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Abstract

We present a novel technique for calibrating a zooming camera based on the invariance

properties of the Normalised Image of the Absolute Conic (NIAC). We show that the cam-

era parameters independent of position, orientation and zooming are determined uniquely

by the NIAC, and we exploit these invariance properties to develop a stratified calibration

method that decouples the calibration parameters. The method is organised in three steps:

i) computation of the NIAC, ii) computation of the focal length for each image, iii) com-

putation of the orientation and the position of the camera. The method requires a minimum

of three views of a single planar grid. Experiments with synthetic and real data suggest

that the method is competitive with other state-of-the-art plane-based zooming calibration

methods in the scenarios considered.

Key words: Camera Calibration, Zooming Camera, 2D Calibration Object, Image of the

Absolute Conic, Invariants.

1 Introduction

The ability to zoom is of considerable interest in computer vision as it enables to

focus on selected parts of a scene. However this also requires more complex cali-

bration techniques. In the case of motorised zoom lenses, the relationship between

lens control parameters and camera parameters can be determined from calibra-

tion at a series of sampled lens settings. For example, in [1], the parameter values

estimated at the sampled positions are stored in a look-up table, from which pa-

rameters corresponding to new settings are derived by interpolation. Chen et al.
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[2] accelerated this process by using instead an adaptive algorithm, where samples

are selected automatically based on required accuracy. In [3], Willson and Shafer

model parameter variations by fitting a polynomial at the sampled values, thus pro-

ducing a more compact representation but at the cost imposing smooth parameter

variations. A more general algorithm based on neural networks was proposed in

[4].

For accurate results, the previous methods may require a dense sampling over the

full range of all lens settings, which can be a demanding task. In addition, they can-

not handle discontinuities in parameter variations, and require the use of motorised

lenses with indexed position settings, which is not the case for all camera technolo-

gies. Self-calibration methods relax all these assumptions by calibrating the camera

directly from the same images used for the vision task. The concept was introduced

in [5] by Faugeras et al. in the case of cameras with fixed lens settings, and then

generalised to zooming cameras by Pollefeys et al. in [6]. The approach is very at-

tractive, however there exists a number of critical motion sequences for which the

solution is ambiguous [7,8]. An example which occurs frequently in practice is a

rotating and zooming camera for which specific algorithms have been developed

[9,10]. To simplify the self-calibration process, some methods have tried reducing

the number of parameters to estimate. For example, in [11] Sturm has shown that

pre-calibration can be used to model the interdependency between the zooming

camera parameters, and thereby reduce self-calibration to the estimation of a sin-

gle parameter. Generally, self-calibration techniques rely on sufficient and accurate

point correspondences, and require good initial values. Convergence problems and

noise often limit the accuracy of such techniques [12].

One of the reasons why calibration of a zooming camera is difficult is that it in-

creases significantly the number of parameters to estimate, often resulting in a

larger scale non-linear optimisation problem which can be ill-conditioned. Previous

works, in the case of non-zooming cameras, have taken advantage of invariants to

decouple the camera parameters into simpler sub-problems and thus guarantee that

the number of unknowns of each sub-problem is constant. Examples include Van-

ishing Points (VPs) [13–21], which are invariant to translation, and the Image of

the Absolute Conic (IAC) [22,20,23–28], which is invariant to translation and rota-

tion. In this paper, the invariance properties of the IAC are extended to zooming, by

defining the Normalised Image of the Absolute Conic (NIAC), which characterises

uniquely the camera parameters independent of position, orientation and zooming.

The invariance properties are used to define a stratified calibration which sequen-

tially estimates: i) the invariant intrinsic parameters (computed through the NIAC),

ii) the focal length and iii) the extrinsic parameters for each image.

The calibration pattern required by this method consists of a simple 2D grid which

can be printed off a standard printer. Only one view of the pattern per zoom setting

is required; this means that the calibration pattern could for example be placed be-

side the object of interest and the camera allowed to move and zoom freely around
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the object. In total, a minimum of three views is required. Plane-based calibration

methods such as in [22,20,23–28] are frequently used because they offer a good

compromise in terms of flexibility and accuracy. In comparison, a full 3D calibra-

tion pattern is more difficult to produce and also practically difficult to position in

a scene if required to be simultaneously visible in all views, while simpler linear

patterns such as in [29–33] are difficult to apply to zooming cameras as they require

a large number of frames for each zoom setting.

Our main contributions are the following. Firstly we propose a theoretical and ex-

perimental analysis of the effects of assuming a fixed principal point (PP) when

calibrating a zooming camera. Such an assumption has often been made in the lit-

erature with usually no or very little justification. We demonstrate that the image

plane error induced by making this assumption depends not only on the amplitude

of the PP variation but also on the scene depth relief relative to its distance from

the camera and we derive a maximum bound for this error. Our second contribution

is the introduction of the concept of the NIAC, which complements the existing

hierarchy of invariants, and from which we derive a novel calibration algorithm for

zooming cameras. Several implementations are discussed. It will be noted that un-

der the NIAC framework, the method presented in [27,28] is actually a special case

of our algorithm although coming from totally different perspectives.

2 Zooming camera model

We adopt a general pinhole camera model where 3D scene points P i = [X, Y, Z, 1]⊤

are mapped into 2D image points pi = [u, v, 1]⊤ by a perspective projection

pi ∼ K1F [R t]P i with K1 =
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The symbol ∼ denotes equality up to a non-zero scale factor. Kf = K1F represents

the intrinsic parameters, which include the coordinates of the PP (u0, v0), the fo-

cal length f in pixel units, the aspect ratio r (usually close to 1), and the angle θ
between the axes of the image reference frame (s = −f cot θ is called the skew

parameter). The latter parameter is introduced here for generality only, standard

cameras having zero skew, i.e. θ = π/2 rad. The extrinsic parameters represent the

camera orientation (rotation matrix R) and position (translation vector t) with re-

spect to the world reference frame. The camera centre C is defined mathematically

as the homogeneous vector generating the right null-space of the projection matrix

M = K1F [R t], i.e. C = [(−R
⊤t)⊤, 1]⊤.

It is well known that the PP as well as the camera centre can move while zooming,
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therefore the considered model is clearly only an approximation of the rather com-

plicated physical effects of zooming. Such motions are due mainly to changes in

the alignments of the lens elements induced by zooming, and have been previously

studied in [34,35,3,36]. While fully aware of these motions, we are interested in

showing that a model with a fixed PP can yield acceptable results and we would

like to establish under what circumstances this applies. There are two main moti-

vations for considering a fixed PP. Firstly it allows calibration in scenarios where

calibration with a varying PP would otherwise not be possible, such as calibration

from multiple views of a single plane each captured at a different position, orienta-

tion and zoom factor 1 (this will be referred to as scenario 1 in the results section).

Secondly, even in situations where a variable PP can be computed (e.g. in scenario

2 in the results section), considering a simpler model can still be accurate. In fact

it can even be more advantageous as the resulting algorithm can be less prone to

convergence or numerical errors than more sophisticated algorithms which involve

a larger number of parameters. The main result from this section is to show that the

image plane error induced by assuming a fixed PP can be expressed as a function

of the amplitude of the PP variation and the relative depth relief, and to give a max-

imum bound on this error. Experimental results are given to support the claim that

a fixed PP assumption is acceptable under these circumstances.

2.1 Theoretical analysis of fixed principal point assumption

Let us consider a camera centred at the origin of the world reference frame and

oriented such that the vertical image axis, the horizontal image axis, and the optical

axis are aligned respectively with the X , Y and Z world axis. Under this assump-

tion, the camera projection matrix is given by:

M0 =
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Changing the camera zoom setting results primarily in a change of focal length

∆f , as well as in a change of camera position (∆tX ,∆tY ,∆tZ) and PP coordi-

nates (∆u0,∆v0). Note that the orientation of the camera, which is related to the

orientation of the image plane in space, remains unchanged as the CCD chip re-

1 Generally, a model with varying PP requires a minimum of two planar grids captured

with constant zoom setting in order to define a sufficient number of constraints on the

camera parameters.
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mains fixed while zooming. The projection matrix becomes

M =


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and it can be shown that the projection of a point P = (X, Y, Z, 1)⊤ is

p = MP =
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(4)

If we now consider the simplified model, where zooming is represented by a change

of focal length ∆f , as well as a change of camera position (∆t′X ,∆t′Y ,∆tZ), but

no change in the PP coordinates, the projection of the same point P is

p′ =
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Imposing p = p′, we obtain, after simplification, that the two models are equivalent

if and only if the condition
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,
(6)

is satisfied simultaneously for all scene points. This condition can be satisfied ex-

actly if all scene points are located in a plane parallel to the image plane (because

Z is the same for all scene points), or only approximately otherwise by replacing

Z by, for example, an average depth value Z̄ computed over all scene points. In

this case, the validity of the fixed PP assumption will depend on how closely the

conditions defined in Eq. (6) are satisfied. Below, we compute explicitly the effect

of such an approximation on the image point error (for simplicity the rest of the

derivation is done in the case of a zero-skew camera). We have
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Fig. 1. Some of the images used for experimental validation of the PP assumption.

After substitution of Eq. (6) in the previous equations and simplification, we obtain

p′ − p =
f +∆f
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from which we conclude that the squared image plane error for this point is

‖p− p′‖2 = (∆u2
0 +∆v20)

(Z̄ − Z)2

(Z +∆tZ)2
. (9)

This expression provides a maximum bound on the error as the product of the

amplitude of the PP motion and the depth relief relatively to the scene distance

from the camera. This suggests that assuming a fixed PP is a valid assumption if

this product is small. For example, for a camera which exhibits PP variations of 5

pixels along each axis for the zooming range considered and which sees a scene

of 1 m depth located 10 m away from the image plane, the maximum image plane

error will be (52+52)× 0.52/102 = 0.125, while the average or root mean squared

(RMS) image plane error computed over all points will be far smaller than this.

2.2 Experimental validation

Two experiments were carried out, the first to show the motion of the PP, the second

to verify that a fixed PP model, although less accurate than a variable PP model,

can yield acceptable results. The camera used is a Sony DXC-9100P equipped with

a Fujinon S12×5BRM-38 zooming lens which has a 5–60 mm focal length range.

The resolution of the images is 720 × 576 pixels. The camera is mounted on a tri-

pod, and its pose and orientation are kept constant during the experiment, so that

variations in the parameters are due only to zooming. The camera is pointing at a

calibration grid made of two orthogonal square grids of size 420 mm and located

approximately 2500 mm away from the camera. Images are acquired for 36 differ-

ent zoom settings (see Fig. 1). We deliberately chose a large range of zoom factors.

Firstly, the position of the PP is determined separately for each zoom setting by

applying the Gold Standard camera calibration algorithm described in [37]. It can

be observed in Fig. 2 that the PP describes an approximately linear motion in the
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Fig. 2. Displacement of the PP while the camera is zooming.

image whose amplitude is approximately 25 pixels along the horizontal axis and

40 pixels along the vertical axis. This is a rather large PP motion.

Having established that the PP moves during zooming it remains to quantify the

impact when this is not explicitly accounted for in the camera model. To do this,

we did a similar experiment to the one proposed earlier by Willson and Shafer in

[34], in which they looked at calibrating camera data with models of increasing

complexity. We consider the following models where zooming is accounted for

by allowing variation in: 1) only the focal length f , 2) the focal length f and the

PP coordinates (u0, v0), 3) the focal length f , the PP coordinates (u0, v0), and the

tZ camera position parameter (these three models were considered in [34]), 4) the

focal length f and the (tX , tY ) camera position parameters, and 5) the focal length

f and the (tX , tY , tZ) camera position parameters (the last two models have not

been considered by Willson), where t = (tX , tY , tZ)
⊤. It should be noted that all

these models are approximations of the physical process of zooming. Here we are

interested in analysing the performance of each model, and more particularly to

show that the last model which assumes a fixed PP is acceptable.

The experiment starts by calibrating all the camera parameters for the largest zoom

setting, then the zoom factor is reduced and the camera re-calibrated for each new

setting, allowing only the variable camera parameters of the model chosen to vary.

For each model, the Root Mean Squared (RMS) reprojection error is computed and

measures the accuracy of the model. The minimum obtainable error is given by per-

forming a full calibration, where all parameters are allowed to vary independently

for each setting. In all cases, the calibration is done using the Gold Standard algo-

rithm described in [37]. The linear method is used to initialise the varying zoom

parameters, which are then refined by non-linear optimisation. Note that because

the scale of the grid varies due to zooming, the minimum obtainable error is ex-

pected to decrease slightly over the range of zoom settings.

The results are shown in Fig. 3. The simplest model that allows only the focal

length to vary is, not surprisingly, the least accurate and results in an increase in the

reprojection error that is unacceptably high. The remaining models which model

second order zoom variations such as PP motion or camera centre motion produce
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Fig. 3. Comparison of the accuracy of the different zooming camera models. The graph on

the right hand-side is a magnification of the lower part of the graph on the left hand side.

results that are very dramatically better than the simplest model. The variable PP

models yield errors which are closest to the minimum obtainable error (this was

observed earlier in [34]), while the variable camera centre models yield slightly

larger errors which however remain acceptable. With the best fixed PP model, the

error increases by less than a factor of two and does not exceed the order of 1 pixel

over the range considered. This can still be accurate enough for many applications.

It is important to stress that the loss in accuracy due to having a simpler model

is balanced by a gain in flexibility of the calibration method (possibility to use

simpler calibration patterns because fewer parameters must be estimated) and also

the possibility to define simpler invariants. The ability to exploit invariants may

ultimately translate into an improvement in accuracy when multiple images are

used, which may not be observed with a more complex camera model. If the use of

a fixed PP model proves too inaccurate in a specific application it can still be useful

as an initial estimate that can be refined and extended to a more general camera

model including varying PP in a bundle-adjustment.

3 A novel invariant: the NIAC

This section defines a novel geometric entity called the Normalised Image of the

Absolute Conic (NIAC) which encapsulates the camera parameters invariant to

translation, rotation and focal length variation. The concept of NIAC was first in-

troduced in our preliminary work in [38], where it was inferred from a geometric

construction requiring several observations of a pair of calibrated planes. In this pa-

per, this assumption is relaxed and a more elegant formulation allowing calibration

from observations of a single plane is proposed.
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Fig. 4. Illustration of the transformation of the IAC while the camera is zooming. The

different IACs ωfi are all centred in the PP C and homothetic. The one with focal length 1

is chosen as a reference and called the NIAC ω1.

3.1 Invariance properties of the IAC

For a given focal length f , the IAC is defined by the conic coefficient matrix ωf =
(KfK

⊤

f )−1 or equivalently by the following equation (see [39] pp. 211–212):

(u− u0)
2 +

1

r2
(v − v0)

2 + 2
cosθ

r
(u− u0)(v − v0) = −f 2 . (10)

It appears immediately that any given IAC is centred at the PP and that f is related

to only the scale of the IAC. Under the fixed PP model defined previously, zooming

produces a one-parameter family of IACs which can be parametrised by the focal

length f . The effect of varying f is illustrated in Fig. 4. The set of IACs obtained

is homothetic (curves are related by an expansion or geometric contraction) and

concentric, with the centre at the PP (u0, v0) of the camera.

3.2 The NIAC

We define the NIAC as the IAC corresponding to a focal length of 1. The NIAC is

an imaginary conic represented by the symmetric matrix ω1 = (K1K
⊤

1 )−1. By con-

struction ω1 is invariant to the position, orientation and change in the focal length

of the camera. It has four degrees of freedom, corresponding to the camera parame-

ters u0, v0, r and θ. In terms of invariant, the NIAC can be considered as the natural

extension of the IAC to zooming cameras. Because the NIAC encapsulates all the

intrinsic parameters invariant to zooming, calibrating these parameters is equiva-

lent to estimating ω1. Once ω1 is known, K1 and therefore the intrinsic parameters

invariant to zooming can be recovered from the Cholesky factorisation [40].

4 Application to camera calibration

Before describing the novel camera calibration method, a brief reminder of the

principle of plane-based camera calibration using the IAC is given. The main idea

is to replace the computation of the calibration matrix K representing the intrinsic
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parameters, by the estimation of the IAC. The absolute conic being an imaginary

object, it is a priori not directly observable. However, it has been shown in [23,24]

that it is possible to compute the image of two remarkable points belonging to it

from the observation of a planar calibration pattern. These two points are called

circular points, and we give a summary of their computation below.

4.1 Computation of the circular points

Let us suppose that the camera is pointing at a planar calibration pattern. By def-

inition, the circular points of this plane are the two points of intersection with the

absolute conic. For simplicity and without loss of generality, it is assumed that the

calibration plane is located in the plane Z = 0, in which case the points of intersec-

tion with the absolute conic are the two points I = [1, i, 0]⊤ and J = [1,−i, 0]⊤.

Because the plane is marked with known control points, it is also possible to com-

pute the homography H between the calibration plane and its image, from which

we can derive that the images of the two circular points are: P = HI = h1 + ih2

and Q = HJ = h1− ih2, where h1 and h2 are the first and second column vectors

of H . Both points lie on the IAC. In the case of a camera with constant intrinsic

parameters, each image of a calibration plane provides two such points on the IAC.

A general conic being uniquely defined by five points, three plane observations are

sufficient (in practice two are sufficient because of the additional zero-skew con-

straint) in order to determine uniquely the IAC, and K .

In the case of a zooming camera, it is necessary to consider a more general invariant

such as the NIAC. The calibration algorithm proposed can be broken into three

stages. In the first stage, the invariant intrinsic parameters encapsulated in the NIAC

are computed; such parameters are the coordinates of the PP, the aspect ratio and the

skew parameter. This is the most complicated stage of the method. The next stages

concentrate, separately for each image, first on the computation of the focal length,

then on the computation of the extrinsic parameters, i.e. position and orientation.

4.2 Computation of K1

The matrix K1 represents the intrinsic parameters of the camera which are invari-

ant to a change in position, orientation and zooming. These parameters are char-

acterised uniquely by the NIAC ω1 = (K1K
⊤

1 )−1. Like the IAC, the NIAC is an

imaginary conic, it is therefore not directly observable, and a special construction

is needed. As for the IAC, the information is provided by the observation of a suf-

ficient number of calibration planes, which provide a set of pairs of images of the

circular points. However, this time there exists as many different IACs as there are

pairs of images of circular points, therefore a more elaborate strategy is needed.

10



We start by observing that, if the parameters from K1 are known, it is possible

to define a normalised image reference frame in which the NIAC is a unit circle

centred at the origin. In this normalised image reference frame, the camera has

effectively a unit aspect ratio, zero skew, and its PP is at the origin. Such a reference

frame is obtained by applying an image transformation T which is composed of a

shear transformation along the X axis (to eliminate the skew), a scaling along the Y
axis (to correct the aspect ratio), and a translation (to map the PP to the origin). The

transformation obtained is parametrised by four parameters t1,t2,t3 and t4 (t3 6= 0):
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
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




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1 t1 t2

t3 t4
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
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



. (11)

The main idea of the method is that calibration can be reformulated in terms of

identifying the unique transformation T which maps the NIAC to a unit circle

centred at the origin. Because all IACs are homothetic and concentric, T maps the

set of IACs into a set of concentric circles centred at the origin. We show that such

a configuration can be characterised uniquely by the perpendicular bisectors to the

chords defined by the pairs of images of circular points on the IACs. The result is

stated below and the concept is illustrated in Fig. 5.

Result 1 Consider n (n ≥ 3) concentric homothetic conics centred at C. Take one

chord on each conic such that no chord passes through C, and no two chords are

parallel. The perpendicular bisectors to the chords are concurrent 2 in C if and

only if the conics are circular.

Proof This is a direct result from geometry resulting from the observation that in a

non-degenerate ellipse (the homothetic and concentric conics being all of the form

(KK⊤)−1 they are clearly ellipses) the only centre of symmetry is the ellipse centre

and the only axes of symmetry are its axes. �

Given a pair of images of circular points P = HI = h1 + ih2 and Q = HJ =
h1 − ih2, with h1 = [h11, h21, h31]

⊤ and h2 = [h12, h22, h32]
⊤, it is shown in

Appendix A that after mapping by T , the equation of the perpendicular bisector is:

l = [−(d1+ t1d2),−t3d2, (m1+ t1m2+ t2)(d1+ t1d2)+ (t3m2+ t4)t3d2]
⊤ , (12)

with m1 =
1

h2

31
+h2

32

(h31h11+h32h12), d1 = h32h11−h31h12, m2 =
1

h2

31
+h2

32

(h31h21+

h32h22) and d2 = h32h21 − h31h22. Note that although the circular points P and Q

are imaginary points, their perpendicular bisector l defines a real line in the image

plane. It follows that calibrating K1 is equivalent to finding the unique values of

the parameters t1,t2,t3 and t4 for which the perpendicular bisectors l are concurrent

2 Three of more lines are concurrent if they meet at one point.
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Fig. 5. ωf1 , ωf2 and ωf3 are three concentric homothetic conics centred at C. On each

conic ωfi , the points P fi and Qfi
represent the images of the circular points. They define a

chord on each conic. We assume that none of the chords passes through C and that no two

chords are parallel. The perpendicular bisectors to the chords are represented by the lines

lf1 , lf2 and lf3 . In the general case where the conics are non-circular (a), the perpendicular

bisectors pass through the centre C if and only if the chord is parallel to an axis of the conic

(lf1 and lf3). Because there are only two axis, lf1 , lf2 and lf3 cannot be concurrent at C.

The only case where lf1 , lf2 and lf3 are concurrent at C is when the conics are circular (b).

at the origin. Once this transformation has been estimated, the NIAC is given by

ω1 = T
⊤
T and the intrinsic parameters by K1 = T

−1.

In practice, due to image noise, the perpendicular bisectors l will not be exactly

concurrent at the origin, but we can seek an optimum solution which minimises the

distance between these lines and the origin. Two algorithms for estimating these

parameters are presented below; the first one minimises the exact geometric dis-

tance between these lines and the origin, while the second one minimises a simpler

distance, which we call algebraic, and which turns out to be a close approximation

of the former geometric distance.

4.2.1 Non-linear solution minimising a geometric distance

The first method proposed finds the solution which minimises the sum of squared

distances
∑

d2geom computed over all views and where dgeom represents the distance

between the line l defined in Eq. (12) and the image origin. dgeom is such that

d2geom =
[(m1 + t1m2 + t2)(d1 + t1d2) + (t3m2 + t4)t3d2]

2

(d1 + t1d2)2 + (t3d2)2
. (13)

In the case of a zero-skew camera, we have t1 = 0, and the previous expression

simplifies to

d2geom =
[(m1 + t2)d1 + (t3m2 + t4)t3d2]

2

d21 + (t3d2)2
. (14)
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A minimum of four images is required to determine uniquely the fixed intrinsic

parameters in the case of a general camera. With a zero-skew camera, three im-

ages are sufficient, because t1 is known to be zero. Minimising such cost functions

requires non-linear techniques such as the Levenberg-Marquardt algorithm [40].

Experiments showed good convergence properties, however it is a priori not guar-

anteed that the convergence of the algorithm to the correct solution may not be

affected by a local minimum in the vicinity of the solution. In practice, a reason-

able initialisation which gives good results is to choose the PP at the image centre

and an aspect ratio of one. Alternatively, the method defined in the next paragraph

can be used for initialisation.

4.2.2 Linear solution minimising an algebraic distance

Contrary to non-linear methods, linear methods are usually simpler to implement,

because they do not need any initialisation and do not suffer from convergence

problems. However, because the distance minimised may lack physical meaning,

they are usually not so accurate. In this case, the following algebraic constraint is

defined by requiring the origin to lie on the line l:

[0, 0, 1]l = (m1 + t1m2 + t2)(d1 + t1d2) + (t3m2 + t4)t3d2 = 0 . (15)

In practice, considering this equation does not present any advantage over the pre-

vious method because the equation remains non-linear in the case of a general

camera. However, in the case of a zero-skew camera, the unknown values u0, v0
and r are related to the entries of T by

T = K
−1
1 =















1 0 −u0

1

r
−v0

r

1















, (16)

and the following substitution can be carried out: t1 = 0, t2 = −u0, t3 = 1

r
and

t4 = −v0
r

. This leads to the equation

d1r
2u0 + d2v0 −m1d1r

2 = m2d2 , (17)

which is linear in the unknowns r2u0, v0 and r2. This equation is similar to the one

obtained by Gurdjos et al. in [27,28] using the centre-line constraint. The different

equations (one per view) can be combined and a least-square solution can be com-

puted by using for example the pseudo-inverse. Although algebraic distances are

often less accurate than geometric distance, the distance considered here has the

interesting property of being an extremely good approximation of the geometric

distance defined in Eq. (13) after suitable normalisation has been applied. This will

be further discussed in Section 4.5.1.
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4.3 Computation of F1

Computing F1 is a simple matter of finding the isotropic scaling factor f which

maps the NIAC into a conic passing through the images of the two circular points

for each image. This is a straightforward least-squares problem (see for example

[27] for a solution). It should be noted that the determination of f is not possible if

the optical axis of the camera is perpendicular to the calibration plane.

4.4 Computation of R and t

Once all the intrinsic parameters are known, the computation of the extrinsic pa-

rameters is done in a standard way (see for example [23]).

4.5 Practical considerations

4.5.1 Normalisation

Normalisation is carried out before computing the homographies between the cali-

bration plane and the image plane. The technique employed is described in [37] and

consists in normalising world points and images points such that their centroids co-

incide with the origin and the average distance from the origin is
√
2. In the case of

the non-linear method, no extra minimisation is required as the distance minimised

in Eq. (13) defines a geometric distance in the image space. In the case of the linear

method, we normalise each term in [27,28] by the inverse of
√

d21 + d22. This choice

has been mathematically justified in [27], and we can observe that in the case of an

aspect ratio close to one the normalisation introduced is very close to the denomi-

nator in Eq. (14). This means that the system is well conditioned and approximates

very closely the more complicated geometric distance with the advantage of not

requiring non-linear minimisation. It will be shown in the result section that the

two methods produce very similar results (although not identical). In comparison,

the method described in [24] relies heavily on normalisation and is more prone to

stability problems.

4.5.2 Degenerate Configurations

It has been seen earlier that a minimum of three views of the calibration plane is

necessary in the case of a standard zero-skew camera, while four views are required

in the case of a non standard skewed camera. In addition, the three following as-

sumptions have been made during the discussion: i) the optical axis of the camera

is not perpendicular to the calibration plane (Section 4.3 and Appendix A), ii) the
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chords defined by the pairs of images of the circular points do not pass through the

PP of the camera (Result 1), iii) and no such chords are parallel (Result 1). After

observing that the chords are the vanishing lines of the calibration planes observed,

it is straightforward to show that ii) corresponds to the case where the optical axis

of the camera is parallel to the calibration plane, while iii) corresponds to the case

where two cameras are related by a translation and/or a rotation along an axis par-

allel to the calibration plane. This characterises all the degenerate configurations.

5 Results

In this section, the methods presented earlier are tested and evaluated. A compari-

son with two of the methods (fixed or variable PP) presented in [24] is also given.

When referring to these methods, the following terminology is adopted: Sturm &

Maybank (fixed PP) and Sturm & Maybank (variable PP) denote the Sturm and

Maybank method with fixed and variable PP respectively, linear NIAC and non-

linear NIAC denote the methods based on the NIAC which minimise, respectively,

an algebraic distance and a geometric distance. All methods assume zero-skew,

which is normally the case of most cameras. It should be noted that the linear

NIAC method is identical to the method derived by Gurdjos et al. using the centre

line constraint in [27,28]. Gurdjos et al. refer to a theorem of projective geometry

(Poncelet’s theorem) to characterise the locus of the PP when a zero-skew pinhole

camera is zooming. Although this is different from the NIAC concept, both meth-

ods result in the same linear system of equations in the case of a zero-skew camera.

In all experiments, the camera is pointing at a planar calibration grid (see Fig. 6

in the case of real data). The position, orientation and zoom vary for each frame.

For each image, the homography is computed using the Direct Linear Transform

(DLT) method as described in [37], with the appropriate normalisation, and then

the different calibration algorithms are applied. Two experimental scenarios are

considered. In the first case, hereafter referred to as scenario 1, it is assumed that

all images of the calibration grid are acquired with independent zoom settings.

This is the most general scenario; note that in this case it is not possible to compute

a variable PP, therefore the Sturm & Maybank (variable PP) method cannot be

applied (it requires several observations of at least two planar patterns). The second

case, which we will call scenario 2, assumes that pairs of images are acquired with

the same zoom factor; all the methods previously mentioned can be compared in

this case.

Two different evaluation criteria are considered to measure the accuracy of the cal-

ibration methods. The first evaluation criterion is the RMS estimation error defined

by: ǫest =

√

1

N

∑

i

(

xi−xi

xi

)2

, where xi are the ground truth parameters and xi are

the estimated parameters. The RMS value is computed for each intrinsic parameter.
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Fig. 6. Real images used for calibration. Each image illustrates a different zoom setting

varying from approximately 560 pixels to approximately 2210 pixels. While zooming, the

operator also adjusted the camera pose so as to maximise the size of the grid in the image.

Note that because some of the intrinsic parameters are varying while zooming, a

relative error is computed. This is a good measure of how closely the estimated

camera parameters match the ground truth camera parameters. The second evalua-

tion criterion is the RMS reprojection error ǫrep =
√

1

N ′

∑

i ‖pi − K1F [R t]P i‖2.

Both ǫest and ǫrep are computed over a large number of experiments (1000) in order

to obtain statistically meaningful results.

In order to provide an unbiased evaluation, the RMS reprojection error must be

computed on points different from the ones used for calibration, otherwise the RMS

reprojection error would correspond to a residual error, which is well known to be

a poor measure of the quality of the solution obtained (see [37], Chapter 4). For ex-

ample, the Sturm & Maybank (variable PP) method would be expected to always

lead to lower residuals because it has two extra degrees of freedom compared to

the other methods and can therefore fit the data better, which does not mean it com-

putes more accurately the camera parameters. In our evaluation methodology, we

generate extra images which are used for evaluation only; one such image is gen-

erated for each zoom setting by varying the extrinsic parameters while maintaining

the intrinsic parameters constant. In the case of synthetic data, the computation of

the reprojection error on the evaluation images is straightforward because the ex-

act values of the extrinsic parameters used to generate these images are known. In

the case of real data, the computation of the reprojection error is not immediately

obvious for the evaluation images because the values of the extrinsic parameters

are not readily available (we do not know the pose of the camera for such images).

However, the extrinsic parameters can be computed iteratively by finding the values

which minimise the reprojection error (i.e. we find the optimum pose); this provides

a good estimate of the reprojection error. The optimisation is carried out with the

Levenberg-Marquardt algorithm [40].

5.1 Synthetic data

The calibration pattern consists of a square grid of size 20 cm × 20 cm which con-

tains 10× 10 control points. The grid coincides with the plane Z = 0 of the world

reference frame. We simulate a camera with variable PP, where the different in-

trinsic parameters are defined by the following equations parametrised by the focal

length f : u0 = 384 + λ( f−fmin

fmax−fmin
− 1

2
) pixels, v0 = 247 + λ( f−fmin

fmax−fmin
− 1

2
) pixels,

16



r = 1.167 and θ = 90 ◦ (zero-skew). This simulates a camera where the PP fol-

lows a linear motion of amplitude λ along both camera axes while the camera is

zooming. This is a plausible model for a zooming camera (see observations made in

Section 2.2). For each frame, the focal length is assigned a random value between

fmin = 476 pixels and fmax = 1428 pixels, following a uniform distribution on this

interval. The camera centre is located on a 0.5 m radius sphere centred at the middle

of the calibration grid. The position and orientation of the camera is generated by

applying the following Euler transformation. A random rotation is applied succes-

sively around the Z axis (rotation), the X axis (precession) and finally the Z axis

(nutation). The rotation around the X axis is constrained between 30 ◦ and 70 ◦,

so as to be in the optimum condition required by the Sturm & Maybank methods.

Under such conditions, the grid occupies the whole image at the maximum zoom

factor. Some Gaussian noise with standard deviation of 1 pixel is added in the coor-

dinates of each imaged point so as to simulate image noise. For both scenarios, two

different amplitudes for the PP motion are considered: i) λ = 5 pixels (lens with

small PP motion) and ii) λ = 50 pixels (lens with larger PP motion). In each case,

calibration results are shown with respect to the number of image frames consid-

ered. The results obtained from 1000 experiments are shown in Fig. 7 (independent

images) and Fig. 8 (pairs of images).

For all methods the error decreases when the number of images used increases. The

linear NIAC and non-linear NIAC methods are indistinguishable without magnify-

ing the graphs. Theoretically, it has already been observed in [27,28] by Gurdjos

et al., that the distance defined by the centre-line constraint, which is equivalent to

the one minimised by the linear NIAC, is a very good approximation of the opti-

mum geometric distance (here represented by the non-linear NIAC method) if the

aspect ratio is close to one. Our results confirm this experimentally. If the aspect ra-

tio differed more significantly from one, however, it is expected that the non-linear

algorithm would become more accurate than the linear one. In general, it can be

observed that the NIAC methods and the Sturm & Maybank (fixed PP) method lead

to very close results; in fact the differences are marginal, which suggests that in this

case the NIAC methods are competitive with a state-of-the-art method assuming a

fixed PP.

In the case of the second scenario where pairs of images are acquired with the same

zoom factor, the Sturm & Maybank (variable PP) method seems to perform slightly

worse than the other methods. This may first appear surprising, as we may have

expected that including PP variations would allow more accurate camera calibra-

tion. This can be explained by the significant increase in the number of unknowns,

caused by the introduction of the variable PP, which affects the conditioning of the

system of equations. This was also observed previously in [27,28]. One advantage

of the Sturm & Maybank (variable PP) over the other methods, however, is that

its performance remains unaffected by the range of PP variation. If we were to in-

crease further the range of PP variation, it is likely that this method would lead to

more accurate results than the other methods for which the error would become
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(a) RMS estimation error for each parameter (λ = 5 pixels).
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(b) RMS estimation error for each parameter (λ = 50 pixels).
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(c) RMS reprojection error

(λ = 5 pixels).
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(d) RMS reprojection error

(λ = 50 pixels).

Fig. 7. Results with synthetic data in the case of independent images (scenario 1). Two

different amplitudes are considered for the PP motion: λ = 5 pixels and λ = 50 pixels.

unacceptably large. However, in the case of a modest range of PP motion, the ben-

efit of introducing a variable PP seems to be outbalanced by the deterioration of

the conditioning of the system of equations to solve, which makes it acceptable to

consider a fixed PP instead.

5.2 Real data

The camera used is a Sony DXC-9100P equipped with a Fujinon S12×5BRM-38

zooming lens which has a 5–60 mm focal length range. The lens exhibits very low

lens distortion which can be ignored during calibration. We captured a sequence
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(b) RMS estimation error for each parameter (λ = 50 pixels).
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(c) RMS reprojection error

(λ = 5 pixels).
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(d) RMS reprojection error

(λ = 50 pixels).

Fig. 8. Results with synthetic data in the case of pairs of images (scenario 2). Two different

amplitudes are considered for the PP motion: λ = 5 pixels and λ = 50 pixels.

of 30 images of the grid shown in Fig. 6. The camera is hand-held, and the zoom

settings are changed manually by the operator holding the camera. Each group of

five successive images were acquired with a constant zoom setting, varying only

the position and orientation of the camera. We show in Fig. 6 one image for each

of the six zoom settings. The method described in [23] is applied to groups of five

images acquired with the same zoom factor in order to compute the ground truth

camera intrinsic parameter values. Then the calibration experiments are repeated

1000 times, selecting a random subset of images each time. The results obtained

are shown in Fig. 9 (independent images) and Fig. 10 (pairs of images).

The conclusions that can be drawn from these experiments are similar to the ones
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(b) RMS reprojection error.

Fig. 9. Results with real data in the case of independent images (scenario 1).
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Fig. 10. Results with real data in the case of pairs of images (scenario 2).
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made in the case of synthetic data. In the case of independent images, all methods

appear to perform closely. In the case of pairs of images, the Sturm & Maybank

(fixed PP) method is the best performing method, followed closely by the linear

NIAC and non-linear NIAC which seem to perform equally well, and then by the

Sturm & Maybank (variable PP) which is the least accurate. For this particular

camera, the introduction of the variable PP does not seem beneficial. This suggests

that the range of PP motion is not excessively large, in which case the errors due to

the increase in complexity of the system of equations and the deterioration of the

conditioning of the system are larger than the gain in accuracy due to modelling

the PP motion in the Sturm & Maybank (variable PP) method. It is not clear why

the Sturm & Maybank (fixed PP) method performs slightly better than the NIAC

method in this particular experiment. In any case, it should be pointed out that the

differences of performance between the different methods are relatively small.

It has been chosen here to restrict the experiments to cameras presenting zero-skew,

because this is the case of most cameras encountered in real life. It is worth noting

however that if this is not the case, the non-linear NIAC method usually becomes

the most accurate (see experiments reported in [41]) because it is the only one able

to handle camera skew. Although this may appear to be of limited interest given the

current camera technologies, we believe this is a nice feature, which could become

useful in situations where non-conventional sensors are considered.

6 Conclusions

Firstly, we demonstrated that the image plane error induced by assuming a fixed

principal point (PP) model remains small as long as the product of the amplitude

of the PP variation and the relative depth relief is small. This is supported by an

experimental verification. The implication for camera calibration is that assuming

a fixed PP can be acceptable as long as the previous condition is satisfied.

Secondly, we introduced a new mathematical object called the Normalised Image

of the Absolute Conic (NIAC), and proposed a novel plane based calibration tech-

nique for a zooming camera based on this concept. The NIAC is a mathematical

representation of the intrinsic camera parameters invariant to zooming, translation

and rotation of the camera. In practice, it can be estimated from a minimum of three

images of a planar calibration grid taken from arbitrary positions, orientations and

zoom settings. A simplified linear algorithm and a non-linear algorithm have been

proposed.

Results with synthetic and real images showed that the two algorithms are com-

petitive with existing state-of-the-art plane-based camera calibration methods. The

performance reported are similar to that of other methods assuming a fixed PP, and,

as long as the range of PP variation is modest, better than that of the Sturm and
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Maybank method assuming a variable PP.

The NIAC method presents the following advantages compared to other calibra-

tion methods: i) fixed computational cost due to the use of invariants to decouple

the camera parameters, ii) minimisation of an exact geometric distance in the case

of the non-linear algorithm, iii) a simpler linear method minimising a very good

approximation of the geometric distance, iv) increased generality with the possibil-

ity to include the camera skew (in practice, circumstances requiring camera skew

computation are rare).

An apparent limitation of the method is the assumption of a fixed PP. We would

like to point out that there are common circumstances (calibration of a zooming

camera from a single moving calibration plane) where this is the only possible

model. Otherwise, these parameters could be included in a final bundle-adjustment

where PP motion, as well as lens distortion if required, are computed. In this case,

the NIAC method can be used to provide a good initialisation to the non-linear

optimisation algorithm required for the bundle-adjustment.

A Equation of the perpendicular bissector to a chord on the IAC

We consider a pair of images of circular points P = HI = h1+ih2 and Q = HJ =
h1 − ih2 on the the IAC, with h1 = [h11, h21, h31]

⊤ and h2 = [h12, h22, h32]
⊤. We

want to compute the equation of the perpendicular bisector to this chord after the

image transformation T has been applied.

We first observe that the mid-point of [PQ] is the point:

M ∼ 1

h2
31 + h2

32

(h31h1 + h32h2) = [m1 m2 1]⊤ , (A.1)

and the direction of the line (PQ) is represented by the point at infinity:

D ∼ h32h1 − h31h2 = [d1 d2 0]⊤ . (A.2)

This can be verified by noting that the points M , D, P and Q are aligned (they

are linear combinations of the base vectors h1 and h2) and that they are harmonic

(their cross ratio is −1). It should be noted that the denominator in the expression

of M is non-zero if and only if the optical axis of the camera is not orthogonal to

the image plane. Four new parameters m1, m2, d1 and d2 have been introduced in

the two previous equations.

After transformation by T , M and D are mapped respectively into
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M ′ = T [m1 m2 1]⊤ = [m1 + t1m2 + t2 t3m2 + t4 1]⊤ , (A.3)

D′ = T [d1 d2 0]⊤ = [d1 + t1d2 t3d2 0]⊤ . (A.4)

Noting that a normal vector to (P ′Q′) is N = [−t3d2, d1 + t1d2, 0]
⊤, we conclude

that the perpendicular bisector to the chord is represented by the equation

l = [−(d1+t1d2) −t3d2 (m1+t1m2+t2)(d1+t1d2)+(t3m2+t4)t3d2]
⊤ . (A.5)
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