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Abstract

Current state-of-the-art image-based scene reconstruc-
tion techniques are capable of generating high-fidelity 3D
models when used under controlled capture conditions.
However, they are often inadequate when used in more chal-
lenging outdoor environments with moving cameras. In this
case, algorithms must be able to cope with relatively large
calibration and segmentation errors as well as input im-
ages separated by a wide-baseline and possibly captured
at different resolutions. In this paper, we propose a tech-
nique which, under these challenging conditions, is able
to efficiently compute a high-quality scene representation
via graph-cut optimisation of an energy function combin-
ing multiple image cues with strong priors. Robustness is
achieved by jointly optimising scene segmentation and mul-
tiple view reconstruction in a view-dependent manner with
respect to each input camera. Joint optimisation prevents
propagation of errors from segmentation to reconstruction
as is often the case with sequential approaches. View-
dependent processing increases tolerance to errors in on-
the-fly calibration compared to global approaches. We eval-
uate our technique in the case of challenging outdoor sports
scenes captured with manually operated broadcast cam-
eras and demonstrate its suitability for high-quality free-
viewpoint video.

1. Introduction

In recent years, tremendous progress has been made in
the field of image-based scene reconstruction, to such an ex-
tent that, under controlled conditions and provided a suffi-
cient number of input images are captured, the performance
of such techniques is almost on a par with that of active
techniques such as laser range scanners. A good testimony
of the capabilities of the current state-of-the-art is provided
by the multiple-view Middlebury dataset [22] which shows
top performing algorithms capable of sub-millimetre accu-
racy. The increase in quality can be attributed to improve-

Figure 1. Two moving broadcast camera views (top) and a locked-
off camera view (bottom-left) from a rugby match.

ments in algorithm robustness and also the emergence of
more powerful optimisation techniques such as graph-cuts
[25], which have enabled the optimisation of otherwise in-
tractable cost functions.

Although these algorithms are capable of high-fidelity
modelling in controlled studio settings, their performance
is often sub-optimal when applied in less controlled con-
ditions of operation, such as those of outdoor scene cap-
ture of stadium sports (see Fig. 1). In this case, reconstruc-
tion algorithms must be able to cope with a number of fac-
tors: calibration errors resulting from on-the-fly calibration
of moving and zooming cameras with motion blur; wide-
baselines and resolution differences between camera views;
non-uniform dynamic backgrounds and multiple people of
a relatively small size. Scene segmentation is more diffi-
cult because of increased background complexity and the
likelihood of overlapping background and foreground dis-
tributions, which make standard chroma-keying techniques
unusable. In addition, camera placement and framing are
manually controlled and not optimised for 3D modelling;
cameras are sparsely located with manual operation of pan,
tilt and zoom to frame the action.

In this paper, we present a robust approach to recon-
struction of scenes captured under these challenging con-
ditions. The approach combines multiple view visual cues
such as colour, contrast and photo-consistency information,
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with strong shape priors to achieve robust reconstruction for
large-scale scenes with sparse wide-baseline moving cam-
eras at different resolutions subject to errors in on-the-fly
calibration. A key idea of the technique is to jointly per-
form segmentation and reconstruction rather than the usual
sequential approach where segmentation is followed by re-
construction. We argue that a joint formulation helps dis-
ambiguate segmentation of individual views by introduc-
tion of information from multiple views and prevents prop-
agation of errors from segmentation leading to failure in
reconstruction. View-dependent optimisation with respect
to each input camera also increases robustness to errors in
camera calibration which prohibit a globally consistent sur-
face reconstruction. A fully automatic system is presented
for multiple view calibration, segmentation and reconstruc-
tion from moving broadcast cameras to allow high-quality
free-viewpoint rendering of sports such as rugby and soccer.
Evaluation of simultaneous multiple view segmentation and
reconstruction in challenging outdoor scenes demonstrates
considerable improvements over single view segmentation
and previous multiple view reconstruction approaches. The
contribution of this work is a robust framework for recon-
struction from multiple moving cameras of complex dy-
namic scenes which combines visual cues from multiple
views to simultaneously segment and reconstruct the scene
overcoming limitations of previous approaches using static
cameras at a similar resolution which require high-quality
calibration, segmentation and matching.

2. Related work

2.1. Robust view-dependent scene reconstruction

Multiple view reconstruction from images has received
considerable research interest. A recent survey [22] clas-
sifies these algorithms into four categories: (i) volumetric
surface extraction, (ii) surface evolution, (iii) depth map-
based and (iv) feature point-based surface extraction. Our
algorithm belongs to the third category. In their seminal
paper [18], Narayanan et al. introduced the concept of Vir-
tualized Reality. They use a set of 51 cameras distributed on
a hemispherical dome to compute 3D models of a dynamic
scenes by first computing a depth map for each camera and
then merging them into a consistent 3D model. Since then, a
number of techniques based on similar two stage pipelines
have been proposed. In [7], Goesele et al. use a window-
based voting approach in order to increase depth map ac-
curacy. The technique produces incomplete reconstructions
as ambiguous or occluded areas cannot be reconstructed,
but achieves high accuracy in the reconstructed areas. In
[5], Campbell et al. introduce multiple depth hypotheses at
each pixel and an unknown depth label to cope with ambi-
guities caused by occlusions or lack of texture.

2.2. Joint segmentation and reconstruction

In [23], Snow et al. propose a generalisation of
shape-from-silhouette reconstruction by integrating the seg-
mentation into the voxel occupancy estimation process.
Goldlücke and Magnor [8] proposed a joint graph-cut re-
construction and segmentation algorithm which generalises
the work of Kolmogorov and Zabih [13] by adding a back-
ground layer to the formulation. Both approaches produce
global scene reconstructions and are therefore prone to cal-
ibration errors. In [12], Kolmogorov et al. proposed a joint
segmentation and reconstruction technique which, although
structurally similar to ours, targets a different application
(background substitution) and is limited to two-layer seg-
mentation from narrow baseline stereo cameras while our
approach handles an arbitrary number of layers required for
multi-player occlusions in sports. In [9], Guillemaut et al.
proposed a view-dependent graph-cut approach which can
be viewed as a generalisation of Roy and Cox’s method [21]
with the introduction of a background layer. Finally, in the
context of view interpolation, Zitnick et al. performed view-
dependent reconstruction using colour-segmentation based
stereo [27]. Although similar in principle with the proposed
technique, these methods assume static cameras separated
by a relatively small baseline compared to those considered
in this paper. Consequently, they lack robustness with re-
spect to errors in input calibration.

2.3. Sports related research

There is a growing interest in virtual replay production in
sports using free-viewpoint video techniques. Transferring
studio techniques to the sports arena is a notoriously diffi-
cult problem due to the large area, limited access and cost
of placing additional cameras. Ideally, solutions will work
from the existing broadcast cameras which are manually op-
erated. An initial attempt used in the Eye Vision system
at the Super Bowl used camera switching between a large
number of slaved cameras to perform transitions. More re-
cent approaches used view-interpolation techniques [20] or
planar billboards [19]. These techniques are usually fast,
however lack of explicit geometry can result in unrealistic
artefacts. Recently some more complex offline optimisa-
tion techniques based on graph-cuts [9] or deformable mod-
els [11] have been reported. These techniques were able to
achieve visual quality comparable to that of the input im-
ages, however results were reported with a dedicated set of
15 closely spaced static cameras located around a quarter
of the pitch. Current commercial products include the Piero
system which is limited to a single camera input and the
Liberovision system which is capable of photo-realistic in-
terpolation between match cameras but remains limited to a
single frame due to the requirement for manual intervention
in calibration and segmentation. In contrast, the proposed



technique is able to a render full sequence from a set of
sparsely located input cameras which are not required to be
static.

3. View-dependent segmentation and recon-
struction

3.1. Problem statement and notation

Given a reference camera and a set of n auxiliary cam-
eras (referred to by the indices 1 to n) all synchronised and
calibrated, we would like to (i) partition the reference image
into its constituent background/foreground layers and (ii)
estimate the depth at each pixel. This can be formulated as
a labelling problem where we seek the mappings l : P → L
and d : P → D, which respectively assign a layer label lp
and a depth label dp to every pixel p in the reference im-
age. P denotes the set of pixels in the reference image; L
and D are discrete sets of labels representing the different
layer and depth hypotheses. L = {l1, . . . , l|L|} may consist
of one background layer and one foreground layer (classic
segmentation problem) or of multiple foreground and back-
ground layers. In this paper we assume multiple foreground
layers corresponding to players at different depths and a sin-
gle background layer. More precisely, foreground layers are
defined by first computing an approximate background seg-
mentation and then computing a conservative visual hull es-
timate [11], from which the 3D connected components are
extracted to define foreground layers. The set of depth la-
bels D = {d1, . . . , d|D|−1,U} is formed of depth values di
obtained by sampling the optical rays together with an un-
known label U used to account for occlusions. Occlusions
are common and can be severe when the number of cameras
is small (Fig. 1), especially in the background where large
areas are often visible only in a single camera.

3.2. Energy formulation

We formulate the problem of computing the optimum la-
belling (l, d) as an energy minimisation problem of the fol-
lowing cost function

E(l, d) = λcolourEcolour(l) + λcontrastEcontrast(l)+
λmatchEmatch(d) + λsmoothEsmooth(l, d). (1)

The different energy terms correspond to various cues de-
rived from layer colour models, contrast, photo-consistency
and smoothness priors, whose relative contribution is con-
trolled by the parameters λcolour, λcontrast, λmatch and λsmooth.

3.3. Description of the different energy terms

The colour and contrast terms are frequently used in seg-
mentation problems, while the matching and smoothness
terms are normally used in reconstruction. Here we min-
imise an energy functional which simultaneously involves

these two types of terms. Colour and contrast terms are very
similar in principle to [24] with the main distinction that we
extend the formulation to an arbitrary number of layers.

3.3.1 Colour term

The colour term exploits the fact that different layers (or
groups of layers) tend to follow different colour distribu-
tions. This encourages assignment of pixels to the layer
following the most similar colour model, and is defined as

Ecolour(l) =
∑
p∈P
− logP (Ip|lp), (2)

where P (Ip|lp = li) denotes the probability at pixel p in
the reference image of belonging to layer li. Similarly to
[24], the model for a layer li is defined as a linear combi-
nation of a global colour model Pg(Ip|lp = li) and a local
colour model Pl(Ip|lp = li):

P (Ip|lp = li) = wPg(Ip|lp = li)+(1−w)Pl(Ip|lp = li),
(3)

where w is a real value between 0 and 1 controlling the
contributions of the global and local model. A dual colour
model combining global and local components allows for
dynamic changes in the background. It should be noted that
the local model is applicable only to static layers (this is
often the case for background layers).

For a given layer li, the global component of the colour
model is represented by a Gaussian Mixture Model (GMM)

Pg(Ip|lp = li) =
Ki∑
k=1

wikN(Ip|µik,Σik), (4)

where N is the normal distribution and the parameters wik,
µik and Σik represent the weight, the mean and the covari-
ance matrix of the kth component for layer li. Ki is the
number of components of the mixture model for layer li.

The local component of the colour model for a static
layer li is represented by a single Gaussian distribution for
each pixel p:

Pl(Ip|lp = li) = N(Ip|µip,Σip), (5)

where the parameters µip and Σip represent the mean and
the covariance matrix of the Gaussian distribution at pixel
p. Learning of the colour models is described in Section 4.

3.3.2 Contrast term

The contrast term encourages layer discontinuities to occur
at high contrast locations. This naturally encourages low
contrast regions to coalesce into layers and favours discon-
tinuities to follow strong edges. This term is defined as

Econtrast(l) =
∑

(p,q)∈N

econtrast(p, q, lp, lq), with (6)



econtrast(p, q, lp, lq) =
{

0 if lp = lq,
exp (−βC(Ip, Iq)) otherwise.

(7)
N denotes the set of interacting pairs of pixels in P (a 4-
connected neighbourhood is assumed) and || · || is the L2

norm. C(·, ·) represents the squared colour distance be-
tween neighbouring pixels, and β is a parameter weighting
the distance function. Although various distance are possi-
ble for C(·, ·), we use the attenuated contrast [24]

C(Ip, Iq) =
||Ip − Iq||2

1 +
(
||Bp−Bq||

K

)2

exp
(
− z(p,q)2

σz

) , (8)

where z(p, q) = max(||Ip − Bp||, ||Iq − Bq||). Bp is the
background colour at pixel p; it is provided by the local
component of the colour model defined in Section 3.3.1. β,
K and σz are parameters which are set to the standard val-
ues suggested in [24]. This formulation uses background in-
formation to adaptively normalise the contrast, thereby en-
couraging layer discontinuities to fall on foreground edges.

3.3.3 Matching term

The matching term is based on the idea that a correct depth
estimate must have similar appearances in the images in
which the point is visible. Similarity can be measured at
each pixel based on photo-consistency or robust feature
constraints when available. This term encourages depth
assignments to maximise these multi-view similarity mea-
sures. Our formulation combines dense (photo-consistency
based) and sparse (SIFT feature based) constraints:

Ematch(d) = Edense(d) + Esparse(d). (9)

The dense matching score is defined as

Edense(d) =
∑
p∈P

edense(p, dp), with (10)

edense(p, dp) =
{
S(P (p, dp)) if dp 6= U ,

SU if dp = U . (11)

P (p, dp) denotes the coordinates of the 3D point along the
optical ray passing through pixel p and located at a distance
dp from the reference camera. The function S(·) measures
the similarity of the reference camera with the auxiliary
cameras in which the hypothesised point P (p, dp) is visi-
ble. For weakly textured scenes such as the ones considered
in this paper, standard normalised cross correlation simi-
larity measures are inadequate. A more appropriate choice
in this case is an error tolerant photo-consistency measure
similar to [15]. This computes photo-consistency over ex-
tended regions of radius rtol rather than single pixels, and
thereby compensates for calibration errors or non-uniform

image sampling. The photo-consistency score between the
reference image and the auxiliary camera i is defined as

photoi(X) = max
(q−πi(X))2<rtol

(Ip − Iiq)2

σ2
i

, (12)

where σ2
i normalises the photo-consistency measure for

each auxiliary camera i and the function πi(X) projects the
hypothesised 3D point X into the image plane of camera
i. A robust combination rule is defined as the sum of the k
most photo-consistent pairs denoted by Bk

S(X) =
∑
i∈Bk

photoi(X). (13)

The sparse matching score is defined as

Esparse(d) =
∑
p∈P

esparse(p, dp), with (14)

esparse(p, dp) =
{

0 if F(p) = ∅ or dp ∈ F(p),
∞ otherwise.

(15)
F(p) denotes the set of depth labels located within a dis-
tance T from a sparse constraints at pixel p. This forces
the reconstructed surface to pass nearby existing sparse 3D
correspondences. Because of calibration errors, we do not
require the reconstruction to match exactly the sparse con-
straints, but allow a tolerance controlled by the parameter
T . We use affine-covariant features [17, 16] which are
known to be robust to changes in viewpoint and illumi-
nation. In this paper, we used the Hessian-affine feature
detector. Image features which appear located at the fore-
ground/background junction cannot be used to establish re-
liable correspondences; we use the learnt colour models de-
fined in Section 3.3.1 to discard such features based on their
ratio of foreground and background pixels. Features are
represented using the SIFT descriptor and matched based
on a nearest neighbour strategy. Robust matching is ensured
by restricting the search to areas within a tolerance distance
from the epipolar lines. The left-right spatial consistency
(reciprocity) constraint is enforced together with temporal
consistency which requires corresponding features between
camera views to be in correspondence temporally with the
previous or the next frame.

3.3.4 Smoothness term

The smoothness term encourages the depth labels to vary
smoothly within each layer. This is useful in situations
where matching constraints are weak (poor photoconsis-
tency or a low number of sparse constraints) and insufficient
to produce an accurate reconstruction without the support
from neighbouring pixels. It is defined as

Esmooth(l, d) =
∑

(p,q)∈N

esmooth(lp, dp, lq, dq), with (16)



esmooth(lp, dp, lq, dq) = (17) min(|dp − dq|, dmax) if lp = lq and dp, dq 6= U ,
0 if lp = lq and dp, dq = U ,
dmax otherwise.

Discontinuities between layers are assigned a constant
smoothness penalty dmax, while within each layer the
penalty is defined as a truncated linear distance. Such a dis-
tance is discontinuity preserving as it does not over-penalise
large discontinuities within a layer; this is known to be su-
perior to simpler non-discontinuity functions (see [4, 14]).
This term also encourages unknown features to coalesce
within each layer.

The choice of shape prior is crucial. A commonly used
prior is to assume locally constant depth (fronto-parallel as-
sumption). In this case, a label (lp, dp) corresponds to the
point from layer lp and located at a distance dp from the ref-
erence camera centre along the ray emanating from pixel p.
Although this yields good quality results when supported by
strong matching cues, this results in bias towards flat figure
models which do not give good alignment between views.
An alternative approach which we use here is to place sam-
ples along the iso-surfaces of the visual hull, which results
in a reconstructed surface biased towards the visual hull
iso-surfaces. We call this prior the iso-surface prior. In
this case, a label (lp, dp) corresponds to the first point of
intersection between the ray emanating from pixel p and
the dp-th iso-surface in the interior of the visual hull’s con-
nected component corresponding to layer lp. To account
for calibration and matting error, we use the error toler-
ant visual hull proposed in [11]. Unlike the fronto-parallel
prior, the iso-surface prior is view-independent and results
in reconstructions more realistic and likely to coincide in
the absence of strong matching cues. It can be noted that
the choice of a fronto-parallel or an iso-surface prior affects
the correspondence between labels and the 3D points they
represent, however it does not change the formulation in
Eq. (17) since the set of depth values remain an ordered set
of discrete values.

3.4. Graph-cut optimisation

Optimisation of the energy defined by Eq. (1) is known
to be NP-hard. However, an approximate solution can be
computed using the expansion move algorithm based on
graph-cuts [4]. Proof of the regularity of the energy func-
tion, required for alpha expansion optimisation, is provided
in [1]. The expansion move proceeds by cycling through
the set of labels α = (lα, dα) in L × D and performing an
α-expansion iteration for each label until the energy cannot
be decreased (see [4]). An α-expansion iteration is a change
of labelling such that each pixel p either retains its current
value or takes the new label α. Each α-expansion iteration
can be solved exactly by performing a single graph-cut us-
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Figure 2. Camera layout for the different datasets. Broadcast cam-
eras are represented as blue arrows, locked-off cameras as red ar-
rows. Crossed-out cameras were not used due to inadequate fram-
ing. The ground truth camera is indicated in yellow; additional
left-out cameras are shown in light blue colour.

ing the min-cut/max-flow algorithm [3]. After convergence
of the algorithm, the result obtained is guaranteed to be a
strong local optimum [4]. The α-expansion algorithm was
initialised with the visual hull estimate; convergence has
been found to be insensitive to the choice of initialisation.
In practice, convergence is usually achieved in 3 or 4 cycles
of iterations over the label set. We improve computation
and memory efficiency by dynamically reusing the flow at
each iteration of the min-cut/max-flow algorithm [2]. This
results in a speed-up of an order of two.

4. Results
Testing of the algorithm was performed on two wide-

baseline datasets from an international 6-Nations rugby
game (400 frames) and a European Championship soccer
game (100 frames). In addition, a quantitative evaluation of
the free-viewpoint capabilities of the different techniques
was performed on a soccer game (100 frames) captured us-
ing a special camera rig providing additional ground-truth
views. Due to space limitations, examples shown in the pa-
per are restricted to single frames, however results on full
sequences can be seen in the attached video. The recon-
struction pipeline is the same for all datasets and can be
broken into four stages: (i) camera calibration, (ii) initial
segmentation using difference keying, (iii) initial scene re-
construction using conservative visual hull, and (iv) joint
refinement of segmentation and reconstruction based on the
proposed approach.

Calibration is performed on-the-fly from pitch line fea-
tures [26]. This typically produces calibration errors of



the order of 1-3 pixels which are rather large given player
resolution (a pixel roughly corresponds to 5cm on widely
framed views) and pitch dimension (100 × 50 m). Initial
segmentation is obtained by computing a background im-
age plate for each input view based on standard mosaic-
ing techniques (this does not require separate background
capture) and thresholding the colour difference between the
background plate and original image. Initial segmentation
is inaccurate due to overlapping foreground and background
colour distributions, which is exacerbated by the presence
of compression artifacts and motion blur. For this reason,
segmentation thresholds are set to low values to prevent
foreground erosion. Initial reconstruction is obtained by
error tolerant shape-from-silhouette which prevents scene
truncation in the presence of calibration and segmentation
errors [11].

Joint refinement of segmentation and reconstruction is
performed in parallel for each input camera, using the set
of neighbouring cameras as auxiliary cameras (usually no
more than 1 or 2 auxiliary cameras are usable due to the
wide-baseline). We define two background layers corre-
sponding to pitch and crowd area, and as many foreground
layers as there are components in the conservative visual
hull. The local colour models used for the background is
learnt automatically from the background plate and its vari-
ance. The global colour model for each layer is learnt using
samples from the background plate in the case of the back-
ground and from a single manually annotated key-frame
for each camera in the case of the foreground; a mixture
of 5 components was used for each layer. The parame-
ters weighting the contribution of the different energy terms
were set to: λcolour = 0.5, λmatch = 0.5, λcontrast = 1.0 and
λsmooth = 0.1. w balancing local and global colour models
was set to 0.5. Isosurfaces were sampled every 5 mm and
the maximum penalty dmax was set to 20. The same param-
eter settings were used for all datasets. Refinement run-time
varies according to the number of foreground labels in the
scene and is of the order of a minute per reference frame on
an Intel Core 2 Duo 2.4GHz CPU.

4.1. Rugby and soccer datasets

The rugby dataset consists of six locked-off cameras and
four moving broadcast cameras, while the soccer dataset
consists of only two locked off cameras and four broad-
cast cameras (see Fig. 2). All cameras are high-definition
1920x1080 acquired at 25Hz. The broadcast cameras are
manually operated zooming and rotating cameras. The
locked-off cameras have a wider framing to give coverage
of different sections of the pitch and are therefore not all
simultaneously usable.

In terms of segmentation, we compared our approach
against three other techniques: (i) user assisted chroma-
keying, (ii) difference-keying, (iii) background-cut [24].

Results for the four techniques are presented in Fig. 3 and
the accompanying video. Clearly a purely global technique
such as chroma-keying produces poor results as it is appli-
cable only to grass areas. Difference keying produces better
results due to the locality of the colour model it is based on,
however it fails in the crowd area which is non-static and
in areas where foreground and background colour are sim-
ilar. Background cut is able to improve further the results
by combining local and global models thereby increasing
robustness and adding tolerance to non-static background
elements, however it yields inaccurate results in ambiguous
areas. The proposed approach, combining multiple view in-
formation to disambiguate the problem, produces a cleaner
segmentation than all other methods.

To evaluate reconstruction, our technique was compared
to three standard techniques: (i) conventional visual hull,
(ii)conservative visual hull (with 2 pixel tolerance), and (iii)
stereo refinement of the conservative visual hull with no
colour, contrast or smoothness term. Results are shown in
Fig. 4. As expected the visual hull produces large trunca-
tions in the presence of calibration and segmentation errors.
These truncations have been eliminated in the conservative
visual hull but have been replaced by some protrusions and
phantom volumes. Stereo refinement of the conservative
visual hull results in a very noisy reconstruction; this il-
lustrates the weakness of the available photo-consistency
information. In contrast, the proposed technique yields a
smooth reconstruction with accurate player boundaries and
the elimination of phantom volumes.

The technique can be used to synthesise views from
novel viewpoints where real cameras cannot be physically
located such as views from inside the pitch. Some exam-
ples of free-viewpoint video sequences can be seen in the
attached video. Each depth-map is converted to a mesh and
then rendered using view-dependent texture mapping tech-
niques [6]. High quality rendering from view-dependent
geometry and images is made possible by the use of the
proposed surface reconstruction technique. This accurately
aligns wide baseline views based on stereo matches and
gives a smooth surface approximation based on iso-surfaces
of the visual-hull shape prior in regions of uniform appear-
ance which commonly occur on player shirts or due to views
sampled at significantly different resolutions. Further re-
sults can be found in the submitted video.

4.2. Evaluation dataset

A quantitative evaluation of free-viewpoint rendering ac-
curacy was performed on a dataset of 15 closely spaced
cameras. One camera (shown in yellow in Fig. 2) was
excluded from reconstruction and used to provide ground
truth. Three sets of reconstruction cameras where defined
by excluding one, two or three neighbouring cameras (see
Fig. 2), thus defining sets with increasing baseline. All four
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Figure 3. Example of segmentation results on rugby (top) and soccer (bottom) data (see attached video for full sequence).
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Figure 4. Example of reconstruction results on rugby (top) and soccer (bottom) data (see attached
video for full sequence).
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Figure 5. Quantitative evaluation of
free-viewpoint video performance.

reconstruction techniques were then used to synthesise the
sequences of images from the same viewpoint as the ground
truth camera. The quality of the synthesised images was as-
sessed by measuring their similarity with the ground truth
images. Evaluation was performed over 100 frames based
on the completeness, shape and PSNR scores defined in
[10]. Results are shown in Fig. 5. The visual hull produces
the worst results. The conservative visual hull produces a
complete reconstruction but a poor estimate of shape and
appearance. The stereo refinement of the conservative vi-
sual hull and the proposed technique both score high on
all scores with marginal differences. Although scores are

comparably high for these two techniques, the visual quality
is usually greater for the proposed technique (see attached
video). This is not reflected in the evaluation scores which
are not able to capture essential visual features such as tem-
poral consistency and image smoothness. The visual quality
improvements resulting from the proposed technique can be
best seen in the accompanying video.

5. Conclusions and future work
This paper introduced a novel approach for simultaneous

multi-layer segmentation and reconstruction of complex dy-
namic scenes captured with multiple moving cameras at



different resolutions. View-dependent graph-cut optimisa-
tion is proposed combining visual colour and contrast cues,
previously used in 2D image segmentation, with multiple
view dense photo-metric correspondence and sparse spatio-
temporal feature matching, previously used in reconstruc-
tion. Strong priors on shape and appearance are combined
with multiple view visual cues to achieve accurate segmen-
tation and reconstruction which is robust to relatively large
errors (1-3 pixels RMS) in on-the-fly camera calibration.
A fully automatic system is presented for multiple view
calibration, segmentation and reconstruction from moving
broadcast cameras to allow high-quality free-viewpoint ren-
dering of sports such as rugby and soccer. Evaluation of
simultaneous multiple view segmentation and reconstruc-
tion in challenging outdoor scenes demonstrates consider-
able improvements over independent single view segmen-
tation and conventional visual-hull or stereo reconstruction.
Sports reconstruction presents a challenging problem with
a small number (6-12) of independently manually oper-
ated panning and zooming broadcast cameras, sparsely lo-
cated around the stadium to cover a large area with multiple
players. This results in multiple view wide-baseline cap-
ture at different resolutions with motion blur due to player
and camera motion. The framework enables high-quality
rendering of novel views from wide-baseline moving cam-
era acquisition of sports, overcoming limitation of previous
multiple view reconstruction algorithms.
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[8] B. Goldlücke and M. Magnor. Joint 3D-reconstruction and
background separation in multiple views using graph cuts. In
CVPR, volume 1, pages 683–688, 2003.

[9] J.-Y. Guillemaut, A. Hilton, J. Starck, J. Kilner, and O. Grau.
A Bayesian framework for simultaneous matting and 3D re-
construction. In 3DIM, pages 167–174, 2007.

[10] J. Kilner, J. Starck, J.-Y. Guillemaut, and A. Hilton. Objec-
tive quality assessment in free-viewpoint video production.
SPIC, 24:3–16, 2008.

[11] J. Kilner, J. Starck, A. Hilton, and O. Grau. Dual-mode de-
formable models for free-viewpoint video of sports events.
In 3DIM, pages 177–184, 2007.

[12] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and
C. Pother. Probabilistic fusion of stereo with color and
contrast for bilayer segmentation. PAMI, 28(9):1480–1492,
2006.

[13] V. Kolmogorov and R. Zabih. Multi-camera scene recon-
struction via graph cuts. In ECCV, volume III, pages 82–96,
2002.

[14] V. Kolmogorov and R. Zabih. What energy function can be
minimized via graph cuts? PAMI, 26(2):147–159, 2004.

[15] K. Kutulakos. Approximate N-view stereo. In ECCV, vol-
ume I, pages 67–83, 2000.

[16] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. PAMI, 27(10):1615–1630, 2005.

[17] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A
comparison of affine region detectors. IJCV, 65(1-2):43–72,
2005.

[18] P. Narayanan, P. Rander, and T. Kanade. Constructing virtual
worlds using dense stereo. In ICCV, pages 3–10, 1998.

[19] Y. Ohta, I. Kitahara, Y. Kameda, H. Ishikawa, and
T. Koyama. Live 3D video in soccer stadium. IJCV,
75(1):173–187, 2007.

[20] I. Reid and K. Connor. Multiview segmentation and tracking
of dynamic occluding layers. In BMVC, volume 2, pages
919–928, 2005.

[21] S. Roy and I. Cox. A maximum-flow formulation of the
N-camera stereo correspondence problem. In ICCV, pages
492–499, 1998.

[22] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo recon-
struction algorithms. In CVPR, pages 519–528, 2006.

[23] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy with
graph cuts. In CVPR, volume 1, pages 345–352, 2000.

[24] J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Background
cut. In ECCV, volume 3954, pages 628–641, 2006.

[25] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother. A
comparative study of energy minimization methods for
Markov random fields with smoothness-based priors. PAMI,
30(6):1068–1080, 2008.

[26] G. Thomas. Real-time camera tracking using sports pitch
markings. J. Real-Time Image Proc., 2:117–132, 2007.

[27] C. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using
a layered representation. In SIGGRAPH, pages 600–608,
2004.


