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ABSTRACT
We propose a human performance capture system employ-
ing convolutional neural networks (CNN) to estimate hu-
man pose from a volumetric representation of a performer
derived from multiple view-point video (MVV). We compare
direct CNN pose regression to the performance of an affine
invariant pose descriptor learned by a CNN through a clas-
sification task. A non-linear manifold embedding is learned
between the descriptor and articulated pose spaces, enabling
regression of pose from the source MVV. The results are
evaluated against ground truth pose data captured using a
Vicon marker-based system and demonstrate good generali-
sation over a range of human poses, providing a system that
requires no special suit to be worn by the performer.

CCS Concepts
•Computing methodologies→Motion capture; Neu-
ral networks; Volumetric models;

Keywords
Deep Learning, Pose Estimation, Multiple Viewpoint Video

1. INTRODUCTION
Performance capture is widely used in the entertainment

and biomechanics industries for the capture of human mo-
tion. The state of practice in the commercial domain, for
example, the Vicon and Optitrack systems, require a special
suit with markers to be worn by the performer and spe-
cialist cameras and specific lighting conditions in which to
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work. These requirements restrict the process to dedicated
motion capture studios, which is often an undesirable loca-
tion for the principal footage of a film, for example, thereby
requiring multiple shoots and additional expense. The tech-
nique we propose in this paper aims to estimate human pose
from principle footage using multiple, synchronised video
cameras, thereby avoiding the inconvenience and expense of
specialist equipment.

The presented techniques employ CNNs to the task of hu-
man pose estimation in two different modes. CNN1 learns
a rotationally invariant pose descriptor and CNN2 regresses
pose directly. We demonstrate the efficacy of the CNNs
for pose classification and regression; the latter by both di-
rect regression and by learning a manifold embedding for
CNN1 space using Gaussian Processes [14]. Both networks
share the same volumetric data input format, reconstructed
through triangulation of performer silhouettes within the
MVV sequence. Without loss of generality, we recover a
probabilistic visual hull (PVH) [6], a coarse voxel represen-
tation of the performer from which we extract a multi-scale
polar representation (‘spherical histogram’) used as input to
the first CNN layer.

2. RELATED WORK
Human pose estimation (HPE) is concerned with identi-

fying the skeletal position from visual data in terms of limb
location/orientation or a probability map of their locations
in the source material. The first challenge of such systems is
identifying people in the source images or video, commonly
achieved by techniques such as background subtraction [27,
2] or sliding window classifiers [23, 4]. Existing approaches
can then be split into two broad categories; methods that
use a top-down approach to fit an articulated model to the
source data and those that do not rely on an explicit a proiri
model and identify body parts in a bottom-up approach.

Bottom-up HPE is driven by image parsing to isolate com-
ponents e. g. Srinivasan and Shi [21] use graph-cut to parse
a subset of salient shapes from an image and group these
into a model of a person. However, the approach is sensitive
to clutter which interferes with the segmentation. Mori and



Malik identified the position of individual joints in a 2D im-
age. Scale and symmetry constraints were used to establish
the correspondence between a 2D query image and train-
ing images annotated a priori with joint positions [16]. Ren
et al. recursively split Canny edge contours into segments,
classifying each as a putative body part using cues such as
parallelism [20]. Ning et al. [7] apply vector quantization
to learn codewords for body zone labelling. Ren et al. also
use BoVW for implicit pose estimation as part of a pose
similarity system for dance video retrieval [19].

Top-down approaches to 2D HPE fit an articulated limb
model to data incorporating kinematics into the optimisa-
tion to bias toward possible configurations. Lan and Hut-
tenlocher [13] provide such a model using joint angles and
considering the conditional independence of parts; Inter-
Limb dependencies (e. g. symmetry) are not considered. A
more global treatment is proposed in [10] using linear relax-
ation but performs well only on uncluttered scenes. Pictorial
structures [5] encode a graphical model of limb components
that are fitted by decomposing the objective function across
edges and nodes in a tree. Spatio-temporal tracking of pic-
torial structures is applied to HPE in [12], and the fusion of
pictorial structures with Ada-Boost shape classification was
explored in [3]. Agarwal and Triggs used non-linear regres-
sion to estimate pose in 2D silhouette images [1].

Studies have begun to leverage the power of convolutional
neural networks to pose estimation, following in the wake
of the eye-opening results of Krizhevsky et al. [11]. Toshev
and Szegedy [22], in the DeepPose system, use a cascade of
networks to estimate 2D pose in images. Descriptors learned
by a CNN have also been used in 2D pose estimation from
very low resolution images [17]. The more general challenge
of 3D object pose estimation [26, 25] has also benefited from
deep learning approaches. The challenge of estimating 3D
human pose from MVV is currently less explored, although
related work has been undertaken aligning pairs of 3D hu-
man body poses [24], and estimating pose via a tracked 4-D
mesh of a human performer from video reconstruction [9].
However mesh tracking is subject to frequent manual cor-
rection and is reliant upon strong surface texture cues and
absence of surface deformation e. g. due to clothing. Our ap-
proach is unique in adopting a data-driven, machine learning
approach to 3D pose estimation, using only a coarse visual
hull (PVH) derived from the MVV to drive learning of the
CNN descriptor and manifold embedding.

3. MARKERLESS POSE ESTIMATION
Our approach accepts a multiple viewpoint video (MVV)

sequence as input, shot using synchronised calibrated cam-
eras surrounding the performance. The volume visible in all
camera views is the effective zone of capture (the ‘capture
volume’); here, approximately 6× 4 meters. We first recon-
struct a coarse geometric proxy within the capture volume
from each frame of the sequence (subsec. 3.1). The proxy
is then resampled about its centroid into a log-polar rep-
resentation at multiple scales (’spherical histogram’). We
employ this representation to train two separate proposed
convolutional neural networks,

• A convolutional neural network (CNN1) configured for
a supervised classification task. CNN1 is trained using
labelled examples of several distinct poses exercising
the full range of typical human motion (subsec. 3.1.1).

Descriptors are extracted from the first fully connected
layer of the network, and a non-linear manifold embed-
ding learned over a combined space of the CNN de-
scriptors and joint angle estimates (subsec. 3.3). The
manifold enables pose regression from descriptors de-
rived from each MVV frame.

• Alternatively CNN2 adapts the network structure of
CNN1 to introduce a Euclidean loss layer(subsec. 3.3.4)
as the final layer to allow the network to learn to
regress the estimated human pose.

Figure 1 illustrates the full pipeline.

3.1 Volumetric Representation
The capture volume is observed by C camera views c =

[1, C] for which extrinsic parameters {Rc, COP c} (camera
orientation and focal point) and intrinsic parameters {fc, oxc , oyc}
(focal length, and 2D optical centre) are known. A geomet-
ric proxy of the performer is built via an adapted form of
Grauman et al.’s probabilistic visual hull (PVH) [6] com-
puted from soft foreground mattes extracted from each cam-
era image Ic using a bluescreen chroma key. To compute the
PVH we coarsely decimate the capture volume into a set of
voxels at locations V = {V1, . . . , Vm}; a resolution of 5cm3 is
used in our experiments. The probability of the voxel being
part of the performer in a given view c is:

p(V |c) = B(Ic(x[Vi], y[Vi])) (1)

where B(.) is a simple blue dominance term derived from
the RGB components of Ic(x, y), i. e. 1− B

R+G+B
, and (x, y)

is the point within Ic that Vi projects to:

x[Vi] =
fcvx
vz

+ oxc (2)

and y[Vi] =
fcvy
vz

+ oyc , (3)

where
[
vx vy vz

]
= COP c −R−1

c Vi. (4)

The overall probability of occupancy for a given voxel p(V )
is:

p(Vi) =

C∏
i=1

1/(1 + ep(V |c)). (5)

We compute p(Vi) for all Vi ∈ V to create a volumet-
ric representation of the performer for subsequent process-
ing. In practice, B(.) is computed in parallel via a GPU-
equipped PC attached to each camera, yielding a soft matte
at 25 frames/second. This allows for independent solution
of eqs.1-4 prior to aggregating results on a single machine to
solve eq. 5 yielding a streaming PVH.

3.1.1 Log-Polar Representation
V is next resampled into a log-polar representation, quan-

tizing longtitude and latitude into N regular intervals, and

yielding a 2D signal S(φ, θ) ∈ <N
2

derived from a sub-
volume of interest in V local to the weighted centroid µ(V)
of the PVH

µ(V) =
∑
Vi∈V

Vip(Vi). (6)



Figure 1: Overview of proposed technique. MVV is captured (a) and a geometric proxy / PVH built (b). The PVH is sampled
into log-polar form at multiple scales and passed through a CNN to learn a rotationally invariant descriptor (c). A non-linear
manifold embedding of the combined CNN and joint angle space (d) is learned under supervision to regress a pose estimate
(e). Note markers visible in (a) are not used by our approach; they provide ground-truth for quantitative comparison against
a commercial system.

Each sample S(φ, θ) aggregates p(Vi) from the subvolume of

the PVH within interval
[
2π
φ
, 2π
φ+1

]
and

[
2π
θ
, 2π
θ+1

]
within a

particular distance interval from µ. Writing voxels within
that interval V ′:

S(φ, θ) =
∑
Vi∈V′

1/(1 + e−(p(Vi)−D(V))) (7)

where D(V) is a dynamic threshold computed for the voxel
distribution that serves to normalise against larger p(Vi) oc-
curing due to appearance variation (e. g. difference in cloth-
ing colour) between performers. D is computed using a cu-
mulative count of voxels with occupancy probability exceed-
ing τ for all τ = [0, 1], yielding a 1D signal s(τ):

s(τ) =
∑
Vi∈V

p(Vi) > τ (8)

from which D is derived from the turning point in s(τ)

D(V) = argmax
τ

∣∣∣∣δs(τ)

δτ

∣∣∣∣ . (9)

The use of a log-polar representation follows successes in
prior work on human 3D mesh alignment [8] and general 3D
object retrieval [15] that employ spherical histogram rep-
resentations to match on coarse shape. Our work extends
these to compute a set S of S(θ, φ) each computed from a
radial interval [Rr, Rr+1] ∈ R = {0.2, 0.4, 0.6, 0.8, 1.0}.

We explored two approaches to deriving robust descrip-
tors invariant to performer viewpoint (i. e. longitudinal ro-
tation), and evaluate these in Sec. 4.2.

3.1.2 Frequency Domain Variant
We investigated the removal of phase information in θ

by computing a frequency domain (DFT) representation of
each row S ∈ <N×1 and considering only the complex i. e.
frequency magnitude. Similar to classical Fourier Descrip-

tors this results in a shorter descriptor in <N×
N
2 invariant

to rotation of signal in θ. Such a descriptor space with in-
built invariance is preferable to the optimisation strategies of
prior 3D pose matching work using log-polar voxel descrip-
tors for mesh alignment[8], which try all possible rotations
to evaluate pair-wise shape similarity and so are both slow
and incompatible with a machine learning approach to pose
estimation.

3.2 Learning the Pose Descriptor

We investigated the use of either S or its above-described
frequency domain variant, as source data to train a convolu-
tional neural network (CNN1) to perform a supervised pose
classification task (the relative performance of each data
source type is evaluated in Sec. 4.2). Similar to modern
image classification work, which now extensively employs
CNNs, we sample a high-dimensional descriptor from the
first fully connected layer following training convergence.
Our CNN adapts the architecture of [11] and is illustrated
in Figure 2.

Our first convolutional layer consists of 96 kernels of size
11 × 11 × 5 and filters image data of size 227 × 227 with
four stride pixels. The local response normalisation (LRN)
layer with local size 5 × 5 follows, after max pooling with
3× 3 with two stride pixel size. The output of max pooling
becomes the input of the second layer with 256 kernels of
size 5 × 5 × 48. After second layer, another normalisation
with the same local size of previous LRN and max pooling
with 3×3 with two stride pixel size is performed. The third
layer, fourth, and fifth layers have 384,384 and 256 kernels
of size 3 × 3 respectively. Max pooling exists between the
fifth and sixth layers only. The two final layers are fully
connected. We evaluate (Sec. 4.2) fully connected layers of
1024 (1K) and 4096 (4K) leading to descriptors of similar
dimension. A softmax layer is appended with 20 outputs
in line with the supervised training task we now describe.
Fig. 2 illustrates the CNN architecture.

3.2.1 CNN Training and Data Augmentation
CNN1 was trained using a purpose-built dataset of labeled

MVV footage comprising ∼ 25k multiple-view frames (and
so, V) from 8 cameras. 25 individuals in a variety of clothing
(shorts, trousers, dresses) were filmed executing repetitions
of 20 distinct poses following the Vicon ”Range of Motion”
(ROM) sequence used to calibrate commercial motion cap-
ture equipment to exercise all major modes of human pose
variation. Examples of the resulting PVH in a range of poses
are given in Figure 3.

Soft-max loss was used to train the CNN using 80% of this
data to recognize the 20 poses, subject to data augmenta-
tion. Sec. 4.2 reports the results of training the CNN using
either the spatial or the frequency domain, representations
of S under two data augmentation (DA) strategies:

• DA1: Longtitude Jitter. S(φ, θ) was subject to ran-
dom rotation of θ = [0, 2π].

• DA2: As DA1 with the addition of Gaussian noise



Figure 2: Architecture of the proposed CNN1 classifier, (right) operating over the multi-scale log-polar representation parsed
from MVV (left) and normalised against appearance variation via the dynamic thresholding operation (middle). Far-left
shows the colour key for voxel occupancy.

Figure 3: Visualising a subset of PVH responses (V) for CNN
classifier training on the ROM dataset (comprising ∼ 25k
MVV video frames of 25 performers in 20 diverse poses).
Voxel colour key given in Fig. 2.

and blur at random scale.

Training proceeded over 100 epochs in our experiments,
using a mini-batch size of 200. At test time, the CNN is
truncated at the second fully connected layer yielding a vec-
tor of convolutional feature responses C that serves as our
pose descriptor.

3.3 Joint Manifold Embedding
We perform human pose estimation via a supervised learn-

ing approach in which a correlation is learned between exem-
plar pairs of descriptors (in CNN1 space C) and a vector of 21
skeletal joint angles expressed in quaternion form as ordered
pairs (we denote this space Q ∈ <21×4). The joint angles are
measured by professional motion capture engineers using a
marker-based commercial system (Vicon Blade). A dataset
of correspondences ci 7→ qi between ci ∈ C and qi ∈ Q are
gathered as a one-off process using a short training sequence
exercising degrees of motion likely to be encountered at test
time. The training sequence comprises simultaneously cap-
tured MVV and skeletal joint angles estimated by a commer-
cial marker-based motion capture solution (Sec. 4.1). We
investigate four approaches to the generalisation of these
sparse training correspondences to a dense mapping C 7→ Q

suitable for inferring performer pose P ∈ Q from a query
point c ∈ C derived from MVV at test time.

3.3.1 Nearest Neighbour (Baseline)
The näıve approach to creating a dense mapping is to

snap a query pose descriptor to closest ci ∈ C i. e. perform
a nearest neighbour lookup to obtain pose estimate Pnn

Pnn = qj ,where j = argmin
i
|c− ci| . (10)

This can be implemented in real-time (i. e. 25 frames/second)
using a kd-tree pre-built over ci. Under this approach no
constraints are imposed to guard against invalid poses, since
no generalisation beyond training is performed.

3.3.2 Piecewise linear embedding (Baseline)
A linear subspace model is learned local to each ci based

on the local K most proximate training samples c′j where
j = {1..K}. We construct this model as an undirected graph
connecting ci to c′j , forming a piecewise linear manifold over
C covering likely poses and (linear) interpolations between
similar poses. In our experiments K = 5 providing a bal-
anced trade-off between speed and accuracy. We estimate
the pose Pple under this model as:

Pple =
∑
j∈J

d(c, cj)qj (11)

where d(a, b) is a value proportional to geodesic distance
between two points on the graph manifold, and J is the set
of K nearest neighbours to c in C.

3.3.3 Non-linear embedding
Gaussian processes (GP) [18] are a popular approach for

creating smooth non-linear mappings between continuous
spaces of differing dimension. We adopt the Gaussian Pro-
cess Latent Variable Model (GP-LVM) [14] as an supervised
means for learning a non-linear manifold embedding within
joined space C × Q i. e. to model the manifold upon which
vectors [ci qi] lie. The essence of the GP is to model the
probability of a point in space ci ∈ C as the covariance of a
kernelized Gaussian in Q; as with prior work we adopt an
RBF kernel with hyper-parameters α and γ:

κ(xa, xb) = αe

(
− 1

2
γ|xi−xj |2

)
(12)

i. e. given kernel κ(.) the probability of ci is:

p(ci, qi) = N (ci, κ(xa, xb)). (13)



Given N training pairs {ci, qi} and writing the sets of these
data C and Q respectively we train the GP-LVM model by
maximising:

P (C|Q) =

N∏
i

N
(
ci, κ(Q,Q) + σ2I

)
, (14)

where I is the identity matrix, by seeking appropriate val-
ues of α, γ, and noise parameter σ. Once trained, creating
a pose estimate Pnle from c is a straightforward matrix mul-
tiplication:

Pnle = κ(c,Q) [κ(Q,Q)]−1 C (15)

3.3.4 CNN Pose Regression
CNN1 was adapted to enable direct regression from log-

polar representation S (see Sec. 3.1.1) to pose estimate Preg,
output as joint locations in 3D space. This new network,
CNN2, changes only the final layer to become length 63, to
encapsulate 21 joint coordinates. A Euclidean loss function
is used for network training, and DA2 data augmentation is
applied, as described in section Sec. 3.2.1.

4. EXPERIMENTS AND DISCUSSION
We report experiments evaluating our proposed technique

under two distinct tasks. First, we investigate the efficacy
of several variants of our pose descriptor (Sec. 3.1.1) at pose
classification. The ROM dataset of ∼ 25k MVV frames
is used to train and test the descriptors using both CNN
and Support Vector Machine (SVM) classifiers (described in
Sec. 3.2.1). The most promising descriptor for pose classi-
fication is carried forward to the second experiment, pose
estimation, which compares the efficacy of three proposed
manifold embedding approaches (Pnn, Pple, and Pnle) in
that descriptor’s space. We use a specially captured hy-
brid dataset Ballet to evaluate the accuracy of pose estimate
against a ground-truth for all methods (including Preg). All
of our datasets will be publicly released under a Creative
Commons non-commercial attribution license.

4.1 Hybrid Dataset for Pose Estimation
We captured a hybrid dataset Ballet comprising five MVV

sequences each of which were accompanied by ground-truth
measurement of 21 skeletal joint angles, produced by a pro-
fessional motion capture engineering using a Vicon motion
capture system. Obtaining this ground-truth required vis-
ible markers to be worn, however, these were not used in
our pose estimation process, and the size of these markers
(0.5cm3) was negligible relative to the coarse (5cm3) volume
decimation of the visual hull. Fig. 6 (top row) illustrates
sample frames. The dataset was captured in an indoor stu-
dio with nine video cameras on a ring gantry suspended at
approximately 2.5 metres, surrounding a 8 × 4 metre cap-
ture volume. The Vicon system used was a T-Series with
12 infra-red cameras positioned at similar locations on the
ring. The five sequences total 9434 MVV frames.

To evaluate performance on Ballet, two metrics are used.
The first is the the total angular error θerror between the es-
timated quaternion angle of each joint qe and the groundtruth
joint angle qg. The quaternion rotating qe to qg is in vector
form:

[qr
−→qv ] = q−1

e qg. (16)

Table 1: Classification accuracy of DFT and CNN based
descriptors

Descriptor type Classifier MAP(%)

DFT SVM 75.62
4K CNN1+DA1 CNN1 77.55
4K CNN1+DA2 CNN1 80.97
4K CNN1+DA2 SVM 87.99

the components of which may be converted into axis-angle
form to extract the angular error:

θerror = 2abs

[
arctan(

|−→qv |
qr

)

]
(17)

The average angle error is accumulated over all 21 joints,
to provide a per frame error quaternion angle measured in
degrees. We also present the total cumulative error in joint
positive via a simple Euclidean distance between the esti-
mated joint and ground-truth joint locations in 3D space,
expressed in millimetres (mm). Note that errors in the ab-
solute position of joints are compounded by error in the joint
preceeding it within the articulation.

4.2 Pose Classification Experiments
We evaluated the proposed CNN1 architecture of Sec. 3.1.1

under the two proposed training (data augmentation) vari-
ants: DA1, and DA2. We trialled the direct classification
of the MVV frames via CNN1 as well as extraction of the
pose descriptor from layer FC2 and subsequent classification
using a non-linear SVM. As a baseline, we compare against
the direct use of log-polar representation for inter-frame pose
matching proposed by [8], for fairness of comparison adapt-
ing this to a form invariant to longitudinal rotations via the
DFT approach described in Sec. 3.1.1. For these tests, the
ROM dataset was split into training and test datasets under
leave-one-out cross-validation with the poses of 20 people in
the training set (a total of ∼ 20, 000 frames) and the remain-
ing five people (∼ 5000 frames) reserved for the test dataset.
The mean average precision (MAP) score over the test data
is shown in Table 1.

Comparing augmentation strategy DA2 for CNN1 de-
scriptor of 4K length (and directly applying the CNN as
classifier) against the DFT encoding of the log-polar repre-
sentation, performance increases around 3%. However when
the FC2 layer is used as the descriptor in conjunction with an
SVM, there is a 12% increase in classification performance
on the ROM dataset. This improvement can be visualised
in the class confusion matrices, as shown in Fig 4, which
shows the classification matrix of the DFT descriptor and
the states of the augmented CNN. Increasing the volume
and diversity of data augmentation, therefore, reduces class
confusion as does the use of the raw descriptor (FC2) com-
bined with an SVM classifier. Much of the remaining limited
confusion occurs between left and right variants of the pose
classes. This ensures that for a single hand labelled dataset,
the CNN1 descriptor can efficiently encode the log-polar in-
formation for effective discrimination of poses. The superior
performance of FC2 derived descriptors implies CNN1 has
not only learned strong pose discrimination but that we can
use a truncated form of the resulting network to produce a
descriptor for pose estimation.



(a) DFT+SVM (b) DA1 (c) DA2 (d) DA2+SVM

Figure 4: Class wise classification confusion matrix, for the four descriptor options on the ROM dataset)

4.3 Pose Estimation Experiments

4.3.1 Joint Manifold Embedding Results
The optimal descriptor (4k CNN1+DA2) learned on the

ROM dataset for the purpose of pose classification is now
applied, in conjunction with manifold learning, as the ba-
sis for markerless pose estimation. We applied the three
proposed manifold learning techniques and CNN2’s direct
regression of the pose to the hybrid Ballet MVV dataset to
estimate the angles/locations of the joints of the pose. The
dataset was split so that 4 of the 5 MVV sequences in Bal-
let (Sec. 4.1) were trained on with the remainder used for
testing (∼ 1400 frames). We perform comparative evalua-
tion of proposed non-linear Pnle and the direct regression
Preg approaches with the baselines Pnn, and Pple. We ex-
plore variations on the CNN architectures with the FC2 layer
at 1k and 4k dimensionality and assess the importance of
the proposed dynamic thresholding approach to improving
cross-dataset encoding of the log-polar representation from
the PVH, regardless of appearance change (e. g. differences
in performer). Table 2 shows the average per joint pose
estimation error in quaternion angles (degrees) and overall
displacement in joint location (mm) of the four approaches
(only joint position has been computed for Preg), for differ-
ent descriptor dimensionality and with or without the dy-
namic thresholding (DynThrs).

The use of a dynamic threshold on the representation uni-
formly reduces the error both regarding the joint angle and
joint location. This is to be expected given the diversity
of data used to train both the CNN and manifold learning
(i. e. variation in illumination, noise due to the quantity and
quality of cameras, and performer appearance).

Without appropriate data scaling via this method, the
log-polar representation tends to encode poorly extremities
of the performer containing expressive arm and leg move-
ments. Figure 5 illustrates this problem and the difficulty
of manually applying a threshold or corrective scaling to the
log-polar data versus our dynamic technique.

Although a general trend rewarding higher dimensional-
ity is observed, this is not true for Pnle where a dimen-
sionality of 1k (with dynamic thresholding) proves to be
the best performing configuration. Direct regression of pose
using CNN2, Preg, performs better than any other tech-
nique, even without dynamic threshold applied to the input.
The best configuration, 4K+DynThrs, significantly out-

performs the other methods. Figure 6 quantifies per frame
error for each of the techniques over this best-performing de-
scriptor. It shows direct CNN regression is more accurate on
average, but poorer in terms of temporal consistency com-
pared to other methods, with non-linear embedding, Pnle
the strongest in this regard. Figure 7 provides qualitative
comparisons via representative examples of pose estimates
from each of the approaches.

Experiments were also undertaken using the learned weights
from CNN1 for fine-tuning CNN2 in its regression training
process, although negligable difference in final accuracy was
achieved.

5. CONCLUSION
We have presented and evaluated a system for human

pose estimation from multiple view-point video that demon-
strates the potential for deep learning within the field. Our
experiments show that we are able to train a CNN on volu-
metric data to discriminate between a range of poses cover-
ing the natural range of human motion. The affine-invariant
pose descriptor extracted from the trained CNN performs
well in both pose classification and estimation. Further-
more, we demonstrated that a similar CNN architecture can
be used for direct regression of pose with significantly im-
proved accuracy.

The direction for future work will include investigating
further CNN models and fine-tuning strategies, and the fu-
sion of additional sources of data that may compensate for
the limitations of our silhouette-based representation, for ex-
ample using inertial sensors to detect on-axis limb rotations
and other subtle movements. We also intend to explore the
benefit of using explicit kinematic constraints to compliment
the implicit prior built into the trained system.
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