be
covering the same area during normal play. Figure 2 shows a
typical set of shots from match cameras for a penalty event
during a cup-final match.

For stereo production in the 2010 world-cup a set of seven
manually operated stereo camera pairs were located at the

4http://www.fifa.com/worldcup/archive/germany2006/news/newsid=
13449.html

www.liberovision.com
www.bbc.co.uk/rd/projects/virtual/piero/
http://www.fifa.com/worldcup/archive/germany2006/news/newsid=13449.html
http://www.fifa.com/worldcup/archive/germany2006/news/newsid=13449.html
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Fig. 2. Broadcast match camera views for a penalty event during a cup-final.
Of the 15 match cameras only the views shown were of the penalty.

stadia in addition to the conventional broadcast cameras.
Video-rate processing of the stereo streams is employed to
correct for distortions of left and right camera views due to
lens differences which occur during zooming. Direct stereo
capture and processing enables live broadcast of 3DTV content
with a fixed inter-ocular distance. The use of stereo camera rigs
in addition to the conventional broadcast cameras considerably
increased the production cost which is only viable for high-
profile events.

IV. A STEREO 3D VIDEO SYSTEM FOR SPORTS TV

This section presents a system for stereo and free-viewpoint
video in TV production of sports events. The system has been
developed to utilise footage from both the manually operated
monocular match cameras and fixed auxiliary cameras if
available to ensure full stadium coverage. Automatic camera
calibration from the pitch markings has been developed to
allow combination of footage from multiple camera views,
including the moving and zooming match cameras. In this
section we review both the acquisition system and algorithms
developed to facilitate broadcast quality stereo 3D production.

Fig. 3. Overview of the 3DTV video system.

A. System Overview

An overview of the 3DTV production system is shown in
Figure 3. Capture is performed using time synchronised acqui-
sition from both auxiliary and match cameras. Synchronisation
using genlock is a standard process in conventional broadcast
acquisition. Uncompressed camera footage is stored directly
to disk for offline processing. Automatic calibration of all
cameras is performed from the pitch lines of the captured
footage. This avoids the need for prior camera calibration
and allows the use of footage from match cameras. The
calibration is capable of real-time operation for use during
live match footage. Calibration estimates the extrinsic and
intrinsic parameters of each camera including lens distortion.
Matting of foreground (players) from the background (pitch)

is performed using chroma and difference key matting. This
allows the approximate segmentation of the foreground players
for subsequent processing to produce a 3D scene proxy for
stereo rendering and free-viewpoint video. A robust 3D scene
reconstruction and segmentation refinement is then performed
taking into account errors in calibration (1-2 pixel rms) and
initial segmentation (2-3 pixels). View-dependent rendering is
then performed to render stereo 3D and free-viewpoint video.

B. Video-rate Calibration of Live Broadcast Footage

One way in which camera calibration data can be derived
is by performing an initial off-line calibration of the position
of the camera mounting using a theodolite or range-finder,
and mounting sensors on the camera and the lens to measure
the pan, tilt, and zoom. However, it is often the case in
international sports that the cameras are controlled by a host
broadcaster and only access to the match camera feeds is
available. A more attractive way of deriving calibration data
is by analysis of the camera image sequence. The lines on
a sports pitch are usually in known positions, and these can
be used to compute the camera pose. In some sports, such
as soccer, the layout of some pitch markings (such as those
around the goal) are fully specified, but the overall dimensions
vary between grounds.

For free-viewpoint video in sports TV production we have
developed a real-time (50-60Hz) camera pose estimation
system for the live broadcast cameras[28], [29]. The online
calibration estimates the camera position, orientation, focal
length and lens distortion from the match footage using pitch
markings. Camera calibration is computed to minimise the
reprojection error of observed pitch lines. Calibration is based
on a multi-hypothesis line tracking approach using edge
points closest to the predicted line position. This provides
robustness to the appearance of other nearby edge points.
The method includes an automatic initialisation process
which takes about one second to evaluate. The stages of the
calibration process are as follows:

Initial Estimation of Camera Position: As broadcast
cameras are commonly mounted in a fixed location on a
pan and tilt head an initial estimate of the camera position
is obtained from multiple images with a wide range of
camera orientations. The camera position, orientation and
field-of-view is estimated with the position constrained to a
common value for all images. This initial calibration from
images over a wide range of orientations significantly reduces
the ambiguity between distance of the camera from reference
features and the focal length. Figure 4 shows an example of
camera positions computed first from 42 individual images,
and then with all images used simultaneously to compute a
common position. The position is computed by considering
all images simultaneously and lies roughly where these lines
of uncertainty cross. Repeating the process with different sets
of images showed that the position could be estimated with a
consistency of about 0.3m (about 0.4% of the distance from
the camera to the centre of the pitch), giving an indication of
the accuracy which is use to initialise online calibration.
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Initialisation: Before the tracker can be run at full video
rate, it is necessary to initialise it by determining roughly
what its values of pan, tilt and field-of-view are. This process
needs to be carried out when the tracker is first started,
and also whenever it loses track (for example if the camera
briefly zooms in tightly to an area with no lines). A Hough
transform is used to quickly establish how well the image
matches the set of lines that would be expected to be visible
from a given pose. An exhaustive search process is used to
establish the pose which gives the best line matches to the
observed image. For each pre-determined camera position,
we search over the full range of plausible values of pan, tilt,
and field-of-view, calculating the match value by summing
the values in the bins in the Hough transform that correspond
to the line positions that would be expected. Figure 5 presents
examples of the Hough space corresponding to the single
frame shown.

Tracking: The tracking process uses the pose estimate
from the previous image, and searches a window of the image
centred on each predicted line position for points likely to
correspond to pitch lines. A simple line detection filter uses
knowledge of the predicted line width and orientation to
produce a measure of the extent to which each pixel looks
like it may be at the centre of a pitch line. Pixels having
a filter output above a given threshold are hypothesised to
be candidates for lying on the line, and those closest to the
predicted line position are used. An iterative process is used
to adjust the camera pan, tilt and focal length in order to
minimise the distance in the image between the detected
line points and the projection into the camera image of the
corresponding lines in the model. The approach can also
estimate lens distortion, although reliable values can only
be computed when one or more long lines are visible that
do not pass close to the image centre, and any curvature in
the pitch is known. An alternative approach to determining
lens distortion is to assume that there is a fixed relationship
between distortion and focal length, and use multiple images
to solve for the values of a few coefficients relating distortion
to focal length, for example when computing the initial
camera position or as a separate off-line lens calibration
process. Figure 6 shows the estimated camera angles for a 20s
sequence (in the absence of any lens distortion correction).
The second derivative of the pan angle gives an indication of
the level of noise, as the true movement is inherently smooth.
The spikes are caused by lines coming into or out of view,
mainly due to small differences between the assumed and true
positions of the lines on the pitch. Evaluation of the real-time
tracking on longer sections of sports footage [28] shows that
the noise error in the estimated pan angle is approximately
0.02◦ which typically corresponds to about 1 pixel.

C. Foreground Segmentation

For the segmentation of players colour-based methods,
like chroma-keying against the green of soccer and rugby
pitches have been considered. However, the colour of grass

Fig. 4. Camera positions estimated from pitch lines in the image, using
individual images (blue diamonds) and simultaneously with all images (green
cross)

Fig. 5. Calibration initialisation using Hough space: (top) original image,
(bottom) Hough space for full image(left), top or left half of image (centre)
and bottom or right half(right)

varies significantly on pitches. This is due to inhomogeneous
illumination in the uncontrolled environment and anisotropic
effects in the grass caused by the process of mowing in alter-
nating directions. Under these conditions chroma-key gives a
segmentation that is too noisy to achieve a high-quality visual
scene reconstruction. Therefore two improved methods have
been implemented and tested: A global colour-based k-nearest-
neighbour classifier and a motion compensated difference key.
After segmentation we compute the foreground/background
colours for ’mixed pixels’ with a method similar to that
described by Hillman in [30].

Fig. 6. Calibration parameters for a 20s sequence (left) Pan and tilt angles
(right) second derivative of pan
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K-nearest neighbour classifier: This classifier is controlled
by a simple GUI: The user clicks on positions in an image that
represent background. The RGB colour values of that pixel
are stored as a prototype Pi = I into a list. All pixels in the
image that are within a radius in RGB space r1 of the colour
prototype are then marked as background. The user continues
to select background pixels until the resulting segmentation
is satisfactory. The segmentation Sk−nearest is computed by
finding the nearest colour prototype Pbest from the list with
the minimum RGB colour distance d of the pixel values I:

d = argminI{drgb(Pbest , I)} (1)

The segmentation is then given by:

Sk−nearest =
{

0 , d < r1
1 , otherwise (2)

In order to get continuous values a soft key can be obtained
using a second radius r2. See [31] for details.

Motion compensated difference keying: Difference keying is
often used as a simple segmentation technique. It is based on
the difference in colour space between a pixel I of the image
and the corresponding pixel Ibg in the background plate. The
background plate can be created by either taking a picture
of the scene without any foreground objects or if this is not
possible the background plate can be generated by applying
a temporal median filter over a sequence to remove moving
foreground objects. The difference between I and Ibg can be
computed in any colour space. We used the difference in RGB
space here:

δ = drgb(I, Ibg) (3)

The segmentation Sdi f f is computed as a binarisation with
threshold σ :

Sdi f f =
{

0 , δ < σ

1 , otherwise (4)

Difference keying assumes correspondences between im-
age pixel I and Ibg in the background plate and therefore
requires static cameras. However, under known nodal (pan,tilt)
movement of the camera a background plate can be con-
structed by piecewise projection of the camera images into
a spherical map. This transformation is derived from the
camera parameters, as computed in the camera calibration
(section IV-B).A clear plate of foreground objects is created by
applying a temporal median filter on the contributing patches.
The colour distance δ defined in equation 4 is computed by
projecting each pixel I into the spherical map using the camera
parameters of the image.

Fig. 7. Difference keying. The camera image (middle) is compared against
a spherical panorama of the scene (left) giving the key (right).

Aperture correction in broadcast cameras Broadcast cam-
eras have a control known as aperture correction or sometimes
detail. The aperture correction is used to sharpen an image to
emphasise high-frequency image components and is therefore
a high-boost filter. Figure 8 shows an example of a broadcast
image. The image was taken during a rugby match with a
Sony HDC-1500 high definition camera.

Fig. 8. Image of a sport scene from a broadcast camera (left) and detail
(right).

In sport productions it is quite common to add a lot of detail.
The effect can be seen in the detail picture (figure 8 bottom)
as over- and undershoots of the image signal (visible as black
haloes of white shirts against the background). In broadcast
this feature is intended to give a better perceived contrast
of objects. For segmentation the effect is a challenge since
significant colour changes take place at the edge of objects of
up to 3-5 pixels and can therefore be a significant problem.

The effect of the aperture correction can be compensated by
a symmetric low-pass filter applied to the luminance channel
of the broadcast image. We propose to compute the segmenta-
tion on the compensated image to improve the robustness and
quality of the key.

(a) raw broadcast image (b) after aperture correction
Fig. 9. Detail of difference key computed on broadcast image before and
after aperture correction for close-up from Figure 8 (right)

Figure 9 shows results of the difference keying applied to
the original broadcast image (shown in Figure 9 (a) and after
compensation of the aperture correction (Figure 9 (b)). In
contrast to the global colour-based methods the pitch lines
are suppressed except in areas with shadows. As expected
the segmentation in the compensated image is more precisely
aligned to object edges. This is clearly visible in the right
image of figure 9. A more detailed analysis and description of
the implemented compensation filter can be found in [32].

D. 3D Player Reconstruction and Segmentation

Stereo 3D video production for outdoor sports scenes cap-
tured over large areas must be robust to errors in the online
camera calibration and natural scene matting. Typically for
moving match cameras and chroma-key or difference matting
errors are of the order 1-3 pixels. In typical camera footage
the foreground players are relatively small 10-20pixel width
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with arms and legs of the order 3-6 pixels. Direct multiple
view reconstruction from erroneous foreground mattes can
result in gross errors such as missing arms and legs. Due
to the wide-baseline between cameras direct stereo matching
between adjacent views is also problematic. In this sec-
tion we present algorithms developed for robust rendering
of novel views from multiple cameras in the presence of
matting and calibration errors. The approach comprises two
stages: conservative visual-hull reconstruction to recover a
coarse scene approximation which encloses the true scene
surfaces; and view-dependent optimisation to simultaneously
refine the surface reconstruction and foreground segmentation
to estimate a scene approximation which aligns images across
multiple adjacent wide-baseline views and accurately segments
the foreground player boundary. This approach achieves high-
quality rendering of novel views in the presence of calibration
and matting errors.

1) Conservative Visual-Hull: The conservative visual-hull
(CVH) [33] is a volumetric approximation of the scene from
multiple view image silhouettes up to a maximum error in
the camera calibration and matting. The CVH is a global
multiple view reconstruction which encloses the true scene
surface. In the presence of camera calibration errors there is
no single global scene reconstruction which corresponds to the
observations from all views. A conservative visual hull with an
n-pixel tolerance is obtained by dilating the image silhouettes
by n pixels prior to silhouette intersection. Typically in this
work n = 3 gives an upper-bound on the combined calibration
and image segmentation errors. This ensures that the true scene
surface projects to inside the dilated silhouettes for all views
given errors in calibration and matting.

Figure 10 presents examples of novel view rendering of
a soccer match for the visual-hull and conservative visual-
hull. The visual-hull demonstrates the problem of global re-
construction from multiple views in the presence of calibration
and matting errors. A number of players have missing arms
or legs. The CVH in Figure 10(b) reconstructs a surface
which enclosed the true foreground scene objects including
narrow limbs. However, significant visual artifacts occur with
the CVH rendering as the surface is over extended at the
boundaries and does not accurately align adjacent camera
views for rendering. In our system the CVH provides an initial
global scene reconstruction which is then locally refined for
accurate image alignment and boundary extraction.

(a) visual-hull (b) CVH (c) local refinement

Fig. 10. Novel view rendering for scene reconstructions in the presence of
camera calibration and matting errors.

2) View-dependent 3D Reconstruction and Segmentation
Refinement: The CVH provides a robust initial estimate of a
surface which encloses the true scene surfaces. This surface is
then locally refined with respect to a specific camera viewpoint
to obtain a surface approximation which aligns the adjacent
images and accurately segments the foreground boundaries.
The CVH surface is an initial approximation which provides
constraints to enable wide-baseline stereo matching between
adjacent views. Stereo correspondence is constrained to lie
inside the CVH reducing the likelihood of false matches.
This approach was previously introduced for wide-baseline
reconstruction in multiple camera studios[14] and has recently
been extended for refinement in outdoor sports scenes [34],
[33]. The critical advance required for high-quality rendering
in sports production is the simultaneous refinement of both
the initial 2D image segmentation and initial CVH surface
reconstruction. Refinement in a view-dependent framework is
robust to errors in the global camera calibration where there is
no global reconstruction which is consistent with all camera
views. Local view-dependent refinement combines informa-
tion from multiple views together with priors on background
appearance to achieve robust segmentation and improvements
in the surface reconstruction. Simultaneous matting and recon-
struction from multiple views of sports scenes was introduced
in [34]. This approach has been extended to incorporate prior
information on background and foreground appearance and
improved optimisation of multiple view image cues.

The problem of simultaneous segmentation and reconstruc-
tion from multiple views consists in partitioning the image
into its constituent foreground and background layers and as-
signising depth estimates at each layer’s pixels. More formally
this defines a labelling problem where we seek the mappings
l : P → L and d : P → D , which respectively assign a
layer label lp and a depth label dp to every pixel p in the
reference image. P denotes the set of pixels in the reference
image; L and D are discrete sets of labels representing
the different layer and depth hypotheses. L = {l1, . . . , l|L |}
may consist of one background layer and one foreground
layer (classic segmentation problem) or of multiple foreground
and background layers. In this paper we assume multiple
foreground layers corresponding to players at different depths
and a single background layer. The set of depth labels D =
{d1, . . . ,d|D |−1,U } is formed of depth values di obtained by
sampling the optical rays together with an unknown label U
used to account for occlusions. Occlusions are common and
can be severe when the number of cameras is small, especially
in the background where large areas are often visible only in
a single camera.

The labelling problem is formulated in a Bayesian frame-
work [34] and extended to incorporate multiple visual cues
[35]. The maximum likelihood solution leads to the minimi-
sation of an energy function:

E(l,d) = λcolourEcolour(l)+λcontrastEcontrast(l)+
λmatchEmatch(d)+λsmoothEsmooth(l,d), (5)

where Ecolour(l) and Ematch(l,d) are likelihood terms for image
foreground and background layer assignments based on colour
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Fig. 11. An input image and its adaptively attenuated contrast.

models and for depth assignments based on stereo matching
scores. Econtrast(l) and Esmooth(l,d) are contrast and smooth-
ness priors on the labelling. The parameters λcolour, λmatch,
λcontrast and λsmooth control the contribution of each term.

The colour energy is defined in terms of the probability
P(Ip|l = li) that a pixel p belongs to a foreground or back-
ground layer li as:

Ecolour(l) = ∑
p∈P
− logP(Ip|lp). (6)

This probability is evaluated according to a linear combination
of a local per-pixel model Pl(Ip|lp = li) and a global Gaussian
mixture colour model Pg(Ip|lp = li) defined as follows:

P(Ip|lp = li) = wPg(Ip|lp = li)+(1−w)Pl(Ip|lp = li), (7)

where w is a real value between 0 and 1 controlling the
contributions of the two models. A dual colour model combin-
ing global and local components allows for dynamic changes
in the background. The local model is only applicable to
background layers which are static; in the case of foreground
layers, this term is ignored. The local component of the colour
model for a static layer li is represented by a single Gaussian
distribution for each pixel p:

Pl(Ip|lp = li) = N(Ip|µip,Σip), (8)

where the parameters µip and Σip represent the mean and
the covariance matrix of the Gaussian distribution at pixel
p. To define this model, a reference background image is
constructed a priori from the image sequence by mosaicing
known background pixels and computing the local per pixel
mean and variance (similar to the approach in Section IV-C).
The global component of the colour model is represented by
the Gaussian Mixture Model (GMM)

Pg(Ip|lp = li) =
Ki

∑
k=1

wikN(Ip|µik,Σik), (9)

where N is the normal distribution and the parameters wik,
µik and Σik represent the weight, the mean and the covariance
matrix of the kth component for layer li. Ki is the number of
components of the mixture model for layer li. This model is
learnt from a single key-frame per camera where foreground
has been manually segmented from the background.

The contrast term encourages layer discontinuities to occur
at high contrast locations. This naturally encourages low con-
trast regions to coalesce into layers and favours discontinuities
to follow strong edges. This term is defined as

Econtrast(l) = ∑
(p,q)∈N

econtrast(p,q, lp, lq), with (10)

Fig. 12. Matched sparse features for two camera pairs.

econtrast(p,q, lp, lq) =
{

0 if lp = lq,
exp(−βC(Ip, Iq)) otherwise.

(11)
N denotes the set of interacting pairs of pixels in P (a
4-connected neighbourhood is assumed) and || · || is the L2
norm. C(·, ·) represents the squared colour distance between
neighbouring pixels, and β is a parameter weighting the
distance function. Although various distance functions are
possible for C(·, ·), we use the attenuated contrast [36]

C(Ip, Iq) =
||Ip− Iq||2

1+
(
||Bp−Bq||

K

)2
exp
(
− z(p,q)2

σz

) , (12)

where z(p,q) = max(||Ip−Bp||, ||Iq−Bq||). Bp is the back-
ground colour at pixel p; it is provided by the local component
of the colour model previously defined. β , K and σz are
parameters which are set to the standard values suggested
in [36]. This formulation uses background information to
adaptively normalise the contrast, thereby encouraging layer
discontinuities to fall on foreground edges (see Figure 11).

The matching energy combines sparse and dense correspon-
dence between camera views:

Ematch(d) = Edense(d)+Esparse(d). (13)

The dense matching score is defined as

Edense(d) = ∑
p∈P

edense(p,dp), with (14)

edense(p,dp) =
{

S(P(p,dp)) if dp 6= U ,
SU if dp = U .

(15)

P(p,dp) denotes the coordinates of the 3D point along the
optical ray passing through pixel p and located at a distance
dp from the reference camera. The function S(·) measures
the similarity of the reference camera with the auxiliary
cameras in which the hypothesised point P(p,dp) is visible.
For weakly textured scenes such as the ones considered in
this paper, standard normalised cross correlation similarity
measures are inadequate. A more appropriate choice in this
case is an error tolerant photo-consistency measure similar to
[37]. This computes photo-consistency over extended regions
of radius rtol rather than single pixels, and thereby compensates
for calibration errors or non-uniform image sampling. The
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Fig. 13. Comparison of locally constant depth prior (a) with visual hull
iso-surface based depth prior (b).

photo-consistency score between the reference image and the
auxiliary camera i is defined as

photoi(X) = max
(q−πi(X))2<rtol

(Ip− Ii
q)

2

σ2
i

, (16)

where σ2
i normalises the photo-consistency measure for each

auxiliary camera i and the function πi(X) projects the hypoth-
esised 3D point X into the image plane of camera i. A robust
combination rule is defined as the sum of the k most photo-
consistent pairs denoted by Bk

S(X) = ∑
i∈Bk

photoi(X). (17)

The sparse matching score is defined as

Esparse(d) = ∑
p∈P

esparse(p,dp), with (18)

esparse(p,dp) =
{

0 if F (p) = /0 or dp ∈F (p),
∞ otherwise. (19)

F (p) denotes the set of depth labels located within a distance
T from a sparse constraints at pixel p. This forces the
reconstructed surface to pass nearby existing sparse 3D corre-
spondences. Because of calibration errors, we do not require
the reconstruction to match exactly the sparse constraints,
but allow a tolerance controlled by the parameter T . We
use affine-covariant features [38], [39] which are known to
be robust to changes in viewpoint and illumination. In this
paper, we used the Hessian-affine feature detector. Features
are represented using the SIFT descriptor and matched based
on a nearest neighbour strategy. Robust matching is ensured
by restricting the search to areas within a tolerance distance
from the epipolar lines. The left-right spatial consistency
(reciprocity) constraint is enforced together with temporal
consistency which requires corresponding features between
camera views to be in correspondence temporally with the
previous or the next frame (see Figure 12 for some examples
of correspondences found between two adjacent views).

The smoothness term encourages the depth labels to vary
smoothly within each layer. This is useful in situations where
matching constraints are weak (poor photoconsistency or a low
number of sparse constraints) and insufficient to produce an
accurate reconstruction without the support from neighbouring
pixels. It is defined as

Esmooth(l,d) = ∑
(p,q)∈N

esmooth(lp,dp, lq,dq), with (20)

esmooth(lp,dp, lq,dq) = (21) min(|dp−dq|,dmax) if lp = lq and dp,dq 6= U ,
0 if lp = lq and dp,dq = U ,

dmax otherwise.

Discontinuities between layers are assigned a constant smooth-
ness penalty dmax, while within each layer the penalty is
defined as a truncated linear distance. Such a distance is
discontinuity preserving as it does not over-penalise large
discontinuities within a layer; this is known to be superior
to simpler non-discontinuity functions (see [40], [41]). This
term also encourages unknown features to coalesce within each
layer. The choice of shape prior is crucial. A commonly used
prior is to assume locally constant depth (see Figure 13(a)). In
this case, a label (lp,dp) corresponds to the point from layer lp
and located at a distance dp from the reference camera centre
along the ray emanating from pixel p. Although this yields
good quality results when supported by strong matching cues,
this results in bias towards flat figure models which do not give
good alignment between views. An alternative approach which
we use here is to place samples along the iso-surfaces of the
visual hull (see Figure 13(b)), which results in a reconstructed
surface biased towards the visual hull iso-surfaces. We call
this prior the iso-surface prior. In this case, a label (lp,dp)
corresponds to the first point of intersection between the ray
emanating from pixel p and the dp-th iso-surface in the interior
of the visual hull’s connected component corresponding to
layer lp. To account for calibration and matting error, we
use the error tolerant visual hull proposed in [33]. Unlike the
fronto-parallel prior, the iso-surface prior is view-independent
and results in reconstructions more realistic and likely to
coincide in the absence of strong matching cues. It can be
noted that the choice of a fronto-parallel or an iso-surface prior
affects the correspondence between labels and the 3D points
they represent, however it does not change the formulation in
Equation 21 since the set of depth values remain an ordered
set of discrete values.

Optimisation of the energy defined by Equation 5 is known
to be NP-hard. However, an approximate solution can be
computed using the expansion move algorithm based on graph-
cuts [40]. The expansion move algorithm proceeds by cycling
through the set of labels α =(lα ,dα) in L ×D and performing
an α-expansion iteration for each label until the energy cannot
be decreased (see [40]). An α-expansion iteration is a change
of labelling such that each pixel p either retains its current
value or takes the new label α . Each α-expansion iteration
can be solved exactly by performing a single graph-cut using
the min-cut/max-flow algorithm [42]. After convergence of the
algorithm, the result obtained is guaranteed to be a strong
local optimum [40]. The α-expansion algorithm was initialised
with the visual hull estimate; convergence has been found
to be insensitive to the choice of initialisation. In practice,
convergence is usually achieved in 3 or 4 cycles of iterations
over the label set. We improve computation and memory
efficiency by dynamically reusing the flow at each iteration
of the min-cut/max-flow algorithm [43]. This usually results
in a speed-up of an order of two.
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Fig. 14. Two moving broadcast camera views (top) and a locked-off camera
view (bottom-left) from a rugby match.

E. 3D Sports TV Production Trials

Production trials of the system have been conducted for
soccer and rugby. In both cases free-viewpoint video se-
quences were generated for events of editorial value identified
by sports producers. Sports events were captured using both
the moving broadcast cameras and a small number (4–6) of
additional fixed cameras to give coverage of the entire pitch
area. Typically in a high-profile soccer or rugby match with 12-
18 cameras only 6-8 cameras are viewing the events of interest
for free-viewpoint production. All cameras in the production
trials were captured in uncompressed HD-SDI 4:2:2 format
for subsequent processing.

1) 3D Scene Reconstruction and Segmentation: Figure 14
shows camera views from an international rugby match for
two match cameras and one static camera with a typical wide-
baseline and difference in framing between views. The close-
ups of one player show the difference in resolution of the
players between camera views. This illustrates the variation in
viewpoint and scale for a set of multiple view cameras. Players
are at a relatively small scale in the static cameras due to the
requirement to cover a wide area of the pitch. In the broadcast
camera views players are at a larger scale but the scale varies
between views and there is a high-degree of motion blur due
to camera movement.

A comparison of results for segmentation algorithms for
soccer and rugby is presented in Figure 15. Chroma-key and
difference key are 2D image segmentation techniques which
show errors in segmentation as both additional foreground
clutter and areas of the foreground (arms/legs) which are
incorrectly classified as background. Background cut [36] is
another 2D image segmentation technique which improves the
results by combining local and global models; this increases
robustness and adds tolerance to non-static background ele-
ments, however it yields inaccurate results in ambiguous areas.
In contrast the multiple view segmentation and reconstruction
refinement algorithm presented in section IV-D2 produces a
clean foreground segmentation with correct classification of
the foreground objects even in ambiguous situations where
the foreground and background have similar colour ie lines or
muddy parts of the players legs. This is due to the combination
of information from multiple views to overcome single view
visual ambiguities. The refined segmentation allows improve-

Fig. 16. A layered depth image representation (top) and the corresponding
view-dependent mesh (bottom).

ments in the reconstruction quality.
The proposed technique estimates a layered-depth repre-

sentation. This produces a richer segmentation of the im-
age into multiple layers in contrast with a standard fore-
ground/background segmentation and incorporates depth in-
formation at each pixel of the foreground layers (background
layers, which are static, can be more conveniently represented
using a pre-defined model and do not require automatic
depth estimation). An example of layered depth representation
is shown in Figure 16. It defines a view-dependent 2.5D
foreground representation which can be easily converted into
a regular mesh with vertices defined by image pixel locations.
Vertex connectivity is decided based on the layer segmentation
and thresholding of the angle separating the line segment
connecting 3D surface points defined by pairs of neighbouring
pixels and the optical ray passing through the midpoint of the
pixel pair. This allows pixels belonging to different layers or
located at a depth discontinuity to be correctly converted into
separate mesh components. This view-dependent representa-
tions is used for stereo rendering or free-viewpoint videos as
discussed in the following sections.

To evaluate reconstruction quality, the proposed technique
was compared to three standard techniques: (i) conventional
visual hull, (ii) conservative visual hull (with 2 pixel toler-
ance), and (iii) stereo refinement of the conservative visual
hull with no colour, contrast or smoothness term. Results
are shown in Figure 17. As expected the visual hull pro-
duces large truncations in the presence of calibration and
segmentation errors. These truncations have been eliminated in
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Original Chroma-key Difference key Background cut Proposed
Fig. 15. Example of segmentation results on rugby (top) and soccer (bottom) data (see attached video for full sequence).

VH CVH Stereo refinement Proposed
Fig. 17. Example of reconstruction results on rugby (top) and soccer (bottom) data (see attached video for full sequence).

the conservative visual hull but have been replaced by some
protrusions and phantom volumes. Stereo refinement of the
conservative visual hull results in a very noisy reconstruction;
this illustrates the weakness of the available photo-consistency
information. In contrast, the proposed technique yields a
smooth reconstruction with accurate player boundaries and the
elimination of phantom volumes. This accurately aligns wide
baseline views based on stereo matches and gives a smooth
surface approximation based on iso-surfaces of the visual-hull
shape prior in regions of uniform appearance which commonly
occur on player shirts or due to views sampled at significantly
different resolutions. This is suitable for stereoscopic content
production and high quality free-viewpoint rendering.

2) Stereo Rendering: The proposed method is well-suited
for stereoscopic content production because of the flexibility
it provides for automatic content production from multiple
standard (monocular) input cameras. The layered depth repre-
sentation produced by the proposed technique is compatible
with existing 3D video representations such as Video plus
Depth (VD) representations used for a single video stream

or their multi-stream extensions such as Multiview Video
plus Depth (MVD) and the Layered Depth Video (LDV).
More recent research in developing 3D video standards is
focused on extending the applicability to 3D displays with
varying specifications and providing control over the rendering
parameters [44], [45]. These new standards present many
similarities with the proposed technique and it is expected
that they will facilitate future integration of our technique into
commercial 3DTV devices. Two different 3DTV formats are
supported here:
A stereoscopic image pair can be generated by using one orig-
inal camera image and rendering a second view. The second
view is rendered by using the original image as a texture
source for the background scene. This procedure preserves
shadows. Unrevealed background areas need to be filled. For
this purpose we use the clean background plates computed
during the foreground segmentation process, described in sec-
tion IV-C. This information does not contain proper shadows,
but provides better information than using other camera views,
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since these have other problems, for example differently colour
balanced cameras and anisotropic effects of the scene.
A layered depth representation (LDV) can be generated by
using the original camera image and adding the scene depth
information derived by the 3D reconstruction. The static scene
components, like the ground and the stadium are generated
manually in a separate process. The simplest implantation of
a LDV representation is using just the camera image and a
pixel-wise depth map. In addition one (or more) maps with
occluded data can be added. We use the background plates
derived from the segmentation process as described above for
this purpose.

For the scope of this paper, a rendering platform has been
developed in order to demonstrate the stereoscopic content
production capabilities of the system. The rendering platform
is implemented using OpenGL and provides full control of
the inter-ocular distance as well as the convergence distance.
It also allows free-viewpoint video rendering which will be
discussed in the next section. In this section, we concentrate on
synthesising stereoscopic output from input cameras locations.
Foreground layers are modelled in the form of view-dependent
meshes extracted from the layered depth representation. To
provide robustness to segmentation errors, we use meshes
obtained from the considered input camera as well as the near-
est adjacent cameras. Such a local representation is adequate
for stereoscopic rendering without suffering from the arte-
facts observed with global reconstruction methods that were
described in the previous section. The stadium backgrounds
are manually modelled from the input images and textured
using the background plate images that were automatically
generated from input video data (Section IV-C). Left and right
views are synthesised by texture mapping the input image and
background plate onto the foreground and background layers.
Use of more sophisticated view-dependent texture mapping
techniques which combine multiple views is not necessary here
given that the rendering viewpoints are located near an input
camera.

Modelling of the foreground and background layers using
separate texture maps reduces data transfer requirement as it
decouples the dynamic foreground elements (which require
update at each frame) from the static background elements
(which require less frequent update). In addition, this attenu-
ates the effect of segmentation errors which can deteriorate
the final video quality; in particular use of a background
plate guarantees that no foreground texture is accidentally
mapped onto the background layers. A drawback of this
approach however is that shadows and background motion
are lost in the background plate generation process which
is based on temporal filtering. While the elimination of the
background motion is usually not too problematic, the absence
of shadows tends to produce unrealistic sequences where
players do not seem to connect to the background. In order
to improve the degree of realism of the synthesised images,
the scene is augmented with virtual shadows. Soft shadows
are generated by using a virtual light source with a shadow
mapping algorithm to cast shadows generated by players onto
the ground.

Adequate definition of the left and right camera parameters

convergence

distance

inter−axial distance

Fig. 18. Stereo camera configuration with inter-ocular distance and conver-
gence distance parameters.

is crucial as those control the 3D effect experienced by the
viewer. Two key parameters in a stereoscopic system are
the inter-ocular distance, ie the distance separating left and
right cameras’ optical centres, and the convergence distance,
ie the distance at which 3D points have zero parallax. The
inter-ocular distance controls the amplitude of the depth ef-
fect. The convergence distance controls the location of the
scene with respect to the 3D display in viewer space. Points
located at the convergence distance have zero parallax and
will therefore appear to be located at screen depth in the
viewer space. In order to avoid discomfort to the viewer, these
parameters should be defined so as not to severely break the
accommodation/convergence relationship to which the eyes are
used to [46]. In our implementation, left and right views are
located on either side of the monocular principal camera view;
alternatively the principal camera view could have been used
to define either the left or right view, thereby reducing the
novel view generation to a single view instead of two.

The proposed stereoscopic rendering approach has been
tested with rugby and soccer data (see attached video for
full sequences). Results in the case of the rugby trial are
shown in Figure 19. To illustrate the flexibility of the system,
the same frame has been rendered with different user-defined
inter-ocular and convergence distances. Adjustment of these
parameters can be performed in real-time. This provides a
flexible and intuitive interface for stereoscopic content produc-
tion which can be used to optimise viewer comfort, retarget a
sequence to a specific display device or facilitate the creation
of stereoscopic visual effects. Experiments conducted suggest
that the videos produced using this technique convey a realistic
sense of depth and are comfortable to view.

3) Free-viewpoint Rendering: Free-viewpoint rendering re-
sults for rugby and soccer trials are shown in Figures 20 and
21. In both cases the virtual camera sequences were generated
for production trials of specific camera views which give added
value to the match analysis. In the case of the rugby sequence
shots show specific game plays and for soccer the shot was
specified to view the offside line in a contentious incident.
Free-viewpoint camera moves can either take place by freezing
the action at a single frame or whilst the action is taking
place according to the production requirements. All sequences
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Fig. 19. Examples of synthesised stereoscopic images illustrating adjustment of inter-ocular and convergence distances. Each column of images corresponds
to a different inter-ocular distance setting; the distance starts from 0 (left column) and increases as we move along the columns. Each row of images represents
a different convergence distance setting; the top row places all the scene behind screen depth while the bottom row places the player wearing the white shirt
number 10 at screen depth. Images are displayed in optimised red-cyan anaglyph format. Please see attachment for full videos.

were generated with automatic calibration, 2D segmentation,
reconstruction and refinement. View-dependent rendering is
performed using the view-dependent geometry to render im-
ages from the adjacent views. The stadium backgrounds are
manually modelled using either images from the captured
sequences as in Figure 20(a) or a synthetic appearance Figure
20(c). Rugby and soccer present different challenges for free-
viewpoint production, rugby is particularly challenging as the
players are distributed across the field and groups of players
form rucks and malls where individual players come into
contact and cannot be isolated. The approach developed does
not make any prior assumptions on player shape allowing high-
quality free-viewpoint rendering of both isolated and tightly
packed groups of players.

Free-viewpoint rendering with the proposed approach
achieves an image quality comparable to that of the input
image sequences as demonstrated in the closeup of Figure
20(b). Degradation in image quality will occur if there are
no real cameras which see a part of the scene or there are
insufficient views for reconstruction. The proposed approach
is robust to the wide-baseline moving camera views at different
resolutions which occur in broadcast coverage. The free-
viewpoint rendering system takes advantage of the manually
operated broadcast cameras which generally frame the play to
give higher player resolution than the static auxiliary cameras.
The system can operate from the match cameras only but this
limits coverage and virtual camera viewpoints to sections of
the play where there are sufficient views. Addition of a small
number of auxiliary cameras adds to the production cost but
ensures complete coverage of the game play and increased
range of views for free-viewpoint production. The correct
trade-off between coverage and cost will be determined by
the production requirements for a specific sport or event. Pro-
duction trials have demonstrated free-viewpoint shots which
add value to the commentary and are of a quality suitable for
broadcast.

(a) Rugby virtual camera sequences at 20 frame intervals

(b) Virtual camera closeup

(c) Rugby virtual camera sequences with a virtual stadium model

Fig. 20. Free-viewpoint video rendering of rugby to show pitch level views
for commentary
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Fig. 21. Free-viewpoint video rendering of soccer to show an offside incident

V. CONCLUSIONS

Stereo and free-viewpoint video production for 3DTV sports
broadcast presents significant challenges to achieve a visual
quality comparable to captured video with minimal delay from
the manually controlled moving and zooming match cameras.
Capture of stadium sports such as soccer and rugby requires
acquisition over a large area with relatively uncontrolled
conditions. In this paper we have presented a system for
stereo 3DTV production from conventional monocular match
cameras used for 2D broadcast production. This represents
an alternative to the use of additional stereo camera rigs and
avoids the problems associated with zoom lens matching and
correction required in live production. The approach presented
allows the rendering of stereo views without mismatches
between camera views and with full control of inter-ocular
distance and convergence in post-production. This allows
stereo rendering for different display sizes or transmission of
image+depth for stereo rendering at the point of display.

This system advances previous studio based 3D reconstruc-
tion from multiple static camera views to wide-baseline mov-
ing broadcast cameras covering a large area. Reconstruction
is robust to relatively large calibration errors and uncontrolled
scene illumination and backgrounds. Production trials of the
system have been conducted on soccer and rugby to generate
stereo 3D and free-viewpoint video sequences. The system
allows automatic reconstruction and stereo rendering from the
match cameras with a visual quality comparable to captured
video.

A number of open-problems remain to achieve widespread
deployment in broadcast production: calibration and segmenta-
tion of close-up and pitch level camera views where pitch lines
are not visible; rendering quality of close-up shots which are
limited by the available camera resolution; validated accuracy
of stereo and free-viewpoint rendering for match decisions

(offside); temporal coherence of rendering and representation
for moving scenes; video-rate production of stereo views for
live 3DTV broadcast; and interfaces for rapid free-viewpoint
or stereo shot production.
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