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Abstract

Digital video has become affordable and attractive to
home users, but skill and manual labour are still required
to transform amateur footage into aesthetically pleasing
movies. We present a novel algorithm for transforming
raw home video footage into concise, temporally salient
clips. We interpret the sequence of editting operations
applied to footage as a ‘program’ comprising cutting,
panning and zooming constructs. We develop a Genetic
Programming (GP) framework for representing and evolving
such programs. Under this framework, the search for an
aesthetically pleasing video edit becomes a search for the
optimal genetic program. Our aesthetic criterion promotes
the inclusion of people in shots, whilst penalising rapid shot
changes or shot changes in the presence of camera motion.
We present results on some representative home videos.
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1 Introduction

Falling hardware costs have prompted an explosion in casual
digital video capture by domestic users. However, once
captured, this video is infrequently accessed and often lies
dormant on the user’s hard disk. One explanation is that raw
home video requires substantial editting to be comparable,in
terms of aesthetics and succinctness, with professional footage.
For example, amateur home videos often contain lurching pans
as the camera operator switches subject, and subjects often
suffer from poor framing. This can lead to videos that are not
enjoyable to watch, despite the periods of interest within them.

We present an algorithm to breathe life into users’ video
repositories by editting raw video footage into salient,
aesthetically pleasing clips. We are concerned with three types
of editting operation:

• Cut – frames are removed to shorten the video.

• Zoom – frames are spatially cropped to focus attention.

• Pan –view-port moves to follow a subject.

These operations may be applied to source video, with
appropriate parameters and in a specific sequence, to produce
an editted video. We interpret this sequence of operations

as a program, and state finding the “best” program under
some aesthetic criterion (Sec. 3) to be equivalent to finding
an optimal edit sequence for a particular home video. We
contribute both a novel representation for such programs, and
a novel method for searching the space of programs using a
Genetic Programming (GP) framework.

GP is an evolutionary optimization method [10]. Similar to
the more common Genetic Algorithm (GA), GP creates a
population of putative solutions (individuals) and “breeds” the
best individuals together to produce successively improved
generations of solutions [7]. With GP, however, the solutions
are parse trees (programs) rather than points in a fixed-
dimensional search space. GP is well suited to the problem
of video editting, since the number and order of editting
operations may vary greatly between video sequences.
Furthermore, evolutionary algorithms such as GP are well
suited to large search spaces in which the combination of
distinct yet locally optimal solutions (e.g. partial videoedits)
are likely to yield globally preferable solutions. To the best
of our knowledge, GP has not been previously applied to the
automated editting of home videos.

Section 2 outlines our GP representation of an edit sequence.
Our optimization process and aesthetic measure are described
in Section 3. We present and discuss the results of applying
our algorithm to representative home videos in Section 4,
concluding in Section 5.

1.1 Related Work

Automated video editing is closely related to research on
video summarisation, which has gained momentum in recent
years. Many such algorithms rely on shot detection to extract
representative key-frames from video [15]. Such techniques
are well suited to movies exhibiting frequent cuts between
shots, but are ill-suited to home videos (typically captured as
a single lengthy shot). An alternative is [3] who model video
as a trajectory through a high-dimensional appearance space,
cutting key frames at points of high curvature.

Techniques that summarise video into shorter videos by
‘cutting’ frames have been proposed. Lienhart defines a visual
quality metric, creating an automatic digest of home videos
by selecting portions of video with good quality and inserting
transition effects [12]. Girgensohnet al.’s semi-automatic
“Hitchcock” system [6, 5] is similar to [12], but defines quality
in terms of camera stability; we incorporate a similar cue inour
work. Huaet al. propose an automatic video editing system
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Figure 1: Representation for video editting. (a) cutting; the “split”, “take” (detail omitted) and “discard” operators are used
to create an editted video comprising frames 1,2,4,5. (b) pan/zoom; the “take” operator specifies a start and end crop window
for each video fragment. When fragments are concatenated, interpolation of window parameters is performed by “split”.

that seeks to cut video to synchronise motion in selected
sub-shots with music tempos [9]. Attention models for video
summarization were studied in [13, 14], integrating visual,
auditory, and linguistic cues.

Most recently researchers have looked beyond cutting, to the
framing of video content (e.g. zooming/cropping). Al-Hames
et al. controlled multiple cameras to select and zoom-in
on meeting participants to “direct” a live video stream of
a meeting [1]. Hospedales and Williams recently explored
Bayesian networks to learn director preferences for similar
real-time editting of streamed video [8]. Such techniques
necessarily make temporally local editting decisions. OurGP
approach performs global optimization over all frames of a pre-
captured video.

2 Representation of Video Edits

We represent an editting sequence as a program, specifically
as a parse tree in which nodes act as operators that either
manipulate or combine video fragments to form the output clip.
In this section we develop our tree representation.

2.1 Cutting

We begin by considering the basic cut operation, in which
frames are removed from a video sequence in order to enhance
its interest or aesthetic appeal. Under our tree representation,
non-terminal nodes in the tree act as “split” operators that
divide a video fragment into two sub-parts, passing the
resulting fragments to their children. The point of division
is governed by an operand on the node [0,1] representing the
normalised length of the input video fragment. Thussplit has
three children; a childconstant node specifying the real-valued
division point, and two child operator nodes. Video fragments
may be divided recursively by further non-terminalsplit
nodes. Terminal nodes may then either “discard” a fragment,
or “take” it i.e. incorporate it in the output sequence. The
final editted video sequence is obtained via in-order traversal

of the parse tree, appending video fragments astake nodes
are encountered. We find linked lists of frames to be an
appropriate data structure for managing fragments.

The split, take and discard operators form a basic editing
system with cutting functionality. Fig. 1a provides an
illustrative example of a terminal set comprisingsplit, take and
discard operators. It is easy to prove the sufficiency of this
representation. Taking an unedited sequence of arbitrary length
we can, by creating a tree comprising the right arrangement of
split nodes, split the sequence into its individual constituent
frames. We can then create any possible output sequence by
applyingtake anddiscard operators.

2.2 Panning and Zooming

In addition to cutting (temporal cropping) we enable a degree
of freedom in the framing of video content through a spatial
cropping mechanism. The effect of the cropping mechanism is
to define a window around a portion of the frame, and then to
scale that region to full frame size when outputting the editted
video. When the window is appropriately positioned, this has
the effect of “zooming” in on interesting content (e.g. a person)
and so improving the framing of the scene.

We implement this operation by modifying thetake terminal
operator defined above. By specifying the cropping window
as operand on thetake node, we are able to specify the region
of interest for cropping over each video fragment incorporated
into the final editted video. Absence of cropping becomes a
degenerate case; the crop window is simply positioned over the
entire frame. To avoid visual artifacts we constrain the aspect
ratio of the window to match the frame. The window’s position
is thus defined by operand[x, y, σ]; centre(x, y) and a uniform
scale factorσ. Specifying the cropping window geometry in
this manner also reduces our search space.

Although camera pans are technically achievable by splitting
video into individual frames, and carefully specifying crop
windows, this is not practically achievable by our GP



optimization. Instead, we explicitly incorporate camera
“panning” through an extension of the cropping mechanism.
We extend thetake operator again, to now have two operands:
a crop window at the starting frame, and a crop window at
the ending frame of the fragment. When outputting the final
editting video, the window parameters are linearly interpolated
between the start and end frames of each video fragment.
Cropping thus becomes a degenerate case of panning, where
the start and end cropping windows are identical. The
take terminal node thus has six constant node operands
[xs, ys, σs, xe, ye, σe], where subscriptss ande indicate start
and end frame respectively. As with the division point on the
split non-terminal operator, these parameters are represented
by normalised constant terminal nodes. Parameters(x, y) are
normalised to frame width and height, whileσ is normalised to
range from half frame size (0) to full frame size (1). Figure 1b
gives an illustrative example.

2.3 Concatenation of Video Fragments

Optimizations frequently result in parse trees that split video
into many small fragments, with similar but slightly different
cropping windows. This can result in a distracting flicker
and instability in the final video. To mitigate against this,we
perform some interpolation on window parameters when video
fragments are concatenated by thesplit non-terminal operator.

Suppose two fragmentsF1, F2, of durationst1, t2, and with
window parametersω1 = [xs, ys, σs, xe, ye, σe] and ω2 =
[us, vs, τs, ue, ve, τe] are to be concatenated. A straightforward
approach is to replace the end and start windows ofF1 andF2

respectively with an interpolated windowωI :

ωI =
t1

t1 + t2
(ω2 − ω1) +

t2

t1 + t2
ω2. (1)

However, when a substantialdiscard has been made between
fragments, it may be more appropriate to permit a discontinuity
in the window geometry i.e. leavingω1 andω2 unmodified.

Our solution is to update the windows using a weight derived
from the temporal distanced between the start and end ofF2

andF1 respectively:

ω1 ← ω1 + e−kd(ωI − ω1)

ω2 ← ω2 + e−kd(ωI − ω2) (2)

wherek = 0.5 provides interpolation over cuts up tod ≤ 10
frames (i.e.∼ 1

2 second duration).

3 Genetic search for an optimal edit

We first describe the fitness function by which we measure the
aesthetics of a video edit, and then provide the specifics of our
GP optimization process.

3.1 Fitness of a video edit

Our fitness measure for a putative video edit seeks to estimate
both the level of interest, and the aesthetics of the edittedoutput
video.

Figure 2: Video meta-data is extracted as a pre-process; we
measure interest through detection of people (left), and inter-
frame motion via optical flow (right). ResultV 4 (Sec. 4.2)

Our fitness function incorporates two terms for measuring
interest; the total captured interest and the average interest
captured over selected frames. The first term promotes
completeness of interests selected from the raw video footage,
while the second term promotes removal of “interest sparse”
frames to produce feature rich video. The second term also
encourages subjects of interest to be framed such that they
occupy most of the scene. With respect to aesthetics, Arijon
[2] notes that frequent short-term cuts within a sequence are
unpleasant for the viewer. In some situations such cuts are
appropriate, e.g. fast action shots, but these are too specific
for general home video editting. Scene and camera motion
should also be minimal at the points where shot boundaries
are introduced. To incorporate these preferences, we introduce
penalty terms for short cut sequences or cuts made in the
presence of large-scale motion.

In line with these heuristics, we specify the following fitness
function over all frames{E1, E2, ..., EN} included in the
editted video:

F(E) =
PSC

N

N
∑

i=1

(

w1 · CI(Ei) + w2 ·
CI(Ei)

N

)

·e−γM(Ei)

(3)

WhereCI(.) is a normalised operator evaluating thecaptured
interest within a frame (subsection 3.1.1).M(.) is a sum of the
optical flow vector magnitudes within a frame (Figure 2, right).
SC(.) is a count of the number of short fragments within the
editted sequence (below12 second), and constitutes a penalty
term on short clips when0 ≤ P < 1. The pairs of parameters
P, γ andw1,2 are weights on the aesthetics and interest terms
respectively, and may be adjusted to user preference. The latter
weights are empirically selected to find the trade-off between
the completeness and richness of captured interests. We give
typical values with results in Section 4.

3.1.1 Captured Interest

Home video is predominantly used to capture life events, and
people (e.g. friends and family) are frequently the objectsof
interest in such footage. In our system we correlate interest
with the presence of people in a shot. Specifically, the greater
the viewing area occupied by images of people, the more



“interesting” and thus optimal our video is deemed to be.
Person detection can be achieved in a number of ways, such
as human face detection [18] and upper-body detection [4]. We
opt for the latter, since face detection systems tend to perform
poorly over the wide variations in pose, scale and lighting
typical in home movies. Figure 2 (left) shows application of
a popular cascade based person detector [4] to typical source
footage. We obtain our value forCI(.) by averaging the
probabilities of pixels belonging to a person over the cropped
window within the editting frame.

More sophisticated definitions of interest exist — for example
considering temporal [16] and auditory [13] cues, or even
models of linguistic semantics [14]. Although other normalised
measures might be substituted, we find our measure suitable for
the domain of home video. Our method also has the advantage
that CI(.) and M(.) may be efficiently pre-computed by
finding bounding regions for people in each frame of video,
and intersecting those polygons with the cropping window to
obtain the area of overlap during optimization. However we
emphasise that our technical contribution is not in the interest
measureper se, but rather in demonstrating the feasibility of a
GP framework for identifying optimal video edits.

3.2 GP Optimization

Ideally a GP operator set should fulfil three criteria identified
in [17]. First, any operator should return a value on any input,
called evaluation safety. Second, the operator set should be
sufficient; it should have enough expressive power to generate
any possible solution to the problem. Third, the operators
should be type consistent, i.e., return values of the same type
so as they can be freely interchangeable in breeding.

Criteria one and two are satisfied (Section 2) however our
constant terminal nodes return a different type (ℜ) to that
of the non-constant terminal and non-terminal nodes (video).
This breaks the third condition of “type unity”. Kozaet al.
suggest use of aconstrained semantic structure in such cases;
effectively performing separate cross-over and mutation for
constant and non-constant nodes [11]. We follow this strategy
in subsection 3.2.3.

An overview of the optimization is shown as a flowchart
in Fig. 3. We begin by randomly generating a large set of
programs (or “individuals”, collectively referred to as the
“population”). Each individual represents a putative solution,
in the form of our edit tree representation (Section 2). GP is
an iterative process, in which pairs of individuals are selected
from each generation stochastically — with a bias to fitness
— and combined via a breeding process of “cross-over” and
“mutation” to create a population for the next generation. Thus
at each iteration, the fitness of all individuals in the population
must be evaluated using eq. (3) to enable fitness-proportionate
selection. Optimization can be halted when maximum fitness
within the population shows negligible improvement over
several successive generations.

Pre−compute
video metadata

Population
Generate Initial

Solutions
Evaluate Edit

Significant
improvement over
past generations?

next generation?

Enough
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Yes
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Figure 3: Schematic of the GP optimization algorithm.

3.2.1 Initialization

Individuals within the first generation are initialised
independently and randomly. In our experiments we use
a generation size of 500. An individual’s parse tree is
constructed recursively by picking a node from the set of
possible operators{take, discard, split}. Operators requiring
constant operands will have appropriate child nodes created.
In the case of a non-terminal operator being picked, further
operators must be generated for the remaining child operands.
The process recurses in a depth first manner until a terminal
operator is generated. When choosing an operator for a
non-constant node, the decision on type of node is made
stochastically according to depth of recursion. Non-terminal
nodes are less likely to be generated at deeper points on the
tree. When generating a constant node, a value is picked
uniformly at random, in range[0, 1] as all operands are
normalised by design (Section 2).

3.2.2 Elitism

At each iteration, the top∼ 1% fittest individuals pass through
directly to the next generation. To maintain population



Figure 4: Illustrating the breeding process. GP crossover;parent trees are traversed depth-first. Corresponding nodes and
their subtrees may be exchanged. Constant node operands arecarried with their operators. GP mutation; non-constant nodes
and their subtrees are replaced, with low probability. The value of constant nodes are subjected to mild Gaussian noise.

diversity, ∼ 5% of the next generation is reinitialised at
random. The remainder of the next generation is bred from the
current, using the processes of cross-over and mutation.

3.2.3 Cross-over

Cross-over is the mechanism by which elements of parent
individuals are mixed to produce offsprings for the next
generation. In GP this is achieved by constructing two new
parse trees using portions of the parent parse trees.

Given two parentsA andB we create two new individualsN1

andN2, initially by duplicatingA andB. We then traverse
N1 in a depth-first manner, simultaneously traversingN2 to
create a one-one correspondence between nodes inN1 and
N2. Where such a correspondence is possible (i.e. moves
are possible from a parent node to a child node in both trees),
we may swap the node and subtree below it inN1 with the
corresponding node and its subtree inN2. The swap is made
with probability 0.2 in our experiments. Figure 4 illustrates the
process.

As our representation lacks type unity, evaluation problems
will be encountered if constant nodes are substituted with non-
constant nodes during swapping. Thus when a child node is
swapped, its constant nodes are carried from the source to the
destination tree in situ (as if logically part of the child node).
Any non-constant operands are then recursively descended and
swapped stochastically as before.

Mutation introduces diversity into the population, enabling
exploration of the solution space. Again, due to the lack of
type unity we must mutate constant and non-constant nodes
using a separate mechanism. In the case of constant nodes,
we iterate through nodes inN1 andN2 adding Gaussian noise
to the real value assigned to each constant node encountered.
The mean of the noise is the node’s pre-mutation value, with a
small standard deviation (0.5) in our experiments. In the case
of non-constant nodes, we iterate through nodes inN1 andN2,

and will generate an entirely new subtree for a node (using the
method of subsection 3.2.1). Figure 4 illustrates this process.
The probability of making such a mutation is 0.1 for all our
experiments.

4 Results and Discussion

To evaluate the video editing system, we captured home videos
covering a variety of events. Here we present the results
of five videos (V 1 − V 5)1. In V 1, V 2 we disabled our
zooming/panning mechanism to show the effects of the cutting
operator alone. InV 3− V 5 the full system is evaluated.

4.1 Cutting only

Figure 5 depicts frames from our source videos, regularly
sampled along a time-line running left-right. The presence
of blue below the time-line indicates detection of interests
(people), and red indicates portions of the source video time-
line that were selected and concatenated to create the editted
output.

TheV 1 andV 2 source footage depicts family members at the
park. In V 1 the cameraman periodically becomes distracted
and points the camera at the floor or at uninteresting objects.
The system has identified contiguous blocks of interest in
the video, and cut three sections of the source time-line for
concatenation into the final editted video. Virtually all ofthe
interest is captured in a minimal number of cuts. InV 2 cuts
have been made not only to maximise the density of interest
in the clip, but also to prohibit rapid cutting in frames where
detection of people is intermittent. This is frequently thecase
using [4] when people’s backs are turned to the camera, or
are of small scale. For these results, system parameters were
set such that the ratiow1 : w2 was1 : 10, P = 0.99, and
γ = 10−5. Figures 6,7 show convergence with negligible
change in population fitness or diversity after∼ 20 iterations.

1The source and editted videos are included in the supplementary material



Figure 5: Evaluating our system over videos (V 1 − V 5), from top to bottom. ForV 1 and V 2 we disabled zooming/panning.
A time-line (in frames) runs from left to right, annotated inblue to show presence of interest, and in red to show segmentsof
video selected for output by our editting process. Frames have been sampled from the source video at regular intervals; the
blue box indicates the areas of interest detected. In the case ofV 3− V 5 the red box shows the cropping window.
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Figure 6: Optimization results for videosV 1 − V 5, plotting
maximum fitness in each generation.
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Figure 7: Optimization results for videosV 1 − V 5, plotting
standard deviation (fitness diversity) for each generation.

4.2 Cutting, Zooming and Panning

For videosV 3 − V 5 we re-enabled the zooming/panning
mechanism to run the system with full functionality. Figure5
shows the cuts made in the source video to isolate “interesting”
parts of the time-line. Again, source video frames exhibiting
a negligible or intermittent response from the interest detector
have been cut. Figure 5 also shows the position of the cropping
window (red box) within frames. Footage within the window is
scaled to create the rendered output footage shown in Figure8.
In the cases ofV 3 andV 4, a crop window is created around
the main subject which pans to follow the movement of the
subject in the video. In the case ofV 5 a cropping window
is also introduced to zoom in and improve framing of the
subject; however since the camera is already panning to follow
the subject, no additional panning is introduced. For these
results, system parameters were set as in subsection 4.1, but
with ratiow1 : w2 set to1 : 100. Figures 6,7 again show quick
convergence, with negligible change in population fitness or
diversity after∼ 50 iterations. For our experiments we ran the
optimizations up to 1500 generations (300 are shown).

Figure 8: Final editted clip results from footageV 3 − V 5.
Upper strip: Blue box indicates interest detection, red box
indicates cropping window. Lower strip: Footage is rendered
from within the red window to output the final clip.

5 Conclusion

We have presented a novel tree representation for home video
editting, suitable for use in a Genetic Programming (GP)
optimization framework. Our representation incorporates
cutting, zooming and panning operations. Uniquely, we search
for a globally optimal video edit using GP, maximising both
aesthetics and interest within the final clip. Our measures for
aesthetics are grounded in common directing practice, and our
measure for interest is based on the presence of people; the
most common subject of interest for home videos.

We have demonstrated the efficacy of our approach over some
representative examples of home video footage. Our system
quickly converges to an acceptable edit sequence, requiring
∼ 50 generations / minute of source video. To capture the
subjectivity of video aesthetic, our fitness function is governed
by user parameters weighting desire for objects of interest
against frequency of cuts, and motion. The short optimization
times enable user experimentation to taste.

This paper has focused on GP optimization as a means for
generating edit decisions. It has not explored the visual
rendering of those edits. Transition effects might be introduced
e.g. cross-fades when cutting. Future work may explore
alternative cropping operators, for example seam-carving, to
accomodate multiple disjoint regions of interest within a frame.

Although our fitness measure lacks the sophistication
of [13, 14], we find it suitable for demonstrating value in
our GP editting framework, and for the purposes of general
home video editting. Extensions to this measure are a possible
route for future work. A higher level temporal constraint



(e.g. preferring alternating cuts between subjects during
dialogue) might further enhance the aesthetic terms within
fitness function. However, within a subject domain as broad
as home video, care should be taken to draw a sensible
compromise between the complexity of editting heuristics and
the generality of footage that may be processed.
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