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Abstract

We present a novel technique for calibrating a zooming

camera based on the invariance properties of the Normal-

ized Image of the Absolute Conic (NIAC). First, we show

that the camera parameters (independent of the position,

orientation and zooming) are determined uniquely by the

NIAC. Then, we exploit the invariance properties to develop

a stratified calibration method that decouples the calibra-

tion parameters. The method is organized in three steps: i)

computation of the NIAC, ii) computation of the focal length

for each image, iii) computation of the orientation and the

position of the camera. The method only requires two im-

ages of non-coplanar squares at different orientations and

the solution is obtained based on linear minimization that

provides fast and stable convergence properties. A finer so-

lution can be obtained by taking the solution of the linear

minimisation as a starting point of a non-linear minimiza-

tion. Preliminary results for synthetic and real data show

that the method is capable of obtaining accurate results.

1. Introduction

The problem of camera calibration consists in determin-

ing the geometric properties of the image formation pro-

cess. In this paper, we consider the problem of determin-

ing the geometrical parameters under the assumption of a

camera with general motion and zooming. Zooming in-

creases significantly the complexity of the calibration prob-

lem making the straightforward use of standard calibration

techniques impractical [1]. Several techniques have been

proposed aimed at making the calibration of cameras with

zoom lenses practical. For example, in [19] the camera

parameters with several apertures are estimated by fitting

a polynomial at points obtained from fixed zoom settings.

Similar methods have been applied for motorised cameras

[2] and have been extended for selected zoom apertures [1].
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Other methods have estimated parameters by using more

elaborated approaches. In [13] the calibration is performed

by iteratively looking for the best parameters that satisfy

the infinite homography constrain [17]. Similar approaches,

but exploiting the geometrical properties of non-translating

cameras have been presented in [9, 6]. In these works, non-

translation properties are used to replace descent-based it-

eration by a linear method. This produces an elegant algo-

rithm for self-calibration under general motions. Unfortu-

nately, these and other self-calibration techniques rely on

sufficient and accurate point correspondences. Addition-

ally, self-calibration requires good initial values. Conver-

gence problems and noise have made difficult to translate

these techniques into practical applications [16].

The method presented in this paper, capitalises on the in-

variance properties of the Absolute Conic to simplify cali-

bration equations. Previous works have exploited invariants

in calibration. For example, methods have used the image of

Points at Infinity which is invariant to translation [4, 5, 11]

or the Image of the Absolute Conic (IAC) which is invariant

to changes in position and orientation [21, 11, 15, 12]. Our

method extends the geometry used on the methods based on

the IAC to include invariance to zooming by considering the

invariance properties of the Normalized Image of the Abso-

lute Conic (NIAC). First, we show that the camera param-

eters (independent of the position, orientation and zoom-

ing) are determined uniquely by the NIAC. Then, we exploit

the invariance properties to develop a stratified method that

only requires two views of non-coplanar squares in arbitrary

positions. A method that uses planar calibration objects and

that includes zooming was presented in [15]. However, this

method assumes zero skew, it is not linear and requires an

accurate initial estimate of the parameters.

We use the invariance properties of the NIAC to decou-

ple the calibration into three sub-problems: i) intrinsic pa-

rameters independent to the zoom (computed through the

NIAC), ii) focal length representing the zoom for each im-

age (computed through the IAC for each image), iii) extrin-

sic parameters for each image. In general, zooming imposes



a large scale non-linear minimization which is usually un-

stable and less likely to converge to the solution. The sub-

problems in our method have small dimensions and the so-

lution can be found linearly. Each sub-problem have dimen-

sion four, one and six respectively. If necessary, a final non-

linear minimisation can be done to refine the solution. In

this paper, we assume that the position of the principal point

does not change with zooming. This has been assumed in

other works [15], however according to some studies [20]

this is not the case for current cameras technologies. Our

preliminary results on real images with relative small zoom

factors are encouraging, current work focuses on generalis-

ing the method to a variable principal point.

2. Zooming Camera and the NIAC

2.1. The Zooming Camera Model

We adopt the general pinhole model. In this model, 3D

points in the scene P i = [X,Y, Z, 1]⊤ are mapped into 2D
points on the image plane pi = [u, v, 1]⊤ by a projection

pi ∼ MP i, (1)

The projection can be represented by a camera model of

the form M = Kf

[

R t
]

. The extrinsic parameters rep-

resent the camera orientation (rotation matrix R) and po-

sition (translation vector −R⊤t) with respect to the world

frame. The intrinsic parameters include the coordinates of

the principal point (u0, v0), the scale factors αu and αv , and

the skew parameter s. Physically, the three latter parameters

can be expressed in terms of the focal length f in pixel units,

the aspect ratio r, and the angle θ defined by the two axes

of the camera. Thus,

Kf =





αu s u0

αv v0

1



 =





f −f cot θ u0

fr sin θ v0

1



 .

The skew parameter s, which corresponds to the cosine of

the angle θ, is necessary only in the case of CCD cameras

(s = 0 for digital cameras). In practice, the aspect ratio r

is expected to be close to 1, however this parameter should
be computed for an accurate calibration. In the case of a

zooming camera, it is convenient to separate the focal length

from the other parameters. That is, Kf = K1Ff with

K1 =





1 − cot θ u0

r sin θ v0

1



 and Ff =





f

f

1



 .

As such, the general model adopted for a zooming camera

is

M = K1Ff

[

R t
]

. (2)

We have assumed that zooming is equivalent to varying the

focal length of the camera and that the other parameters are

Table 1. A hierarchy of invariants and their prop-

erties. The plane at infinity is invariant to transla-

tion. The IAC extends the invariance properties to

rotation. Ultimately, the NIAC includes zooming as

well.

invariant motion

image of Plane at Infinity translation

IAC translation, rotation

NIAC translation, rotation, zoom

independent of zooming. More elaborated models consider

a varying principal point or define a centre of zooming [20].

The model adopted here is usually a reasonable approxi-

mation for good quality cameras and relatively small zoom

factors.

2.2. The Inverse Image Formation and the Use of
Invariants

Typically, the camera parameters should be recovered

from a set of 3D control points P i with known positions

and its projection in images pi. The inverse image forma-

tion problem consists in finding the set of values that min-

imises the cost function
∑

i

d(pi,K1Ff

[

R t
]

P i)
2, (3)

where d defines a geometric distance or error. This can be

extended to a sequence of images. By denoting as j the

image frame, the cost function becomes

∑

j

∑

i

d(pj
i ,K1Ffi

[

Rj tj
]

P i)
2. (4)

It is tempting to increase the number of views in order

to provide more correspondences and increase the robust-

ness of the method. However, by increasing the number of

views, we also increase the number of unknowns. In total,

a set of n images with different zoom leads to 4 + (1 + 6)n
unknowns (4 intrinsic constant parameters in K1, 1 focal
length (zoom) in Ffi

and 6 extrinsic parameters in Rj and

tj for each image).

The notion of invariant is fundamental if one is inter-

ested in increasing the calibration data without increasing

the dimensionality of the problem. For example, parallel

lines intersect in Points at Infinity whose projections, called

vanishing points, are independent to the translation of the

camera [4, 5, 11]. Translation can then be used to increase

the calibration data without increasing the dimensionality

of the problem [8]. This requires to be able to generate an

accurate translation motion. The IAC [21, 11, 15, 12] offers

more flexibility as it is invariant to position and orientation.



For zooming a new invariant can be included. The NIAC

is invariant to the camera position, orientation and zoom.

It occupies the last position in the hierarchy of the invari-

ants by offering more general invariants than the image of

the plane at infinity or the image of the absolute conic (see

Table 1).

2.3. The NIAC

The Absolute ConicΩ∞ is represented by the 3×3 iden-
tity matrix, i. e. it is defined by the equations X2 + Y 2 +
Z2 = 0 and Z = 0. The Absolute Conic is an imagi-
nary object (it is equivalent to a circle of radius −1) lo-
cated in the plane at infinity π∞ (with equation Z = 0).
The IAC is also an imaginary conic which is represented by

ωf = (KfK⊤

f )−1. Before defining the NIAC’s zooming in-

variance, we consider two properties of the set of Images of

the Absolute Conic (IACs) for a zooming camera. The first

result concerns the concentricity of the IACs, the second

property concern the fact that all the IACs are homotheti-

cally equivalent.

Result 1 (Concentricity of the IACs) The IACs remain

concentric while the camera is zooming. They are centered

at the principal point (u0, v0) of the camera.

Proof The centre of a conic is defined as its pole to the

line at infinity l∞ = (0, 0, 1)⊤. The result is straightfor-
ward by direct computation of the centre Cf of the IAC

ωf . Cf and l∞ are pole-polar with respect to ωf , so we

have l∞ ∼ ωfCf . Equivalently in terms of the dual im-

age of the absolute conic ω∗

f = ω−1

f = KfK⊤

f , we have

Cf ∼ ω∗

f l∞ ∼ KfK⊤

f l∞. The right hand-side term sim-

plifies into





f −f cot θ u0

fr sin θ v0

1









f

−f cot θ fr sin θ

u0 v0 1









0
0
1





=





f −f cot θ u0

fr sin θ v0

1









0
0
1



 =





u0

v0

1



 .

Finally we haveCf ∼ (u0, v0, 1)⊤, which does not depend
on any extrinsic parameter nor the focal length. This com-

pletes the proof. �

Result 2 (Homotheticity of the IACs) The IACs are all

homothetically equivalent when the focal length of the cam-

era varies.

Proof By definition, a homothety is a similarity transfor-

mation that preserves orientation, i.e. the composition of a

translation, a rotation and an isotropic scaling. Let ωf be

the IAC for the focal length f . We want to show that there

exists an homothety Hf , transforming the conic ω1 into ωf ,

  ω
n

  ω
f1

  ω
f2  O

Figure 1. Illustration of the transformation of the

IAC while the camera is zooming. The different

IACs ωfi
are all centered in the principal point O

and are homothetically equivalent to the NIAC ωn.

For illustration purpose, the Absolute Conic has

been replaced by the diagonal matrix with diago-

nal values (1, 1,−1) so that the images by a camera

are real ellipses rather than imaginary entities.

i.e. such that ωf ∼ H
−⊤

f ω1H
−1

f . Noting that Kf can be

decomposed in the form

Kf = HfK1 with Hf =





f (1 − f)u0

f (1 − f)v0

1



 ,

we derive that

ωf = (KfK
⊤

f )−1 = (HfK1K
⊤

1
H

⊤

f )−1

= H
−⊤

f (K1K
⊤

1
)−1

H
−1

f = H
−⊤

f ω1H
−1

f

This completes the proof. �

Definition 1 (Normalised Image of the Absolute Conic)

The Normalized Image of the Absolute Conic (NIAC) is

the Image of the Absolute Conic (IAC) corresponding to a

focal length of 1. It is represented by the symmetric matrix
ωn = (K1K

⊤
1

)−1. It is by construction invariant to the

position, orientation and zooming of the camera.

In the next section, we show how this invariant can be

used for the calibration of a zooming camera.

3. Application to Camera Calibration

The invariance of the NIAC to translation, rotation and

zoom is the core of the new camera calibration algorithm.

The algorithm can be broken into three stages (see Algo-

rithm 1). In the first stage, the NIAC is used to compute

the invariant parameters, i.e. the principal point, the aspect

ratio and the skew parameter. In the second stage, the focal

length, which represents the zooming effect, is recovered

separately for each image. In the third stage, the extrin-

sic parameters, i.e. position and orientation are recovered

separately for each image. The recovery of the parameters



in the second and third stages is relatively straightforward,

therefore the emphasis is on the computation of the NIAC.

The methods presented are linear and do not involve large

dimension problems.

Algorithm 1 Calibration of a zooming camera using the

NIAC

0. Estimate the homographies between each physical

plane and its image, and derive the two pairs of cir-

cular points associated.

1. Compute the NIAC and derive the parameters for K1.

2. Compute the IAC for each image and derive the focal

length fi representing the zoom for each image.

3. Compute the rotation R and the translation t for each

image.

3.1. Preliminary Stage: Circular Points Computa-
tion

The NIAC has a complex equation that defines an imag-

inary object. Its image is defined by requiring its real and

imaginary parts to be zero. The NIAC can be computed by

extending the procedure used to compute the IAC. Gener-

ally, this procedure fits a conic to a set of the circular points.

[21, 11, 15, 12]. The images of the circular points can be

obtained by computing the homography between a physical

plane and the image plane [21, 11, 15] or from the inter-

section of a circle with the plane at infinity [12]. Both ap-

proaches provide the same circular points. In our case, we

chose to use planar homographies to compute the circular

points.

We use the images of two squares with arbitrary posi-

tion, orientation and scale. The only requirement is that

the planes are non-coplanar. Let us denote by H1 =
[h1

1
,h1

2
,h1

3
] the homography between the first plane and its

image, and H2 = [h2

1
,h2

2
,h2

3
] the homography between the

second plane and its image. For simplicity and without loss

of generality, we can assume that the planes are located in

Z = 0 (since the IAC is invariant to the position and ori-
entation of the camera, the relative position between the

physical plane and the camera does not matter). Writing

the rotation matrix in the form R =
[

r1 r2 r3

]

, each

homography can be expressed in the following form

Hj ∼ K1Ffj

[

r
j
1

r
j
2

tj
]

. (5)

Each model plane intersects the absolute conic Ω∞ in

two circular points [14] denoted I = [1, i, 0]⊤ and J =
[1,−i, 0]⊤. The images of these points generated by the

two homographies are:
{

P 1 = H1I = h1

1
+ ih1

2
, P 2 = H1J = h1

1
− ih1

2

P 3 = H2I = h2

1
+ ih2

2
, P 4 = H2J = h2

1
− ih2

2

In the next sections, we show how the different camera pa-

rameters can be recovered from this set of circular points.

3.2. Stage 1: Computation of K1

According to the previous section, the intrinsic parame-

ters of the camera (principal point, the aspect ratio and the

skew parameter) are represented by the matrix K1. These

parameters are invariant to the translation, rotation and

zooming of the camera. In our method, rather than com-

puting directly the matrix K1, we propose to compute the

NIAC given by ωn = (K1K
⊤
1

)−1. Once ωn is known, K1

can be recovered uniquely by Cholesky decomposition [7].

The four points in the previous equation define an infi-

nite number of conics. To define a unique conic we would

require five points. We call the family of conics defined by

four points a general pencil [14]. The locus of the centres of

the general pencil is a conic whose asymptotes are parallel

to the axes of the two parabolas of the pencil. This locus

passes through the six mid-points of the sides of the com-

plete quadrangle defined by the four points and the three

vertices of the diagonal triangle of this complete quadran-

gle [14]. The geometric construction is illustrated in Figure

2.

The four non-aligned points P i (i = 1 . . . 4) can be
joined pairwise by six distinct lines, forming a figure called

a complete quadrangle. The six mid-points M i (i =
1 . . . 6) of the sides of the complete quadrangle belong to
the locus of the centres. They can be computed by general-

izing the notion of mid-point to complex points1. The ver-

ticesX , Y and Z of the diagonal triangle can be obtained

by computing the intersection of the opposite sides of the

complete quadrangle (including the two diagonals). In ho-

mogeneous notation this can be expressed asX = P 1P 2×
P 3P 4, Y = P 1P 3×P 2P 4 andZ = P 1P 4×P 2P 3. Ac-

cordingly, the centre locus can be obtained by fitting a conic

to the nine points M i (i = 1 . . . 6), X , Y and Z. Since

some of the points are complex, the fitting should consider

both the real and imaginary parts to be zero. For example,

(X + iY )⊤C (X + iY ) = 0 ⇔
{

X⊤
CY = 0

X⊤
CX = Y ⊤

CY

It is important to notice that the geometric construction

of the locus of the centres is redundant; we have nine points

and a conic can be defined by only five. A priori, any sub-

set of size at least five can be used. In our implementa-

tion, we used the points X , Y , Z, M1 and M2. These

1IfP1 andP2 are two complex points normalized such that their third

coordinate is 1, then their mid-point is the point with coordinates 1

2
(P1 +

P2).
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Figure 2. The locus of the centres of a general

pencil of conics passing through four points. All

the conics through the four points P 1, P 2, P 3 and

P 4 are centered on a conic which passes through

the vertices (X , Y and Z) of the diagonal trian-

gle of the complete quadrangle P 1P 2P 3P 4 and

the mid-points of the six sides of this quadrangle

(M 1,M 2,M 3,M 4,M 5 andM 6).

points are real (this property comes from the fact that both

pairs {P 1,P 2} and {P 3,P 4} are conjugate), thus the fit-
ting is generally more robust than fitting with other points

and standard conic fitting techniques can be used.

If we consider the image of two calibration grids, then

by fitting five points, we obtain one conic locus of the cen-

tres on which the principal point lies. If several images are

available, the principal point is given by the intersection of

all the conic loci (see Figure 3). Since two conics intersect

in four points, we should require more than two images.

However, in practice, the position of the principal point is

approximately known, and this information can be used dur-

ing the minimisation to compute the locus without ambigu-

ity from two images. If more than two images are used or if

more than two planes are observed, the computation of the

principal point is more robust. In our implementation, the

minimization is implemented by the Levenberg-Marquardt

algorithm initialized at the image centre. The minimisation

is performed in a space of dimension 2, thus it has a fast

convergence.

Once the principal point is known, only the aspect ratio

and the skew parameter need to be computed to determine

the NIAC. These parameters can be obtained by fitting a

conic centered in the estimated principal point to the four

images of the circular points for each image. If more than

two images are used, the parameters can be estimated by

Figure 3. The conics corresponding to the locus

of the centres of each pair of planes in a general

position all intersect in the principal point.

combining the estimates for each pair of images. In our

current implementation, the final value is obtained by aver-

aging all the estimates.

3.3. Stage 2: Computation of Ff

Computing Ff is equivalent to estimating the focal

length for each image, i.e. evaluating the zoom effect. This

is done by determining the scale factor of the homothety to

apply to the NIAC to transform it into the IAC which best

fits the four circular points for each image. A simple least

square technique can be used.

3.4. Stage 3: Computation of R and t

From Equation (5), we obtain a simple relation express-

ing the extrinsic parameters for each image:

[

r
j
1

r
j
2

tj
]

∼ F
−1

fj
K

−1

1
Hj . (6)

The equality is up to a scale factor. The norm of the factor

can be determined by constraining the norm of the first two

columns of the right hand term to be one (the columns of

a rotation matrix are unit vectors). The sign is obtained by

requiring the observed object to be in front of the image

plane of the camera. r
j
3
is obtained by the formula r

j
3

=

r
j
1
× r

j
2
. The orthogonality of the matrix, which is usually

not satisfied due to noise, can be constrained for example

using the SVD decomposition and requiring each singular

value to be one.

3.5. Practical Considerations

Normalization Ideally the results obtained should be

independent of the reference frame used. However in prac-



tice, some reference frames lead to better conditioned sys-

tems and therefore to different results. To mediate the influ-

ence of the choice of the reference frame, and to guarantee

optimum results it is important to normalize the data. The

normalization is done at different levels. First of all world

points and images points are normalized such that their re-

spective centroid is the origin and their average distance

from the origin is
√

2. This was shown to give optimum
results for the computation of the homographies [10]. The

second normalization occurs while fitting a conic to a set of

points [22] or while intersecting conics. It was shown that

normalization of the data improves conic fitting in [3]. Here

we use the standard technique of rescaling the columns of

the equation matrix [7]. This technique was used for conic

fitting in [15].

Maximum Likelihood Estimation The linear solu-

tion presented before is simple and computationally attrac-

tive. However, the distance implicitly minimized during the

computation of the solution is algebraic, i. e. it is not phys-

ically meaningful. It is possible to finalise the calibration

with a global non-linear minimization. The cost function

being minimized is the reprojection error in each image as

described in the cost function in Equation (4). The solution

obtained is a maximum-likelihood estimate. In practice,

the Levenberg-Marquardt algorithm is used. The rotation is

parametrized by three parameters using Rodrigues formula

and considering relative angles [18]. The initial guess for all

the parameters is provided by the linear method described

previously.

Degenerate Configurations The study of all the sin-

gularities is out of the scope of this paper. We will only

mention that parallel planes do not introduce any new cali-

bration information, since they intersect the Absolute Conic

in the same Circular Points. In general, calibration is possi-

ble with two views with different orientations of the camera.

Restricted Camera Model In the case of a non-

zooming camera, the method can still be applied. The sec-

ond stage is replaced by computing the scale factor which

transforms the NIAC into the IAC going through all the cir-

cular points from all the images simultaneously. The algo-

rithm is more robust and can be used to decouple the param-

eters during calibration. In the case of a digital camera (zero

skew) or if the aspect ratio is know, then the calibration can

be done from a single image [21].

Case when the planar objects are known to be orthog-

onal It leads to a simplified algorithm, where the princi-

pal point can be computed from line intersection (not de-

scribed in this paper due to space limitation).

4. Results

The NIAC method was tested with synthetic and real im-

ages. In both cases, the grids used were made of 8× 8 con-
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Figure 4. Results with synthetic data. Influence of

the noise. The RMS reprojection error was com-

puted from a total of 100 experiments. The noise

level indicated represents the standard deviation

of the zero mean Gaussian noise added in the im-

age. 9 images were used for calibration.

trol points rather than a single square, in order to increase

the robustness of the computation of the homographies. The

criteria considered to evaluate the accuracy of the calibra-

tion is the Root Mean Squared (RMS) reprojection error.

Two grids were used for calibration, and the RMS repro-

jection error was computed from a third grid added to the

scene; the computation from points different from the ones

used for calibration leads to more meaningful results. When

a comparison is performed, the method used for compar-

ison is the one described in [10] under the name of Gold

Standard algorithm. The linear standard solution is then

obtained by applying the standard method individually to

each image of the subset considered and averaging the val-

ues obtained for each parameter. The results obtained in

the case of the standard of the NIAC method can be refined

by bundle-adjustment using a non-linear minimization al-

gorithm (for example Levenberg-Marquardt).

4.1. Synthetic data

We tested the method in a general case when the two

grids used for calibration are in a random unknown position.

In this case the angle between the two grids was set to 100◦.
Influence of the noise A Gaussian noise with zero

mean and standard deviation σ was added to the projected

image points. The experiments were carried out with 9 im-

ages with a noise level varying from σ = 0 to σ = 1 pixel,
and each experiment was repeated 100 times for each noise

level. The results obtained are shown in Figure 4. The de-
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Figure 5. Results with synthetic data. Influence of

the number of frames. The RMS reprojection er-

ror was computed from a total of 100 experiments.

The noise in the image was Gaussian with zero

mean and standard deviation σ = 0.5pixels

pendency with respect to the noise level seems to be linear.

Influence of the number of frames The influence

of the number of frames used was tested by applying the

method to random subsets of size varying from 2 to 9; 100

experiments were carried out for each number of frames

considered. The noise in the image was constant (zero

mean, standard deviation σ = 0.5 pixel), the results are
shown in Figure 6. The results obtained for both methods

seem to converge and stabilise after 6 images.

The NIAC method seems to be accurate (reprojection er-

rors of the order of one pixel). It can be seen that the non-

linear minimisation improves the calibration results. Here,

the angle between the two planes being assumed unknown,

traditional calibration methods are not applicable, so we

chose not to show any comparison of the NIAC method

with other standard methods. However, some additional ex-

periments using the exact position of each control points

showed that the linear standard method performed far worse

than the linear NIAC method, whereas the non-linear stan-

dard method is slightly better than the non-linear NIAC.

Such calibration information is usually not available, unless

a high accuracy calibration grid (usually with two orthogo-

nal planes) is used.

4.2. Real data

The method was tested with real images in the particular

case where the calibration planes are orthogonal. This in-

formation was not used by our method, however it allows a

comparison with standard calibration methods using point

Figure 6. Three images from the sequence of 15

images with different zoom factors.

Table 2. Results for the different focal lengths es-

timated (the calibration was done from 9 images).

linear non-linear linear non-linear

standard standard NIAC NIAC

u0 362.6 362.9 366.3 366.4

v0 307.9 308.0 280.5 280.4

r 0.9168 0.9162 0.9041 0.9043

θ 1.570 1.557 1.572 1.554

f1 801.6 800.9 794.9 782.0

f2 815.7 814.4 809.9 813.2

f3 806.0 802.9 795.5 799.1

f4 1035.3 1034.5 1006.8 1022.2

f5 1015.1 1015.2 1026.2 1013.4

f6 1017.8 1016.6 998.1 999.8

f7 1257.1 1256.3 1223.9 1217.7

f8 1272.9 1269.8 1258.7 1263.8

f9 1256.2 1239.2 1225.1 1227.4

RMS 28.459 5.727 4.196 4.356

correspondences. The images were obtained from a hand-

held camera, at different positions, orientations and with

different zoom factors. The zoom factor was fixed for con-

secutive triplets of images. A sequence of 15 images was

used (see Figure 6).

Table 2 shows the values obtained for the intrinsic pa-

rameters and the RMS reprojection error in the case of cali-

bration from 9 images. The values obtained for each method

are very close. We can verify that triplets of images present

similar values for the focal length. The results obtained with

respect to the number of frames considered are shown in

Figure 7. It can be seen that the NIAC method and the stan-

dard method lead to similar results.

5. Conclusions and Further Work

We have presented a technique for calibrating a zooming

camera that considers the invariance properties of the NIAC

to simplify the calibration equations. We have shown that

the geometrical properties of the NIAC can be used to cal-

ibrate a camera from two images of non-coplanar squares.

The method decomposes the calibration problem in three
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Figure 7. Results with real data. Influence of the

number of frames.

sub-problems of low dimension that are solved linearly. The

solution can be refined by including a non-linear minimisa-

tion step. Preliminary results with synthetic and real im-

ages show that the technique is accurate. The main lim-

itation is that it assumes a fixed position of the principal

point. This is only valid for high quality cameras and rel-

ative small zooming. More experiments that evaluate the

performance as a function of the zooming factor should be

done. Our current work focuses on exploring new invari-

ance properties compatible with variable principal points:

for example, the NIAC should no longer be centered at the

principal point, but would be an imaginary object floating

in the image space.
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