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Abstract Current state-of-the-art image-based scene recon-
struction techniques are capable of generating high-fidelity
3D models when used under controlled capture conditions.
However, they are often inadequate when used in more chal-
lenging environments such as sports scenes with moving
cameras. Algorithms must be able to cope with relatively
large calibration and segmentation errors as well as input
images separated by a wide-baseline and possibly captured
at different resolutions. In this paper, we propose a tech-
nique which, under these challenging conditions, is able to
efficiently compute a high-quality scene representation via
graph-cut optimisation of an energy function combining mul-
tiple image cues with strong priors. Robustness is achieved
by jointly optimising scene segmentation and multiple view
reconstruction in a view-dependent manner with respect to
each input camera. Joint optimisation prevents propagation
of errors from segmentation to reconstruction as is often the
case with sequential approaches. View-dependent process-
ing increases tolerance to errors in through-the-lens calibra-
tion compared to global approaches. We evaluate our tech-
nique in the case of challenging outdoor sports scenes cap-
tured with manually operated broadcast cameras as well as
several indoor scenes with natural background. A compre-
hensive experimental evaluation including qualitative and
quantitative results demonstrates the accuracy of the tech-
nique for high quality segmentation and reconstruction and
its suitability for free-viewpoint video under these difficult
conditions.
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Fig. 1 Two moving broadcast camera views (top) and a locked-off
camera view (bottom-left) from a rugby match.

1 Introduction

In recent years, tremendous progress has been made in the
field of image-based scene reconstruction, to such an extent
that, under controlled conditions and provided a sufficient
number of input images are captured, the performance of
such techniques is almost on a par with that of active tech-
niques such as laser range scanners. A good testimony of the
capabilities of the current state-of-the-art is provided by the
multiple-view Middlebury dataset (Seitz et al., 2006) which
shows top performing algorithms capable of sub-millimetre
accuracy. The increase in quality can be attributed to im-
provements in algorithm robustness and also the emergence
of more powerful optimisation techniques such as graph-
cuts (Szeliski et al., 2008), which have enabled the optimi-
sation of otherwise intractable cost functions.

Although these algorithms are capable of high-fidelity
modelling in a controlled indoor settings, their performance
is often sub-optimal when applied in less controlled con-
ditions of operation, such as those of outdoor scene cap-
ture of stadium sports (see Fig. 1) or in the case of indoor
capture without use of a chroma-key background. In the
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case of sports capture, reconstruction algorithms must be
able to cope with a number of factors: calibration errors re-
sulting from through-the-lens calibration of manually oper-
ated moving and zooming cameras with motion blur; wide-
baselines and resolution differences between camera views;
non-uniform dynamic backgrounds and multiple people of
a relatively small size. Scene segmentation is more difficult
because of increased background complexity and the like-
lihood of overlapping background and foreground distribu-
tions, which make standard chroma-keying techniques un-
usable. Scene reconstruction is extremely challenging due
to limited visual cues and relatively large errors (1–2 pixels)
affecting both calibration and segmentation which prevent
extraction of a globally consistent solution. It is often not
possible to improve calibration accuracy as through-the-lens
calibration techniques required to calibrate moving cameras
are reaching their limit due to limited scene information
(limited number of features, motion blur).

Indoor capture with a natural background is in theory
simpler due to better framing and absence of large calibra-
tion errors, however accurate automatic segmentation of mul-
tiple cameras streams remains a challenging problem due
to possible overlap in foreground and background distribu-
tions. While interactive video segmentation techniques have
been proposed in recent years (Chuang et al., 2002; Li et al.,
2005; Bai et al., 2009), these remain essentially limited to
a single video stream and require frequent interaction (ev-
ery 10–20 frames) in the form of trimaps or brush strokes
to eliminate segmentation errors; these requirements make
standard monocular segmentation techniques prohibitively
expensive to use given the large volume of data generated
during multi-view capture. In addition, none of the tech-
niques exploit the redundancy contained in images simulta-
neously captured from different viewpoints to facilitate the
segmentation process or improve reconstruction accuracy.

In this paper, we present a robust approach to reconstruc-
tion of scenes captured under these challenging conditions.
This approach capitalises on two key ideas: (1) joint opti-
misation of segmentation and reconstruction can be used to
disambiguate and improve each process compared to a se-
quential approach; (2) view-dependent reconstruction can be
used to increase robustness to segmentation and calibration
errors compared to global reconstruction approaches.

Many multi-view reconstruction approaches rely on a
two-stage sequential pipeline where foreground/background
segmentation is initially performed independently with re-
spect to each camera, and then used as input to multi-view
reconstruction. The problem with this approach is two-fold.
First it requires making hard decisions at the segmentation
stage, which may not be recoverable at the reconstruction
stage and will deteriorate final reconstruction quality. Sec-
ond, a sequential approach is sub-optimal because it does
not use the multi-view information at the segmentation stage.
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Fig. 2 Illustration of the advantage of a joint multi-view approach
compared to separate segmentation and reconstruction in the case of
a simple 2D example. Single view segmentation with respect to cam-
era C1 is ambiguous as foreground colour F and background colour
B1 are identical (a). Multi-view reconstruction is also ambiguous as
the foreground hypothesis F and the background hypothesis B1 are
equally photo-consistent due to lack of texture (b). Joint multi-view
segmentation and reconstruction allows unambiguous selection of the
foreground hypothesis F since the background hypothesis B2 is not
plausible with respect to camera C2; this in turn allows rejection of the
background hypothesis B1 with respect to camera C1 (c).

To illustrate this shortcoming, let us consider a foreground
object with similar colour to the background when seen from
a given viewpoint (see Fig. 2). Single view segmentation is
unable to correctly classify the pixel as foreground or back-
ground due to the colour ambiguity (Fig. 2(a)). Depth es-
timation at this pixel is also ambiguous as both foreground
and background hypotheses may be equally photo-consistent
due to lack of texture (Fig. 2(b)). Introducing an additional
view at the segmentation stage is however able to correctly
classify this pixel as foreground and reject the incorrect hy-
pothesis (Fig. 2(c)). The joint formulation proposed in this
paper helps disambiguate segmentation of individual views
by introduction of information from multiple views and pre-
vents propagation of errors from segmentation leading to
failure in reconstruction.

Let us illustrate the challenge in computing a globally
consistent reconstruction in the presence of errors in the case
of the shape-from-silhouette algorithm which computes a re-
construction by intersecting the set of visual cones defined
by the foreground silhouettes (Laurentini, 1994). In the ab-
sence of segmentation and calibration errors, the shape ob-
tained is optimal in the sense it corresponds to the maxi-
mal volume consistent with the silhouette constraints. In the
presence of calibration or segmentation errors, there is no
longer a guarantee that the actual scene surface is contained
within the visual hull. In the case of sports data, this can pro-
duce severe truncations of players (see Fig. 17, first column).
A naı̈ve solution to compensate for these errors would be to
build a conservative visual hull by introducing a tolerance
on the intersection of the visual cones. Unfortunately, al-
though this may be sufficient to guarantee that the real scene
is contained in the visual hull in spite of segmentation or
camera calibration errors, this would also produce a dilated
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representation of the scene, which is inaccurate (see Fig. 17,
second column).

The key contribution of this work is the introduction of
a robust framework for reconstruction from multiple mov-
ing cameras of complex dynamic scenes which combines
visual cues from multiple views to simultaneously segment
and reconstruct the scene in a view-dependent manner. This
overcomes limitations of previous approaches using static
cameras at a similar resolution to each other and which re-
quire high-quality calibration, segmentation and matching.
To achieve robust wide-baseline reconstruction our approach
integrates multiple cues such as sparse affine covariant fea-
tures and error tolerant photo-consistency scores into a novel
energy formulation. To overcome errors in online calibration
of moving cameras, which prohibit a globally consistent re-
construction, a view dependent reconstruction is proposed.
This combination of view-dependent reconstruction with ro-
bust cues was essential to achieve the quality of results re-
ported in this paper.

The paper is structured as follows. We start by review-
ing related work, focusing on robust multi-view reconstruc-
tion, joint segmentation and reconstruction, and sports re-
lated research. After formulating the problem and giving an
overview of the proposed approach, we give a detailed de-
scription of the joint segmentation and reconstruction tech-
nique introducing the energy minimisation framework adopted
in this paper. The next section generalises the framework by
adding a new energy term to iteratively enforce multi-view
consistency in reconstruction between nearby cameras as
well as additional shape priors. Then we address the efficient
optimisation of the energy function using graph-cuts and
3D model generation from multiple view-dependent recon-
structions. Finally a thorough evaluation including qualita-
tive and quantitative results with outdoor and indoor datasets
with natural background is presented before concluding.

2 Related work

2.1 Robust multi-view scene reconstruction

Image-based rendering techniques are often represented along
an axis known as the image-geometry continuum which mea-
sures the amount of geometric modelling required (Kang
et al., 2006). In this representation, Kang et al. identify three
main categories of algorithms depending on whether they
use no geometry, implicit geometry or explicit geometry.
Techniques using no geometry such as the light field (Levoy
and Hanrahan, 1996) or the lumigraph (Gortler et al., 1996)
require a large number of images to approximate the contin-
uous plenoptic function representing appearance variation
with viewpoint and direction. These approaches are often
limited to static scenes due to the difficulty of the acquisition
process. Techniques using implicit geometry such as view

interpolation (Chen and Williams, 1993) or image morphing
(Seitz and Dyer, 1996) require dense correspondences be-
tween views to synthesise novel viewpoints. While less de-
manding in terms of number of views, they require a narrow-
baseline and can produce artefacts due to lack of occlusion
modelling. Techniques using explicit geometry (Seitz et al.,
2006) are able to accurately model a scene from a small
number of camera views, however they require powerful
computer vision algorithms to reconstruct a reliable 3D ge-
ometric proxy. These techniques are the most suitable for
the problem of free-viewpoint video rendering from wide-
baseline camera configurations considered in this paper. In
the remainder of this section, we will focus on dense mul-
tiple view reconstruction techniques which compute an ex-
plicit geometry model with an emphasis on robust techniques.
The reader is referred to (Kang et al., 2006) for a review of
techniques using no geometry or implicit geometry.

Shape-from-silhouette These techniques compute an ap-
proximation of the scene geometry known as the visual hull
(Laurentini, 1994) by intersecting the set of visual cones de-
fined by backprojecting foreground image silhouettes into
the 3D space. This approach does not impose any restric-
tions on scene surface reflectance, texture or baseline sepa-
rating cameras and as a result offers a considerable advan-
tage in terms of robustness compared to techniques based
on photo-consistency or stereo matching. A common ap-
proach to visual hull computation consists in discretising the
3D space into sub-elements called voxels and classify them
into empty or occupied categories to produce a volumet-
ric scene representation (Moezzi et al., 1997). More recent
work has focused on improving the efficiency and exact-
ness of the visual hull computation by performing the com-
putation in the image domain (Matusik et al., 2000) or by
estimating an exact polyhedral representation (Franco and
Boyer, 2003). Visual hull algorithms suffer from two main
limitations. Firstly, they require accurate foreground seg-
mentation and perfect camera calibration; an exception is
the probabilistic framework proposed in (Franco and Boyer,
2005). Secondly, visual-hull only gives a maximum bound
on scene geometry, failing to reconstruct concavities.

Shape-from-photoconsistency These algorithms com-
pute a more accurate approximation of the scene known as
the photo-hull (Seitz and Dyer, 1999; Kutulakos and Seitz,
2000). The photo-hull is defined as the maximum volume
which is photo-consistent with the set of input views. Algo-
rithms discretise the 3D space into voxels and use an order-
ing constraint to iteratively carve empty voxels based on a
photo-consistency score measuring colour similarity across
the image projections (Seitz and Dyer, 1999; Kutulakos and
Seitz, 2000). Several extensions have been proposed to add
robustness to calibration errors (Kutulakos, 2000) and im-
age noise (Broadhurst et al., 2001). A review of volumetric
reconstruction techniques can be found in (Slabaugh et al.,
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2001). These techniques do not require scene segmentation,
however they assume sufficient texture and a diffuse surface
reflectance model in order to correctly identify surface vox-
els; additionally they are usually very sensitive to calibration
errors and often produce noisy reconstructions due to the ab-
sence of regularisation.

Global multi-view stereo reconstruction These meth-
ods seek a globally optimal reconstruction with respect to
the input images. They usually combine photo-consistency
information with additional cues such as silhouette constraints
(Hernández Esteban and Schmitt, 2004; Sinha and Polle-
feys, 2005; Starck and Hilton, 2007), sparse feature cor-
respondences (Starck and Hilton, 2007) and shape priors
to disambiguate the problem and guarantee a smooth solu-
tion. Recent advances in the field of discrete optimisation
have enabled resolution of increasingly complex optimisa-
tion problems. In particular, graph-cut (Boykov et al., 2001;
Kolmogorov and Zabih, 2004; Boykov and Kolmogorov, 2004)
has become increasingly popular due to the strong optimal-
ity properties and has been utilised to solve a wide variety
of multi-view reconstruction problems (Sinha and Pollefeys,
2005; Starck and Hilton, 2007; Vogiatzis et al., 2007). Re-
cently surface growing approaches have been used to in-
crease robustness of the reconstruction process (Habbecke
and Kobbelt, 2007; Furukawa and Ponce, 2010). In this frame-
work, reconstruction starts from a set of seed points with
strong confidence and then a surface growing approach is
employed to reliably propagate the reconstruction to neigh-
bouring areas. The reader is referred to (Seitz et al., 2006)
for a more detailed survey of multi-view stereo reconstruc-
tion algorithms. These algorithms are able to produce very
high quality results even in the presence of weak texture in-
formation, however they normally require perfect calibra-
tion information to guarantee existence of a globally con-
sistent solution. In addition, when silhouette constraints are
enforced, they rely on accurately segmented foreground.

View-dependent multi-view stereo reconstruction In-
stead of seeking a globally consistent solution, these tech-
niques compute a separate reconstruction for each input cam-
era and then merge the results into a single representation.
This concept was pioneered by Narayanan et al. in the Vir-
tualized RealityTM system (Narayanan et al., 1998) which
used 51 cameras distributed on a 5 m hemispherical dome to
reconstruct dynamic scenes and allow free-viewpoint video
from an arbitrary viewpoint. Since then, many techniques
based on similar two stage pipelines have been proposed.
Starck and Hilton combined shape-from-silhouette with stereo
matching cues to increase the accuracy of depth map extrac-
tion compared to techniques based on a single cue (Starck
and Hilton, 2005). Goesele et al. proposed a window-based
voting approach able to recover partial but highly accurate
depth maps (Goesele et al., 2006) Bradley et al. (Bradley
et al., 2008) used scaled window matching to reduce in-

accuracies caused by projective distortion, combined with
an adaptive depth map filtering technique to remove out-
liers and suppress noise. Campbell et al. introduced multi-
ple depth hypotheses at each pixel and an unknown depth
label to cope with ambiguities caused by occlusions or lack
of texture (Campbell et al., 2008). Liu et al. proposed an ex-
tension to the continuous domain to eliminate quantisation
errors (Liu et al., 2009). These techniques assume accurate
camera calibration to extract an accurate depth map.

Error tolerant view-dependent rendering Approaches
have been proposed to improve free-viewpoint video qual-
ity in presence of reconstruction and/or calibration errors.
Eisemann et al. used optical flow to reduce blending arte-
facts due to inaccurate reconstruction or calibration (Eise-
mann et al., 2008). Enhanced billboard representations have
also been used to generate high quality free-viewpoint video
transitions (Waschbüsch et al., 2007; Germann et al., 2010;
Ballan et al., 2010). Waschbüsch et al. (Waschbüsch et al.,
2007) introduced the concept of 3D video billboard combin-
ing a planar geometric proxy, suited for rendering but lack-
ing accuracy, with view-dependent displacement maps al-
lowing accurate blending between views; they use 4D bilat-
eral filtering to enforce spatio-temporal consistency of dis-
placement maps. Germann et al. (Germann et al., 2010) pro-
posed a semi-automatic algorithm to fit an articulated bill-
board model to soccer players and a novel rendering pro-
cedure to seamlessly blend multiple billboard components.
Finally, Ballan et al. demonstrated that a billboard repre-
sentation combined with a framework for generating opti-
mised transitions can be used to produce very impressive
free-viewpoint video transitions (Ballan et al., 2010).

2.2 Joint segmentation and reconstruction

Joint segmentation and reconstruction approaches extend pre-
vious reconstruction methods by incorporating segmenta-
tion or matting (opacity estimation) into a unified frame-
work. Szeliski and Golland (Szeliski and Golland, 1999)
proposed an energy minimisation approach for estimating
disparities, colours and opacities in a generalised disparity
space using iterative gradient descent. Similarly, De Bonet
and Viola proposed the Roxel algorithm (De Bonet and Vi-
ola, 1999) which defines an iterative multi-step procedure
alternatively estimating colours, responsibilities and opaci-
ties in a voxel space. Matusik et al. (Matusik et al., 2002)
introduced the opacity hull generalising the view-dependent
visual hull (Matusik et al., 2000) by adding view-dependent
opacity; they show impressive results, but the approach re-
quires active lighting to extract accurate mattes from each
viewpoint and is not strictly speaking a joint approach as it
requires prior matte estimation.

Various multi-view reconstruction frameworks have been
extended to extract segmentation information. Probabilistic
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estimation of voxel occupancy has been used to increase the
robustness of the visual hull computation by replacing con-
ventional binary occupancy labels by continuous values rep-
resenting voxel opacity (Snow et al., 2000) or a probabilistic
measure of occupancy eliminating the requirement to make
hard segmentation decisions and reducing single view ambi-
guities (Franco and Boyer, 2005). Campbell et al. (Campbell
et al., 2010) proposed a method for automatic multi-view
object segmentation assuming cameras are fixating on the
object of interest to initialise colour models which are then
used to iteratively refine a visual hull estimate by volumetric
graph-cuts.

Kolmogorov et al. (Kolmogorov et al., 2006) proposed
two joint segmentation and reconstruction techniques based
on dynamic programming and graph-cuts respectively ca-
pable of real-time segmentation. Although structurally sim-
ilar to our approach, their techniques target a different ap-
plication (background substitution) and remain limited to
two-layer segmentation from narrow baseline stereo cam-
eras. Additionally they assume accurate camera calibration.
In contrast, our approach handles an arbitrary number of lay-
ers which is required for multi-player occlusions in sports
and is formulated for robust reconstruction from wide-baseline
views.

Zitnick et al. (Zitnick et al., 2004) computed accurate
view-dependent layered representation by combining a colour
segmentation-based algorithm which estimates smooth dis-
parity maps for each camera with a Bayesian matting algo-
rithm to refine thin boundary strips spanning depth disconti-
nuities. Results obtained with an 8 camera array covering a
30◦ arc demonstrate free-viewpoint video interpolation with
visual quality comparable to captured video. This technique
requires accurate calibration and a narrow baseline camera
configuration.

Goldlücke and Magnor (Goldlücke and Magnor, 2003)
proposed a joint multi-view graph-cut reconstruction and
segmentation algorithm based on global optimisation of an
energy function combining photo-consistency information
and colour probability models extending aprevious multi-
view reconstruction (Kolmogorov and Zabih, 2002) by adding
a background layer to the formulation. This approach pro-
duces a global scene reconstruction and is therefore prone
to calibration errors. In addition, its applicability is limited
to narrow baseline camera configurations.

Guillemaut et al. (Guillemaut et al., 2007, 2009) intro-
duced a view-dependent optimisation framework which esti-
mates a layered-depth representation with respect to each in-
put camera. Joint segmentation and reconstruction is achieved
by construction of a view-dependent graph similar to that
used in (Roy and Cox, 1998) with an additional background
layer (Guillemaut et al., 2007) or by optimisation of a more
general view-dependent energy function incorporating addi-
tional energy terms and a discontinuity preserving smooth-

ness term (Guillemaut et al., 2009). In all cases, optimisa-
tion is performed using graph-cut. This work forms the basis
for the approach presented in this paper which extends the
framework by generalising the energy function to enforce
multiple-view consistency between cameras and introduc-
ing a method for robustly merging wide-baseline estimates
when calibration accuracy is sufficiently high.

With the exception of (Guillemaut et al., 2007, 2009), all
methods assume accurately calibrated static cameras sepa-
rated by a relatively small baseline compared to those con-
sidered in this paper. Consequently, they lack robustness with
respect to errors in input calibration and segmentation.

2.3 Sports related research

There is a growing interest in virtual replay production in
sports using free-viewpoint video techniques. Transferring
studio techniques for free-viewpoint video to the sports arena
is a notoriously difficult problem due to the much larger
reconstruction area, use of moving and zooming cameras
which must be calibrated on-the-fly, uncontrolled illumina-
tion conditions and presence of a natural background. Ide-
ally, to avoid additional cost solutions will work from the ex-
isting broadcast cameras which are independently manually
operated to follow play of interest. A key aspect to transfer
studio-based reconstruction algorithm is robustness.

An initial attempt at transferring such algorithms was the
Eye Vision system1 based on the Virtualized RealityTM tech-
nology introduced in (Narayanan et al., 1998). The system
was used at Super Bowl XXXV (2001) to generate transi-
tions by switching between cameras distributed around the
stadium. To generate convincing transitions the system re-
quired use of a large number of cameras (> 30) and a mo-
torised pan-tilt camera tracking system to guarantee that all
cameras are simultaneously looking at the same point of in-
terest. Transitions produced using this technology were very
impressive but showed noticeable jumps between cameras.

A number of approaches have used view-interpolation
(Connor and Reid, 2003; Kimura and Saito, 2005; Inamoto
and Saito, 2007) or planar billboard representations (Ohta
et al., 2007) to produce smooth transitions between view-
points. Connor and Reid introduced a MAP framework for
estimating a multi-view layered representation of background
and foreground players used to synthesise novel views by
linear interpolation. Inamoto and Saito (Inamoto and Saito,
2007) decompose soccer scenes into multiple layers repre-
senting static background objects and dynamic foreground
players. Static background objects are approximated using
a piecewise planar representation, allowing new view syn-
thesis via homographic transformation of each planar com-

1 Eye Vision, http://www.ri.cmu.edu/events/sb35/

tksuperbowl.html
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ponent. Foreground dynamic layers require a more com-
plex modelling process to establish dense correspondence
for view morphing. A similar approach decomposing a sport
scene into layers has been applied in the context of tennis in
(Kimura and Saito, 2005). Interpolation techniques are very
appealing as they do not require explicit scene modelling
or full calibration, however they tend to be limited to syn-
thesising views in the vicinity of input cameras. Ohta et al.
(Ohta et al., 2007) proposed a real-time technique based on
a planer billboards which allows real-time free-viewpoint
video. Use of a simple geometric proxy presents some ad-
vantages in terms of data representation and processing time,
however lack of explicit geometry modelling may cause blend-
ing artefacts and distortions in a wide baseline camera con-
figuration.

Volumetric reconstruction techniques such as shape-from-
silhouette have been used for free-viewpoint video of soccer
scenes in (Grau et al., 2005). The approach can be used to
render views from arbitrary viewpoints on the pitch, how-
ever it requires a narrow baseline camera configuration and
accurate calibration and segmentation to avoid player trun-
cation artefacts. Recently more complex offline optimisation
techniques based on graph-cuts (Guillemaut et al., 2007) or
deformable models (Kilner et al., 2007) have been intro-
duced to increase reconstruction accuracy. These techniques
were able to achieve a visual quality comparable to that of
the input images, however as in (Grau et al., 2005), results
were only reported with a dedicated set of 15 closely spaced
static cameras located around a quarter of the pitch.

Current commercial products include the Piero system2

which is limited to a single camera input and the Liberovi-
sion system3 which is capable of photo-realistic interpola-
tion between match cameras but remains limited to a sin-
gle frame due to the requirement for manual intervention
in calibration and segmentation. Germann et al. (Germann
et al., 2010) have proposed an interactive technique for fit-
ting an articulated billboard model to a pair of images allow-
ing novel view synthesis by piecewise interpolation of each
billboard component. Impressive results were demonstrated
from a single pair of cameras, however extension of the tech-
nique to full videos is non-trivial due to the requirement for
manual interaction.

This paper extends previous research reported in (Guille-
maut et al., 2009) by introducing a generalised framework to
enforce multi-view consistency between cameras and addi-
tional shape priors (see Section 6). This increases the qual-
ity of the model generated compared to previous results re-
ported in (Guillemaut et al., 2009). In addition, we describe a
technique based on Poisson surface reconstruction to merge
the view-dependent estimates into a single mesh model (see
Section 8); this eliminates noise and produces a simpler mesh

2 Piero, http://www.bbc.co.uk/rd/projects/virtual/piero
3 Liberovision, http://www.liberovision.com

representation in the case of indoor data. A comprehensive
qualitative and quantitative evaluation based on 13 datasets
and containing several thousand frames of multi-view video
sequences demonstrates the improvement over existing state-
of-the-art techniques.

3 Problem statement

The problem consists in estimating a layered depth represen-
tation, incorporating both segmentation of the image into its
constituent layers and depth at each pixel in these layers, at
each time instant and for each camera. Cameras are assumed
to be synchronised. In addition we do not require a narrow
baseline set-up as is often the case in stereo reconstruction;
in fact we only assume a small number of cameras which are
separated by a relatively large baseline. For simplicity, let us
consider a single input camera, referred to thereafter as the
reference camera, and its n neighbouring cameras indexed
from 1 to n and referred to thereafter as auxiliary cameras;
layered-depth reconstruction for all cameras is obtained by
considering each input camera in turn as the reference cam-
era. Our aim is to (i) partition the reference image into its
constituent background/foreground layers and (ii) estimate
the depth at each pixel for the foreground layers.

Formally, the problem can be formulated as a labelling
problem where we seek the mappings l : P → L and d :
P → D , which respectively assign a layer label lp and a
depth label dp to every pixel p in the reference image. P
denotes the set of pixels in the reference image; L and D
are discrete sets of labels representing the layer and depth
hypotheses. L = {l1, . . . , l|L |} may consist of one back-
ground layer and one foreground layer (classic segmentation
problem) or of multiple foreground and background layers.
The set of depth labels D = {d1, . . . ,d|D |−1,U } is formed
of depth values di obtained by sampling the optical rays to-
gether with an unknown label U accounting for occlusions.
Occlusions are common and can be severe when the number
of cameras is small (Fig. 1), especially in the background
where large areas are often only visible in a single camera.

In this paper, the focus is on foreground extraction and
reconstruction. As a result, we assume multiple foreground
layers corresponding to people/objects located at different
depths and a single background layer. Depth is estimated
only for foreground layers (background layers will received
an unknown depth label). There are several motivations for
not explicitly reconstructing the background. Firstly, this can-
not be done reliably from the small number of cameras con-
sidered here (due to severe occlusions and framing limita-
tions which prevent large portions of the background from
being visible in more than a single view). Secondly, back-
ground reconstruction is often not required as post-production
pipelines often only require foreground objects for compo-
sition with a virtual background set or a separately captured
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Fig. 3 Workflow of the proposed method.

photo-realistic model. Nonetheless our formulation remains
general and could in principle estimate background depth.

4 Method overview

The proposed method consists of the following stages illus-
trated in Fig. 3.

Data acquisition: Data is captured using multiple synchro-
nised video cameras surrounding the scene and sepa-
rated by a wide-baseline. The cameras can be static or
moving.

Calibration: In the case of indoor sequences, static cam-
eras are pre-calibrated; for sports sequences, pre-calibration
is not possible and all cameras are calibration on-the-fly
using through-the-lens calibration techniques.

Initial segmentation: This is performed by applying a sim-
ple segmentation technique such as chroma-keying or
difference keying to produce a coarse segmentation which
is used to initialise the initial coarse reconstruction stage.

Initial coarse reconstruction: This stage uses a conserva-
tive silhouette intersection technique to extract a coarse
foreground scene reconstruction based on visual hull (Lau-
rentini, 1994). An error tolerant visual hull algorithm
such as the conservative visual hull algorithm proposed
in (Kilner et al., 2007) is necessary to account for er-
rors in calibration and initial segmentation. This is used
to define the possible layer and depth hypotheses at each
pixel. Each connected mesh component of the visual hull
defines a layer and a bound on its possible depth value.

Joint segmentation and reconstruction: The approach is
based on joint estimation of layer and depth labels through
optimisation of an energy function combining colour,
contrast, matching, smoothness and multi-view consis-
tency cues based on graph-cuts. The optimisation is per-
formed in a view-dependent manner with respect to each
input camera and is robust to errors in calibration and
initial segmentation compared to global optimisation tech-

niques. A novel approach to enforce multi-view consis-
tency is introduced.

3D model generation: A final model is obtained by merg-
ing the layered-depth representations. For indoor sequences,
a single surface representation is extracted through a Pois-
son surface reconstruction algorithm; for sports sequences
which contain large calibration errors a simpler merging
approach is preferred.

Free-viewpoint video rendering: A view-dependent tex-
ture mapping technique is used to synthesise novel views.
The viewpoint is controlled interactively to render the
free-viewpoint camera trajectory required for match anal-
ysis.

A critical part of the pipeline is the joint segmentation
and reconstruction stage. By performing the layered-depth
estimation in a view-dependent manner, we allow accurate
segmentation and reconstruction in spite of calibration er-
rors. This contrasts with global approaches which seek a
unique scene representation but require high calibration ac-
curacy for correct operation. Calibration inaccuracies pro-
duce inconsistencies limiting the applicability of global re-
construction techniques which simultaneously consider all
views; view-dependent techniques are more tolerant to such
inaccuracies because they only use a subset of the views for
reconstruction of a layered depth from each camera view.
Another important aspect is the joint optimisation of seg-
mentation and reconstruction. Joint processing presents an
advantage compared to sequential segmentation and recon-
struction as it avoids propagation of errors between the two
stages. Joint processing is also natural in the sense that many
of the cues used for segmentation are useful for reconstruc-
tion and vice versa. For example, high contrast provides valu-
able information to identify a layer discontinuity but it is
also an indicator of a possible depth discontinuity. Finally, a
novel method to improve the multi-view consistency of the
estimates corresponding to each camera view will be intro-
duced. This approach will be described in details in Sections
5–7.
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5 Joint segmentation and reconstruction

We formulate the computation of the optimum labelling (l,d)
as an energy minimisation problem of the cost function

E(l,d) = λcolourEcolour(l)+λcontrastEcontrast(l)

+λmatchEmatch(d)+λsmoothEsmooth(l,d), (1)

where the energy terms Ecolour, Econtrast, Ematch and Esmooth
respectively correspond to cues derived from layer colour
models, contrast, photo-consistency and smoothness priors,
and whose relative contribution is controlled by the param-
eters λcolour, λcontrast, λmatch and λsmooth.

Colour and contrast terms are frequently used in seg-
mentation problems, while matching and smoothness terms
are normally used to solve reconstruction problems. Here
we minimise an energy functional which simultaneously in-
volves these two types of terms. The colour and contrast
terms are similar to those considered in (Sun et al., 2006)
with the main distinction that we extend the formulation to
an arbitrary number of layers. Although structurally similar
to other energy minimisation techniques, to achieve robust
wide-baseline reconstruction our approach integrates multi-
ple cues such as sparse affine covariant features and error
tolerant photo-consistency scores. Individual cues are not
novel in computer vision, but yield a novel non trivial for-
mulation when combined. In the remainder of this section,
we describe in detail how each term is formulated, the ac-
tual optimisation of the energy function being deferred to
Section 7.

5.1 Colour term

The colour term uses learnt colour models for each layer or
group of layers following a similar distribution in order to
assign the most likely layer label at each pixel in the refer-
ence image. The term is defined as

Ecolour(l) = ∑
p∈P
− logP(Ip|lp), (2)

where P(Ip|lp = li) denotes the probability at pixel p in the
reference image of belonging to layer li. Similarly to (Sun
et al., 2006), the model for a layer li is defined as a linear
combination of a global colour model Pg(Ip|lp = li) and a
local colour model Pl(Ip|lp = li) such that

P(Ip|lp = li) = wPg(Ip|lp = li)+(1−w)Pl(Ip|lp = li), (3)

where w is a real value between 0 and 1 controlling the
contributions of the global and local model. A dual colour
model combining global and local components is more dis-
criminative than a model considering either a purely local or
global colour model and allows for dynamic changes in the
background. It should be noted that the local model is only

applicable to static layers (this is often the case for back-
ground layers).

For a given layer li, the global component of the colour
model is represented by a Gaussian Mixture Model (GMM)

Pg(Ip|lp = li) =
Ki

∑
k=1

wikN(Ip|µik,Σik), (4)

where N is the normal distribution and the parameters wik,
µik and Σik represent the weight, the mean and the covari-
ance matrix of the kth component for layer li. Ki is the num-
ber of components of the mixture model for layer li (Ki was
set to 5 in the case of sports data and 10 in the case of indoor
data).

The local component of the colour model for a static
layer li is represented by a single Gaussian distribution for
each pixel p:

Pl(Ip|lp = li) = N(Ip|µip,Σip), (5)

where the parameters µip and Σip represent the mean and the
covariance matrix of the Gaussian distribution at pixel p.

Learning the global colour model requires a single key-
frame per camera in which each layer has been manually
labelled. A GMM is then constructed for each layer from
the annotated colour samples using the expectation maximi-
sation algorithm (Dempster et al., 1977) initialised with a k-
means clustering estimate. It should be noted that the models
are not updated over time as our algorithm is only applied to
relatively short sequences (500 frames). For the processing
of longer sequences, more sophisticated algorithms could be
used to model temporal variations in illuminations.

Learning the local colour models for static background
layers requires multiple images in order to extract reliable
statistics at each pixel. This is done for each camera ei-
ther by explicitly capturing a background sequence where
foreground people and objects have been removed from the
scene or by estimating local models from the full scene im-
age using a robust mosaicking technique to automatically
remove the dynamic foreground objects. In the latter case,
images are projectively warped to a reference image using
calibration information followed by robust temporal filter-
ing at each pixel to identify the background samples to be
used for estimation of the local model. In either cases, a nec-
essary assumption to be able to build the local model is that
cameras are static or nodal (i.e. undergoing a combination
of rotation and zooming); the absence of translation guaran-
tees the existence of homographic relations between images
necessary for mosaicking. Some examples of global and lo-
cal colour models constructed in the case of a sport sequence
can be seen in Fig. 4 and Fig. 5.
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(a) Foreground model (b) Crowd model (c) Pitch model

Fig. 4 Example of global colour models in the case of a rugby sequence. The bottom
row shows the GMM obtained from the training image (top row) for different layers;
each component is represented by a 3σ -ellipsoid centred at the mean value.

Fig. 5 Example of local colour model. At
each pixel, the local background model is
represented by its mean value (top) and its
variance (bottom); the variance image has
been histogram equalised for display pur-
poses.

5.2 Contrast term

The contrast term encourages layer discontinuities to oc-
cur at high contrast locations. This naturally encourages low
contrast regions to coalesce into layers and favours discon-
tinuities to follow strong edges. This term is defined as

Econtrast(l) = ∑
(p,q)∈N

econtrast(p,q, lp, lq), with (6)

econtrast(p,q, lp, lq) =
{

0 if lp = lq,
exp(−βC(Ip,Iq)) otherwise.

(7)

N denotes the set of interacting pairs of pixels in P (a
4-connected neighbourhood is assumed) and || · || is the L2
norm. C(·, ·) represents the squared colour distance between
neighbouring pixels. β is a parameter weighting the distance
function; it is set as β = (2〈||Ip− Iq||2〉)−1 (Rother et al.,
2004) where 〈·〉 denotes the expectation operator.

The simplest choice for C(·, ·) would be a squared Eu-
clidean colour distance ||Ip− Iq||. This would yield a stan-
dard contrast term encouraging layer discontinuities to fol-
low any edge in the image regardless of whether it is fore-
ground or background (see Fig. 6(a)). Better performance
can be obtained instead by using the attenuated contrast (Sun
et al., 2006) defined as

C(Ip, Iq) =
||Ip− Iq||2

1+
(
||Bp−Bq||

K

)2
exp
(
− z(p,q)2

σz

) , (8)

where z(p,q) = max(||Ip−Bp||, ||Iq−Bq||). Bp is the back-
ground colour at pixel p and is provided by the local com-
ponent of the colour model defined in Section 5.1. The pa-
rameters K and σz are chosen as K = 〈||Bp−Bq||〉 and σz =

2〈z(p,q)2〉 respectively. The attenuated contrast uses back-
ground colour information to attenuate background edges.

(a) Standard (b) Adaptively attenuated

Fig. 6 Visualisation of different forms of contrast terms.

This produces a normalised contrast term where only fore-
ground edges remain, thereby encouraging layer discontinu-
ities to fall on foreground edges only (see Fig. 6(b)). In prac-
tice, some background edges may remain due to changes in
background hoardings and crowd movement.

5.3 Matching term

The matching term encourages the reconstructed surface to
be photo-consistent across the multiple views. This is based
on the idea that correct depth hypotheses yield similar ap-
pearances across the images in which they are visible, while
incorrect depth hypotheses usually result in inconsistent pro-
jected appearances. Our formulation combines two classes
of similarity measures: a dense measure based on normalised
cross-correlation (NCC) or photo-consistency enforced at
each pixel in the reference image; and sparse feature con-
straints enforced at distinguishable image regions defined
by affine covariant features that are usually more robust to
changes in view-point and illumination. The matching term
is defined as

Ematch(d) = Edense(d)+Esparse(d). (9)

Note that because the term Esparse(d) will be defined to im-
pose a set of hard constraints, it is not necessary to weigh
this term with respect to the term Edense(d).



10

Dense matching term This term evaluates similarity at each
pixel in the reference camera and is defined as

Edense(d) = ∑
p∈P

edense(p,dp), with (10)

edense(p,dp) =

{
S(p,P(p,dp)) if dp 6= U ,

SU if dp = U .
(11)

P(p,dp) denotes the coordinates of the 3D point along the
optical ray passing through pixel p which is located at a
distance dp from the reference camera. The function S(·, ·)
measures the similarity between the reference camera and
the auxiliary cameras in which the hypothesised point P(p,dp)

is visible. SU is a fixed penalty for labelling a pixel as un-
known. Use of an unknown label adds robustness to the al-
gorithm by providing a way to avoid labelling pixels that
cannot be accurately reconstructed such as self-occluded pix-
els or pixels located at discontinuities.

Different metrics can be used to compute the similarity
score S at a hypothesised surface point P between the ref-
erence camera and an auxiliary camera i. Let us denote by
p and q = πi(P) the projections of the hypothesised point
P into the reference camera and the auxiliary camera i re-
spectively. For sufficiently textured scenes, such as the ones
considered in the indoor result section, a common choice
in the multi-view reconstruction literature is the NCC com-
puted over a square window centred on the pixels p and q
(Seitz et al., 2006). The NCC value is between -1 and 1 and
is then mapped to the interval [0,1] as follows

s1(p,q) = exp(−µNCC(p,q)), (12)

where µ is the decay parameter (set to 1 in this paper).
For less textured scenes, such as the ones considered in the
sports result section, a more suitable metric is the photo-
consistency (Seitz and Dyer, 1999) which we define as

s2(p,q) =
(Ip− Ii

q)
2

σ2
i

, (13)

where σ2
i normalises the photo-consistency measure for each

auxiliary camera i; this parameter was fixed to 100 (images
values being assumed to be in the range [0,255]) in all the
experiments reported in this paper. To account for variations
in scale and orientation, matching is performed in the space
of rectified images; this guarantees similarity in scale and
orientation during matching in spite of changes in camera
zoom and framing.

To add robustness to calibration errors, the previous mea-
sures are computed over extended regions of radius rtol rather
than single pixels in a similar fashion to (Kutulakos, 2000).
This defines error tolerant dense matching scores defined as

s′1(p,q) = max
(q−πi(X))2<rtol

exp(−µNCC(p,q)), (14)

Fig. 7 Matched sparse features for two camera pairs.

and

s′2(p,q) = max
(q−πi(X))2<rtol

(Ip− Ii
q)

2

σ2
i

, (15)

respectively in the case of NCC and photo-consistency. The
parameter rtol is set to 2 for sports data and 0 for indoor data.

Having defined the similarity score between the refer-
ence camera and an auxiliary camera, the final score S(·, ·)
is obtained by combining the pairwise scores defined by the
reference camera and all neighbouring auxiliary cameras. To
make the measure tolerant to occlusions in some of the aux-
iliary cameras, a robust combination rule is defined as the
sum of the k most photo-consistent pairs denoted by Bk:

S(p,X) = ∑
i∈Bk

s′(p,πi(X)), (16)

where s′ is either s′1 or s′2 depending whether NCC or photo-
consistency is used. Other forms of occlusions robust match-
ing scores have been previously used in (Vogiatzis et al.,
2007; Campbell et al., 2008) and have been shown to in-
crease robustness to occlusions.

Sparse matching term This term is only active at the centre
of distinguishable foreground regions at which a sparse fea-
ture correspondence has been established. The sparse match-
ing score is defined as

Esparse(d) = ∑
p∈P

esparse(p,dp), with (17)

esparse(p,dp) =

{
0 if F (p) = /0 or dp ∈F (p),
∞ otherwise.

(18)

F (p) denotes the set of depth labels located within a dis-
tance T from a sparse constraint at pixel p. This forces the
reconstructed surface to pass nearby sparse 3D correspon-
dences. Because of calibration errors, we do not require the
reconstruction to match exactly the sparse constraints, but
allow a tolerance controlled by the parameter T . This pa-
rameter was set to 1 m for the sports scenes considered in
this paper.
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The sparse constraints considered are defined by the cen-
tre of affine-covariant features (Mikolajczyk et al., 2005;
Mikolajczyk and Schmid, 2005) which are known to be ro-
bust to changes in viewpoint and illumination. In this pa-
per, we used the Hessian-affine feature detector. Image fea-
tures which overlap the foreground/background boundary
cannot be used to establish reliable correspondences; we use
the learnt colour models defined in Section 5.1 to discard
such features based on their ratio of foreground and back-
ground pixels. Having detected likely candidate for sparse
foreground matches, a SIFT descriptor is computed for each
candidate region. Matching is then performed based on a
nearest neighbour strategy. Robust matching is ensured by
restricting the search to areas within a tolerance distance
from the epipolar lines and making use of calibration in-
formation to cross validate the correspondences by verify-
ing that they have similar rectified heights. The left-right
spatial consistency (reciprocity) constraint is also enforced
together with temporal consistency which requires corre-
sponding features between camera views to be in correspon-
dence temporally with the previous or the next frame. Ex-
amples of correspondences in the case of rugby can be seen
in Fig. 7.

5.4 Smoothness term

The smoothness term encourages the depth labels to vary
smoothly within each layer, reducing noise in the recon-
structed surface. This is useful in situations where match-
ing constraints are weak (poor photo-consistency or a low
number of sparse constraints) and insufficient to produce an
accurate reconstruction without the support from neighbour-
ing pixels. It is defined as

Esmooth(l,d) = ∑
(p,q)∈N

esmooth(lp,dp, lq,dq), with (19)

esmooth(lp,dp, lq,dq) = (20)
min(|dp−dq|,dmax) if lp = lq and dp,dq 6= U ,

0 if lp = lq and dp = dq = U ,

dmax otherwise.

Discontinuities between layers are assigned a constant smooth-
ness penalty dmax (set to 50 times the depth sampling step
size for all datasets), while within each layer the penalty
is defined as a truncated linear distance. Such a distance is
discontinuity preserving as it does not over-penalise large
discontinuities within a layer; this is known to be superior
to simpler non-discontinuity functions (Boykov et al., 2001;
Kolmogorov and Zabih, 2004). This term also encourages
unknown features to coalesce within each layer. The choice
of depth prior adopted has an important influence on the
smoothing effect and the reconstruction obtained. Two types
of priors are considered in this paper.

C

(a) Fronto-parallel prior

C

(b) Iso-surface prior

Fig. 8 Comparison of different types of depth priors. Depth labels are
represented as circles; grey circles represent second sets of iso-level
labels ignored during graph-cut optimisation.

Fronto-parallel depth prior This is the most commonly used
form of prior. It assumes that the depth is locally constant. In
this case, a label (lp,dp) corresponds to the point from layer
lp and located at a distance dp from the reference camera
centre along the ray emanating from pixel p (see Fig. 8(a)).
The depth values dp are uniformly sampled. Depth hypothe-
ses are restricted to the interior of a visual hull estimate of
the scene so as to restrict the number of depth hypotheses
and improve efficiency. To account for calibration and mat-
ting error, we use the error tolerant visual hull proposed in
(Kilner et al., 2007) which we call conservative visual hull.
Although this yields good quality results when supported by
strong matching cues such as in the case of the indoor scenes
considered, this results in bias towards flat figure models
which do not give good alignment between views in the case
of sports data where matching cues are weak (see Fig. 17, 4th

column).

Iso-surface depth prior An alternative approach which was
introduced in (Guillemaut et al., 2009) in the context of sports
scenes consists in placing samples along the iso-surfaces of
the visual hull. This results in a reconstructed surface biased
towards the visual hull iso-surfaces. We call this prior the
iso-surface prior. In this case, a label (lp,dp) corresponds
to the first point of intersection between the ray emanating
from pixel p and the dp-th iso-surface in the interior of the
visual hull’s connected component corresponding to layer
lp (see Fig. 8(b)). Unlike the fronto-parallel prior, the iso-
surface prior is view-independent and results in more real-
istic reconstructions which are more likely to be consistent
between views in the absence of strong matching cues (see
Fig. 17). A drawback of the iso-surface prior is the over-
head associated with iso-surfaces computation. Iso-surfaces
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are defined by first detecting ray intersections with the mesh
which gives the 0-th iso-surface; the remaining iso-surfaces
are obtained by iterative search along the ray moving away
from the camera centre until the distance stops increasing.
An axis-aligned bounding box (AABB) tree structure (Co-
hen et al., 1995) is used to efficiently query the distance
of any point to the mesh surface. Another limitation of the
iso-surface approach is that it does not scale well to sur-
faces containing holes or folds as this results in multiple
points bearing the same iso-surface value along a same ray
within a layer; such points cannot be easily incorporated into
our graph-cut optimisation framework which requires each
depth hypothesis to be represented by a unique label. In-
corporating multiple intersection within a layer would re-
quire introducing auxiliary labels representing the different
intersections and ensuring that identical labels are spatially
contiguous which is clearly non-trivial. We circumvent this
problem by considering only the first set of iso-levels within
each connected mesh component. This is a reasonable as-
sumption for sports data which usually contains smooth meshes
with genus 0. A simpler approach for introducing a visual
hull bias in the reconstruction which does not suffer from
these limitations will be introduced in the next section.

It can be noted that the choice of a fronto-parallel or
an iso-surface prior affects the correspondence between la-
bels and the 3D points they represent, however this does not
change the formulation in Eq. (20) since the set of depth
values remain an ordered set of discrete values.

6 Improving multi-view consistency

The layered depth extraction framework presented so far is
completely view-dependent in the sense that each camera is
considered in turn as a reference camera and processed inde-
pendently from the remaining cameras. While this presents
an advantage in robustness to calibration error compared to
a purely global approach, it is desirable nonetheless to in-
corporate some elements of dependency between the pro-
cessing of each camera in order to improve multi-view con-
sistency. In this section, we extend the previous framework
by locally enforcing some multi-view constraints. The main
idea is to use the view-dependent layered depth estimates
obtained separately for each camera as depth priors to con-
strain the layered depth estimation of neighbouring cam-
eras. Also, for sports data this framework is used to bias
the reconstruction towards the visual hull by treating the
visual hull surface as an additional depth prior. This ad-
ditional prior is view-independent and can be used to dis-
ambiguate the reconstruction problem in situations where
photo-consistency information is poor such as in the case of
sports data. This approach is simpler than the approach in-
troduced in the previous section which required resampling

the 3D space using the conservative visual hull iso-surfaces
and it will be demonstrated to yield better result in Section 9.

The problem is formulated as the energy optimisation of
the following cost function

E ′(l,d) = E(l,d)+λauxEaux(d)+λVHEVH(d), (21)

where Eaux(d) and EVH(d) represents priors respectively de-
fined by the auxiliary cameras’ depth maps and the visual
hull whose contributions are weighted by λaux and λVH. En-
forcement of the multi-view constraints is performed in an
iterative manner. At the first iteration, no layered depth re-
construction has been computed and so the term Eaux(d)
enforcing consistency between the different depth maps is
ignored. At subsequent iterations, the depth map estimates
obtained for each camera provide additional constraints de-
fined in the term Eaux(d), the process being iterated until
convergence of the algorithm each time re-using the result of
the previous iteration to constrain the current iteration. Ad-
ditional constraints are provided by the term EVH(d) when
a visual hull prior is enforced. In this case, the visual hull
is updated after each iteration to benefit from the improve-
ment in segmentation. In practice, two or three iterations are
sufficient to obtain a noticeable improvement in multi-view
consistency when only the term Eaux(d) is used such as for
indoor sequences; when using the additional term, such as
for sports sequences, EVH(d) a single iteration is sufficient
to enforce strong multi-view consistency.

We start by defining the term Eaux(d) enforcing consis-
tency between multiple depth maps. Let us denote by di(dp)

the shortest Euclidean distance between the 3D point with
depth dp at pixel p in the reference camera and the dense set
of 3D points corresponding to the depth map of the i-th aux-
iliary camera. Naı̈ve computation involving evaluation of the
distance for every possible pair would be prohibitively ex-
pensive due to the dense nature of the depth maps. Instead,
an AABB tree (Cohen et al., 1995) is used to efficiently com-
pute this distance. The term Eaux(d) is defined as

Eaux(d) =
1

∑i cosγi
∑

i
∑
p

cosγi[eaux(di(dp))]
2, with (22)

eaux(di(dp)) =

{
min(|di(dp)|/dmax,1) if dp 6= U ,

0 if dp = U .
(23)

The energy is defined as the sum of squared distances weighted
by the cosine of the angle between the reference camera and
each auxiliary camera in order to favour more closely lo-
cated cameras. To avoid over-penalising discrepancies oc-
curring at discontinuities or due to calibration errors, a trun-
cated linear distance is used. This prevents penalising large
distances exceeding the pre-defined value dmax introduced
in Section 5.4.

The optional term EVH(d) enforcing consistency with
the visual hull is similarly defined. Let us denote by dVH(dp)
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the shortest Euclidean distance between the 3D point with
depth dp at pixel p in the reference camera and the visual
hull surface. The term is defined as

EVH(d) = ∑
p
[eVH(dVH(dp))]

2, with (24)

eVH(dVH(dp)) =

{
min(|dVH(dp)|/dmax,1) if dp 6= U ,

0 if dp = U .

(25)

Note that unlike the iso-surface prior introduced in the previ-
ous section, this approach does not require the reconstructed
surface to lie inside the volume defined by the prior. This
presents some advantage compared to the iso-surface ap-
proach as this does not require use of a conservative visual
hull which by nature tends to produce a bias towards a di-
lated reconstruction. Use of a standard visual hull instead
tends to produce a more photo-consistent reconstruction in
non-truncated areas such as the trunk of the players while
possibly truncated visual hull areas such as the arms and
legs will rely on the standard smoothness prior to be cor-
rectly recovered. The effects of these energy terms on the
final reconstruction will be illustrated in Section 9.2.

7 Energy optimisation

7.1 Optimisation using expansion move algorithm

Optimisation of the energy defined by Eq. (21) is known to
be NP-hard. However, an approximate solution can be com-
puted using the expansion move algorithm based on graph-
cuts (Boykov et al., 2001). Proof of the regularity of the
energy function, required for α-expansion optimisation, is
provided in the Appendix. The expansion move proceeds by
cycling through the set of labels α = (lα ,dα) in L ×D and
performing an α-expansion iteration for each label until the
energy cannot be decreased (see (Boykov et al., 2001)). An
α-expansion iteration is a change of labelling such that each
pixel p either retains its current value or takes the new label
α . Each α-expansion iteration can be solved exactly by per-
forming a single graph-cut using the min-cut/max-flow algo-
rithm (Boykov and Kolmogorov, 2004). After convergence
of the algorithm, the result obtained is guaranteed to be a
strong local optimum (Boykov et al., 2001). For all experi-
ments reported in this paper, the α-expansion algorithm was
initialised with the conservative visual hull estimate; con-
vergence has been found to be insensitive to the choice of
initialisation. In practice, convergence is usually achieved in
3 or 4 cycles of iterations over the label set.

7.2 Improving efficiency

Reusing the flow We improve computation and memory ef-
ficiency by dynamically reusing the flow at each iteration
of the min-cut/max-flow algorithm (Alahari et al., 2008).
The idea of recycling the dual (flow) solutions is based on
the concept of re-parametrisation introduced in (Kohli and
Torr, 2007) in the case of dynamic MRFs with sub-modular
energy function and extended to non-sub-modular energy
functions in (Alahari et al., 2008). During the first cycle of
iterations, the flow is computed in a normal manner for each
α-expansion and is stored. During subsequent iterations, the
flow is obtained by reusing the flow computed at the pre-
vious iteration using re-parametrisation. This resulted in a
speed-up of an order of two for the scenes considered.

Multi-scale implementation Solving a labelling problem in-
volving all pixels in the reference image can be problem-
atic with large dimensional images. In practice, the problem
is restricted to a subset of the pixels through use of the vi-
sual hull, however even after that the total number of pixel
to label may be prohibitively large especially in the case
of indoor images where foreground is usually more tightly
framed. A considerable memory saving is obtained by run-
ning the first iteration at a coarse resolution (sub-sampled by
a factor of 3 in the case of the indoor scenes, full resolution
in the case of sports scenes), and subsequent iterations at full
resolution after having re-computed the conservative visual
hull after each iteration. Subsequent iterations are usually
faster to process as most background pixels are usually re-
moved after the first iteration.

8 Model generation and rendering

A model is generated from the obtained layered depth recon-
struction and used for final rendering. Two approaches are
considered for generating the model depending on the size
of calibration errors. In the case of large calibration errors
(1–2 pixels) such as with the sports sequences, each lay-
ered depth representation defining a view-dependent 2.5D
foreground scene representation is converted into a regular
mesh with vertices defined by image pixel locations. Vertex
connectivity is decided based on the layer segmentation and
thresholding of the angle separating the line segment con-
necting 3D surface points defined by pairs of neighbouring
pixels and the optical ray passing through the midpoint of
the pixel pair (a threshold of 80◦ is used). This allows pixel
belonging to different layers or located at a depth disconti-
nuity to be correctly converted into separate mesh compo-
nents. For sports scenes, rendering is performed using only
a subset of the meshes obtained (those closest to the vir-
tual camera path) rather than the full set of meshes in order
to alleviate artefacts due to combining multiple inaccurately
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(a) Visual hull (b) Poisson (c) Poisson+visual hull (d) Proposed

Fig. 9 Meshes obtained through application of different merging techniques to the depth maps shown in the bottom row of Fig. 14.

calibrated reconstructions. From a practical point of view,
the virtual sequence is divided into a set of shots, each us-
ing a different subset of cameras. Artefacts due to switching
from one shot to the other are avoided by ensuring that suc-
cessive shots have a sufficient number of shared cameras.
Rendering is performed using view-dependent texture map-
ping (Debevec et al., 1996). The colour at a given pixel in the
virtual camera is obtained by linear blending of the nearest
two cameras weighted by their angular distance to the vir-
tual camera. To avoid hard edges, the binary segmentation
is refined into an alpha matte by defining a narrow band (2–
4 pixels) uncertainty regions along the segmentation edges
and an alpha matte is estimated using the closed-form mat-
ting algorithm proposed in (Levin et al., 2008).

If calibration errors are low (<1 pixel), improved results
can be obtained by merging the different representations into
a unique global representation using Poisson surface recon-
struction (Kazhdan et al., 2006). The algorithm produces
a watertight reconstruction and eliminates the redundancy
contained in the view-dependent meshes. Direct application
of the algorithm is usually not sufficient to obtain an ac-
curate reconstruction as there can be large portions of the
foreground which are not visible in any camera which tends
to produce large protrusions (see Fig. 9(b)). In (Vlasic et al.,
2009), Vlasic et al. compensate for the missing data by in-
cluding the visual hull mesh in the set of oriented meshes
used for Poisson surface reconstruction. For the data consid-
ered here, the visual hull is usually not accurate enough to be
combined with the view-dependent reconstructions without
introducing significant artefacts (see Fig. 9(c)). Instead we
perform a two-pass Poisson surface reconstruction. During
the first pass, only the points defined by the different view-
dependent depth maps are used, which yield a reconstruc-
tion containing protrusions at occluded regions (Fig. 9(b)).
In the second pass, protrusions are removed by adding vi-
sual hull sample points located inside the reconstruction ob-
tained at the first pass to the view-dependent sample points.
This effectively reduces the addition of points to badly re-
constructed areas, thus removing protrusions without dete-
riorating correctly reconstructed regions (see Fig. 9(d)). It
should be noted that the Poisson surface reconstruction takes
as input an oriented set of points while the depth recovered

is not orientated. Orientation is estimated based on neigh-
bouring pixels.

9 Results

Evaluation of the algorithm is performed using a variety of
datasets with relatively wide-baseline camera placements.
These can be divided into three main categories: indoor datasets
(Office and Dance1 captured with high quality Thomson
Viper studio cameras, Dance2 and Ball captured with lower
quality Canon camcorders), outdoor sports datasets (from an
international 6-Nations rugby game and a European Cham-
pionship soccer game, both captured using manually op-
erated zooming and rotating broadcast cameras and a few
additional static cameras), and evaluation datasets (Middle-
bury multi-view datasets and narrow-baseline soccer dataset).
Frames from each dataset are shown in the first column of
Fig. 11 and Fig. 12. The characteristics of the these datasets
are provided in Table 1; camera placement is illustrated in
Fig. 10. Experiments were performed on a server with 2
quad-core 2.26 GHz Intel Xeon processors. The datasets con-
sidered cover a wide variety of capture conditions ranging
from large-scale outdoor scenes with very little control on
the capture conditions to smaller scale indoor scenes with
different degrees of background complexity, image quality
and camera configurations.

For all datasets, cameras are assumed to be calibrated. In
the case of the indoor sequences, calibration is performed in
a two step approach where chart based calibration (Zhang,
2000) is first used to separately estimate the intrinsic pa-
rameters for each camera and then a wand-based calibration
algorithm is used to refine these parameters and estimate
the extrinsic parameters in a bundle-adjustment framework
(Mitchelson and Hilton, 2003). This typically produces sub-
pixel accuracy calibration. In the case of the sports sequences,
calibration is performed through-the-lens from pitch line fea-
tures as described in (Thomas, 2007). This typically pro-
duces calibration errors of the order of 1-3 pixels which are
rather large given player resolution (a pixel roughly corre-
sponds to 5cm on widely framed views) and pitch dimension
(100×50 m).
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Table 1 Characteristics of the different datasets and parameter settings.

Nunmber of Number Image Run-time
Name cameras of frames resolution λcolour λcontrast λmatch λsmooth λaux λVH w (per frame)
Office 8 (all static) 125 1920×1080 0.6 1.0 0.4 0.001 0.5 0.0 0.3 13min56s

Dance1 8 (all static) 250 1920×1080 0.6 1.0 0.4 0.001 0.5 0.0 0.01 8min12s
Dance2 7 (all static) 400 1920×1080 0.6 5.0 0.4 0.001 0.5 0.0 0.05 4min00s

Ball 7 (all static) 400 1920×1080 0.6 5.0 0.4 0.001 0.5 0.0 0.05 4min12s
Rugby 8 (4 moving) 300 1920×1080 0.5 1.0 0.2 0.1 0.0 0.5 0.5 3min28s
Soccer 5 (4 moving) 100 1920×1080 0.5 1.0 0.2 0.1 0.0 0.5 0.5 2min25s

Temple Full 312 1 640×480 0.5 10.0 0.5 0.0001 0.2 0.0 0.0 3h26min00s
Temple Ring 47 1 640×480 0.5 10.0 0.5 0.003 0.2 0.0 0.0 47min00s

Temple Sparse 16 1 640×480 0.5 10.0 0.5 0.003 0.2 0.0 0.0 31min00s
Dino Full 363 1 640×480 0.0 10.0 1.0 0.0001 0.5 0.0 0.0 8h14min00s
Dino Ring 48 1 640×480 0.5 10.0 0.5 0.02 0.2 0.0 0.0 55min00s

Dino Sparse 16 1 640×480 0.5 10.0 0.5 0.02 0.2 0.0 0.0 34min00s
Soccer-eval 15 (all static) 100 720×288 0.5 1.0 0.2 0.1 0.0 0.5 0.5 1min03s

(a) Office/Dance1 (b) Dance2/Ball (c) Rugby (d) Soccer (e) Soccer-eval

Fig. 10 Camera layout for the different datasets. Moving cameras are represented in red, while static cameras are represented in blue. For the
Soccer-eval dataset, the ground truth camera is indicated in yellow and additional left-out cameras are shown in cyan.

The same pipeline described in Fig. 3 is employed for
all datasets. Initial segmentation is obtained by computing
a background image plate for each input view using stan-
dard mosaicking techniques (this does not require separate
background capture) and thresholding the colour difference
between the background plate and original image. Initial
segmentation is often inaccurate due to overlapping fore-
ground and background colour distributions, which is ex-
acerbated by the presence of compression artefacts and mo-
tion blur in the case of the sports data. For this reason, seg-
mentation thresholds are set to low values to prevent fore-
ground erosion. Initial reconstruction is obtained by error
tolerant shape-from-silhouette which prevents scene trunca-
tion in the presence of calibration and segmentation errors
(Kilner et al., 2007). Joint refinement of segmentation and
reconstruction is then performed in parallel for each input
camera, using the set of neighbouring cameras as auxiliary
cameras. For sports data, usually no more than 1 or 2 aux-
iliary cameras are usable due to the wide-baseline. The lo-
cal colour models used for background is learnt automati-
cally from the background plate and its variance. The global

colour model for each layer is learnt using samples from the
background plate in the case of the background and from
a single manually annotated key-frame for each camera in
the case of the foreground; the numbers of components in
the mixture models were set to 5 in the case of the sports
datasets and 10 in the case of the indoor datasets. The depth
sampling step was set to 10 mm for all datasets except for
the Middlebury evaluation datasets in which case a 0.5 mm
step was used. The matching score used was the NCC in
the case of all indoor sequences (window size of 5× 5 for
the Middlebury datasets and 10× 10 for all other datasets)
and photo-consistency in the case of all sports sequences. A
summary of the parameter settings not described in the main
text is given in Table 1.

The evaluation performed using these datasets covers
three main aspects: segmentation, reconstruction, and appli-
cation to free-viewpoint video. In each case, the algorithm
is evaluated, both qualitatively and quantitatively, against
state-of-the-art algorithms in the field. For the qualitative
evaluation, examples shown in the paper had to be restricted
to single frames, however results on full sequences showing
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free-viewpoint video results together with intermediate seg-
mentation and reconstruction results are provided in the sup-
plementary video available from http://www.guillemaut.

org/publications/11/GuillemautIJCV11/. Due to copy-
right restrictions the soccer and rugby videos cannot be re-
leased publicly.

9.1 Segmentation results

The proposed technique is compared against the following
techniques:

Global colour model/Chroma keying: This approach uses
a global colour model in the form of a Gaussian mixture
model (GMM) to represent foreground and background
layers. Each model is learnt from a manually segmented
training image; the number of mixtures was manually
set based on the complexity of the scene. Classification
into foreground or background is made by identifying
the layer which maximises the probability function de-
rived from the colour models. This approach is used for
the indoor datasets. In the case of the sports datasets,
which tend to contain simpler distributions at the pitch
level, a user assisted chroma keying technique was used
instead (Grau et al., 2007).

Difference keying: This approach uses a background plate
representing the mean colour value at each pixel. Fore-
ground pixels are identified by first differencing the cur-
rent image with the background plate and then thresh-
olding the colour difference. For this approach, the thresh-
old was manually adjusted for optimum results. This ap-
proach was used to initialised the proposed join optimi-
sation technique.

Background cut (Sun et al., 2006): This approach com-
bines a global model for foreground and background with
a local model similar to that used in difference keying
and additional contrast information to encourage the seg-
mentation boundary to follow high contrast edges. The
approach uses graph cut to find an optimal labelling.

9.1.1 Qualitative evaluation

Results for all the techniques are presented in Fig. 11 and
Fig. 12 for selected frames; results on full sequences can be
seen in the accompanying video. For sports, chroma keying
tends to produce poor results as its applicability remains lim-
ited to grass areas, thus producing large errors in crowd areas
and at line locations. With indoor data, the technique based
on a global colour model also performs poorly, particularly
for scenes with complex overlapping background and fore-
ground colour distributions such as those of the Dance2 and
Ball sequences. Difference keying usually produces better
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Fig. 13 Quantitative evaluation of segmentation accuracy.

results due to the locality of the colour model it uses, how-
ever it fails in non static background areas, such as the crowd
in the case of the sports sequences, or in areas where fore-
ground and background colours are similar. This approach
also tends to fail in shadowed areas as can be seen in the case
of the Office and Dance1 sequences. Background cut pro-
duces better results than the previous two method by com-
bining local and global models thereby increasing robust-
ness and adding tolerance to non-static background elements,
however it yields inaccurate results in ambiguous areas. The
proposed approach, combining multiple view information to
disambiguate the problem, produces a cleaner segmentation
than all other methods. In Fig. 11 the only observable arte-
facts with the proposed method compared to ground truth
are in areas of strong shadows.

9.1.2 Quantitative evaluation

In order to quantify the segmentation accuracy of the dif-
ferent algorithms, ground truth data was generated for all
sequences. Ground truth was produced by manually seg-
menting, for each dataset, a set of images regularly sampled
during the length of the sequence and equally distributed
among all cameras. At least 30 images were annotated per
dataset. The error measure used for evaluation is the root
mean squared (RMS) error averaged over all images used
for evaluation. The results, shown in Fig. 13, confirm the
previous qualitative observations. Approaches based solely
on a global colour model usually performing worst, while
the second worst performer is normally difference keying,
except in the case of the Office sequence where it is the
worst performer; this is explained by the presence of large
shadows and a relatively simple background colour distribu-
tion. Background cut performs significantly better than the
previous two methods, while the proposed technique is con-
sistently ranked first. It should be noted that different im-
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Fig. 11 Segmentation results with indoor datasets for different techniques (see supplementary video for full sequences).
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Fig. 12 Segmentation results with sport datasets for different techniques (see supplementary video for full sequences).
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plementations of the proposed method are possible based on
the choice of prior introduced in Section 5.4. Our experience
is that the impact on segmentation is very small both quali-
tatively and quantitatively, and for this reason we decide not
to include a comparison. These methods and their effects on
reconstruction will be discussed in the next section.

9.2 Reconstruction results

In the case of indoor data, the following methods have been
used for comparison:

Visual hull: This uses a standard shape-from-silhouette
technique (Laurentini, 1994) described in Section 4. The
segmentation used to compute the visual hull is obtained
from difference keying; in the case of indoor data cap-
tured under controlled illumination this tends to produce
a conservative segmentation suitable for visual hull com-
putation without the need for introduction of additional
tolerance during reconstruction. The visual hull will be
used as an initial estimate for all other methods described
below.

Starck (Starck and Hilton, 2007): This is a volumetric
optimisation technique which uses graph-cut to find an
optimum dense reconstruction maximising stereo photo-
consistency and satisfying silhouette and sparse feature
constraints. The method has been widely used for wide
baseline studio reconstruction with a chroma-key blue
screen and application to free-viewpoint video. It requires
initialisation with the visual hull.

Furukawa (Furukawa and Ponce, 2010): This approach
uses a three stage approach where sparse matches are
first identified to define seed points which are then ex-
panded to neighbouring regions using a growing approach
and finally filtered to remove outliers based on a visibil-
ity constraint. This approach is one of the top perform-
ers according to the Middlebury multi-view evaluation
page. We used the Patch-based Multi-view Stereo Soft-
ware (PMVS - Version 2) which has been made pub-
licly available4. Initialisation with the visual hull is op-
tional with this technique. For a fair comparison, like
other techniques, this technique was initialised with the
visual hull.

In the case of sports data, techniques such as (Starck
and Hilton, 2007) and (Furukawa and Ponce, 2010) are not
suitable due to large calibration errors and poor resolution
which prevent extraction of robust silhouette and sparse con-
straints and convergence to a global solution. Instead, the
following simpler methods have been used for comparison:

Visual hull: This is the same as previously described.

4 http://grail.cs.washington.edu/software/pmvs/

Conservative visual hull (Kilner et al., 2007): This is
an error-tolerant implementation of the visual hull algo-
rithm where a voxel is deemed occupied if its projection
lies within a given threshold from the foreground in all
images. This is equivalent to dilating the foreground re-
gions prior to conventional visual hull computation.

Stereo refinement: This performs a view-dependent dense
stereo reconstruction based only on photo-consistency
(no colour, contrast or smoothness term) as defined in
Section 5.3. While simple, this method provides a good
indication of what can be achieved using stereo informa-
tion.

The following three different implementations of the pro-
posed algorithm have been tested:

Proposed-standard: This uses the standard fronto-parallel
(locally constant) depth prior described in Section 5.4
with no additional visual hull prior (λVH = 0 in Eq. (21)).

Proposed-iso: This uses the iso-surface based depth prior
introduced in Section 5.4 with no additional visual hull
prior (λVH = 0 in Eq. (21)).

Proposed-hybrid: This uses the standard fronto-parallel
prior described in Section 5.4 combined with the visual
hull prior introduced in Section 6 (λVH = 1 in Eq. (21)).

It should be noted that we did not include the case where
the iso-surface prior is combined with the visual hull prior.
While there is nothing in principle preventing the simultane-
ous use of these two priors, we found that there is no benefit
in doing so since the visual hull prior provides sufficient in-
formation to disambiguate the problem. In fact use of the vi-
sual hull prior with the iso-surface prior is likely to be detri-
mental in this case as it will increase the run-time compared
to a standard depth prior. Note also that in the case of in-
door data, there would be no benefit in using the iso-surface
or visual hull priors since there are strong matching cues.
As a result, only the first implementation was used in this
case. In the case of the sports sequences, which present very
weak matching cues, all three approaches are compared. For
indoor data, three iterations of optimisation of the energy
defined in Eq. (21) are performed in order to improve multi-
view consistency. In the case of sports data, which is already
constrained using additional priors, a single iteration is per-
formed.

9.2.1 Qualitative evaluation

Fig. 14 and Fig. 15 show some examples of depth maps
estimated in the case of the Office and Rugby datasets re-
spectively. In the case of the sports sequences, a single it-
eration of the algorithm was sufficient due to the use of ad-
ditional priors to constrain the reconstruction. In the case
of indoor datasets, we do not use any additional prior but
perform several iterations (three) in order to improve depth
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Fig. 14 Depth maps obtained in the case of the Office dataset. Rows show the evolution of the estimated depth maps with respect to the number
of iterations performed. Columns correspond to different camera locations.
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Fig. 15 Depth maps obtained in the case of the Rugby dataset. A single iteration is sufficient to obtain consistent depth maps due to the use of the
additional visual hull prior. Columns correspond to different camera locations.

map consistency. Note how the multi-view consistency term
Eaux(d) reduces noise in the estimated depth maps and re-
duces artefacts occurring on poorly textured regions such as
the legs of the table. The final meshes obtained (both un-
textured and textured) rendered from a novel viewpoint are
shown in Fig. 16 and Fig. 17 in the case of indoor and sports
data respectively.

In the case of indoor data, the visual hull produces large
protrusions in shadowed areas which were erroneously seg-
mented as foreground (Dance2 and Ball sequences). Both
(Starck and Hilton, 2007) and (Furukawa and Ponce, 2010)
produce an improved reconstruction, however they both fail
to produce an adequate reconstruction in the shadow regions
due to their inability to refine the segmentation. In contrast,
the proposed technique is able to refine the segmentation and
produce a much improved reconstruction of the foreground.
To evaluate the performance of the techniques with high
quality segmentation input, these techniques were also ap-
plied to the segmentation output of the proposed approach.
These techniques are referred to as Visual hull + mattes,
Starck + mattes and Furukawa + mattes. Use of the high
quality segmentation produced by the proposed technique
significantly improves the quality of foreground reconstruc-
tion, in particular for the Office and Dance1 sequences. (Starck
and Hilton, 2007), (Furukawa and Ponce, 2010) and the pro-

posed technique perform generally very well. An apparent
limitation of (Starck and Hilton, 2007) is its difficulty to
reconstruct thin or flat structures such as the desk where
it tends to produce holes or truncation. These errors are a
drawback of the volumetric formulation which is biased to-
wards smaller surface areas. In contrast, (Furukawa and Ponce,
2010) and the proposed technique do not suffer from these
artefacts. They are both able to reconstruct fine details such
as cloth wrinkling. A significant advantage of the proposed
technique is its ability to jointly perform the segmentation
and reconstruction, thus allowing operation with much lower
quality input segmentation.

In the case of sports data, as expected the visual hull
produces large truncations due to calibration and segmenta-
tion errors. These truncations have been eliminated in the
conservative visual hull but have been replaced by some
protrusions and phantom volumes. Stereo refinement of the
conservative visual hull results in a very noisy reconstruc-
tion; this illustrates the weakness of the available photo-
consistency information. In contrast, the proposed techniques
yield a smooth reconstruction with accurate player bound-
aries and the elimination of phantom volumes. The proposed
approach based on the standard depth prior tends to produce
view-dependent reconstructions biased towards flat models
which result in errors when combined. The proposed ap-
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Fig. 16 Reconstruction results with indoor datasets for different techniques (see supplementary video for full sequences).
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Visual hull Conservative visual hull Stereo refinement Proposed-standard Proposed-iso Proposed-hybrid

Fig. 17 Reconstruction results with sport datasets for different techniques (see supplementary video for full sequences).

proach based on the iso-surface prior introduced in Section 5.4
produces models which are naturally more consistent due to
their bias towards the conservative visual hull iso-surfaces,
however the models may appear inflated due to the conser-
vativeness of the prior introduced. Finally, the proposed hy-
brid approach which combines the standard prior with an
additional visual hull prior is naturally consistent and does
not suffer from the inflation observed in the previous case.
This produces the most consistent results among the three
methods compared.

9.2.2 Quantitative evaluation

Evaluation of the algorithm for reconstruction with the types
of datasets considered so far is not feasible due to the dif-
ficulty in capturing ground truth data for video sequences.
Instead, the performance of the proposed algorithm is evalu-
ated using the Middlebury multi-view dataset5 following the
methodology described in (Seitz et al., 2006) which consid-
ers both accuracy and completeness. Results where evalu-
ated for all six datasets, i.e. the dino and temple datasets for
all camera configurations (sparse, ring and full). See Fig. 18
for some images of the models obtained. A summary of the
results obtained for the proposed technique in the case of

5 http://vision.middlebury.edu/mview/

the standard depth prior are shown in Table 2. For reference,
results reported using (Starck and Hilton, 2007) and (Fu-
rukawa and Ponce, 2010) were also included. Full results
can be seen on the Middlebury evaluation webpage.

The results show that the proposed algorithm is able to
produce accurate and complete reconstructions across the
range of camera configurations considered. In particular, the
algorithm performs extremely well for the full datasets. It is
ranked fifth in terms of accuracy for the Temple Full dataset
(better than (Furukawa and Ponce, 2010)) and third in terms
of accuracy for the Dino Full dataset (in both cases only a
few hundredths of a mm behind the top performers). The
algorithm is also top performer for the Dino Full dataset
in terms of completeness (the only algorithm achieving a
score of 100%). For sparser datasets, the algorithm is still
able to achieve good performance, being usually ranked in
the middle of the table. This is a rather good performance
bearing in mind that algorithms are usually separated by
very small differences in accuracy or completeness. The pro-
posed approach performs significantly better than (Starck
and Hilton, 2007) for all datasets. It should be noted that
unlike other algorithms in the Middlebury multi-view eval-
uation which only address reconstruction, our approach ad-
dresses the joint problem of reconstruction and segmenta-
tion.
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Temple Full Temple Ring Temple Sparse Dino Full Dino Ring Dino Sparse

Fig. 18 Reconstruction results with Middlebury multi-view datasets.

Table 2 Quantitative evaluation of the accuracy and completeness of the reconstruction on Middlebury multi-view datasets; the superscript number
indicates the rank of the method.

Temple Full Temple Ring Temple Sparse Dino Full Dino Ring Dino Sparse
Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

Starck N/A N/A N/A N/A 1.2726 87.723 N/A N/A N/A N/A 1.0126 90.725

Furukawa 0.497 99.65 0.472 99.62 0.635 99.31 0.332 99.83 0.281 99.81 0.371 99.23

Proposed-standard 0.435 99.07 0.7124 97.623 0.8616 96.28 0.353 1001 0.5822 99.57 0.6820 98.010

9.3 Free-viewpoint video results

9.3.1 Qualitative evaluation

The technique can be used to synthesise views from novel
viewpoints where real cameras cannot be physically located
such as views from inside the pitch or to add value to the
match analysis. Some examples of images from the free-
viewpoint video sequences we generated for sports can be
seen in Fig. 19; full sequences can be seen in the supple-
mentary video. The background stadium models are man-
ually generated using either images from the captured se-
quences (soccer sequence) or synthetic images (rugby se-
quence). High quality rendering from view-dependent ge-
ometry and images is made possible by the use of the pro-
posed technique. This accurately aligns wide baseline views
based on stereo matches and gives a smooth surface approx-
imation based on iso-surfaces of the visual-hull shape prior
in regions of uniform appearance which commonly occur
on player shirts or due to views sampled at significantly dif-
ferent resolutions. In order to maximise the degree of real-
ism, the scene is augmented with virtual shadows. A shadow
mapping algorithm is used to simulate a virtual light source
and cast soft shadows generated by players onto the ground.

9.3.2 Quantitative evaluation

A quantitative evaluation of free-viewpoint rendering accu-
racy was performed on the soccer-eval dataset which con-
sists of 15 closely spaced cameras. One camera (shown in
yellow in Fig. 10(e)) was excluded from reconstruction and
used to provide ground truth. Three sets of reconstruction
cameras were defined by excluding one, two or three of the
neighbouring cameras (see Fig. 10), thus defining sets with
increasing baseline. All reconstruction techniques were then
used to synthesise the sequences of images from the same
viewpoint as the ground truth camera. The quality of the
synthesised images was assessed by measuring their sim-
ilarity with the ground truth images. Evaluation was per-
formed over 100 frames based on the completeness, shape,
PSNR and appearance scores defined in (Kilner et al., 2009).
Results are shown in Fig. 20. The visual hull produces the
worst results. The conservative visual hull produces a com-
plete reconstruction but a poor estimate of shape and appear-
ance. The stereo refinement of the conservative visual hull
and the proposed techniques all score high on all evaluation
criteria with the proposed hybrid method being consistently
the top performer. Although scores are comparably high for
these techniques, the visual quality is usually greater for
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Fig. 19 Sample frames from the free-viewpoint video sequences generated using the proposed technique (see supplementary video for full se-
quences).

the proposed technique using the additional visual hull prior
(Proposed-hybrid) closely followed by the proposed tech-
niques using the iso-surface and standard depth priors (see
supplementary video). This is not reflected in the evaluation
scores which are not able to capture essential visual features
such as temporal consistency and image smoothness. These
visual quality improvements can be best seen in the accom-
panying video.

10 Conclusions and future work

This paper introduced a novel approach for simultaneous
multi-layer segmentation and reconstruction of complex dy-
namic scenes captured under challenging outdoor or natu-
ral background indoor conditions. View-dependent graph-
cut optimisation is proposed combining visual colour and
contrast cues, previously used in 2D image segmentation,
with multiple view dense photo-metric correspondence and
sparse spatio-temporal feature matching, previously used in
reconstruction. Strong priors on shape and appearance are

combined with multiple view visual cues to achieve accu-
rate segmentation and reconstruction which is robust to rela-
tively large errors (1-3 pixels RMS) in through-the-lens cam-
era calibration of large scale sports scenes. A general frame-
work for iteratively enforcing multiple view consistency be-
tween the view-dependent reconstructions has been intro-
duced, together with a method for robustly merging recon-
structions from multiple views separated by a wide baseline
when calibration accuracy is sufficiently high.

A fully automatic system is presented for multiple view
calibration, segmentation and reconstruction from moving
broadcast cameras to allow high-quality free-viewpoint ren-
dering of sports such as rugby and soccer. Evaluation of
simultaneous multiple view segmentation and reconstruc-
tion in challenging outdoor scenes demonstrates consider-
able improvements over independent single view segmen-
tation and conventional visual-hull or stereo reconstruction.
Sports reconstruction presents a challenging problem with
a small number (6-12) of independently manually operated
panning and zooming broadcast cameras, sparsely located
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Fig. 20 Quantitative evaluation of free-viewpoint video performance.

around the stadium to cover a large area with multiple play-
ers. This results in multiple view wide-baseline capture at
different resolutions with motion blur due to player and cam-
era motion. The framework enables high-quality rendering
of novel views from wide-baseline moving camera acqui-
sition of sports, overcoming limitation of previous multiple
view reconstruction algorithms.

Experiments with a range of complex indoor sequences
with natural background demonstrated the system’s ability
to achieve a level of accuracy similar to state-of-the-art al-
gorithms such as (Furukawa and Ponce, 2010) without re-
quirement for accurate input segmentation. This is a signifi-
cant advantage as it allows fully automatic reconstructions
of foreground scenes in the presence of cluttered natural
backgrounds. Quantitative evaluation using the Middlebury
multi-view datasets showed the method to be accurate, being
ranked among the top 5 for two of the datasets. This demon-
strates the ability of the technique to operate in a range of
conditions from indoor environments to challenging outdoor
environments without the need for manual intervention.
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Appendix

We now give a proof that the energy defined in Eq. (21) sat-
isfies the regularity condition required for graph-cut optimi-
sation via α-expansion (Kolmogorov and Zabih, 2004). For
that, it is sufficient to demonstrate that each pair-wise en-
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ergy term (i.e. each contrast and smoothness term defined in
Eq. (7) and Eq. (20)) is a metric (Boykov et al., 2001).

Each contrast term is independent of the depth labels.
Additionally, the function C being constant for a given pixel
pair, each term defines a Potts model with respect to the
layer labels. This type of function is well known to be a
metric.

Let us now show that each smoothness term defines a
metric. Let us introduce a label d∞ with finite depth d∞ ≥
dmax+maxP dp. We can re-parametrise the energy by replac-
ing the unknown label U by the label d∞ and defining the
equivalent smoothness term:

esmooth(lp,dp, lq,dq) =

{
min(|dp−dq|,dmax) if lp = lq,

dmax otherwise.
(26)

The function esmooth is a metric if it satisfies:

esmooth(lα ,dα , lβ ,dβ ) = 0⇔ lα = lβ and dα = dβ , (27)

esmooth(lα ,dα , lβ ,dβ ) = esmooth(lβ ,dβ , lα ,dα)≥ 0, (28)

esmooth(lα ,dα , lβ ,dβ ) ≤ esmooth(lα ,dα , lγ ,dγ)

+esmooth(lγ ,dγ , lβ ,dβ ), (29)

for any labels (lα ,dα), (lβ ,dβ ) and (lγ ,dγ).
Clearly, esmooth satisfies Eq. (27) and Eq. (28), so it re-

mains to prove that the triangular inequality Eq. (29) is ver-
ified. Let us distinguish the following five cases:

lα = lβ = lγ : In this case esmooth is a truncated abso-
lute distance which is well known to be a metric and satisfy
Eq. (29).

lα 6= lβ , lα 6= lγ , lβ 6= lγ : In this case esmooth is constant
and Eq. (29) is trivially satisfied.

lα = lγ , lβ 6= lα : In this case we have

esmooth(lα ,dα , lβ ,dβ ) = esmooth(lγ ,dγ , lβ ,dβ ) = dmax, (30)

and the triangular inequality is satisfied because by defini-
tion esmooth(lα ,dα , lγ ,dγ)≥ 0.

lβ = lγ , lα 6= lβ : This is equivalent to the previous case
after permutation of α and β .

lα = lβ , lγ 6= lα : In this case Eq. (29) is equivalent to
esmooth(lα ,dα , lγ ,dγ)≤ 2dmax, which always holds. This com-
pletes the proof. ut
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