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Abstract

Digital video has become affordable and attractive to
home users, but skill and manual labour are still required
to transform amateur footage into aesthetically pleasing
movies. We present a novel algorithm for transforming
raw home video footage into concise, temporally salient
clips. We interpret the sequence of editting operations
applied to footage as a ‘program’ comprising cutting,
panning and zooming constructs. We develop a Genetic
Programming (GP) framework for representing and evolving
such programs. Under this framework, the search for an
aesthetically pleasing video edit becomes a search for the
optimal genetic program. Our aesthetic criterion promotes
the inclusion of people in shots, whilst penalising rapid shot
changes or shot changes in the presence of camera motion.
We present results on some representative home videos.
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as aprogram, and state finding the “best” program under
some aesthetic criterion (Sec. 3) to be equivalent to finding
an optimal edit sequence for a particular home video. We
contribute both a novel representation for such progrand, a

a novel method for searching the space of programs using a
Genetic Programming (GP) framework.

GP is an evolutionary optimization method [10]. Similar to
the more common Genetic Algorithm (GA), GP creates a
population of putative solutions (individuals) and “breéthe

best individuals together to produce successively impfove
generations of solutions [7]. With GP, however, the sohgio
are parse trees (programs) rather than points in a fixed-
dimensional search space. GP is well suited to the problem
of video editting, since the number and order of editting
operations may vary greatly between video sequences.
Furthermore, evolutionary algorithms such as GP are well
suited to large search spaces in which the combination of
distinct yet locally optimal solutions (e.g. partial videdits)

are likely to yield globally preferable solutions. To thesbe

of our knowledge, GP has not been previously applied to the
automated editting of home videos.

Section 2 outlines our GP representation of an edit sequence

Falling hardware costs have prompted an explosion in cas@lr optimization process and aesthetic measure are dedcrib

digital video capture by domestic users. However, on@e Section 3. We present and discuss the results of applying
captured, this video is infrequently accessed and often lieur algorithm to representative home videos in Section 4,
dormant on the user’s hard disk. One explanation is that raancluding in Section 5.

home video requires substantial editting to be comparafle,
terms of aesthetics and succinctness, with professionsige. 11 Related Work

For example, amateur home videos often contain lurching pafytomated video editing is closely related to research on
as the camera operator switches subject, and subjects offgfao summarisation, which has gained momentum in recent
suffer from poor framing. This can lead to videos that are ngbars. Many such algorithms rely on shot detection to ektrac

enjoyable to watch, despite the periods of interest withémnt. representative key-frames from video [15]. Such techrique

We present an algorithm to breathe life into users’ videy€® Well suited to movies exhibiting frequent cuts between
repositories by editting raw video footage into saliengnots, but are ill-suited to home videos (typically captlias

aesthetically pleasing clips. We are concerned with thypes @ single lengthy shot). An alternative is [3] who model video
of editting operation: as a trajectory through a high-dimensional appearancesspac

cutting key frames at points of high curvature.

e Cut—frames are removed to shorten the video. Techniques that summarise video into shorter videos by

‘cutting’ frames have been proposed. Lienhart defines aalisu
quality metric, creating an automatic digest of home videos
by selecting portions of video with good quality and insegti
transition effects [12]. Girgensohet al.’s semi-automatic
These operations may be applied to source video, witHitchcock”system [6, 5] is similar to [12], but defines qgitgl
appropriate parameters and in a specific sequence, to mrodnderms of camera stability; we incorporate a similar cuetin

an editted video. We interpret this sequence of operationgork. Huaet al. propose an automatic video editing system

e Zoom —frames are spatially cropped to focus attention.

e Pan —view-port moves to follow a subject.
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Figure 1: Representation for video editting. (a) cuttinghé “split”, “take” (detail omitted) and “discard” operatos are used
to create an editted video comprising frames 1,2,4,5. (b)/fzaom; the “take” operator specifies a start and end crop wow
for each video fragment. When fragments are concatenatedieipolation of window parameters is performed by “split”.

that seeks to cut video to synchronise motion in selectetlthe parse tree, appending video fragmentdake nodes
sub-shots with music tempos [9]. Attention models for videare encountered. We find linked lists of frames to be an
summarization were studied in [13, 14], integrating visuahppropriate data structure for managing fragments.

auditory, and linguistic cues. The gplit, take and discard operators form a basic editing

Most recently researchers have looked beyond cutting,do gystem with cutting functionality. Fig. 1la provides an
framing of video content (e.g. zooming/cropping). Al-Hameillustrative example of a terminal set comprisisit, take and

et al. controlled multiple cameras to select and zoom-idiscard operators. It is easy to prove the sufficiency of this
on meeting participants to “direct” a live video stream ofepresentation. Taking an unedited sequence of arbigagth

a meeting [1]. Hospedales and Williams recently explorade can, by creating a tree comprising the right arrangenfent o
Bayesian networks to learn director preferences for similgplit nodes, split the sequence into its individual constituent
real-time editting of streamed video [8]. Such techniquésames. We can then create any possible output sequence by
necessarily make temporally local editting decisions. GBr applyingtake anddiscard operators.

approach performs global optimization over all frames ofea p

captured video. 2.2 Panning and Zooming

In addition to cutting (temporal cropping) we enable a degre

2 Representation of Video Edits of freedom in the framing of video content through a spatial
o ... cropping mechanism. The effect of the cropping mechanism is

We represent an editting sequence as a program, Spec'f'c‘ﬁéefine a window around a portion of the frame, and then to

as a parse tree in .Wh'(?h nodes act as operators that CIle that region to full frame size when outputting thetedit
man!pulatg or combine video fragments to form the OUtpptCIIvideo. When the window is appropriately positioned, this ha
In this section we develop our tree representation. the effect of “zooming” in on interesting content (e.g. )
2.1 Cutting and so improving the framing of the scene.

We begin by considering the basic cut operation, in whicf€ implement this operation by modifying thake terminal

frames are removed from a video sequence in order to enhafiggrator defined above. By specifying the CVOPp'”g W'n‘_jow
its interest or aesthetic appeal. Under our tree repretsamta as operand on thiake node, we are able to specify the region

non-terminal nodes in the tree act asplft’ operators that pf interes_t for crc_)pping_ over each video fragme_nt incorpedta
divide a video fragment into two sub-parts, passing tfiato the final editted video. _Absen_ce _of cropping becomes a
resulting fragments to their children. The point of divisio d€generate case; the crop window is simply positioned éwer t
is governed by an operand on the node [0,1] representing fdire frame. To avoid visual artifacts we constrain theeasp
normalised length of the input video fragment. Tlspkit has ratio of the window to match the frame. The window’s position
three children; a childonstant node specifying the real-valued ' thus defined by operarid, y, o]; centre(z, y) and a uniform
division point, and two child operator nodes. Video fragtsenSCal€ factow. Specifying the cropping window geometry in
may be divided recursively by further non-termingglit thiS manner also reduces our search space.

nodes. Terminal nodes may then eithdistard” a fragment, Although camera pans are technically achievable by spitti

or “take” it i.e. incorporate it in the output sequence. Thgideo into individual frames, and carefully specifying pro
final editted video sequence is obtained via in-order tisalerwindows, this is not practically achievable by our GP



optimization.  Instead, we explicitly incorporate camera
“panning” through an extension of the cropping mechanismf
We extend theake operator again, to now have two operands:
a crop window at the starting frame, and a crop window af
the ending frame of the fragment. When outputting the final
editting video, the window parameters are linearly intéaifeg
between the start and end frames of each video fragme
Cropping thus becomes a degenerate case of panning, where

the start and end cropping windows are identical. Thegure 2: Video meta-data is extracted as a pre-process; we
take terminal node thus has six constant node operanggasure interest through detection of people (left), anden

[%s, Ys, Ts, Te, Ye, 0c|, Where subscripts ande indicate start frame motion via optical flow (right). Result’4 (Sec. 4.2)

and end frame respectively. As with the division point on the

split non-terminal operator, these parameters are represented

by normalised constant terminal nodes. Paraméterg) are Our fitness function incorporates two terms for measuring
normalised to frame width and height, whités normalised to interest; the total captured interest and the averageestter
range from half frame size (0) to full frame size (1). Figube 1captured over selected frames. The first term promotes

gives an illustrative example. completeness of interests selected from the raw video degta
while the second term promotes removal of “interest sparse”
2.3 Concatenation of Video Fragments frames to produce feature rich video. The second term also

encourages subjects of interest to be framed such that they
occupy most of the scene. With respect to aesthetics, Arijon
e[r2] notes that frequent short-term cuts within a sequenee ar
unpleasant for the viewer. In some situations such cuts are
8propriate, e.g. fast action shots, but these are toofapeci
or general home video editting. Scene and camera motion
should also be minimal at the points where shot boundaries
Suppose two fragments;, F5, of durationst;, t2, and with are introduced. To incorporate these preferences, wedinte
window parametersn = [Zs,Ys, 0s, Te, Ye, 0] aNdwe = penalty terms for short cut sequences or cuts made in the
[us, vs, Ts, Ue, Ve, Te] @re to be concatenated. A straightforwargresence of large-scale motion.
approach is to replace the end and start windows,cdind F5
respectively with an interpolated windaw:

Optimizations frequently result in parse trees that sptieo
into many small fragments, with similar but slightly diféat
cropping windows. This can result in a distracting flick
and instability in the final video. To mitigate against thig
perform some interpolation on window parameters when vid
fragments are concatenated by gkt non-terminal operator.

In line with these heuristics, we specify the following fise
function over all frames{E;, Es, ..., Ex} included in the

1 l2 editted video:
wy = t1+t2(w2 w1)+t1+t2w2. (1)
. psc & CI(E)\ _uim
However, when a substantidiscard has been made betweenF(E) = ~ Z (w1 -CI(E;) + ws - T) e~ TM(E)
fragments, it may be more appropriate to permit a discoittinu i=1
in the window geometry i.e. leaving; andws unmodified. (3)

Our solution is to update the windows using a weight derivefnereC(.) is a normalised operator evaluating tptured
from the temporal distancé between the start and end B3 interest within a frame (subsection 3.1.1)/(.) is a sum of the

andF; respectively: optical flow vector magnitudes within a frame (Figure 2, tjgh
SC(.) is a count of the number of short fragments within the
wi — wi+eF(wr—w) editted sequence (belogv second), and constitutes a penalty

wy — wo+te "W —ws) (2) termon short clips V\_/heﬁ <P <1 The r_)airs of parameters
P,~ andw, » are weights on the aesthetics and interest terms
wherek = 0.5 provides interpolation over cuts up #< 10 respectively, and may be adjusted to user preference. Tiee la

frames (i.e~ 1 second duration). weights are empirically selected to find the trade-off befwe
the completeness and richness of captured interests. \We giv
3 Genetic search for an optimal edit typical values with results in Section 4.

We first describe the fitness function by which we measure the
aesthetics of a video edit, and then provide the specificsiof @.1.1  Captured Interest
GP optimization process.

Home video is predominantly used to capture life events, and
people (e.g. friends and family) are frequently the objefts
Our fitness measure for a putative video edit seeks to egtimiaterest in such footage. In our system we correlate interes
both the level of interest, and the aesthetics of the edittplut  with the presence of people in a shot. Specifically, the great
video. the viewing area occupied by images of people, the more

3.1 Fitness of a video edit



“interesting” and thus optimal our video is deemed to be.
A . . video metadata
Person detection can be achieved in a humber of ways, such

as human face detection [18] and upper-body detection [4]. W Generate Inital
opt for the latter, since face detection systems tend tmparf FepULl
poorly over the wide variations in pose, scale and lighting '

typical in home movies. Figure 2 (left) shows application of et

a popular cascade based person detector [4] to typical sourc
footage. We obtain our value faf'I(.) by averaging the
probabilities of pixels belonging to a person over the ceipp
window within the editting frame.

Significant
improvement over
past generations

Render video for
best solution

More sophisticated definitions of interest exist — for exéanp
considering temporal [16] and auditory [13] cues, or even
models of linguistic semantics [14]. Although other norised
measures might be substituted, we find our measure suitable f No

Top 1% pass to
next generation

the domain of home video. Our method also has the advantage ooz
that CI(.) and M(.) may be efficiently pre-computed by
finding bounding regions for people in each frame of video, Generate random Stochastically
and intersecting those polygons with the cropping window to solution pickiZlpatents
obtain the area of overlap during optimization. However we '
emphasise that our technical contribution is not in therase ]
measureger se, but rather in demonstrating the feasibility of a 1
GP framework for identifying optimal video edits. Perform tree
3.2 GP Optimization '

Add to next
Ideally a GP operator set should fulfil three criteria idted gereston
in [17]. First, any operator should return a value on any inpu
called evaluation safety. Second, the operator set shauld b Erouchiy N

next generation?

sufficient; it should have enough expressive power to géaera
any possible solution to the problem. Third, the operators

should be type consistent, i.e., return values of the sape ty _ . L )
so as they can be freely interchangeable in breeding. Figure 3: Schematic of the GP optimization algorithm.

Criteria one and two are satisfied (Section 2) however our
constant terminal nodes return a different tyg® ¢o that 3.2.1 Initialization
of the non-constant terminal and non-terminal nodes (Yideo
This breaks the third condition of “type unity”. Kozt al. Individuals within the first generation are initialised
suggest use of eonstrained semantic structure in such cases; independently and randomly. In our experiments we use
effectively performing separate cross-over and mutatimn fa generation size of 500. An individual's parse tree is
constant and non-constant nodes [11]. We follow this sfsateconstructed recursively by picking a node from the set of
in subsection 3.2.3. possible operator§ake, discard, split}. Operators requiring
r(Eonstant operands will have appropriate child nodes aleate
(I)q the case of a non-terminal operator being picked, further
operators must be generated for the remaining child opsrand
The process recurses in a depth first manner until a terminal
in the form of our edit tree representation (Section 2). Gp?gerator s generated. Wh_en choosing an operatpr for a
non-constant node, the decision on type of node is made

an iterative process, in which pairs of individuals are ciele . . . .

. . . ) __stochastically according to depth of recursion. Non-teahi
from each generation stochastically — with a bias to fltnessd | likel b datd . h
— and combined via a breeding process of “cross-over” an8 €s are 1ess lkely .to e generated at deeper p0|r_1ts on the
“mutation” to create a population for the next generationud - .. When generating a constant node, a value is picked

) . pop N 9 . uniformly at random, in rang€0,1] as all operands are
at each iteration, the fitness of all individuals in the papioh . . .
. ; . __normalised by design (Section 2).

must be evaluated using eqg. (3) to enable fithess-propatgon
selection. Optimization can be halted when maximum fitness
within the population shows negligible improvement oves 2 o  Elitism

several successive generations.

An overview of the optimization is shown as a flowcha
in Fig. 3. We begin by randomly generating a large set
programs (or “individuals”, collectively referred to aseth
“population”). Each individual represents a putative iolu,

At each iteration, the top- 1% fittest individuals pass through
directly to the next generation. To maintain population



[DISCARD

TAKE |

CROSS-OVER MUTATION

Figure 4: lllustrating the breeding process. GP crossoverarent trees are traversed depth-first. Corresponding ne@ded
their subtrees may be exchanged. Constant node operandsanged with their operators. GP mutation; non-constant des
and their subtrees are replaced, with low probability. Thalwe of constant nodes are subjected to mild Gaussian noise.

diversity, ~ 5% of the next generation is reinitialised atand will generate an entirely new subtree for a node (usiag th

random. The remainder of the next generation is bred from theethod of subsection 3.2.1). Figure 4 illustrates this pssc

current, using the processes of cross-over and mutation.  The probability of making such a mutation is 0.1 for all our
experiments.

3.2.3 Cross-over

4 Results and Discussion

Cross-over is the mechanism by which elements of paref[rc')tevaluate the video editing system, we captured home sideo
individuals are mixed to produce offsprings for the nex . . gsy ' b
vering a variety of events. Here we present the results

generation. In GP this is achieved by constructing two ne

. . of five videos (V1 — V5)L. In V1,V2 we disabled our
parse trees using portions of the parent parse trees. zooming/panning mechanism to show the effects of the a@uttin

Given two parents! and B we create two new individual¥; operator alone. I¥'3 — V5 the full system is evaluated.

and N, initially by duplicating A and B. We then traverse ]

N in a depth-first manner, simultaneously traversisigto 4-1 Cutting only

create a one-one correspondence between nodé§ iand Figyre 5 depicts frames from our source videos, regularly
N. Where such a correspondence is possible (i.e. MOg8ypled along a time-line running left-right. The presence
are possible from a parent node to a child node in both treesy,pjye below the time-line indicates detection of intesest
we may swap the node and subtree below itNip with the  (heople), and red indicates portions of the source videe-tim

cqrrespondi.n_g nodg and its suptreeNa. The swap is made jine that were selected and concatenated to create thecditt
with probability 0.2 in our experiments. Figure 4 illuseatthe output.

process. . .
The V1 andV2 source footage depicts family members at the

As our representation lacks type unity, evaluation prollergark  |ny1 the cameraman periodically becomes distracted
will be encountered if constant nodes are substituted vath n and points the camera at the floor or at uninteresting objects

constant nodes during swapping. Thus when a child noderige system has identified contiguous blocks of interest in
swapped, its constant nodes are carried from the source todky, \ideo, and cut three sections of the source time-line for
destination tree in situ (as if logically part of the childd®). concatenation into the final editted video. Virtually allthe
Any non-constant operands are then recursively descemtied @terest is captured in a minimal number of cuts. Vi cuts
swapped stochastically as before. have been made not only to maximise the density of interest

Mutation introduces diversity into the population, enagli in the clip, but also to prohibit rapid cutting in frames waer
exploration of the solution space. Again, due to the lack #gtection of people is intermittent. This is frequently tzse
type unity we must mutate constant and non-constant nodsi"d [4] when people’s backs are turned to the camera, or
using a separate mechanism. In the case of constant no@&&,0f small scale. For these results, system parametees wer
we iterate through nodes iN; andN, adding Gaussian noiseSet such that the ratio; : w; was1 : 10, P = 0.99, and

to the real value assigned to each constant node encounteted® 10~°. Figures 6,7 show convergence with negligible
The mean of the noise is the node’s pre-mutation value, wittfBange in population fitness or diversity afte20 iterations.
small standard deviation (0.5) in our experiments. In treeca
of non-constant nodes, we iterate through nodés;imndN,, 1The source and editted videos are included in the supplemyemtaterial
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Figure 5: Evaluating our system over video%( — V'5), from top to bottom. ForV’1 and V2 we disabled zooming/panning.
A time-line (in frames) runs from left to right, annotated iblue to show presence of interest, and in red to show segmehts
video selected for output by our editting process. Framesdoéeen sampled from the source video at regular intervake t

blue box indicates the areas of interest detected. In theecabV’3 — V5 the red box shows the cropping window.
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Figure 6: Optimization results for video¥ 1 — V5, plotting
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lof peeo s Figure 8: Final editted clip results from footagd’3 — V5.
video #5 Upper strip: Blue box indicates interest detection, red box
8 | indicates cropping window. Lower strip: Footage is rendedre

from within the red window to output the final clip.

4 il 5 Conclusion

Population Fitness Std. Dev.
o

2l ) We have presented a novel tree representation for home video
editting, suitable for use in a Genetic Programming (GP)
i i i i i optimization framework. Our representation incorporates
50 100 150 200 250 300 . . . . .
Generation cutting, zooming and panning operations. Uniquely, wedear
for a globally optimal video edit using GP, maximising both
Figure 7: Optimization results for video§'1 — V5, plotting 2esthetics and interest within the final clip. Our measues f

standard deviation (fitness diversity) for each generation ~ @esthetics are grounded in common directing practice, and o
measure for interest is based on the presence of people; the

most common subject of interest for home videos.

4.2 i Z i P i .
Cutting, Zooming and Panning We have demonstrated the efficacy of our approach over some

For videosV3 — V5 we re-enabled the zooming/panningepresentative examples of home video footage. Our system
mechanism to run the system with full functionality. Fig@re quickly converges to an acceptable edit sequence, requirin
shows the cuts made in the source video to isolate “integgsti ~ 50 generations / minute of source video. To capture the
parts of the time-line. Again, source video frames exhilgiti subjectivity of video aesthetic, our fitness function is gmed

a negligible or intermittent response from the interesedietlr by user parameters weighting desire for objects of interest
have been cut. Figure 5 also shows the position of the crgppagainst frequency of cuts, and motion. The short optinozrati
window (red box) within frames. Footage within the window iimes enable user experimentation to taste.

scaled to create the rendered outpu_t footage shown in FﬁgurEi'his paper has focused on GP optimization as a means for
In the cases o¥/3 and V4, a crop window is created around

: : : enerating edit decisions. It has not explored the visual
the main subject which pans to follow the movement of t . ; o ' .
Lo . . . rendering of those edits. Transition effects might be iticed
subject in the video. In the case bf a cropping window

. . . . . .g. cross-f when ing. Future work m xplor
is also introduced to zoom in and improve framing of the9- Cross ades when cutting uture wo ay explore

S . . . alternative cropping operators, for example seam-carting

subject; however since the camera is already panning twoll : - . ) -
. o Lo accomodate multiple disjoint regions of interest withimanfie.

the subject, no additional panning is introduced. For thesé
results, system parameters were set as in subsection 4.1 Afthough our fithess measure lacks the sophistication
with ratiow; : ws settol : 100. Figures 6,7 again show quickof [13, 14], we find it suitable for demonstrating value in
convergence, with negligible change in population fithesss our GP editting framework, and for the purposes of general
diversity after~ 50 iterations. For our experiments we ran th@ome video editting. Extensions to this measure are a dessib
optimizations up to 1500 generations (300 are shown). route for future work. A higher level temporal constraint



(e.g. preferring alternating cuts between subjects durififl] J. Koza and R. Poli.  Search Methodologies:
dialogue) might further enhance the aesthetic terms within Introductory Tutorials in Optimization and Decision
fitness function. However, within a subject domain as broad Support Techniques. Springer, 2005.

as home video, care should be taken to draw a sensible ) i ) ]
compromise between the complexity of editting heuristius all2] R. Lienhart. Abstracting home video automatically. In

the generality of footage that may be processed. ':‘ggg '\:lél;[\i/lnﬁdia’ pages 37-40, New York, NY, USA,

Acknowledgements [13] Y. Ma, L. Lu, H. Zhang, and M. Li. A user attention
model for video summarization. IACM Multimedia,

We are grateful to HP Labs Bristol for funding this research pages 533-542, New York, NY, USA, 2002. ACM.

under HP’s IRP programme. Thanks to David Slatter, Phil

Cheatle and Darryl Greig for fruitful discussions. [14] T. Mei, X. Hua, H. Zhou, and S. Li. Modeling and
mining of users’ capture intention for home videtiSEE
References Transactions on Multimedia, 9(1):66—77, 2007.

[1] M. Al-Hames, B. Hornler, R. Muller, J. Schenk, and15] A. Nagasaka and Y. Tanaka. Automatic video indexing
G. Rigoll.  Automatic multi-modal meeting camera  and full-video search for object appearances. Ptoc.
selection for video-conferences and meeting browsers. In VDB, pages 113-127, 1991.

Proc. ICME, pages 2074-2077, 2007. ) ) o
[16] R. Oami, A. Benitez, S. Chang, and N. Dimitrova.

[2] D. Arijon. Grammar of the Film Language. Silman-James Understanding and modeling user interests in consumer
Press, 1991. videos. InProc. ICME, pages 1475-1478, 2004.

[3] D. DeMenthon, V. Kobla, and D. Doermann. Vided17] R. Poli, W. Langdon, and N. McPhed Field Guide to
summarization by curve simplification. IACM Genetic Programming. Lulu, 2008.
Multimedia, pages 211-218, New York, NY, USA, 1998. . .
ACM. [18] P. Viola and M. Jones. Robust real-time face detection.

Int. J. Comput. Vision, 57(2):137-154, 2004.
[4] V. Ferrari, M. Marin-Jiminez, , and A. Zisserman.
Progressive search space reduction for human pose
estimation. InProc. CVPR, pages 1-8. IEEE, June 2008.

[5] A. Girgensohn, S. Bly, F. Shipman, J. Boreczky, and
L. Wilcox. Home video editing made easy balancing
automation and user control. llm Human-Computer
Interaction INTERACT ’'01. 10S, pages 464-471. Press,
2001.

[6] A. Girgensohn, J. Boreczky, P. Chiu, J. Doherty, J. Fpote
G. Golovchinsky, S. Uchihashi, and L. Wilcox. A semi-
automatic approach to home video editing.UIST ’ 00:
Proceedings of the 13th annual ACM symposium on User
interface software and technology, pages 81-89, New
York, NY, USA, 2000. ACM.

[7] D. Goldberg.Genetic Algorithmsin Search Optimization
and Machine Learning. Addison-Wesley, 1989.

[8] T. Hospedales and O. Williams. An adaptive machine
director. InProc. British Machine Vision Conference
(BMVC), 2008.

[9] X. Hua, L. Lu, and H. Zhang. Optimization-based
automated home video editing systemlEEE Trans.
Circuits Syst. Video Techn., 14(5):572-583, 2004.

[10] J. Koza. Genetic programming: A paradigm for
genetically breeding populations of computer programs to
solve problems. I'stanford University Computer Science
Department technical report STAN-CS-90-1314, 1990.



