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Figure 1. Examples of image synthesis from any-level semantic layouts. (a) The coarsest layout, i.e. at the 0-th precision level, is equivalent
to a text input; (d) the finest layout, i.e. at the highest level, is close to an accurate segmentation map; (a)-(d) intermediate level layouts
(from coarse to fine), the shape control becomes tighter with increasing levels. (e) We can specify different precision levels for different
components, e.g. to include a O-th level style indicator while the remaining regions are of higher levels.

Abstract

We propose a new framework for conditional image syn-
thesis from semantic layouts of any precision levels, ranging
from pure text to a 2D semantic canvas with precise shapes.
More specifically, the input layout consists of one or more
semantic regions with free-form text descriptions and ad-
Jjustable precision levels, which can be set based on the
desired controllability. The framework naturally reduces to
text-to-image (T21) at the lowest level with no shape informa-
tion, and it becomes segmentation-to-image (S2I) at the high-
est level. By supporting the levels in-between, our framework
is flexible in assisting users of different drawing expertise
and at different stages of their creative workflow. We intro-
duce several novel techniques to address the challenges com-
ing with this new setup, including a pipeline for collecting
training data; a precision-encoded mask pyramid and a text
Sfeature map representation to jointly encode precision level,
semantics, and composition information; and a multi-scale
guided diffusion model to synthesize images. To evaluate

the proposed method, we collect a test dataset containing
user-drawn layouts with diverse scenes and styles. Experi-
mental results show that the proposed method can generate
high-quality images following the layout at given precision,
and compares favorably against existing methods. Project
page https://zengxianyu.github.io/scenec/

1. Introduction

Recently, deep generative models such as StyleGAN
[24,25] and diffusion models [9, 19,49] have made a signif-
icant breakthrough in generating high-quality images. Im-
age generation and editing technologies enabled by these
models have become highly appealing to artists and design-
ers by helping their creative workflows. To make image
generation more controllable, researchers have put a lot
of effort into conditional image synthesis and introduced
models using various types and levels of semantic input
such as object categories, text prompts, and segmentation
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Table 1. Difference from related conditional image synthesis works.
T2I: text to image, S2I: segmentation to image, ST2I: Scene-based
text to image [13], Box2I: bounding box layout to image [50].

Setting Open-domain layout Shape control Sparse layout Coarse shape Level control

T21 v X X x X
S21 X v X x X
ST2I X v X x X
Box2I X X v X X
Ours v v v v v
maps etc. [23,35,36,43,44,67].

However, existing models are not flexible enough to sup-
port the full creative workflow. They mostly consider fixed-
level semantics as the input [63], e.g. image-level text de-
scriptions in text-to-image generation (T2I) [35,39,41,43,

], or pixel-level segmentation maps in segmentation-to-
image generation (S2I) [23,36,67]. Recent breakthroughs on
T2I such as DALLE?2 [39] and StableDiffusion [ 1,43] demon-
strate extraordinary capabilities of generating high-quality
results. They can convert a rough idea into visual messages
to provide inspirations at the beginning of the creative pro-
cess, but provide no further control over image composition.
On the other hand, S2I allows users to precisely control the
image composition. As it is extremely challenging to draw
a detailed layout directly, S2I is more useful for later cre-
ative stages given initial designs. For real-world use cases,
it is highly desirable to have a model which can generate
images from not only pure text or segmentation maps, but
also intermediate-level layouts with coarse shapes.

To this end, we propose a new unified conditional image
synthesis framework to generate images from a semantic lay-
out at any combination of precision levels. It is inspired by
the typical coarse-to-fine workflow of artists and designers:
they first start from an idea, which can be expressed as a text
prompt or a set of concepts (Fig. 1 (a)), then tend to draw
the approximate outlines and refine each object (Fig. 1 (a)-
(d)). More specifically, we model a semantic layout as a set
of semantic regions with free-form text descriptions. The
layout can be sparse and each region can have a precision
level to control how well the generated object should fit to
the specified shape. The framework reduces to T2I when the
layout is the coarsest (Fig. | (a)), and it becomes S2I when
the layout is a segmentation map (Fig. 1 (d)). By adjusting
the precision level, users can achieve their desired controlla-
bility (Fig. 1 (a)-(d)). This framework is different from the
existing works in many aspects, as summarized in Table 1.

This new setup comes with several challenges. First, it
is non-trivial to encode open-domain layouts in image syn-
thesis frameworks. Second, to handle hand-drawn layouts
of varying precision, we need an effective and robust way
to inject the precision information into the layout encod-
ing. Third, there is no large-scale open-domain layout/image
dataset. To generate high-quality images and generalize to
novel concepts, a large and diverse training dataset is crucial.

We introduce several novel ideas to address these chal-

lenges. First, we propose a text feature map representation
for encoding a semantic layout. It can be seen as a spatial ex-
tension of text embedding or generalization of segmentation
masks from binary to continuous space. Second, we intro-
duce a precision-encoded mask pyramid to model layout
precision. Inspired by the classical image pyramid mod-
els [2,6,47,62], we relate shape precision to levels in a
pyramid representation and encode precision by dropping
out regions of lower precision levels. In other words, the [-th
level of the mask pyramid is a sub-layout (subset of regions)
consisting of semantic regions with precision level no less
than [. By creating a text feature map for each sub-layout, we
obtain a text feature pyramid as a unified representation of
semantics, composition, and precision. Finally, we feed the
text feature pyramid to a multi-scale guided diffusion model
to generate images. We fulfill the need for training data by
collecting them from two sources: (1) large-scale image-
text pairs; (2) a relatively small pseudo layout/image dataset
using text-based object detection and segmentation. With
this multi-source training strategy, both text-to-image and
layout-to-image can benefit from each other synergistically.
Our contributions are summarized as follows:

* A unified framework for diffusion-based image syn-
thesis from semantic layouts with any combination of
precision control.

* Novel ideas to build the model, including precision-
encoded mask pyramid and pyramid text feature map
representation, and multi-scale guided diffusion model,
and training with multi-source data.

* A new real-world user-drawn layout dataset and ex-
tensive experiments showing the effectiveness of our
model for text-to-image and layout-to-image generation
with precision control.

2. Related Work

Deep generative models. In recent years, there has been
significant progress in image generation using deep genera-
tive models. Some of these approaches attempt to learn the
image distribution by optimizing a likelihood-based objec-
tive function. Autoregressive models (ARMs) [11,55-57]
treat images as sequences of pixels or tokens in a learned
dictionary to define a tractable density model, which can be
optimized by maximizing the likelihood. Variational Autoen-
coders (VAEs) [26, 54] use an intractable density function
and train the model by maximizing the variational lower
bound. Diffusion-based models [9, 19,43, 48,49] are also
trained by optimizing the variational lower bound. Unlike
VAEs which map an image into the latent space using a
learnable encoder, diffusion-based models use a fixed dif-
fusion process to transform an image into Gaussian noise.
Generative Adversarial Networks (GANSs) [5, 14,24,25] do
not define the density function explicitly; instead, generative

22469



models are trained through an adversarial learning process
against a discriminator. We base our method on diffusion
models due to their ability to generate high-quality images
and stability in training.

Layout/Segmentation-to-image generation refers to the
task of generating images from a spatial arrangement
of semantic concepts, e.g. a segmentation map or a set
of bounding boxes. Segmentation-based methods (e.g.
[8,23,36,45,52,59,60]) have been proposed to allow users to
precisely control the image composition, but are less flexible
as they require a dense and accurate segmentation map and
only allow a fixed set of categories. Bounding box-based
methods can generate images from a coarse layout of bound-
ing boxes. Bounding box-based generation was studied as
a standalone task first by Zhao et al. [66] and has been an
active research area [3, 17, 30, 58] since then. To convey
more information than object categories, more expressive
bounding box descriptions have been introduced, such as at-
tributes [3, 34], relations [3], and free-form descriptions [12].
Although bounding boxes are easier to draw than segmen-
tation maps, they provide no control over object shapes and
orientations. In this work, we use coarse shapes with free-
form text descriptions and precision levels to represent a
layout, providing more flexibility and control for different
synthesis needs.

Text-to-image/Multi-modal image generation. T2I aims
to generate images from a free-form text description, i.e.
image captions. Earlier approaches are usually based on
conditional GANSs [4 1, 65]. Recently, autoregressive models
based on image quantization techniques [ 10,40, 64] and dif-
fusion models [1,35,39,43,44] have shown surprising results
with large-scale models and datasets. To gain more control
over the spatial composition, some studies have tried to in-
corporate layout in the form of key points [42], bounding
boxes [ 18], or object shapes [13,21,27,29,37], as an addi-
tional input. Some studies focused on image synthesis from
multi-modal input including text, segmentation maps, edge
maps [22,61] etc. A work [4] concurrent to ours proposes
a training-free paint-with-word method that enables users
to specify the object locations by manipulating the attention
matrices in cross-attention layers. These approaches use the
layout as an extra signal complementary to captions. In con-
trast, we unify image captions and layout using a multi-level
framework that models captions as a special case of layout
with the lowest precision level. From a practical perspective,
our framework provides a more flexible control mechanism
with coarse shapes and precision controllability.

3. Proposed Method

Our method aims to generate images from a layout con-
sisting of a set of semantic regions of varying precision
levels. Formally, an input layout can be viewed as a list
of tuples {(M;, t;, ¢;) Y1, where M;, t;, ¢; indicate the seg-

mentation mask, text description, and the precision level of
the ¢-th region. We let M, t, ¢ denote the sets of masks,
texts and precision levels of all regions, respectively. The
precision level variable ¢; € N<, indicates how precisely
the generated content should follow the mask M;. A smaller
value of ¢; indicates a less precise control allowing more
deviation from the mask M;. ¢; = 0 indicates the coars-
est level where the i-th mask will be ignored. When all
¢; = 0, the problem converts into T2I. Fig. 2 shows an
overview of the proposed method. To generate an image at
resolution 2% x 2L we first formulate a precision-encoded
mask pyramid { M'}%_, which represents each mask at the
given precision level (Sec. 3.1). Then we combine the mask
pyramid with the text descriptions £ to form a text feature
pyramid {Z'}E . It contains a 2! x 2! text feature map at
each level, which can be seen as an extension of the one-hot
label map encoding in S21I (Sec. 3.2). Finally, a multi-level
guided diffusion model takes the feature pyramid as input to
generate an image (Sec. 3.3).

3.1. Precision-Encoded Mask Pyramid

For a user-drawn coarse shape, it is challenging to model
the exact precision, since the type and the amount of error
vary across different users. To simplify the problem, we re-
late precision to resolutions and propose a precision-encoded
mask pyramid to encode the shape and precision information
simultaneously. Given a mask and a precision level, a high
precision level corresponds to using all details of the masks
at a high resolution, while a low precision level means we
can only trust the mask at a low resolution.

More specifically, given a set of masks M = [my, .., my,]
and the precision levels ¢ = [cy, ..., ¢,], we construct the
mask pyramid by representing each mask M, at resolutions
up to 2%. In other words, we resize each mask M, to multiple
resolutions and drop out the masks at resolutions higher than
2¢, as illustrated in Fig. 3. Formally, the [-th layer of the
mask pyramid, denoted as M s computed as follows,

M} = resize(M;,2") - 1,51, (1)
where resize(M;, 2') resizes a mask M; to 2! x 2! resolution
through image interpolation and binarization. The indicator
function 1.,>; returns 1 when ¢; > [ and 0 otherwise. In
our implementation, we set the range of precision levels to
[0,3,4,5,6]. We observed that for a free-hand drawn layout,
8 x 8 masks at the level 3 are easy to draw while being fairly
informative, whereas 64 x 64 masks at the level 6 usually
capture enough details, as illustrated in Fig. 4.

3.2. Text Feature Pyramid

The mask pyramid encodes the shape and the precision
information. To generate an image, we also need semantic
information. We introduce a text feature pyramid for this
purpose. Each level of the text feature pyramid is a 2! x 2!
text feature map Z' obtained by combining the masks M
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Figure 2. An overview of the proposed method. We provide an intuitive interface where users can easily define a layout using a semantic
brush associated with a free-form text description and adjustable precision level. The masks, regional descriptions, and precision levels
{(M;, t;, ;) }i— are jointly encoded into a text feature pyramid, and then translated into an image by a multi-scale guided diffusion model.
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Figure 3. An example of the precision-encoded mask pyramid. The
first level has two non-zero masks corresponding to mi, ms as
c1,c2 > 1; the second level only has mq as ¢1 = 2,c2 < 2; the
third level does not have any non-zero masks as all the precision
levels of all masks are lower than 3.
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Figure 4. Illustration of the masks at different levels of a pyramid.

and the embeddings of the text £. At the 0O-th level, the
1 x 1 masks contain no shape information, so we simply
concatenate the embeddings of all words into a sequence. At
the levels where [ > 0, we spatially spread the embeddings
of t over the corresponding masks to jointly represent the
shape and semantic, as illustrated in Fig. 2.

Text feature maps. Here we describe in more detail how
we construct the text feature map Z' at level [ > 0. For
simplicity, we drop the superscript [ and denote the masks
at an arbitrary level as M. Each element M, . , is a binary
value € {0, 1} and we allow overlaps or blank spaces, i.e.
n > Z:l M; +.4 > 0. Given the initial masks M, we intro-
duce normalized masks M , which are augmented from M
by adding an extra mask M) to indicate the blank space and

normalized by the number of shapes at each location:

Mi,m,y = i,w,y/ Mi,:raw
2 o

where Mow,y = ]12;1:1 M.

i,a,y=0"
In the normalized masks M, each element M; , ,, is a con-

tinuous value € [0,1] and we have 327" M; ., = 1. We
compute each element Z;, , at location x, y as follows,

Zoy =Y fti) My, 3)
=0

where f(t;) is an embedding of the text ¢;. We set ¢ to be
a null token @ to represent unspecified areas, i.e. the blank
space indicated by M.

The text feature map representation has several advan-
tages. First, it is of the same dimension regardless of the
number of masks, and therefore compatible with most deep
ConvNet architectures. Second, each element of a text fea-
ture map is a convex combination of n text embeddings in
the learned embedding space. With a powerful language
model, we can achieve a good generalization capability for
unseen combinations of concepts. In a text feature map, any
overlapping area contains an interpolation of multiple em-
beddings. Accordingly, users can get creative results derived
from hybrid concepts by drawing overlapping shapes.

Data acquisition. During inference, the segmentation
masks and text descriptions are both provided by users. Dur-
ing training, we can generate them automatically using text-
based object detection [28] and segmentation [16]. We set
the regions where no objects are detected as blank space and
assign a null token @ to these regions. We use CLIP [38] text
model to encode the text descriptions. In addition, the 0-th
level feature maps can be obtained directly from the image
caption embeddings. More details regarding the training data
generation step can be found in the supplementary material.

Relation to one-hot label maps. In S2I, a layout containing
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Figure 5. Architecture of the multi-scale guided diffusion model.

at most C classes can be encoded into a C'-channel one-hot
label map. It can be seen as a special case of text feature
maps when the masks are dense and non-overlapping, and the
embedding model f is a one-hot encoding function. Specif-
ically, let M be the segmentation masks, ¢ the class labels
where t; = 1,2, ...,C, fc(t;) = 14,—.. Since M are dense
and non-overlapping, the normalized masks M; will be the
same as M; for i > 1 and M, = 0. Eqn. 3 then becomes

n
Zc,ac,y = Z ]]-ti:c ' Mi,m,y = Z Mz’,:ﬂ,y- 4
i=1 ilti=c

Therefore, the c-th channel of Z is a mask covering all
pixels of class c, i.e. a one-hot label map. Through this re-
formulation, we can see that the one-hot representation has
limited capability as f (¢;) is restricted to be binary. The text
feature map representation uses a learned language model as
f to encode the more informative open-domain layouts.

3.3. Multi-Scale Guided Diffusion

We use a diffusion model to generate images from a text
feature pyramid. We use e-prediction and the simplified
training objective following [19]:

L =Eeono)i~r [l —€o(ze, z,0)[5],  (5)
where T is the number of diffusion steps, x; is a noisy ver-
sion of the ground-truth image « at the ¢-th diffusion step, z
is the conditional signal, which in our case is the text feature
pyramid { Z'}£_, and €g represents the network parameter-
ized by 8. We modify the UNet architecture [9] by adding
the convolutional layers to combine each text feature map
with the UNet feature maps of the corresponding resolution.
The 0-th level text feature maps Z° are passed through all
blocks using cross-modal attention [44] and channel-wise
feature modulation. Fig. 5 shows the overall architecture of
the modified UNet.

Classifier-free guidance [20] has shown to be an effec-
tive technique to improve the performance of conditional
diffusion models and is widely applied to diffusion models
conditioned on text and class tags [9, 35,43, 44]. To ben-
efit from this technique, we introduce multi-scale spatial
guidance for our feature map conditioned diffusion model.
As described in Sec. 3.2, in text feature maps from level 1
to L, the unspecified regions are the embedding of a null

token f(@). We further apply dropout with probability 0.1
to Z° by setting Z° = f(©). During inference, we estimate
two diffusion scores, conditioning on the given text feature
pyramid and an empty feature pyramid of repeating f (),
and then perform sampling using their linear combination.

4. Experiments

In this section, we present the experimental results on im-
age synthesis from any-level semantic layouts. We evaluate
the proposed method on user-drawn coarse layouts and auto-
matically simulated layout data. We also present results on
T2I and S2I, and compare our method with state-of-the-art
methods.

4.1. Implementation Details

We train the multi-scale guided diffusion model to gener-
ate 64 x 64 images from a layout of precision up to log, 64.
To generate images at higher resolution, we experiment with
two approaches: (1) by training another diffusion model to
upsample 64 — 256 following [9]; (2) by generating the
latent map at 64 x 64 resolution then decoding it into a
512 x 512 image following [43]. Both approaches are effec-
tive, demonstrating that the proposed method can generalize
well to both pixel-space and latent-space diffusion strategies.
We use smaller pixel-space diffusion models for ablation
studies and report the main results based on a larger latent-
space diffusion model. We encode the text descriptions using
the pretrained CLIP ViT-L14 language model [38]. To avoid
repeated forward passes, we feed the union of all regional de-
scriptions U;; as a sentence into the language model. Then,
we average the hidden states corresponding to each word in
t; to use as its embedding f(¢;).

Training details. We use the aesthetic subset of Laion2B-
en dataset [40] for training. We generate full text feature
pyramids for 5SM randomly selected samples and construct
only the 0-th level feature maps for the remaining samples.
For pixel space diffusion, we train a base model of 300M pa-
rameters and a super-resolution model of 300M parameters;
for latent-space diffusion, we train a base model of 900M
parameters and use the pretrained deocder from [43]. We
use batch size 2048 for 64 x 64 models and batch size 960
for the super-resolution model.

Evaluation benchmark. We use the COCO [32] validation
set for evaluation in the T2I setting and the COCO-stuff [7]
validation set for S2I. For evaluation in open-domain layout-
to-image generation, we construct a new test set OpenLayout
containing 260 user-drawn layouts of coarse shapes. The
layouts are annotated by 10 users based on text prompts
randomly sampled from PartiPrompts [64]. To analyze the
effect of precision level control, we also evaluate using the
pseudo layouts consisting of accurate shapes, which are
extracted from the 5,000 images with caption annotations
of COCO validation set (OpenLayout-COCO). Fig. 6 shows
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Table 2. Quantitative results on the OpenLayout and OpenLayout-
COCO datasets with different precision levels. SS Score: spatial
similarity scores.

OpenLayout OpenLayout-COCO
Prec. SS Scoret CLIP Score 1 | SS Score t CLIP Score T FID |
0 436 274 572 .260 25.3
3 .533 268 .685 256 26.0
4 .543 266 716 256 27.0
5 .558 267 729 256 28.4
6 558 261 736 255 30.6

some layouts samples from OpenLayout and Openlayout-
COCoO.
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Figure 6. Top: Pseudo layouts from OpenLayout-COCO dataset.
Bottom: real-world user-drawn layouts from OpenLayout dataset.

4.2. Open-Domain Layout-to-Image Generation

Here we discuss the results on the OpenLayout and
OpenLayout-COCO datasets. For each sample, we run the
model a varying precision level ¢ from 0 to 6 to verify the
effectiveness of precision control. Fig. 7 shows the results
with different precision levels. For simplicity, we use the
same precision level for all regions in an input layout, i.e.
Vi, c; = c. We can see that as the precision level increases,
the generated images follows the layout more closely. When
¢ = 0, the image compositions are not related to the layouts.
For ¢ = 3,4 the generated images roughly resemble the
shape and location specified in the layout. For ¢ = 5, 6, the
generated object contours matches the layout more closely.
At the lowest precision level, our method can handle very
rough layouts, e.g., bounding box layouts, as shown in Fig. 8,
despite not being trained on bounding box data.

For quantitative evaluation, we compute the CLIP score
using the original captions to measure global semantic align-
ment. To measure spatial alignment, we define a spatial
similarity score (SS score), which is the cosine similarity be-
tween the text feature maps of the input layout and the layout
reconstructed from the generated image. For OpenLayout-
COCO, as the ground-truth images are available, we also
compute the FID to measure the visual quality.

Table 2 reports the quantitative evaluation results on im-
ages generated with different precision levels. The second

Table 3. Quantitative comparison with T2I methods on COCO.

Method FID | zero-shot FID|
SSA-GAN [31] 19.37 -
VQ-Diffusion [15] 13.86 -
DF-GAN [53] 19.32 -
GLIDE [35] - 12.89
SD [1,43] - 9.89
DALLE2 [39] - 10.87
Ours 8.55 9.47

and fourth columns show that using a higher precision level
generally leads to a higher spatial similarity, which further
demonstrates the effectiveness of precision control. On
OpenLayout-COCO, the spatial similarity consistently in-
creases as the precision level becomes higher. Whereas, on
OpenLayout, it stays the same at higher levels. This is due
to the difference in the inherent layout precision exhibited
by the two datasets; compared to OpenLayout-COCO, the
layouts in OpenLayout are coarser. For a coarse layout,
the generated images already match it well at low precision
levels and the room for improvement is limited.

From the last column of Table 2, we can see that the re-
sults with a lower precision level have a smaller FID, which
indicates a similar distribution with respect to the ground-
truth images. This is likely because a lower precision level
enforces smaller constraints on the generation process, and
therefore the generated images can better capture the real
image distribution. Similarly, a lower precision level also
yields a slightly better CLIP score due to the smaller spa-
tial constraints, as shown in the third and fifth columns of
Table 2.

4.3. Text-to-Image Generation

As mentioned in Sec. 3, our method can be applied for
text-to-image generation by using texts as 0-th layouts. The
first four columns of Fig. 9 show the images generated from
text prompts by our method and state-of-the-art methods.
We can see that the proposed method can generate visually
peasant images with reasonable layouts from only text input.
Table 3 reports the FID evaluated on the COCO validation set.
The classifier-free guidance scale is set to 3. Following [35],
we sample 30K images using randomly selected text prompts
and compute FID against the entire validation set. It can be
seen that the proposed method compares favorably against
state-of-the-art text-to-image generation models.

By combining with a named entity recognition (NER)
model, we can apply the proposed method to layout con-
trollable text-to-image generation. More specifically, given
an input sentence, we parse the noun phrases using NER to
generate regional text descriptions, and users can arbitrar-
ily draw the shapes for those noun phrases. The last two
columns of Fig. 9 show the text-to-image generation results
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Figure 8. Results with bounding box layout. Precision level = 3.

with layout control. We can see that the generated images
match the text well and follow the provided layouts.

4.4. Segmentation-to-Image Generation

Our model can also generate images from a dense seg-
mentation map of closed-set labels, i.e. following the original
S2I setting. For this application, we treat the class labels as
text descriptions and use the highest precision level ¢ = 5
for all masks. Fig. 10 shows example images generated
by our method and SPADE [36]. The images generated
by our model are of significantly better visual quality. Ta-
ble. 4 reports the quantitative comparison results on the
COCO-stuff validation set with the state-of-the-art S2I meth-
ods [33,36,51]. Since the highest resolution of the input lay-

out to our model is 64, we evaluate the S2I results at 64 x 64
resolution. From the third and fifth columns of Table. 4 we
can see that despite not being designed or trained for this
task, the proposed method can achieve lower FID and com-
parable mIOU. After being fine-tuned on the COCO-stuff
training set, our model outperforms previous approaches in
terms of both FID and mIOU.

Table 4. Quantitative comparison with S2I methods on COCO-stuff.

Method FID | zero-shot FID | mIOU?T zero-shot mIOU?T

SPADE [36] 5091 - 17.49 -

SAFM [33]  62.28 - 12.28 -

CLADE [51] 55.30 - 17.21 -
Ours 17.20 20.17 23.01 17.15

4.5. Ablation Studies

We compare the proposed any-level method with two
fixed-level baseline models: a text-to-image generation
model and a fixed-level layout-to-image generation model.
The baseline models are of the same architecture as the
any-level models. When training the baseline models, we
only use layouts of fixed levels, i.e. the 0-th level for the
text-to-image baseline and the 4-th level for the fixed-level
segmentation-to-image baseline. Table 5 compares the evalu-
ation results of the any-level model and fixed-level baselines
at the corresponding levels. The any-level model achieves
better results than the baseline models, which further demon-
strates the advantage of the unified framework.
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Figure 10. Visual comparison with SPADE [36] for segmentation-to-image generation.

Table 5. Ablation study results on OpenLayout-COCO.

Prec. Level Model FID| CLIP Score T SS Score 1
0 Text-to-Image Baseline ~ 32.83 2473 .5613
0 Any-Level Model 32.09 .2496 .5640
4 Single-Level Baseline ~ 36.03 2381 5729
4 Any-Level Model 33.70 .2475 6978

5. Conclusion

This paper presents a new conditional image synthesis
framework to generate images from any-level open-domain
semantic layouts. The input level ranges from pure text to
a 2D semantic canvas with precise shapes. Several novel

techniques are introduced, including a pipeline for collecting
training data; the representations to jointly encode precision
level, semantics, and geometry information; and a multi-
scale guided diffusion model to synthesize images. A test
dataset containing user-drawn layouts is collected to evaluate
the proposed method. Experimental results demonstrate the
advantage of the unified framework. The proposed method
can generate high-quality images following the layout at
specified precision levels, and compares favorably against
the state-of-the-art methods on public benchmarks.
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