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The falling cost of digital cameras and camcorders has encouraged the creation of massive collections of

personal digital media. However, once captured, this media is infrequently accessed and often lies dormant

on users’ PCs. We present a system to breathe life into home digital media collections, drawing upon artistic

stylization to create a ‘‘Digital Ambient Display’’ that automatically selects, stylizes and transitions between

digital contents in a semantically meaningful sequence. We present a novel algorithm based on multi-label

graph cut for segmenting video into temporally coherent region maps. These maps are used to both stylize

video into cartoons and paintings, and measure visual similarity between frames for smooth sequence

transitions. The system automatically structures the media collection into a hierarchical representation

based on visual content and semantics. Graph optimization is applied to adaptively sequence content for

display in a coarse-to-fine manner, driven by user attention level (detected in real-time by a webcam). Our

system is deployed on embedded hardware in the form of a compact digital photo frame. We demonstrate

coherent segmentation and stylization over a variety of home videos and photos. We evaluate our media

sequencing algorithm via a small-scale user study, indicating that our adaptive display conveys a more

compelling media consumption experience than simple linear ‘‘slide-shows’’.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional approaches to linearly browsing personal media
collections (e.g. photo albums, slideshows) are becoming imprac-
tical due to the explosive growth of media repositories. Further-
more, although digital media is intrinsically more accessible than
physical archives, the focus on the PC as the main portal to these
collections poses a convenience barrier to realizing their value. The
proliferation of video and image data in digital form creates
demand for an effective means to browse large volumes of digital
media in a structured, accessible and intuitive manner.

This paper proposes a novel approach to the consumption of
home digital media collections, centred upon ambient experiences.
Ambient experiences are distinguished from compelling or intense
experiences in that they are able to co-exist harmoniously with
other activities such as conversations, shared meals and so forth. An
ambient experience does not demand the full attention of the user
but is able to play out in a pleasing, unobtrusive way such that fresh
and interesting content is available in the attention spaces of
everyday life.
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People have been creating ambient displays of media for
decades; by placing photographs on the mantelpiece, or leaving
the television or radio on in the background. These established
behaviors reflect commonly appreciated value in the passive
consumption of media. Yet, beyond updates to accommodate
new capture technology (e.g. digital photo frames) methods of
passive content delivery and consumption have remained largely
unchanged. Our work aims to create a platform for ambient
delivery of home digital media content. Such content often encodes
householders’ memories and life experiences. We seek to emulate,
for digital media, the serendipitous process of rediscovery often
experienced whilst browsing physical media archives (e.g. a box of
photos in the attic) that can trigger enjoyable reminiscence over
past memories and events.

Although considerable research has been devoted to direct
interactive approaches for browsing digital media collections,
there is little previous work addressing the problem of displaying
digital content in an ambient manner (Section 1.2). Typical
approaches to browsing small or medium scale photo sets project
thumbnails onto either a planar or a spherical surface, so that
images that are visually similar are located in close proximity in the
visualization [1–4]. Large photo sets are often handled by cluster-
ing content into subsets, sometimes arranged hierarchically for
visualization and manual navigation [5–7]. With the expected
proliferation of large format video displays around the home,
recent work explores the specific domain of household digital
media interaction [8,9]. Yet, the ambient dissemination of home
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visual media, and the associated issues of interaction in an ambient
context, remain sparsely researched.

An earlier version of this extended paper [10] presented a video-
only digital ambient display with simple media sequencing. The novel
contribution of this paper over [10] is a more sophisticated approach to
sequencing, involving unsupervised hierarchical clustering of media
and content navigation influenced by user attention. In addition, an
implementation on embedded hardware has enabled an in situ user
evaluation of the digital ambient display, also presented in this paper.

1.1. Digital ambient display (DAD) concept

The digital ambient display (DAD) is an always-on display for living
spaces that enables users to effortlessly visualize and rediscover their
personal digital media collections. DADs address the paradoxical
requirement of an autonomous technology to passively disseminate
media collections, that also enables minimal interaction to actively
navigate routes through content that may trigger interest and user
reminiscence. By transitioning between selected media items, the
DAD passively presents a global summary visualizing the essential
structure of the collection. This results in an evolving temporal
composition of media, the sequencing of which considers both media
semantics and visual appearance, as well as adaptively responding to
user attention (sensed via gaze detection). Rather than simply
stitching digital content together, we harness artistic stylization to
depict image and video in a more abstract sense. In contrast to
photorealism, which often proves distracting in the ambient setting
(e.g. a television in the corner of a café), artistic stylization would
provide an aesthetically pleasing and unobtrusive means of dissemi-
nating content in the ambient setting; creating a flowing, temporal
composition that conveys the essence of users’ experiences through
an artistic representation of their digital media collection (Fig. 1).

Creating a DAD requires that the media be automatically parsed into
an structured representation that enables semantically meaningful
routes to be navigated through the collection. This process is dependent
on meta-data tags user-assigned to each media item. Furthermore, the
visual content within individual media items must be also be parsed
into a mid-level visual scene representation that enables both:
1.
Fig
The
Artistic rendering of media into aesthetically pleasing forms.

2.
 Generation of appropriate transition effects and sequencing

decisions, to create an appealing temporal composition.

While artistic rendering of images is much explored, temporally
coherent stylization of video is still a challenging task which
requires a stable and consistent description of the scene structures.
Following DeCarlo and Santella [11] as well as Collomosse et al.
[12], we identify a color region segmentation as being an appro-
priate ‘‘mid-level’’ scene abstraction, and in Section 4 contribute a
novel algorithm for segmenting video frames into a deforming set
of temporally coherent regions. We demonstrate how these regions
may be stylized via either shading or stroke-based rendering, to
produce coherent cartoon and painterly video styles (Section 4.5).
. 1. The digital ambient display (DAD) selects, stylizes and transitions between home

paths through the media collection are passively influenced by user interest measu
We describe our hierarchical approach to structuring the media
collection in Section 3, and describe how content is sequenced at
run-time using that representation in Section 5. Qualitative
evaluations of segmentation coherence, and a quantitative user
evaluation of the DAD, are presented in Section 6.

1.2. Related work

Video temporal composition was first proposed by Schodl et al.
[13], within the scope of a single video and based upon visual
similarity only. Much as motion graphs [14] construct a directed
graph that encapsulates connections among motion capture frag-
ments, so the Video Textures of Schodl et al. create a graph of video
fragments that may be walked in perpetuity to create a temporal
composition. Our proposed approach to composition borrows from
the graph representations [14,13], but using a hierarchical repre-
sentation, comprising multiple videos, and measuring similarity
both visually and semantically.

Hierarchical structuring of media is common to many contempor-
ary approaches for interactively navigating collections. For example,
Krishnamachari et al. form tree structures from an image collection,
imposing a coarse to fine representation of image content within
clusters and enabling the users to navigate up and down the tree levels
via representative images from each cluster. This approach was later
adopted by Chen et al. [5] and Goldberger et al. [6]. Chen et al. propose a
fast search algorithm and a fast-sparse clustering method for building
hierarchical tree structures from large image collections. Goldberger
et al. combine discrete and continuous image models with informa-
tion-theoretic based criteria for unsupervised hierarchical clustering.
Images are clustered such that the mutual information between the
clusters and the image content is maximally preserved. Our approach
to structuring collections combines a hierarchical clustering with graph
optimization approach [14] to navigate and visualize large media
collections. The resulting system differs from existing hierarchical
clustering approaches [5–7] in several ways. Rather than exploiting low
level visual features in the clustering, we incorporate both high-level
semantic similarity when constructing top levels of the tree, and global
image feature descriptors via a Bag of visual words (BoW) framework
[15] for constructing lower levels of the tree. Consequently, this tree
structure not only enables a global semantic summary of the collection,
but also encodes visual similarities at various levels. Furthermore, in
our system each node in the hierarchy encodes a directed graph that
encapsulates connections among the digital items assigned to thats
node, rather than an unstructured subset of media as typified by
previous work.

Video stylization was first addressed by Litwinowicz [16], who
produces painterly video by pushing brush strokes from frame to
frame in the direction of optical flow motion vectors. This approach
was later extended by Hayes and Essa [17] who similarly move
strokes but within independent motion layers. Complementary
work by Hertzmann [18] use differences between consecutive
frames of video, painting over areas of the new frame that differ
significantly from the previous frame. While these methods can
digital media items (photos and videos) according to semantic and visual similarity.

rement (gaze detection).
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produce impressive painterly video, the errors in the estimated
per-pixel motion field can quickly accumulate and propagate to
subsequent frames, resulting in increasing temporal incoherence.
This can lead to a distraction scintillation or ‘‘flicker’’ when strokes
of the stylized output no longer match object motion [19].

More recently, image segmentation techniques have been applied
to yield mid-level models of scene structure [20,21] that can be
rendered in artistic styles. By extending the mean-shift based styliza-
tion approach on images [11], Collomosse et al. [12] create spatio-
temporal volumes from video by associating 2D segmentations over
time and fitting stroke surfaces to voxel objects. Although this geometric
smoothing improves stability, temporal coherence is not ensured
because the region map for each frame is formed independently
without knowledge of the adjacent frames. Furthermore, association is
confounded by the poor repeatability of 2D segmentation algorithms
between similar frames, causing variations in the shape and photo-
metric properties of regions that require manual correction. Wang et al.
[21] also transform video into spatio-temporal volumes by clustering
space-time pixels using a mean-shift operator. However, this approach
becomes computationally infeasible for pixel counts in even moderate
size videos, and often under-segments small or fast moving objects that
form disconnected volumes. This also requires manual correction and
frequent grouping of space-time volumes.

Winnemoeller et al. [22] present a method to abstract video
using a bilateral filter, attenuating detail in low-contrast regions
using an approximation to anisotropic diffusion while artificially
increasing contrast in higher contrast regions with difference-of-
Gaussian edges. A variant of the bilateral filter is presented by
Kyprianidis et al. [23] which is aligned to the local structure of the
image to avoid block artifacts and create smooth boundaries
between color regions. Another variant of the bilateral filter is
presented by Kang et al. [24] that is guided by a feature flow field,
which improves feature preservation, noise reduction, and styliza-
tion. A further technique based on a generalization of the Kuwahara
filter has been presented by Kyprianidis et al. [25] using the
Kuwahara filter. Bhat et al. [26] provide a solution for applying
gradient-domain filters to videos and video streams in a coherent
manner. Such approaches do not seek to parse a description of
scene structure, making them useful for scenes that are difficult to
segment, but limited to a characteristic soft-shaded artistic style.

We adopt a scene segmentation approach; convenient both for
diverse artistic rendering and for creating the structural correspon-
dences between frames for transition animations. We propose a new
video segmentation algorithm, in which the segmentation of each
frame is guided by motion flow propagated priors estimated from the
region labels of past frames. In doing so we combine the automation of
early optical flow stylization algorithms with the robustness and
coherence of region segmentation approaches; propagating labels
with flow, and resolving ambiguities using a graph-cut optimization
to create coherent region maps. Some recent interactive ‘‘video cut-
out’’ systems are similar in spirit [27,28]; tracking key-points on
region boundaries over time for matte segmentation. However we
differ in several ways. First, we propagate label priors and data
forward with motion flow within regions, rather than tracking 2D
windows on region boundaries that contain clutter from adjacent
regions. Second, we are more general, producing a multi-label (region)
map rather than a binary matte. Third, both interactive systems
[27,28] require regular manual correction, typically every � 5 frames.
Our algorithm requires no user interaction, beyond (optional) mod-
ification of the initial frame for aesthetics.
2. System overview

The Digital Ambient Display (DAD) visualizes home media collec-
tions comprising photos and videos. Videos are ingested as short,
visually interesting clips that form the atomic unit of composition.
Obtaining such clips differs from classical shot detection as raw home
footage tends to consist of a few lengthy shots. An existing algorithm
[29] performs this pre-processing. The ingested media collection is
clustered into a hierarchical representation according to semantic
content (derived from keyword meta-data tags attached to the photo
or video), and visual similarity (computed from the photo, or a
representative video frame—typically mid-sequence). The automated
clustering and related pre-processing are described in Section 3.

At run-time the DAD creates a temporal composition of a subset of
media items from the structured collection, creating a media
sequence that flows smoothly with respect to both scene appearance
and semantics. For example, the DAD might select a clip or image of
the family in the garden, and follow this with a family clip or image in
semantically similar alternate environment such as a park. To
promote user interest in the display, media choice is also governed
by the level of user attention; passively measured using gaze
detection. Persistent attention will guide the temporal composition
toward semantically similar content to that which attracted the user’s
gaze. This real-time sequencing process is described in Section 5.

Presentation of video in the DAD is underpinned by a novel
algorithm for segmenting video frames into temporally coherent
colored regions (Sections 4.1–4.3). These region maps form a stable
representation of visual structure in the scene that is used both to
drive artistic rendering algorithms for stylization (Section 4.5), and
to perform matching of scene elements between frames in order to
generate animated clip transitions (Section 5.2). Photographs are
similarly segmented into colored regions, and for convenience are
treated as single-frame videos within our framework. However
several segmentation-based photo stylization algorithms exist and
might trivially be applied in place of our approach. Fig. 2 provides
an overview of the complete DAD system.
3. Structuring the media collection

We represent the media collection as a hierarchy of pointers to
media items. Each node in the tree represents a subset of the media
collection sharing a common semantic theme or visual appearance.

3.1. Hierarchical clustering

Our top-down approach recursively splits the collection, apply-
ing unsupervised clustering to each node using the Affinity
Propagation (AP) algorithm [30]. In contrast to k-means clustering,
which iteratively refines an initial randomly chosen set of exem-
plars, AP simultaneously considers all data points within a node as
potential exemplars and iteratively exchanges messages between
data points until a high-quality set of exemplars and corresponding
clusters gradually emerges. AP requires only a measure of simi-
larity between items, rather than a feature vector, and does not
require prior knowledge of the dataset such as the number of
clusters present and representatives for the different clusters.

Clustering proceeds in two phases. The initial phase constructs
higher levels of the tree using a measure of semantic similarity
(Section 3.2) that exploits user-provided tags on media items. AP is
applied recursively to each node until no further division occurs
(i.e. no semantic differentiation can be made between media items
at a particular node). The second phase of our process then
constructs lower levels of the tree from the leaf nodes of the first
phase, using AP to cluster items based on a measure of visual
similarity (Section 3.3). Higher levels of the tree thus provide
semantic summaries of the media reflecting the diversity of the
visual content in the dataset. Clusters at lower levels contain
predominantly visually similar images at various levels of detail
(Fig. 3).



Fig. 3. The structuring process starts with the whole dataset corresponding to the

root node of the tree and continues splitting until all the leaf nodes cannot be further

split by recursively applying unsupervised clustering. Higher levels of the tree are

clustered based on semantic (keyword) similarity, while lower levels are con-

structed based on visual similarity.

Fig. 4. Tags of media items containing multiple keywords and semantic similarities

based on tag co-occurrence.

Fig. 2. System overview. User media (photos, videos) are hierarchically clustered according to content semantics and appearance. The sequencing of displayed content is

driven both by this automated clustering, and via passive measurement of user attention. Videos and photos are segmented into region maps encoding visual structure. These

region maps drive the artistic stylization and transition processes on the display.
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3.2. Semantic similarity

To compute the semantic similarity (Ss) of a pair of media items,
we measure their tag co-occurrence. Given a vocabulary
V ¼ fw1, . . . ,wKg of K keywords present within all user-provided
tags, the similarity of a pair of keywords is computed using
asymmetric co-occurrence [31], indicating the probability of wi

appearing in a tag set given the presence of wj:

pðwijwjÞ ¼
jwi \wjj

jwjj
, ð1Þ

where jwi \wjj denotes the number of media item tagged with
both keywords wi and wj, while jwjj is the number of items tagged
with keyword wj.

Following Sigurbjörnsson and van Zwol [31], we compute the
asymmetric similarity between two sets of tags containing multi-
ple keywords T1 ¼ fw1

1,w1
2, . . . ,w1

Ng and T2 ¼ fw2
1,w2

2, . . . ,w2
Mg with

super-scripts corresponding to media items I1 and I2 respectively as

SsðI2jI1Þ ¼

PN
n ¼ 1

PM
m ¼ 1 pðw2

mjw
1
nÞ

M � N
: ð2Þ

Fig. 4 shows an example of tagged keywords and resulting
semantic similarities between pairs of media items.

3.3. Visual similarity

We adopt a content-based image retrieval (CBIR) approach to
compute the visual similarity (Sv) of two media items. Given a set of
media items at a particular node, we adopt a bag of visual words

(BoW) framework to create a codebook of visual words from
discriminative features (descriptors) local to visual keypoints
detected within each item.

Scale-invariant keypoints are obtained with the Harris–Laplace
point detector [32] and then are described using the SIFT descrip-
tor. Harris-SIFT descriptors from all images and key-frames
extracted from video clips are clustered to form a BoW codebook
via k-means clustering. A frequency histogram HI is constructed for
each I, indicating the visual words present within that media item.
Visual similarity is then computed by measuring the histogram
intersections of media pairs:

SðH1,H2Þ ¼
Xk

i ¼ 1

Xk

j ¼ 1

oij �minðH1ðiÞ,H2ðjÞÞ,

oij ¼ 1�jH1ðiÞ�H2ðjÞj, ð3Þ

where H(i) indicates the ith bin of the histogram, HðiÞ the normal-
ized visual word corresponding to the ith bin.
4. Video stylization

We next describe a coherent video segmentation algorithm which
performs a multi-label graph cut on successive video frames, using both
photometric properties of the current frame and prior information
propagated forward from previous frames. This information comprises:
1.
 an incrementally built Gaussian Mixture Model (GMM) encod-
ing the color distribution of each region over past frames;
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2.
 a subset of pixel-to-region labels from the previous frame.

We check for region under-segmentation (e.g. the appearance of
new objects, or objects emerging from occlusion) by comparing the
historic and updated GMM color models for each region, and
introducing new labels into that region if the color model appears
to be temporally inconsistent. The region map of the first frame is
boot-strapped using mean-shift segmentation [33], and may
optionally be modified by the user for aesthetics e.g. to abstract
away background detail by merging regions. Fig. 5 gives an
overview of the segmentation algorithm.

We first describe our video segmentation algorithm (Sections 4.1–4.3)
and then describe how the coherent region maps are applied to
stylize video (Sections 4.4 and 4.5) and create the animations used
to transition between successive clips in the DAD sequence.

4.1. Multi-label graph cut

We formulate segmentation as the problem of assigning region
labels existing in frame It�1 to each pixel pAP in frame ItðpÞ; i.e.
seeking the best mapping l : P-LwhereL¼ ðlð1Þ, . . . ,lðpÞ, . . . ,lðjPjÞÞ
is the set assignments of labels li, i¼{1,y,L}, andP is an 8-connected
lattice of pixels.

A subset ofL are carried forward from the region map at t�1, via
a propagation process described shortly (Section 4.2). This prior

labeling of pixels ðODPÞ forms a hard constraint on the assign-
ments of remaining pixels in It, which are labeled to minimize a
global energy function encouraging both temporal consistency of
color distribution between frames, and spatial homogeneity of
contrast within each frame. This is captured by the data and
pairwise terms of the Gibbs energy function:

EðL,Y,PÞ ¼UðL,Y,PÞþVðL,PÞ: ð4Þ

The data term U(.) exploits the fact that different color homo-
geneous regions tend to follow different color distributions. This
encourages assignment of pixels to the labeled region following the
most similar color model (we write the parameters of such models
Y). The data term is defined as

UðL,Y,PÞ ¼
X
pAP
�logPgðItðpÞjlðpÞ;YÞ,

PgðIðpÞjlðpÞ ¼ li;YÞ ¼
XKi

k ¼ 1

wikN ðIðpÞ;mik,SikÞ, ð5Þ

i.e. the data model of the ith label li is represented by a mixture of
Gaussians (GMM), with parameters wik,mik andSik representing the
Fig. 5. Content stylization is underpinned by a graph-cut based segmentation of photos a

on the graph cut of successive frames. The skeleton of each region in the previous frame is

model, to form as constraints on the graph cut. New regions are detected via non-conform

spatio-temporal low-pass filtering (after [12]).
weight, the mean and the covariance of the kth component. The
parameters of all GMMs ðY¼ fwik,mik,Sik,i¼ 1, . . . ,L,k¼ 1, . . . ,KigÞ

are learned from historical observations of each region’s color
distribution (Section 4.2).

The contrast term Vð�Þ encourages coherence in region labeling
and discontinuities to occur at high contrast locations, which is
computed using RGB color distance as in GrabCut [34]:

VðL,PÞ ¼ g
X
ðm,nÞAN

½lðmÞa lðnÞ�e�bJIðmÞ�IðnÞJ2

, ð6Þ

where N is the set of pairs of 8-connected neighboring pixels inP. b
is chosen to be contrast adaptive [35]:

b¼ 1
2/JIðmÞ�IðnÞÞJ2S�1, ð7Þ

where / �S denotes expectation over an image sample. Constant g
is a versatile setting for a variety of images [36], and is set
empirically to obtain satisfactory segmentation.

Motivated by the data term defined by Boykov and Funka-Lea
[35], we enforce hard constraints on the motion propagated prior
labels assigned to label li, by setting the data term of pAO to be

Up:fpAOg ¼
0 if lðpÞ ¼ li,

1 if lðpÞa li:

(
ð8Þ

Optimizing (4) to yield an appropriate assignment of labels to
pixels is NP-hard, but an approximate solution can be computed by
treating the optimization as a multi-label graph cut and solving this
using the expansion move algorithm [37]. An a�expansion iteration
is a change of labeling such that p either retains its current value or
takes the new label la. The expansion move proceeds by cycling the set
of labels and performing ana�expansion iteration for each label until
(4) cannot be decreased [37]. Each a�expansion iteration can be
solved exactly by performing a single graph cut using the min-cut/
max-flow [38]. Convergence to a strong local optimum is usually
achieved in 3–4 cycles of iterations over our label set. We improve the
computation and memory efficiency of each iteration by dynamically
reusing the flow at each iteration of the min-cut/max-flow algorithm
(after Alahari et al. [39]). This results in a �2 speed-up.

4.2. Region propagation

The segmentation of It described in Section 4.1 is dependent on
the information propagated from the previous frame at t�1;
specifically: (i) the color models for regions Y; (ii) the set of pixels
ODP and their corresponding label assignments at t�1. We now
explain the propagation process in detail.
nd video frames. In the case of video, region maps from previous frames act as a prior

propagated to the next frame using optical flow, along with an associated GMM color

ity with the propagated color models. The resulting region maps are smoothed via



Fig. 7. A GMM color model of each region is built incrementally over time, with

contributions biased toward more recent observations. If the GMM of a region

abruptly changes color distribution (w2 metric) then the region is re-segmented

(Section 4.3).
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Our approach is to estimate the motion of pixels in frame It�1,
and translate those pixels and their respective label assignments
from the previous frame to the current frame (It). Motion is
estimated using a model of rigid motion plus deformation.

We first estimate a global affine transform between successive
frames It�1 and It, using a RANSAC search based on SIFT features
[40] matched between the frames. Performing an affine warp
on It and the corresponding region map compensates for large rigid
(e.g. camera) motion, resulting in a new image Iut�1. Local deforma-
tions are captured by estimating smoothed optical flow [41]
between Iut�1 and It, independently within each region. Note that
we do not assume or require accurate motion estimation at this
stage. Fig. 6 (bottom-left) provides an example region map from the
BOY sequence t�1 warped according to motion field Iut�1-It .

We select a subset of the motion propagated pixels (writtenO),
and their corresponding region assignments, as prior labels to
influence the segmentation of It. To mitigate the impact of
imprecise motion estimation, we form O by sampling from a
morphologically thinned skeleton of the motion propagated
regions (Fig. 6, bottom-right). This approach is inspired by the
‘‘scribbles’’ used in the interactive GrabCut system [36], but note
that we perform an automatic and multi-region (as opposed to
binary) labeling. The skeleton emphasizes geometrical and topo-
logical properties of the motion propagated region map, such as its
connectivity, topology, length, direction, and width. To further deal
with the uncertainties in positions which are closer to the
estimated region boundary, we use only the skeletons whose
distance to the boundary exceeds a pre-set confidence. Fig. 6
illustrates the complete process, which we find to be tolerant to
moderate misalignments caused by inaccurate motion estimation.

We build a GMM color model for each label li, sampling the
historical colors of labeled pixels over recent frames. To cope with
luminance variations in the sequence, the proportion of samples
Sli ,t�dA ½0,1� (d40) drawn from all li-labeled pixels from historical
frame It�d decreases exponentially as the temporal distance d from
the current frame It increases (Fig. 7):

Sli ,t�dpe�d2=s2
d : ð9Þ

Our system selects a smaller sd when luminance variance is large,
contributing more recent data to the GMM, otherwise the historical
data contributes more to increase robustness.
Fig. 6. Prior propagation: (Top-left) video frame It�1; (Top-right) region labeling of

It�1 following multi-label graph cut; (Bottom-left) region labels warped according

to per-pixel motion flow field Iut�1-ItFfor example, note the shift of the boy’s left

glove. (Bottom-right) Thinning yields prior labels for the segmentation of It.
4.3. Refining region labels

The method of Section 4.1 labels It with some or all of the region
labels in use in the region map at t�1. However, new objects may
appear in the sequence over time It due to occlusion effects of
objects moving into shot. This is most apparent in clips such as
DRAMA (Fig. 14). These objects may warrant introduction of a new
region label, should they differ in color from existing regions. In
such a situation, pixels comprising the object are erroneously
labeled from the existing label set by the graph-cut optimization,
which in turn perturbs the color distribution of the region. We can
detect this by measuring the w2 distance (as defined by Hall and
Hicks [42]) between the GMM of a region at time t and the historical
GMM built over time (Fig. 7).

For successive frames, we keep two sets of color models for each
label l in frame It being processed: (1) Historical color models
associated with each label Mh

l:flALg :¼ GlðIt�4,It�3Þ and (2) an
updated color model Mu

l:flALg :¼ GlðItÞ. We set a guard interval of
two frames (It�1 and It�2) between those two models to detect a
significant change. If the w2 distance between these two models
exceeds a threshold, new objects are deemed present.

To build color models for the new objects we extract the
dominant modes of colors within the region. We apply mean-shift
to perform unsupervised clustering on the spatial-color modes
(XY+RGB) of pixels in the region. This yields a localized segmenta-
tion of pixels in the region. We extend our label set to accommodate
each new region arising from the mean-shift segmentation, and for
each new region also compute GMM color models and region
skeletons as in Section 4.2. Re-applying the graph-cut optimization
locally within the region, using these new labels and constraints,
yields an improved segmentation for It that is carried to successive
frames.
4.4. Smoothing and filtering

Our segmentation algorithm produces stable region maps, but
due to visual ambiguities in poor contrast areas, the location of
region boundaries tend to oscillate in position by a few pixels. We
can attenuate this effect by performing spatio-temporal smooth-
ing. Specifically, by coherently labeling regions in adjacent frames,
we have formed a set of space-time volumes. Applying a fine scale
(3�3�3) Gaussian filter removes boundary noise. We avoid
removing detail by only filtering volumes above a certain size.

We inspect the duration dl,k of the disconnected space-time
volume k ðk¼ 1, . . . ,Kobjl

Þwith the same label l, in a time window of
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24 frames (1 s). If the duration of any of these disconnected video
object within this time window is shorter than a length

Dl:f1,...,Lg ¼min max
kA f1,...,Kobjl

g
dl,k,tr

( )
, ð10Þ

this space-time volume is removed. tr is set to be six frames (about
1
4 s). The effect of this process is that the spurious volumes due to
false segmentation and short-lived objects are removed, as shown
in Fig. 8. The ‘‘holes’’ left by filtering and smoothing are filled by
extrapolating region labels from immediate space-time neighbors
on a nearest-neighbor basis.

4.5. Stroke placement and shading

Our video segmentation algorithm ensures regions not only
deform in a coherent manner, but are also labeled consistently
between frames. This space-time description of scene structure
may be rendered in a variety of artistic styles; here we give an
example of one shading and one stroke based style.

4.5.1. Cartooning

Superimposing black edges over regions shaded with their
mean pixel color can produce coherent cartoon effects (Fig. 11).
In our cartoon examples, a mask of inter-region boundaries is
produced for each frame. We identify ‘‘junction’’ points on region
boundaries by identifying 3�3 pixel windows containing 42
region labels—and remove the corresponding boundary fragments
from the mask. This results in a series of connected pixel chains that
we transform into b�spline strokes by sampling knots at equi-
distant intervals. The strokes are rendered as dark brush strokes,
with thickness proportional to stroke length (after Wang et al. [21])
tapering toward the stroke ends. We render frames independently
without further post-processing; this is both for simplicity and to
demonstrate the temporal coherence of our segmentation output.

We can also exploit the temporally corresponded region label-
ing to differentially render regions of interest. For instance, users
Fig. 8. Above: co-labeled regions are smoothed in space-time to remove any

spurious regions. Below: Brush strokes are painted on a stable reference frame,

created by corresponding co-labeled regions in adjacent frames and interpolating a

dense motion field.
are particularly sensitive to over-abstraction of detail in faces;
commonly present in home video footage. We run human face
detection [43] over frames to identify labeled regions likely to
contain faces. Internal detail in these regions may be restored by
blending in a posterized image of underlying video footage, and
detail further enhanced by subtracting a Laplacian of Gaussian
(LoG) filtered image from the result.

4.5.2. Painterly rendering

Alternatively we can paint b�spline brush strokes inside
regions, coherently deforming those splines by warping their
control points to match the motion of the region boundary (similar
to the manually bootstraped rotoscoping system presented by
Agarwala et al. [44]). Boundary correspondences are computed
between temporally adjacent, co-labeled regions using Shape
Contexts [45]. The set of N corresponded boundary locations
f/c1

t�1,c1
t S,/c2

t�1,c2
t S, . . . ,/cN

t�1,cN
t Sg is used to derive the motion

vector for a control point p at time t as

p¼
1

N

XN

i ¼ 1

oðp,ci
tÞjc

i
t�ci

t�1j, ð11Þ

whereoð�Þ is a Gaussian weighted function of the shortest distance
between two points within the region (see Fig. 8, below). Our
coherent segmentation promotes smooth deformation of region
shape, and so flicker-free motion of brush strokes.

We paint the b�spline strokes within a region using Hertz-
mann’s bi-directional stroke growth algorithm [46]. In the original
algorithm, strokes are grown from random seed points using the
orientation of an intensity gradient field computed from the
underlying image. However, computing such orientation directly
from video footage typically promotes incoherence. Instead, we
interpolate an orientation field from the shape of the region.
Orientations are locally obtained at points of correspondence on
the boundary y½x,y�/atanðci�1

t �ci
tÞ. We define a dense orientation

fieldYO over all coordinates within the region OAR2, minimizing:

argmin
Y

ZZ
O
ðrY�vÞ2 s:t: YjdO ¼ yjdO: ð12Þ

i.e. DY¼ 0 over O s.t. YjdO ¼ yjdO for which a discrete solution was
presented by Perez et al. [47] solving Poisson’s equation with
Dirichlet boundary conditions. v represents the first order deriva-
tive of y. Examples of painterly output are given in Fig. 15.
5. Content sequencing

Finally, we explain the algorithms for sequencing stylized
content to create the temporal composition of media items from
the user’s collection, and for creating the animated transitions
between displayed items.

5.1. Temporal composition

We desire the DAD to autonomously transition between a
sparse yet diverse sample of user content to present a summary
of the collection. ‘‘Sparse’’ describes a small number of represen-
tative images from each semantic category. This is achieved using
the hierarchical representation of the media collection constructed
during pre-processing (Section 3).

Recall each node in our representation encodes a cluster of
similar media; defined using either a semantic similarity measure
(toward the root) or a visual similarity measure (toward the
leaves). For each node in the hierarchy, similarities between all
media items within the cluster are computed (Section 3.1), to form
a new graph of media items—with edge weights indicating the
(dis-)similarity of a pair of items. Computing the shortest Hamilton
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cycle within this graph creates a non-repetitive set of transitions
maximizing the similarity between successive media items and
thus the coherence of the sequence. Although a precise solution
maps to the classical NP-hard ‘‘traveling salesman problem’’ (TSP),
an approximate solution can be found quickly using heuristic
search methods. We adopt a Genetic Algorithm (GA) based solution
[48]. In practice TSP paths for each cluster are pre-processed.

The DAD is equipped with a camera and a face detection
technology [43] to detect user gaze (attention) directed towards
the display (Fig. 12). Sequencing proceeds in one of the two modes,
depending on whether user attention is present or not.

When attention is not present, the intention is to create a succinct
and diverse summary of the collection and speculatively display
content that might catch a passing user’s interest. Clusters in the first
level of the tree represent coarse semantic categories across the
whole collection. Displaying a sample of media from each cluster in
turn yields such high-level summary of the collection. However,
rather than present a random succession of media, we desire a
degree of temporal coherence in our choice of media to create
compelling paths through the collection—to tell a ‘‘story’’ through
visual media, with the aim of prompting user reminiscence.
Although TSP paths within a cluster offer coherence for intra-cluster
transitions, they do not offer inter-cluster coherence. We address the
latter by identifying a ‘‘semantic route’’ between media items (A,B) in
different clusters. This is achieved by taking the union of media
clusters containing A and B, and computing a (dis-)similarity graph
as before. Dijsktra’s algorithm yields a shortest path between A and
B, encoding the ‘‘semantic route’’; the most coherent sequence of
media items to transition between A and B (Fig. 9).

When attention is present, we do not permit jumps between
siblings, but instead permit transitions to the parent or children of the
current cluster. These transitions represent ‘‘generalization’’ or ‘‘dril-
ling down’’ into a media topic, respectively. Suppose we have detected
user interest in a media item A. We stochastically choose to either
remain on the TSP path containing A in the current cluster, or to
transition to a child cluster also containing A (i.e. begin transitioning
along the TSP path in that cluster). For our experiments the probability
of continuing on the current path, or ‘‘drilling down’’ is even. When
interest in the display abates, we transition back ‘‘up’’ the tree in a
similar manner; with even choice between continuing on the TSP path
or jumping to the parent TSP path. In both cases A exists within the
destination cluster, and so sequencing continues simply by switching
the display process onto the TSP path for the new cluster to ensure
smooth transitions when transitioning up and down the tree.
Fig. 9. Transitions are made across top-level clusters by sequencing display of

content along ‘‘semantic route’’ between a source and destination media item

(depicted as large red nodes). The semantic route is the shortest path computed

across the graph; here nodes part of that route are shaded red, otherwise green. (For

interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
5.2. Rendering transitions

Having established a sequencing mechanism during visualiza-
tion, we animate the transition between stylized media items
according to the scene structure (region map).

We first establish a mapping between each region Rj
t�1 and Ri

t

corresponding, respectively, to the final and initial frames of the
two clips (recall that images are accommodated in our framework
as single frame videos). The region mapping is created in a greedy
manner, iteratively pairing off regions that minimize:

argmin
fi,jg

½w1 w2 w3�

CðRj
t�1,Ri

tÞ

AðRj
t�1,Ri

tÞ

SðRj
t�1,Ri

tÞ

2
6664

3
7775, ð13Þ

where the normalized functions: Cð�Þ indicates mean color simi-
larity; Að�Þ indicates relative area; Sð�Þ indicates shape similarity in
terms of region compactness. We bias weights o1�3 empirically to
0.5, 0.4, 0.1. The greedy assignment continues until (13) falls below
a threshold. Unassigned regions in the mapping are animated to
‘‘disappear’’ (shrink to a point at the centroid) or ‘‘appear’’ (grow
from the centroid); whereas regions mapped between frames are
animated to morph into one another.

Regions are morphed using simple linear blending. Each region is
vectorized into a polygon and a series of regularly spaced control
vertices established on the boundary. A correspondence is estab-
lished between vertices of Rj

t�1 and Ri
t to minimize distance between

corresponded vertices. The position of control vertices are linearly
blended over time (typically 1

4 s) to animate the region from one
shape to another. Region color is similarly blended. Although more
complex vertex correspondence approaches were investigated [45],
these lacked stability when presented with moderate changes in
region shape. The resulting transitions are shown in Fig. 10.
6. Results and user study

We present a qualitative comparison of the proposed video
segmentation algorithm with two existing techniques [33,49] and
present a gallery of stills from videos stylized into cartoons and
paintings. We also present a small-scale study exploring user
engagement with the DAD.
Fig. 10. Frames from the transition animation between two clips.
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6.1. Video segmentation and stylization

To demonstrate the advantages of the proposed multi-label video
segmentation algorithm, we compare the approach proposed in
Section 4 to two leading segmentation methods for per-frame [33]
and spatio-temporal [49] segmentation (Fig. 13). We observe the
region boundaries in the proposed method to exhibit improved
stability over time. Fig. 14 indicates the region maps produced by the
segmentation algorithm over four video sequences. We test our
algorithm on fast moving footage containing small objects (‘‘BEAR’’
from Collomosse et al. [12]). Unlike previous work, fine scale features
(e.g. the bear’s eyes and nose) are retained. Similarly, ‘‘DANCE’’
demonstrates the ability to cope with fast motion and partial
occlusions. ‘‘DRAMA’’ shows correct handling of regions that dis-
appear and appear within sequences, the latter detected by changes
in the region color distribution and addressed as out-lined in Section
4.3. The ‘‘KITE’’ sequences show the aesthetic ability to selectively
abstract detail (trees) from the stylized video, when interactively
removed by the user in the initial frame. In all cases our segmenta-
tions appear flicker-free; some flicker is occasionally present at the
bottom-left of clips due to the frame identifier which could be
manually abstracted away by similarly modifying the initial frame.

We demonstrate the video stylization and transition animations
using a collection of 23 videos. Fig. 11 shows representative frames
of the stylized footage in both cartoon and painterly styles; 6 min of
the perpetual animated display is also included in the supplemen-
tary material. An example transition animation is given in Fig. 10.
The resulting clip transition animations match large, similarly
colored regions between frames producing a pleasing smooth
transition effect evident throughout the DAD sequence.

Following coherent segmentation, Fig. 15 shows frames of
painterly renderings over four video sequences in natural scenes.
The smooth deformation of regions enables stable and flicker-free
motion of brush strokes, which produces an aesthetically pleasing
painterly effect over the input video sequences.
Fig. 12. One of the three identical DAD devices used in the experiment. The DAD

adapts in real time to display interesting contents at various levels of detail in

response to user attention level.
6.2. Study of user engagement

We evaluated the efficacy of our content sequencing algorithm
(Section 5.1) in a small-scale user study. Our hypothesis was that
the DAD media sequencing algorithm would prove more engaging
for users than simple random slideshows, as typified by existing
commercial digital photo frames. We tested the algorithm with and
without adaptation to user interest. We measured user engage-
ment using the DAD’s gaze detection; counting the proportion of
displayed media items that attracted user attention. In this
evaluation we used photographic media only, rendered in a
Fig. 11. A collage of stylized frames sampled from
painterly style (Section 4.5.2). We eschewed video content
to potential bias introduced by movement which can act as a
strong attractor of attention. Transition animations were also
disabled.

6.2.1. Experimental setup

The media collection comprised 600 user-tagged Flickr images
of 18 landmarks in London, licensed under the Creative Commons.
The dataset is adopted to emulate a typical home media collection
consisting of photos taken from a tour in London, which also
facilitates the user study. We de-noised the associated tags by
stripping numeric tags, any punctuation and commonly used Flickr
tags that do not relate to content e.g. camera model. The semantic
relevance between the tags was pre-computed, and images ana-
lyzed to form a BoW code-book with 4000 visual words. The study
comprised 10 participants between the ages of 20–40, of mixed
gender, with varying levels of technical expertise. The DAD device
(1.33 GHz CPU, 512 MB RAM, 800�480 resolution) was positioned
within proximity to the participant in their everyday working
environment. The media collection is stylized beforehand and
stored in the DAD. The DAD performs face detection, content
sequencing and visualization. The camera and face detector were
calibrated to record an attention event when the user’s head is
oriented towards the DAD.
the user video collection studied in this paper.



Fig. 13. Comparing the accuracy and coherence of our segmentation algorithm on the BOY sequence, to ‘‘synergistic’’ mean-shift + edge [33] and a state of the art spatio-

temporal method [49]. Boundaries are less prone to variation in shape and topology.

Fig. 14. Illustrating the coherent region maps produced by our segmentation method. Top: BEAR and DANCE contain small regions moving quickly over time. Bottom: The

DRAMA sequence shows correct handling of regions appearance. The KITE sequence indicates how background detail may (optionally) be abstracted by modifying the initial

frame segmentation to merge unwanted detailed regions.
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6.2.2. Protocol

The experiment comparatively evaluates three operational
modes of the DAD device:
�
 Random and passive display (RP): the DAD randomly selects
non-repetitive images from the dataset to display.

�
 Structured and passive display (SP): the DAD displays images in

the proposed approach without responding to user attention.

�
 Structured and adaptive display (SA): the DAD displays images

in the proposed approach.

Participants might be involved in parallel activities while seated
during the experiments and only pay extended attention to the
screen when attracted by the content. In order to mitigate the effect
of short term memory of the image collection we shuffle the order
in which the three modes are evaluated by each user. Furthermore,
during the evaluation, the participants were unaware of the nature
of the three modes or the interactive nature of mode SA. All user
attention events during the three presentations for each user are
recorded in the background for analysis. Experiment for each mode
takes 20 min and each image is shown for 3.5 s.

6.2.3. Experimental results and feedback

Attention events recorded by the DAD for the three operational
modes are given in Table 2. Table 1 records the proportion of images
that attracted user attention out of the total images displayed for
each mode. A paired t-test between pairings of modes indicate
strong statistical significance between each mode of operation
(Table 2). This suggests a qualitative improvement in level of user
engagement using our structured sequencing approach, versus a
random slideshow. Improvement is also observed with user
adaptive sequencing (SA) over non-adaptive (SP). Quantifying this
improvement by averaging across the users the SA mode we record
� 17% more attended images than the SP scheme, which in turn
recorded � 55% more attended images than the RP scheme. Data
on how user attention was distributed across the semantic clusters
in the SA case shows large differences between the clusters,
consistent with the adaption strategy adopted i.e. the participant’s



Fig. 15. Examples of coherent painterly renderings produced from the BOY, KITE, PICNIC and DANCE videos (top to bottom).

Table 1
Proportion of images attracting user attention out of total displayed images in each scheme.

User #1 User #2 User #3 User #4 User #5 User #6 User #7 User #8 User #9 User #10

RP 0.0467 0.1133 0.1400 0.1050 0.0750 0.1350 0.0850 0.0367 0.0300 0.1433

SP 0.0850 0.1783 0.2033 0.0783 0.1300 0.1767 0.1483 0.0833 0.0950 0.2383

SA 0.1083 0.2333 0.1750 0.1017 0.1783 0.2000 0.1800 0.1250 0.1267 0.2250
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initial interest in a specific category is detected and draws more
images from that category that serve to maintain that interest. We
thus conclude that our proposed approach offers an engaging
means to display the contents of a large media collection with
minimal user interaction.
During a questionnaire based de-brief, user feedback on the
DAD was broadly positive, both in terms of the aesthetics of the
painterly rendering and the DAD system. Participants feel engaged
with the system, remarking on the structured and adaptive manner
of presentation. Eighty percent of the participants find that the DAD



Table 2
Significance of results (paired t-test).

t-Test Means Std. dev. p-Value

RP/SP 0.0910/0.1417 0.0431/0.0565 0.0007

RP/SA 0.0910/0.1653 0.0431/0.0474 0.0001

SA/SP 0.1653/0.1417 0.0474/ 0.0565 0.0184
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displays more images of interest in our proposed approach (SA)
than in the other two approaches and regard it as a useful means to
display their own digital media collections. Seventy percent of the
participants deem that our proposed approach (SA) presents an
effective global summary of the structure of the collection. Sixty
percent of the participants would consider presenting their own
digital media collections in a similar painting style, with the
remainder concerned about the recognition of faces in the stylized
content. Sixty percent of participants would like to be able to take
over control of the presentation. Suggested controls are: (1) Ban or
skip a specific category. (2) Hold on the content being displayed. (3)
Alternative artistic rendering styles. (4) Indication of user attention
being detected. All participants are satisfied with the hardware
specifications of the DAD device, such as the appearance, screen
size, screen brightness, and speed. Participants filled in the sub-
jective questionnaire without knowing the DAD mode they were
commenting on.
7. Conclusion

We have presented a digital ambient display (DAD) that har-
nesses artistic stylization to create an abstraction of user’s experi-
ences through their home digital media collections. The DAD
automatically selects, stylizes and transitions between media
contents enabling users to passively or actively consume their
digital media collections and rediscover past memories.

We contributed a novel algorithm for coherent video segmenta-
tion based on multi-label graph cut, and applied this algorithm to
stylized animation in the DAD. By parsing the video into coherent
spatial segments, we are able to represent scene structure. This
representation allows us to establish correspondence between
frames, enabling the coherent stylization of space-time volumes
with both shading and painterly effects. The latter was possible by
painting brush strokes on a smoothly deforming reference frame
defined by the regions. We are also able to create aesthetically
pleasing transition effects between different video clips using
region correspondence. Video segmentation could be further
enhanced by exploring the backward propagation of region labels
to further improve coherence of segmentation. We would also like
to improve the painterly rendering by differentiating between
region motion caused by occlusion vs. object deformation, to more
closely align the movement of painted strokes to the perceived
structure in the scene.

A further contribution of the paper is a novel approach to
structuring and navigating visual media collections. We described
an algorithm for adaptively sequencing media items using graph
optimization in a coarse-to-fine manner driven by user attention.
By recursively clustering media items into a hierarchy, we were
able to plan routes within clusters to display content of a common
theme. We were also able to plan routes between clusters to
summarize media within the collection. We deployed our system
on dedicated hardware and undertook a small-scale user trial to
validate our content sequencing algorithm, which was shown to be
more engaging than random photo slideshows.

In future work we would like to offer more control to the user over
presentation. An improved interface might enable users to ban or skip
specific categories they are less interested in, and hold on interesting
contents for closer inspection. In addition to global visual similarity of
media items (addressed in this paper) it might be interesting to
harness recent developments in image cosegmentation [2,50] to
enable users to explore ‘‘similar content’’ within a region of interest
indicated by touching a particular area on the display.
Acknowledgement

This work was funded by Hewlett Packard under the IRP
studentship programme (Grant #477).
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version of 10.1016/j.cag.2010.11.004.
References

[1] Combs TTA, Bederson BB. Does zooming improve image browsing? In:
DL ’99: Proceedings of the fourth ACM conference on digital libraries. ACM;
1999. p. 130–7.

[2] Heath K, Gelfand N, Ovsjanikov M, Aanjaneya M, Guibas LJ. Image webs:
computing and exploiting connectivity in image collections. In: CVPR, 2010.

[3] Rodden K, Basalaj W, Sinclair D, Wood K. Does organisation by similarity assist
image browsing? In: CHI ’01: Proceedings of the SIGCHI conference on human
factors in computing systems. New York, NY, USA: ACM; 2001. p. 190–7.

[4] Schaefer G. A next generation browsing environment for large image reposi-
tories. Multimedia Tools and Applications 2010;47(1):105–20.

[5] Chen J, Bouman C, Dalton JC. Hierarchical browsing and search of large image
databases. IEEE Transactions on Image Processing 2000;9:442–55.

[6] Goldberger J, Gordon S, Greenspan H. Unsupervised image-set clustering using
an information theoretic framework. IEEE Transactions on Image Processing
2006;15:449–58.

[7] Krishnamachari S, Abdel-Mottaleb M. Image browsing using hierarchical
clustering. In: IEEE symposium on computers and communications, 1999.
p. 301–7.

[8] Arksey N. Exploring the design space for concurrent use of personal and large
displays for in-home collaboration. Master’s thesis, University of British
Columbia; August 2007.

[9] You W, Feis S, Lea R. Studying vision-based multiple-user interaction with in-
home large displays. In: Proceedings of the 3rd ACM workshop on human-
centred computing (HCC), 2008. p. 19–26.

[10] Wang T, Collomosse J, Slatter D, Cheatle P, Greig D. Video stylization for digital
ambient displays of home movies. In: Proceedings of the ACM NPAR, 2010.
p. 137–46.

[11] DeCarlo D, Santella A. Stylization and abstraction of photographs. In: SIG-
GRAPH ’02: Proceedings of the 29th annual conference on computer graphics
and interactive techniques. ACM; 2002. p. 769–76.

[12] Collomosse J, Rowntree D, Hall P. Stroke surfaces: temporally coherent artistic
animations from video. Transactions on Visualization and Computer Graphics
2005;11:540–9.

[13] Schodl A, Skeliski R, Salesin D, Essa H. Video textures. In: Proceedings of the
ACM SIGGRAPH, 2000. p. 489–98.

[14] Kovar L, Gleicher M, Pighin F. Motion graphs. In: Proceedings of the ACM
SIGGRAPH, 2002. p. 473–82.

[15] Sivic J, Zisserman A. Video google: a text retrieval approach to object matching
in videos. In: Proceedings of the international conference on computer vision,
vol. 2, 2003. p. 1470–7.

[16] Litwinowicz P. Processing images and video for an impressionist effect. In:
SIGGRAPH, 1997. p. 407–14.

[17] Hays J, Essa IA. Image and video based painterly animation. In: NPAR, 2004.
p. 113–20.

[18] Hertzmann A, Perlin K. Painterly rendering for video and interaction. In: NPAR,
2000. p. 7–12.

[19] Meier BJ. Painterly rendering for animation. In: Proceedings of the ACM
SIGRGAPH, 1996. p. 477–84.

[20] Collomosse J. Higher level techniques for the artistic rendering of images and
video. PhD thesis, University of Bath; May 2004.

[21] Wang J, Xu Y, Shum H, Cohen M. Video tooning. In: SIGGRAPH, vol. 23, 2004.
p. 574–83.

[22] Winnemoller H, Olsen S, Gooch B. Real-time video abstraction. In: ACM
SIGGRAPH, 2006. p. 1221–6.
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