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ABSTRACT

We present a new algorithm for segmenting video frames
into temporally stable colored regions, applying our technique
to create artistic stylizations (e.g. cartoons and paintings)
from real video sequences. Our approach is based on a multi-
label graph cut applied to successive frames, in which the
color data term and label priors are incrementally updated and
propagated over time. We demonstrate coherent segmentation
and stylization over a variety of home videos.

Index Terms— Video segmentation, Graph cut, Tempo-
ral coherence, Non-photorealistic (artistic) rendering / NPR.

1. INTRODUCTION

Artistic stylization of visual footage is a challenging prob-
lem to both Computer Vision and Graphics, requiring the au-
tomatic abstraction and depiction of scene structure. Video
stylization remains an open problem; it is difficult to extract
temporally coherent (stable) scene descriptions, and this typi-
cally leads to a distracting flicker within resulting animations.
In recent years, video segmentation and region tracking
have been applied to yield mid-level models of scene struc-
ture [1] that have shown promise in artistic stylization [2, 3]
and summarization [4]. Predominant approaches to video
segmentation are frame-to-frame association (2D + t) and
spatio-temporal clustering (3D) methods. The former inde-
pendently segment 2D frames, and then create associations
between regions over time to identify sporadic regions [5, 2,
6]. Although this filtering improves stability, temporal coher-
ence is not ensured because the region map for each frame
is formed independently without knowledge of the adjacent
frames. Furthermore, association is confounded by the poor
repeatability of 2D segmentation algorithms between similar
frames, causing variations in the shape and photometric prop-
erties of regions. Spatio-temporal approaches cluster pix-
els in (z,y, t), using unsupervised clustering techniques such
as mean-shift [7, 3, 8], or Gaussian mixture models (GMM)
[9] to group space-time pixels. However, these approaches
become computationally infeasible for pixel counts in even
moderate size videos, and often under-segment small or fast
moving objects that form disconnected space-time volumes.
We propose a video segmentation algorithm, in which the
region segmentation of each frame is guided by motion flow
propagated priors estimated from the accumulated data of past
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frames. By exploiting historical information we demonstrate
improvements in temporal coherence. Although recent inter-
active “video cut-out” systems [10, 11] track keypoints on re-
gion boundaries over time for matte extraction, we differ in
several ways. First, we propagate label priors and data for-
ward with motion flow within regions, rather than tracking
2D windows on region boundaries that contain clutter from
adjacent regions. Second, we are more general, producing a
multi-label (region) map rather than a binary matte. Third,
[10, 11] require regular manual correction, typically every 2-
5 frames. Our algorithm requires no user interaction, beyond
(optional) modification of the initial frame for aesthetics.

2. SEGMENTATION FRAMEWORK

The essence of our approach is to perform a multi-label graph
cut on successive video frames, using information propagated
forward from previous frames. This information comprises: 1)
a color distribution for each region represented via a Gaussian
Mixture Model (GMM) built incrementally from past frames;
ii) a subset of pixel-to-region labels from the previous frame.
We check for region under-segmentation (e.g. due to the ap-
pearance of new objects) by comparing the historic and up-
dated GMMs and introducing new labels accordingly. The
region map of the first frame is boot-strapped using mean-
shift, and may optionally be modified by the user for aesthet-
ics. When all frames are segmented, we render the region
maps in a variety of painterly or cartoon artistic styles.

2.1. Multi-label Graph cut

We define video segmentation as the problem of assigning re-
gion labels existing in frame I;_; to each pixel p € P in
frame I;(p); i.e. finding the best mapping [ : P — L where
L= ((1),...,Up),...,l(|P])) is the set assignments of la-
bels l;,4 = {1...L}. A subset of L are carried forward from
the region map at ¢ — 1, via a propagation process described
shortly (subsec. 2.2). This prior labelling of pixels (O C P)
forms a hard constraint on the assignments of remaining pix-
els, which are labelled to minimize a global energy function
encouraging both temporal consistency of color distribution
between frames, and spatial homogeneity of contrast within
each frame. This is captured by the data and pairwise terms
of the Gibbs energy function:

E(L,0,P)=U(L,0,P)+V(L,P). (1)



The data term U (.) exploits the fact that different color homo-
geneous regions tend to follow different color distributions.
This encourages assignment of pixels to the labelled region
following the most similar color model (we write the param-
eters of such models ©). The data term is defined as:

U(L,0,P) = > —logPy(Li(p)|i(p); ©).
pEP
Py(I(p)li(p) =1;;0) = Z wipN (I(p); priks Zir)- (2)

i.e. the data model of the i*" label [; is represented by a
mixture of Gaussians (GMM), with parameters w;x, i and
Y, representing the weight, the mean and the covariance
of the k*" component. The parameters of all GMMs (@ =
{wik, ik, Zik, ¢ = 1,..., Lk = 1,..., K;}) are learned
from historical observations of each region (subsec. 2.2).
The contrast term V'(.) encourages coherence in region
labelling, and is computed using RGB color distance:

Z U(m) # l(n)]e_ﬁﬂl(m)—](nmz. 3)

(m,n)eEN

V(L,P)=7

where NV is the set of pairs of 4-connected neighboring pixels
in P. (3 is chosen to be contrast adaptive as in [12]:

= (2(|l1(m) — I(n)|I*)~". @

Constant vy is a versatile setting for a variety of images [13],
and is set empirically to obtain satisfactory segmentation.

Motivated by the data term in [12] we enforce hard con-
straints on the motion propagated prior labels assigned to la-
bel ;, by setting the data term of p € O to be:
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Optimizing (1) is NP-hard, but an approximate solution
can be computed using the expansion move algorithm[14].
An a-expansion iteration is a change of labeling such that
p either retains its current value or takes the new label [,,.
The expansion move proceeds by cycling the set of labels and
performing an a-expansion iteration for each label until (1)
cannot be decreased [14]. Each a-expansion iteration can be
solved exactly by performing a single graph-cut using min-
cut/max-flow[15]. Convergence to a strong local optimum is
usually achieved in 3-4 cycles of iterations over the label set.

2.2. Region propagation

Segmentation of I; is dependent on the region map for [;_;;
specifically: i) the color models for regions ©; ii) the set of
pixels O C P and corresponding label assignments at ¢ — 1.
We now explain how this information is propagated.

From successive frames I;_; and I;, we first estimate a
global affine transform using RANSAC and SIFT features.
Affine warping both I;_; and the corresponding region map
compensates for large rigid (e.g. camera) motion, resulting
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Fig. 1. Illustrating segmentation and prior propagation: (TL)
Video frame I;_1; (TR) region labelling of I;_1; (BL) labels
warped according to motion flow field I;_; — I; — note the
boy’s left glove. (BR) Extracted priors for segmentation of .
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in a new image It/—l' Local deformation is captured by esti-
mating smoothed optical flow [16] between It,_1 and I;, in-
dependently within each region. Note that we do not assume
or require accurate motion estimation at this stage.

We select a subset of the motion propagated pixels O,
and their corresponding region assignments, as prior labels
to influence the segmentation of I;. To account for the im-
pact from imprecise motion estimation, we form O by sam-
pling from a morphologically dilated skeleton of each region.
This is inspired by the “scribbles” used in interactive Grab-
Cut [13], but note that we perform automatic, multi-region (as
opposed to binary) labelling. The skeleton emphasizes geo-
metrical and topological properties of the region, such as its
connectivity, topology, length, direction, and width. To fur-
ther deal with the uncertainties in positions which are closer
to the estimated region boundary, we use only the skeletons
whose distance to the boundary exceeds a pre-set confidence.
Fig. 1 illustrates our process, which is tolerant to moderate
misalignment caused by inaccurate motion estimates.

We build a GMM color model for each region /;, sampling
the historical colors of labelled pixels over recent frames. To
cope with variations in luminance often present in the se-
quence, the proportion of samples Sj, ;—q € [0,1] (d > 0)
drawn from all /;-labeled pixels from historical frame I;_4
decreases exponentially as the temporal distance d increases:
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Our system selects a smaller o4 when luminance variance is
large, contributing more recent data to the GMM, otherwise
the historical data contributes more to increase robustness.

2.3. Refining region labels

The method of subsec. 2.1 labels I; with some or all of the re-
gion labels in use at ¢ — 1. However, new objects may appear
in the sequence over time I; due to occlusion effects; This is



most apparent in DRAMA (Fig 4). These objects may war-
rant introduction of a new region label, should they differ in
color from existing regions. In such a situation, pixels com-
prising the object are erroneously labelled from the existing
label set by the graph cut, perturbing the color distribution of
the region. We can detect this by measuring the x? distance
(as defined in [17]) between the GMM of a region at time ¢
and the historical GMM built over time. If the x? distance
exceeds a threshold, new objects are deemed present.

To build color models for the new objects we extract the
dominant modes of colors within the region. We apply mean-
shift to perform unsupervised clustering on the spatial-color
modes (XY+RGB) of pixels in the region. This yields a lo-
calised segmentation of pixels in the region. We extend our
label set to accommodate each new region, and for each re-
gion also obtain color models and region skeletons as in sub-
sec. 2.2. Re-applying graph cut within the region, using these
new constraints, yields an improved segmentation for /;.

3. VIDEO STYLIZATION

Following coherent segmentation (Sec. 2), we may post-
process the region map to render a variety of stylized effects.
Region boundaries in poor contrast areas may oscillate in po-
sition by a couple of pixels. However, by coherently labelling
regions in adjacent frames, we have formed a set of space-
time volumes. Applying a fine scale (3 x3x3) Gaussian filter
removes this noise; we avoid removing detail by only filtering
volumes above a certain size (Fig. 2, right).

Superimposing black edges over regions shaded with
their mean pixel color can produce coherent cartoon effects
(Fig. 2, bottom). Edges may be drawn around region bound-
aries (left), or at maxima of a DoG field [18] (middle). Eroded
regions and a textured canvas give the impression of water-
color (right). We can also exploit the “tracked” regions to
create more sophisticated rotoscoped effects. In Fig. 2 (left)
we paint [3-spline strokes within each region and transform
control points to match region deformation. We achieve
this by registering temporally adjacent, co-labelled regions
(via Shape Contexts) to obtain a sparse vector field v from
boundary correspondences. Stroke control points are trans-
lated according to a dense vector field f € %2, obtained
by minimizing [ [ |/f —v|® via Poisson’s equation [19].
Our coherent segmentation promotes smooth deformation of
region shape, and so flicker-free motion of brush strokes.

4. RESULTS AND DISCUSSION

Figs. 3,4 show coherent segmentation over five video se-
quences. Fig 3 compares our automatic approach to two
leading methods; for per-frame [20] and spatio-temporal [21]
segmentation. The region boundaries from our proposed
method exhibit improved stability over time. Fig. 4 (top)
shows correct handling of regions that disappear and ap-
pear within sequences. Fig. 4 (bottom) tests on fast moving
footage containing small objects (BEAR is from [1, 2]). Un-
like previous work, fine scale features (e.g. the bear’s face)
are retained when present in the initial ‘boot-strap’ frame.

Fig. 2. Artistic stylization: (t-1) paint strokes move coher-
ently within regions; (t-r) before/after temporal smoothing;
(bottom) cartoons with edge detail, and a watercolor effect.

Similarly, PANDA shows the aesthetic ability to selectively
abstract detail (bushes) from the stylized video, when inter-
actively removed by the user in the initial frame.

In summary we have introduced a novel framework for
video segmentation driven by multi-label graph-cut. Frame
segmentation is influenced by the propagation of labels from
previous frames using optical flow. We have demonstrated
temporally coherent segmentation of the video into colored
regions, and that this can be exploited to create stylized
region-based effects such as painterly and cartoon rendering.
Extensions will explore the backward propagation of labels
to further improve coherence. We would also like to differen-
tiate between region motion caused by occlusion vs. object
deformation, to more closely align the movement of painted
strokes to the perceived structure in the scene.
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