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Abstract

Conventional approaches to 3D scene reconstruction often

treat matting and reconstruction as two separate problems,

with matting a prerequisite to reconstruction. The prob-

lem with such an approach is that it requires taking irre-

versible decisions at the first stage, which may translate

into reconstruction errors at the second stage. In this pa-

per, we propose an approach which attempts to solve both

problems jointly, thereby avoiding this limitation. A general

Bayesian formulation for estimating opacity and depth with

respect to a reference camera is developed. In addition, it

is demonstrated that in the special case of binary opacity

values (background/foreground) and discrete depth values,

a global solution can be obtained via a single graph-cut

computation. We demonstrate the application of the method

to novel view synthesis in the case of a large-scale outdoor

scene. An experimental comparison with a two-stage ap-

proach based on chroma-keying and shape-from-silhouette

illustrates the advantages of the new method.

1. Introduction

In this paper, we study the problem of simultaneous mat-

ting and 3D reconstruction of a scene from a set of images.

The matting problem [3, 18, 7] consists in assigning

opacity values α between 0 and 1 to image pixels (0 for
background pixels, 1 for foreground pixels, and other val-

ues for mixed pixels which simultaneously see background

and foreground). Image matting approaches were initially

introduced for single images [3] and more recently extended

to image sequences [18, 7] although often restricted to input

of a trimap (partial labelling of background/foreground) at

key-frames and special camera configurations. Image mat-

ting in natural outdoor scenes remains an open problem due

to visual ambiguities.

The reconstruction problem consists in inferring depth

information from a collection of images. Earlier approaches

reasoned in the image space by matching sparse or dense

features across images [12]. In contrast, volumetric meth-

ods such as shape-from-silhouette [10] or voxel colouring

[14, 9] reason directly in the 3D space by assessing the oc-

cupancy or emptiness of voxels in a grid. In the case of

shape-from-silhouette, the decision is made by establishing

whether voxels belong to the intersection of the cones back-

projected from image silhouettes (foreground/background

segmentation), resulting in a reconstruction called the visual

hull, which provides an upper bound on scene reconstruc-

tion (in principle, it is guaranteed to enclose the true scene

surface). A review of multi-view scene reconstruction algo-

rithms can be found in [13].

Many approaches start by applying a matting algorithm

independently to the images in order to compute a fore-

ground/background segmentation, which is then used as an

input to the reconstruction algorithm. The problem with

this approach is that hard decisions are made at the matting

stage, which may not be possible to correct at the recon-

struction stage, thus affecting the final reconstruction. In

shape-from-silhouette, for example, misclassification of a

foreground region as background will erode the visual hull.

A naive solution would be to build a conservative visual

hull by allowing a tolerance on the intersection of the back-

projected cones. Unfortunately, although this may be suf-

ficient to guarantee that the real scene is contained in the

visual hull in spite of matting or camera calibration errors,

this produces a dilated representation of the scene, which is

inaccurate. The solution proposed in this paper jointly for-

mulates the matting and reconstruction problems, by com-

bining information from multiple views.

1.1. Previous work

In [16], Szeliski and Golland proposed a stereo approach

which estimates disparities, colours and opacities in a gen-

eralised disparity space. They formulate the problem in

terms of energy minimisation, whose solution is obtained

with an iterative gradient descent algorithm. Similarly, De

Bonet and Viola proposed the Roxel algorithm [4] which

defines an iterative multi-step procedure alternatively es-

timating colours, responsabilities and opacities in a voxel

space. In general computing opacity values in addition to

the scene geometry significantly increases the difficulty of

the problem.

A simpler approach, which is plausible for scenes not



containing transparent objects or fractal surfaces, consists

in restraining the problem to the segmentation of the scene

into foreground and background layers; this is equivalent to

restricting the previous formulations to binary opacity val-

ues. In [8], Kolmogorov et al. proposed two stereo algo-

rithms, based on dynamic programming and graph-cuts re-

spectively, and are able to achieve real-time segmentation.

In [19], Zitnick et al. also adopted a layered representation

where a colour segmentation-based stereo algorithm is used

to compute a smooth disparity map for each camera, which

is then refined by Bayesian matting [3] applied to 4-pixel

thick boundary strips located at discontinuity jumps.

In [15] and [6], the segmentation and reconstruction

problems are formulated jointly by minimising an energy

function via a graph-cut algorithm. These two methods,

like the method proposed in this paper, require the use

of additional background images captured from the same

viewpoint as the observed images. In the case of [15],

the method is effectively a generalisation of shape-from-

silhouette techniques. The main limitation of this approach

is that silhouette intersection constraints are usually weaker

than photo-consistency constraints. In the case of [6], the

method enforces a more powerful photo-consistency con-

straint across multiple views. Although the method is sim-

ilar in principle to our method, it has the following limita-

tions: i) it is limited to special camera configurations for

which a visibility constraint similar to the one used in voxel

colouring [14, 9] can be defined, ii) it requires a prior esti-

mate of the background geometry, iii) only a locally optimal

solution (in a strong sense) is obtainable. A potential advan-

tage of this approach is full 3D scene reconstruction instead

of our 2.5D camera dependent representation.

1.2. Our approach

We formulate the problem in terms of recovering depth

and opacity values with respect to a reference camera given

a set of images of a scene and a background image for

each camera. Background images do not necessary need

to be captured, in our implementation they are estimated di-

rectly from a sequence of images. We express the problem

in terms of maximising the a posteriori probability given

the set of input images and some strong priors on shape

and alpha mattes. Although finding a general solution is

difficult, we argue that a global solution is obtainable in a

single graph-cut computation in the case of binary opacity

values (foreground/background) and discrete depth values.

The binary opacity assumption is plausible for the type of

scene considered since there are no transparent objects and

the scene surface is smooth. Note that in the binary case,

matting is commonly referred to as foreground/background

segmentation in the literature.

Our contributions are the following. Firstly, we show

the advantage of using photoconsistency constraints derived

frommultiple views in matting, and propose a novel N-view

algorithm for jointly solving the matting and reconstruction

problems. The method is not restricted to pairs of cam-

eras separated by a small baseline unlike [16, 19, 8], and

there is no restriction on camera positioning unlike [6]. Sec-

ondly, we propose a novel matching score which incorpo-

rates background information in order to disambiguate con-

ventional matching scores, and allows accurate matting in

spite of possible background occlusions. The novel match-

ing score is particularly useful when trying to establish cor-

respondences in a scene viewed against a uniform back-

ground which tends to exacerbate the matching ambiguity.

An advantage of our method compared to [6] is that it does

not require a prior estimate of the background geometry.

The paper is structured as follows. After formulating the

problem in mathematical terms, we introduce the general

Bayesian framework. We then show how a global solu-

tion can be computed via a single graph-cut under the as-

sumption of binary opacity values and discrete depth values.

Finally we compare the method developed with a conven-

tional reconstruction method on real images of a large-scale

outdoor scene and conclude.

2. Problem formulation and notation

A scene is viewed from N + 1 cameras indexed from 0
to N , the camera with index 0 being the reference camera.
A pixel in an image is represented by a vector p = [u, v] of
image coordinates; P denotes the set of all pixel coordinates
in the reference image. A 3D point is represented by a vec-

tor P = [x, y, z]. The world reference frame is defined by
the reference camera, such that a 3D point with coordinates

[u, v, d] corresponds to the point on the ray backprojected
through the image point [u, v] and located at a distance d
from the reference image plane. All cameras are assumed to

have been geometrically calibrated so that their projection

matricesMi are known. The projection of the point [x, y, z]
in camera i is writtenM

i[x, y, z] for simplicity; note that to
be rigorous we should have used homogeneous coordinates

and written M
i[x, y, z, 1]⊤ instead. For each camera, two

images Ci and Bi are available. Ci, called the composite

image, is an image of the full scene (foreground and back-

ground), while Bi is an image of the background only; both

images correspond to the same viewpoint and camera set-

tings. Note that when describing a set of images, the index

range is usually omitted for conciseness; for example {Ci}
stands for {Ci}0≤i≤N . The objective of the problem is to si-

multaneously estimate, in the reference camera, i) the opac-

ity of each pixel, and ii) the depth of the foreground pixels.

The scene depth and opacity with respect to the reference

camera are represented respectively by a depth image d and
an alpha matte α0. With these notations, dp and α0

p rep-

resent the depth and opacity of a pixel p in the reference



camera. Note that the label dp = ∞ is reserved for back-
ground pixels which are not assigned any physical depth.

An alpha matte αi is defined for each camera. Opacity val-

ues are constrained to be between 0 and 1, opacities of 0

and 1 representing a background and a foreground point re-

spectively, while other values correspond to mixed pixels.

The latter type of pixels occurs if the foreground is semi-

transparent or when the cone defined by the backprojection

of a pixel grazes the foreground surface and captures simul-

taneously foreground and background.

3. Bayesian framework

In a Bayesian framework, the optimum reference depth

map d and alpha mattes {αi} are estimated by maximis-
ing the posterior probability, or equivalently, in terms of log

likelihoods:

L(d, {αi}|{Ci,Bi}) = L({Ci,Bi}|d, {αi})

+L(d) + L({αi}) − L({Ci,Bi}). (1)

The first term is the log likelihood, while the other terms are

priors. The term L({Ci,Bi}) being constant with respect to
the optimisation variables does not contribute and can be

ignored. The remaining terms are expressed in this section.

3.1. Likelihood

3.1.1. Conventional model. A conventional approach

would model the composite colour for any camera i in
which the point P = [p, dp] is visible as:

Ci
MiP = C0

M0P + ηi
1, (2)

where {ηi
1} represents the image noise and view dependent

appearance variations, and C0
M0P

is the composite colour

in the reference camera (for which the point P is assumed

to be visible). From this model, in a conventional stereo

reconstruction, we would write:

L({Ci,Bi}|d, {αi}) =
∑

p∈P

E1({C
i}, [p, dp]), (3)

with E1({C
i},P ) = −

1

|V(P )|

∑

i∈V(P )

‖Ci
MiP −C0

M0P ‖2.

(4)

V(P ) represents the set of camera indices for which the
pointP is visible, and |V(P )| denotes the cardinality (num-
ber of elements) of this set. The method used to assess the

visibility will be described in Section 4. A point which is

not visible in any camera, would be assigned for example

a fixed penalty score or the score obtained without consid-

ering visibility (this score would be expected to be low in

that case). For robustness, the intensity difference com-

puted in Eq. (4) can be replaced by the sum of squared dif-

ference (SSD) or the Normalised Cross Correlation (NCC)

computed over a window. In the two camera case, this for-

mulation is equivalent to the one used in stereo matching

(see e.g. [12]), while the N -camera generalisation is simi-
lar to a colour-consistency measure (see e.g. [14, 9]). Such

a formulation assumes an opaque scene, and neglects mixed

pixels at object boundaries. We illustrate below two other

important limitations to this approach.

3.1.2. Limitation 1: background visibility. A conven-

tional approach usually works well for reconstructing fore-

ground points under a small baseline assumption, however

this becomes ambiguous when trying to reconstruct back-

ground points because of potential foreground occluders

(see Fig. 1) or even because, in the case of a larger baseline,

the background seen by a camera may not be in the field of

view of the other cameras. For this reason, it is unrealis-

tic to obtain accurate matting results unless a small baseline

and a large number of cameras are considered to ensure that

explicit reconstruction of the background is possible.

O
0

O
1

occlusion

P

Figure 1. Example of background ambiguity. The

background is visible only in cameraO0, therefore

it is not possible to evaluate photoconsistency.

3.1.3. Limitation 2: matching ambiguities. The match-

ing problem is well known to be ambiguous. The problem is

illustrated on a simple example in Fig. 2. Suppose an object

is placed in front of a uniform background. This is a rela-

tively common situation (object viewed against grass, sand,

blue sky...). There are many points located in the vicinity

of the true surface which will produce high matching scores

although these points are not part of the scene. Additional

information is necessary to disambiguate the problem.

O
0

O
1

P

O
0

O
1

P

Figure 2. Example of matching ambiguity. With

a uniform background, P produces consistent

colours in both cases, although the second case

(right) corresponds to an incorrect depth assump-

tion.



3.1.4. Novel model incorporating background informa-

tion. The key idea to address the first limitation is to incor-

porate opacities in the formulation so as to express back-

ground visibility. In this new formulation, background is

no longer treated as a conventional 3D layer with standard

depth assignments, but is modelled by a set of images. As

such, the colour of background points should be consistent,

for each camera, with the colour predicted by the back-

ground images. Note that the background images can be es-

timated from sequences of images containing the full scene.

The appearance of foreground points, on the other hand,

should be consistent with the foreground colour F0
p seen by

the reference camera. F0
p is related to C

0
p, B

0
p and α0

p by the

compositing equation [3, 18, 7]

C0
p = α0

pF
0
p + (1 − α0

p)B0
p, (5)

or equivalently can be expressed as

F0
p =

{

1
α0

p

C0
p + (1 − 1

α0
p

)B0
p if α0

p 6= 0,

B0
p if α0

p = 0.
(6)

We can thus define a foreground image F0 seen by the ref-

erence camera. In our general formulation which allows

non-binary alpha values, for mixed pixels, the contribution

of the two models is weighed according to the alpha values.

Mathematically, this is modelled as follows for a camera i
in which the point P = [p, dp] is visible:

Ci
MiP = αi

MiPF0
M0P + (1 − αi

MiP )Bi
MiP + ηi

2, (7)

where {ηi
2} represent the image noise. Coming back to

the example shown in Fig. 1, the background point P is no

longer ambiguous, although occluded in the second camera,

because a score can be computed by comparing composite

and foreground colours in the reference camera.

The solution to the second limitation is based on the as-

sumption that foreground points must be dissimilar to the

background from at least one view. The measure of the

likelihood is therefore penalised according to the similarity

between background and composite colour such that

L({Ci,Bi}|d, {αi}) =
∑

p∈P

E2({C
i,Bi, αi}, [p, dp]), (8)

with E2({C
i,Bi, αi},P ) = −

1

|V(P )|
(9)

∑

i∈V(P )

[

Tkl
(‖Ci

MiP − Bi
MiP ‖ < tl ∧ αi

MiP > αl)

‖Ci
MiP − αi

MiPF0
M0P − (1 − αi

MiP )Bi
MiP ‖2

]

,

and Tk(b) =

{

k if b = true,
1 if b = false.

(10)

∧ represents the AND logical operator. The term

Tkl
(‖Ci

MiP
−Bi

MiP
‖ < tl ∧αi

MiP
> αl) is a penalty term.

tl is a threshold measuring the similarity of a colour with
the background. The function penalises errors by a multi-

plicative factor kl when a pixel with a high chance of be-

ing foreground (αi
MiP

> αl) is similar to the background

(‖Ci
MiP

−Bi
MiP

‖ < tl). The similarity is expressed here in
terms of a threshold, however more sophisticated classifica-

tion methods could be considered. In practice, the thresh-

olding method was sufficient to obtain accurate results in

our application. Coming back to Fig. 2(right), the ambigu-

ity has been removed because although P is still consistent,

this assignment has been penalised and is now less likely

than the background hypothesis along the same ray.

3.2. Priors on shape

We write L(d) as a sum of the terms L1(d) and L2(d)
expressing different priors on the scene geometry.

3.2.1. Visual hull prior. In many situations, it is possible

to compute approximate silhouettes of the object to recon-

struct. Given a set of image silhouettes, the visual hull pro-

vides in principle a volume which is guaranteed to contain

the surface to be reconstructed. However, if the silhouettes

are inaccurate or calibration is inexact, the resulting volume

will be a truncated reconstruction of the scene and the pre-

vious assertion will not hold. A solution in this case is to

compute a conservative estimate of the visual hull. A point

is identified as part of the conservative visual hull if its pro-

jection in the images are located within a distance r from
the silhouettes. We denote by H such a conservative visual
hull estimate; for r appropriately chosen, H gives an upper
bound on foreground scene geometry in spite of initial seg-

mentation or calibration errors. Regarding the background,

no depth estimate is required. Such points are represented

by a layer which is not assigned any particular position in

space and is identified by the depth label ∞. The prior on
depth is modelled as follows by assuming a uniform distri-

bution within the visual hull:

L1(d) =
∑

p∈P F (dp 6= ∞∧ [p, dp] /∈ H), (11)

with F (b) =

{

−∞ if b = true,
0 if b = false.

(12)

3.2.2. Smoothness prior. A smoothness constraint is en-

forced between pairs of neighbouring image points p and q

by defining:

L2(d) = −
∑

{p,q}∈N

ks1
Dd(dp, dq), (13)

where Dd penalises depth assignments for neighbours de-

fined by a four-connected neighbourhood N according to
their relative values. Using simple differencing between

depth values may be problematic as it penalises large jumps

at discontinuities. To eliminate this problem, research has



focused on using discontinuity preserving measures such as

the Potts model or the truncated linear distance [2]. The

problem with considering discontinuity preserving func-

tions is that it increases significantly the complexity of

the algorithm and makes it necessary to compromise by

computing only a local solution using for example the α-
expansion algorithm proposed in [2]. In our approach we

use a trade-off between these two types of measures which

consists in measuring the linear distance through the visual

hull only, i.e. points located outside of the visual hull do

not contribute. We note this distance DVH(dp, dq). This
distance does not overpenalise jumps between components

of the scene which are located far apart, while it is still al-

lowing computation of a global optimum.

Similarly to previous work [2, 6], we incorporate con-

text information to encourage depth discontinuities at re-

gions of high intensity gradient. We use the Deriche filter

[5] to extract a set of edges E from the reference image and
weigh the distance accordingly. This introduces robustness

to noise as edges are computed over a smoothed area rather

than pixel differences as in [2, 6]. This is written as:

Dd(dp, dq) = Tkd
(p ∈ E ∨ q ∈ E)DVH(dp, dq), (14)

with ∨ denoting the OR logical operator and Tkd
already

defined in Eq. (10) with kd < 1.

3.3. Priors on alpha mattes

As in the previous section, we express L({αi}) as a sum
of different priors on the alpha mattes.

3.3.1. Trimap prior. We assume that a trimap is avail-

able. A trimap is a partition of the input image in three

sub-sets {PBG,PFG,PX} which defines respectively back-
ground, foreground, and ambiguous regions. In practice,

this is easily obtained from the initial approximate image

segmentation.

L1({α
i}) =

∑

i

∑

p∈P

F
[

(p ∈ PBG ∧ α1
p = 1)

∨(p ∈ PFG ∧ α1
p = 0)

]

(15)

3.3.2. Smoothness prior. Similarly to the case of depth

values, we define a smoothness prior to encourage segmen-

tation of connected regions by defining (for kα < 1):

L2({α
i}) = −

∑

i

∑

{p,q}∈N

ks2
Dα(αi

p, αi
q), (16)

with Dα(αi
p, αi

q) = Tkα
(p ∈ E ∨ q ∈ E)|αi

p − αi
q|.
(17)

3.3.3. Consistency with shape. We assume that a back-

ground point (represented by an infinite depth) must have

a zero opacity, while a foreground point (represented by a

finite depth) must have a non-zero opacity. This is enforced

by adding the following term:

L(d, {αi}) =
∑

p∈P

∑

i

F
[

(αi
Mi[p,dp] = 0 ∧ dp = ∞)

∨(αi
Mi[p,dp] 6= 0 ∧ dp 6= ∞)

]

. (18)

4. Implementation

Our formulation was proposed in the general case of con-

tinuous depths and opacities. Unfortunately, there is no sim-

ple solution in this case, however we show that a global

solution to the problem can be computed very efficiently

via a single graph-cut computation under the assumption of

binary opacity values and discrete depth values. This is a

reasonable assumption for the sports scene considered here,

because in the case of opaque objects with smooth geome-

tries, the number of mixed pixels is relatively small.

Our graph construction is similar to the construction pro-

posed in [11], with the difference that: i) nodes are placed

only in the occupied volume defined by a conservative vi-

sual hull, thus resulting in a sparse graph which does not

require a large amount of memory and for which a min-

cut can be computed efficiently, ii) our graph incorporates

additional nodes representing the background of the scene,

in order to enable simultaneous matting and reconstruction.

The global solution to our optimisation problem is com-

puted with a single graph-cut using the min-cut/max-flow

algorithm [1]. This guarantees optimality of the solution (a

global optimum is obtained, contrary to [6] which computes

a local optimum) and a time efficient implementation which

does not require multiple graph-cut computation.

We build a directed capacitated graph as illustrated in

Fig. 3. The general structure of the graph is dictated by

the geometry of the reference camera considered. Rays are

backprojected from each image pixel and sampled with a

fixed depth increment∆d. Two types of nodes (represented
by white-filled circles in Fig. 3) can be distinguished: fore-

ground nodes and background nodes. The foreground nodes

are located at the grid points inside the visual hull, while the

background points are placed at the end of the rays. In fact,

background nodes can be placed at any location after the

foreground nodes since no assumption is made about their

depth. In our implementation they are placed in an arbitrary

plane located behind the visual hull. Trimap information is

incorporated in the graph by removing background nodes

on rays where the trimap indicates it should be foreground,

and vice versa in the case of rays seeing background points.

The first node and the last node along each ray are con-

nected respectively to the source s and the sink t of the

graph by an edge with infinite capacity. Such a construction

guarantees that the visual hull prior and the trimap prior de-

fined in the previous setion are enforced.
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background nodes

foreground nodes
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Figure 3. Graph structure.

Edges located along rays are assigned costs correspond-

ing to the likelihood terms E2({C
i,Bi, αi}, [p, dp]) defined

in Eq. (9), with αi = 1 for foreground nodes and αi = 0 for
background nodes. The corresponding cost for a 3D point

[p, dp] is placed between the node at this location and the
previous node [p, dp−∆d]. Note that this requires the intro-
duction of auxiliary nodes for points located on the camera

side of the visual hull boundary. To increase robustness in

the case of noisy images, the matching score is computed

over a 5×5 window using the SSD instead of single pixel
differences. The remaining edges located along rays are in-

troduced to ensure continuity of the path between source

and sink along each ray; they are assigned an infinite ca-

pacity (represented by a thick edge in Fig. 3) so that a cut

through these locations is not possible. Edges located across

rays are assigned costs corresponding to the smoothness pri-

ors. Such an edge connecting two foreground nodes [p, dp]
and [q, dq] is assigned a cost with value ks1

Dd(dpdq) de-
fined in Eq. (14). The Deriche filter [5] was used to locate

edges in the reference observed image. Edge connecting

background nodes form the interface between background

and foreground layers, where discontinuity in α may occur,
and are used to impose the smoothness cost ks2

Dα(αi
p, αi

q)
for the opacity, as defined in Eq. (17).

P
0

O
0

O
1

O
N

P

occlusion

Figure 4. Visibility computation.

For accurate computation of the likelihood costs, only

the cameras in which the hypothesised point is visible must

be taken into account. We define a simple visibility test

based on the conservative visual hull. For a point P , we

compute the closest visual hull intersection P 0 of the refer-

ence camera ray passing through it (see Fig. 4). Visibility

of P is then assessed as the visibility of P 0. The reference

camera is always included in the set of cameras regardless

of whether the pointP is visible or not, as we seek to extract

the visible surface that generates the observed image in the

reference camera. In the case of a background node, visibil-

ity cannot be assessed simply as no depth values are avail-

able for these points, however, considering only the refer-

ence camera proved to be sufficient in practice. Visibility

can be pre-computed for each node in the graph.

5. Results

Results are shown on images of a football match. 15

static cameras are arranged on one side of stadium, result-

ing in a total baseline of approximately 90◦ and a coverage
of half the football pitch. Each camera was calibrated by

using the lines present on the football pitch as described

in [17]. The resolution of the images is 720 × 288 (see
Fig. 5(a) for an example). No background images were

available, however an estimate of the background was com-

puted by median filtering for each camera view. An exam-

ple background image is shown in Fig. 5(c). Solving the

matting and reconstruction problem is very challenging in

this scenario because: i) the image resolution is low (play-

ers arms and legs are typically less that 5 pixels wide), ii)

image quality is poor due to compression artefacts, iii) cal-

ibration errors (an image error of one pixel corresponds to

a 3D error of approximately 5 cm), iv) uncontrolled light-

ing conditions. Fig. 5(b) shows a magnification of the im-

age shown in Fig. 5(a). Note the similarity of the back-

ground with foreground in certain areas: skin colour is close

to grass colour, while the lines are the same colour as the

shorts. Also note the multiple occlusions that occur in such

a scene. An example of foreground/background segmenta-

tion obtained by chroma-keying is shown in Fig. 5(d). This

technique suffers from two main limitations. Firstly it can-

not eliminate the pitch lines which have a similar colour

to the players, secondly it sometimes fails on players skin

which is similar to the background, often resulting in arms

and legs being disconnected or removed.

A conservative visual hull with a 3-pixel tolerance is ob-

tained by dilating the image silhouettes by 3 pixels prior to

silhouette intersection. Trimaps are defined for each camera

by marking image points automatically as: i) background

(represented in black in Fig. 5(e)) if located outside of the

projection of the conservative visual hull, ii) foreground

(white in Fig. 5(e)) if located inside the projection of the

conventional visual eroded by 2 pixels, iii) unknown other-

wise (grey in Fig. 5(e)). Our algorithm is applied to consec-

utive triplets of images, the reference camera being chosen

as the most central, with the following settings: ∆d = 5 cm,



(a) Composite image (b) Magnification of some players in (a) (c) Background image

(d) Silhouette image (chroma-keying) (e) Trimap (f) Depth map

Figure 5. Different images corresponding to a same camera viewpoint.

kl = 3, tl is such that approximately 99% of the background
points in the trimap would fall below the threshold when

compared against the composite colours, kd = kα = 0.5,
ks1

= 0.008, and ks2
= 0.002. The choice of the param-

eters is not critical. In principle the optimum setting for tl
could be learnt automatically for each image by analysing

the distribution of errors computed on background and fore-

ground points defined by the trimap, however this was not

considered in this implementation. Fig. 5(f) shows the depth

map obtained as well as the background/foreground seg-

mentation. This shows a significant improvement over the

input chroma-key segmentation shown in Fig. 5(d). Lines

are eliminated and the matting follows more accurately the

players contours, up to small ambiguities which correspond

to the possible presence of mixed pixels.

Finally we show how the method can be applied to novel

view synthesis. The method is applied to each camera, thus

producing a depth map for each view, for which a mesh of

the foreground surface is built. Each mesh is textured with

the original image from the corresponding reference cam-

era. Discontinuity jumps in meshes are handled by split-

ting triangles connecting vertices located on different fore-

ground layers based on thresholding of the depth change be-

tween adjacent pixels. For efficiency, only the two meshes

nearest to the virtual view point are rendered, in a far-to-

near order. An example of a novel synthesised view is

shown in Fig. 6(c). This is a dramatically more accurate and

realistic representation of the scene than the ones obtained

with either a standard visual hull (Fig. 6(a)) or a conserva-

tive visual hull with a 2-pixel tolerance (Fig. 6(b)). Note

for example the missing arms and legs which occur with

the standard visual hull because of calibration and matting

errors. Although the 2-pixel tolerance introduced for the

conservative visual hull is able to prevent missing arms and

legs, it results in a dilated reconstruction which is inaccurate

and appears unrealistic because players are surrounded by

background. The method has been applied to a sequence of

100 images, for which a video clip showing the scene from

a virtual view-point, with inclusion of an artificial back-

ground, has been generated (see Fig. 7).

6. Conclusions and future work

We have proposed a general framework for jointly for-

mulating the multi-view matting and reconstruction prob-

lems. An efficient algorithm which provides a global so-

lution to the problem via a single graph-cut computation

under the assumption of binary opacity values and discrete

depth values has been described. Results on a large-scale

outdoor scene have demonstrated the advantages of this ap-

proach compared to a conventional two-stage approach us-

ing chroma-key and shape-from-silhouette. Future work

will focus on generalising our solution to non-binary alpha

values. Some potential solutions in this case could use the

binary solution proposed here to initialise an iterative algo-

rithm for optimising opacities from a discrete set of labels,

or a two stage approach similar to the layered approach in

[19] where opacity is refined only at depth discontinuities.
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[6] B. Goldlücke and M. A. Magnor. Joint 3D-reconstruction

and background separation in multiple views using graph

cuts. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, volume 1, pages 683–688, 2003.

[7] N. Joshi, W. Matusik, and S. Avidan. Natural video matting

using camera arrays. In Proceedings of ACM SIGGRAPH

2006, pages 779–786, 2006.

[8] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and

C. Rother. Probabilistic fusion of stereo with color and con-

trast for bilayer segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(9):1480–1492, 2006.

[9] K. N. Kutulakos and S. M. Seitz. A theory of shape by space

carving. Int. J. Computer Vision, 38(3):199–218, July 2000.

[10] A. Laurentini. The visual hull concept for silhouette-based

image understanding. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 16(2):150–162, 1994.

[11] S. Roy and I. J. Cox. A maximum-flow formulation of the

N-camera stereo correspondenceproblem. In Proc. IEEE In-

ternational Conference on Computer Vision, pages 492–499,

1998.

[12] D. Scharstein and R. Szeliski. A taxonomy and evaluation

of dense two-frame stereo correspondence algorithms. Inter-

national Journal of Computer Vision, 47(1-3):7–42, 2002.

[13] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and

R. Szeliski. A comparison and evaluation of multi-view

stereo reconstruction algorithms. In Proc. IEEE Conference

on Computer Vision and Pattern Recognition, volume 1,

pages 519–528, 2006.

[14] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruc-

tion by voxel coloring. International Journal of Computer

Vision, 35(2):151–173, 1999.

[15] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy

with graph cuts. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition, volume 1, pages 345–352,

2000.

[16] R. Szeliski and P. Golland. Stereo matching with trans-

parency and matting. International Journal of Computer

Vision, 32(1):45–61, 1999.

[17] G. A. Thomas. Real-time camera pose estimation for aug-

menting sports scenes. In Proc. of 3rd European Conf. on

Visual Media Production, pages 10–19, 2006.

[18] Y. Wexler, A. W. Fitzgibbon, and A. Zisserman. Bayesian

estimation of layers from multiple images. In ECCV ’02:

Proceedings of the 7th European Conference on Computer

Vision-Part III, pages 487–501, 2002.

[19] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and

R. Szeliski. High-quality video view interpolation using a

layered representation. In Proceedings of ACM SIGGRAPH

2004, pages 600–608, 2004.


