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Abstract. We present HyperNST; a neural style transfer (NST) technique for
the artistic stylization of images, based on Hyper-networks and the StyleGAN2
architecture. Our contribution is a novel method for inducing style transfer pa-
rameterized by a metric space, pre-trained for style-based visual search (SBVS).
We show for the first time that such space may be used to drive NST, enabling
the application and interpolation of styles from an SBVS system. The techni-
cal contribution is a hyper-network that predicts weight updates to a StyleGAN2
pre-trained over a diverse gamut of artistic content (portraits), tailoring the style
parameterization on a per-region basis using a semantic map of the facial regions.
We show HyperNST to exceed state of the art in content preservation for our
stylized content while retaining good style transfer performance.

1 Introduction

Neural style transfer (NST) methods seek to transform an image to emulate a given
appearance or ‘style’ while holding the content or structure unchanged. Efficient, stylis-
tically diverse NST remains an open challenge. Feed-forward NST methods are fast
yet typically fail to represent a rich gamut of styles. At the same time, optimization
based approaches can take several seconds or minutes at inference time, lacking the
speed for practical, creative use. Moreover, NST algorithms are often driven by one or
more exemplar ‘style’ images, rather than an intuitive parameter space, impacting their
controllability as a creative tool.

In this work, we propose a fast feed-forward method for driving neural stylization
(NST) parameterized by a metric embedding for style representation. Our approach is
based upon a hyper-network trained to emit weight updates to a StyleGAN2[13] model,
trained on a large dataset of artistic portraits (e.g. AAHQ [16]) in order to specialize it
to the depiction of the given target style. Our work is inspired by the recent StyleGAN-
NADA [5], in which a CLIP [20] objective is optimized by fine-tuning a pre-trained
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StyleGAN2 model to induce NST. We extend this concept to a feed-forward framework
using a hyper-network to generate the weight updates. Furthermore, we introduce the
use of a metric parameter space (ALADIN [22]) originally proposed for style driven
visual search to condition the hyper-network prediction (vs. CLIP in [5]) and adaptively
drive this parameterization using a semantic map derived from the source and target
image. Without loss of generality, our experiments focus on the challenging domain of
facial portraits driven using a semantic segmentation algorithm for this content class.
We show our method improves target image content retention versus the state of the
art while retaining comparable accuracy for diverse style transfer from a single model
– and despite using a hyper-network exhibiting comparable inference speed to leading
feed-forward NST [19]. Moreover, our method exhibits good controllability; using a
metric space for our style code enables intuitive interpolation between diverse styles
and region-level controllability of those parameters. We adopt the recent ALADIN style
code for this purpose, raising the novel direction of unifying style based visual search
and stylization from a single representation.

2 Related Work

Neural Style Transfer (NST) The seminal work of Gatys et al. [6] enabled artistic style
transfer through neural models. This work demonstrates the correlation between artis-
tic style and features extracted from specific layers in a pre-trained vision model. The
AdaIN work [8] introduced parameterized style transfer through first and second moment
matching, via mean and standard deviation values extracted from random target style
images. MUNIT [9] explores domain translation in images through the de-construction
of images into semantic content maps and global appearance codes. ALADIN [22] ex-
plored the creation of a metric space modeling artistic style, across numerous areas of
style. The embedding space was trained in conjunction with AdaIN and a modified
version of the MUNIT model and weakly supervised contrastive learning over the BAM-
FG dataset. A follow-up work [21] studying multi-modal artistic style representation
expanded upon ALADIN, pushing the representation quality further through a vision
transformer model. CycleGAN also explored domain transfer in images, but through
learned model weight spaces, encoding pairwise image translation functions into sepa-
rate generators for each image domain. Enforced by cyclic consistency, the translation
quality between a pair of image domains was high, at the cost of requiring bespoke
models for each domain translation to be trained. Using StyleGAN as a generator model,
Swapping Autoencoders [19] directly learn the embedding of images into a StyleGAN
generator’s weight space while simultaneously encoding a vector representation of the
visual appearance of an image externally. These models separately focus on landscapes,
buildings, bedrooms, or faces.

StyleGAN Inversion The evolution of the StyleGAN models [12,13,10] explore genera-
tion of extremely realistic portrait images. They use weight modulation based editing of
visual appearance in the generated images. They also undertake preliminary investiga-
tions into the inversion of existing images into the GANs’ weight spaces for reconstruc-
tion. The work in e4e [26] includes an undertaking of a deeper analysis of real image
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embedding into the StyleGAN weight space, including the quality/editability tradeoff
this imposes. Their work enables multiple vectors of editability for images generated
through StyleGAN across several domains. Restyle [1] improves the reconstruction
quality of images embedded into the weight space by executing three fine-tuning op-
timization steps at run-time. Also, using StyleGAN as target generators, HyperStyle
[2] embeds real portrait images into the weight space with high fidelity. Similar to our
approach, they use a hyper-network to generate weight updates for StyleGAN, trained
to infer weights to bridge the gap between quick rough inversions and the fully detailed
reference portrait images. Strengths of this approach are the high reconstruction fidelity
and strong photorealistic editing control for portrait photos. They further undertake
some early explorations at domain adaptation for images by changing StyleGAN check-
points. However, the HyperStyle work focuses on photorealism and does not enable
region-based control or style space parameterization as we propose in HyperNST.

Our approach is inspired by the StyleGAN-NADA [5] work, which explores style
transfer in the StyleGAN weight space through CLIP-based optimization. Though effec-
tive, this incurs long-running optimization passes, which are impractical for wide use.
Moreover, this method has no built-in methods to effectively embed real portrait images
into the weight space for reconstruction and editing. Recently, FaRL [28] undertakes
representation learning of facial images, through multi-modal vision-text data, with face
segmentation models that cope well with various visual appearances for portraits.

3 Methodology

Domain adaptation models like CycleGAN perform well at image translation, where
style features from a style image are correctly mapped to the matching semantic features
in a content image. A limitation of CycleGAN is that transfer only between a single
pair of image domains (styles) is possible. Hypernetwork [7] models are used to predict
the weights of a target model. Such a hypernetwork can be conditioned on some input
before inferring the target model weights. Early experiments with a CycleGAN back-
bone yielded promising results, especially when we re-framed the training process into a
more manageable task by learning weight offsets to a pre-trained checkpoint rather than
a from-scratch model. Motivated by these findings, we use a more extensive, modern
generator such as StyleGAN2 with weight updates predicted using a hyper-network.
This echoes the recent optimization based approach StyleGAN-NADA which updates
weights via fine-tuning for stylization rather than hyper-network prediction. HyperStyle
[2] uses a channel-wise mean shift in the target generator, which significantly reduces
the target number of trainable weights into a practical range.

3.1 HyperNST Architecture

We compose the stylization pipeline of our model with a hyper-network set up to gen-
erate weight deltas for a target frozen, pre-trained StyleGAN2 model. Fig 1 shows an
architecture diagram of HyperNST, showing the losses and the conditioning process of
the hyper-network upon the content image and semantically arranged ALADIN style
codes of the style image.
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We direct the training to find a set of weight deltas for StyleGAN2, which can
generate the same image as the content image for reconstruction. We begin with the
GAN inversion, using e4e to reconstruct a given content portrait image roughly. An
encoder encodes this image into a tensor used by the hyper-network weight generator
modules along with style information to predict weight deltas to apply to the frozen,
pre-trained StyleGAN2. Stylization then occurs by changing the style embedding in the
hypernetwork conditioning.

3.2 Conditioning on style, and facial semantic regions

We further introduce conditioning on a target style image by injecting a style represen-
tation embedding. We project the initial 16x16x512 encoding into 16x16x256, using
ALADIN [22] codes to compose the other half of the 16x16x512 tensor. Each ALADIN
code is a 1x256 vector representing the artistic style of an image. We project semantically
arranged ALADIN embeddings into a second 16x16x256, which we then concatenate
together with the first to form the 16x16x512 tensor upon which the hypernetwork is
conditioned.

Facial portraits are very heavily grounded in their semantic structure. We therefore
condition the stylization process on these semantic regions to ensure that the content is
maintained. We execute this using segmentation masks extracted via FaRL [28].

To condition on semantic regions, we aim to use the ALADIN style code represent-
ing only the style contained within a given semantic region. Given that ALADIN codes
can only be extracted from square or rectangular inputs, we use the average ALADIN
code extracted across several patches per semantic region.

We use FaRL to compute the semantic regions, extract patches from the image
randomly, and use mean intersection over union (IoU) to ensure that patches mainly
cover pixels attributed to these respective semantic classes for each region. The ALADIN
codes from these patches are averaged to form the average ALADIN code for a given
semantic class. These average style codes are tiled and re-arranged on a per-pixel basis
to match the semantic segmentation maps of the content image before they are projected
by an encoder into the second 16x16x256 tensor, as above.

This projected 16x16x256 semantically arranged ALADIN tensor and the original
16x16x256 tensor encoded from the content image, are concatenated in the channel
dimension to 16x16x512, making up the final tensor which the hypernetwork weight
delta generating modules operate over.

3.3 HyperNST training process

We use three iterations per batch refining methodology during training. We include a
patch co-occurrence discriminator Dpatch to introduce a style loss and an image-level
discriminator D. The hypernetwork weight deltas generator H is conditioned on the
encoded content images Ec(c), and ALADIN style codes arranged by the semantic
segmentation mask of the content image M(x;Emask), seen in Eq 1.

M(x;Emask) = Emask

(
rearrange

(∑P
p=1A(crop(x; SMx)p)

P
; SMc

))
(1)
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Fig. 1. Architecture diagram of our approach. Facial semantic segmentation regions used in condi-
tioning via ALADIN and guiding via patch co-occurence discriminator a HyperStyle model into
embedding a content portrait image into an AAHQ+FFHQ trained StyleGAN2 model, and using
ALADIN style codes to stylize it towards the style of a style image. Blue modules represent frozen
modules, and orange modules represent modules included in the training. + represents concatena-
tion in the channels dimension. (A) represents the stylization pass losses, and (B) represents the
reconstruction pass losses. Not pictured for clarity: the reconstruction pass uses the same semantic
regions as the content image for the 256x256x256 semantically arranged ALADIN conditioning.

y(c; s) = G(� +H(M(s)⌢Ec(c); A(s)))) (2)

During training, two forward passes are executed, one for stylization (A) (Eq 2),
and one for reconstruction (B). The reconstruction pass (B) loads content images and
their respective ALADIN style code arranged by the content image semantic map and
performs the original reconstruction code (Eq. 3). The stylization pass (A) performs style
transfer by loading the content images c, and ALADIN style codes of other style images
s. During stylization, the generation is performed with the mixed features combined to
create stylized images, with the patch co-occurrence discriminator providing a learning
signal to train the stylization (Eq. 4). In this pass, the discriminator is also trained, with
the stylized images as fake, and the target style images as real (Eq 5).

Lrec(c) = (c; y(c; c))) (3)
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Lpcd(Dpatch) = Es∼S,c∼C [�log(Dpatch(crops(s); crops(y(c; s))))] (4)

Ldisc(c; s;D) = Es∼S,c∼C [�log(D(s; y(c; s))] (5)

where: c is content image, s is style image, C are all content images, S are all style
images, � are the original StyleGAN2 weights, H is the hypernetwork weight delta
generator, G is the StyleGAN2 generator, A is ALADIN, P is number of patches per
semantic region, SM are pre-extracted semantic segmentation masks, and ⌢ represents
concatenation.

L = �1Lrec + �2(Ldisc + Lpcd) (6)

The final loss is shown in Eq. 6, with Sec.4.3 describing ablations for the � values.

3.4 Stylized target generator

The hypernetwork model is trained to infer weight delta values for weights in a Style-
GAN2 model, which acts as the generator. Given that we work in the artistic style
domain, we thus need the target generator to be able to model the weight space of a
generator already able to produce high quality highly stylized images. We thus first fine-
tune an FFHQ [11] StyleGAN2 model on the Artstation Artistic Face (AAHQ) dataset
[16]. Largely popular in research centered around the facial images domain, the FFHQ
dataset has been used by the majority of reference papers targeting this domain. Given
our exploration into artistically manipulating the visual features of portrait images, we
further use this AAHQ dataset, which encompasses portraits from across a large and
varied corpus of artistic media. We continue to include FFHQ images, to ensure we keep
high quality modeling capabilities for features more often found in photographic images
than artistic renderings (like glasses and beards) to ensure real world images can still be
encoded well.

We first train our model simply for ALADIN conditioned reconstruction of the
AAHQ and FFHQ datasets for all layers, including the toRGB layers, which have been
shown to target textures and colors [2]. We then fine-tune this pre-trained checkpoint
with the goal of stylization, where we include the patch co-occurrence training for guid-
ance and ALADIN code swapping in conditioning for style transfer.

During the stylization fine-tuning step, we freeze the content encoder and train only
the hypernetwork weight delta prediction modules. This is to prevent the stylization
signal from negatively affecting the model’s embedding abilities to reconstruct real
images with high accuracy.

We run the stylization fine-tuning only on the part of the target StyleGAN layers.
We find that the further into the StyleGAN2 model we apply stylization fine-tuning,
the more the stylization affects colorization rather than textures and adjustments to the
structure. We include the toRGB layers originally omitted in HyperStyle for their texture
adjustments, and we train the weight deltas generation modules for layers 13 onward
(out of 25). The weight delta generation for layers before this are frozen after their initial
training, therefore still allowing reconstruction, but no more extended training during
the stylization stage. This ensures that the overall facial structure of the images is not
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too greatly affected during stylization training. Layer 13 is a sweet middle spot with
the best balance between stylization and retaining good face structure reconstruction. A
visual example of this phenomenon can be seen in Fig.3.

We further make changes to the patch co-occurrence discriminator. The Swapping
Autoencoders model generates images in 1024x1024 resolution, with a discriminator
operating over 8 patches of 128x128 dimensions. Our hypernetwork model generates
images with a resolution of 256x256 pixels, therefore, we adjust our discriminator’s
patch sizes to a lower size of 32x32.

3.5 Region mask driven patch discriminator

We also use facial semantic segmentation masks in the patch co-occurrence discrimina-
tor, to provide a style signal separated by semantic region.

In the original discriminator, patches are extracted from across the entire image
at random. Instead, our process is repeated for each semantic class’ map. Patches are
extracted at random, ensuring that the mean intersection over union (IoU) mostly covers
pixels attributed to the respective semantic class. As in the original case, the losses
from the patches are averaged to form the style learning signal. However, instead of
comparing the stylized patches with patches randomly selected from the reference style
image, we select patches bound by the respective semantic region - e.g. style hair patches
are matched with stylized hair patches, background with background, face with face, etc.

Implementation The semantic regions predicted by FaRL contain several regions
which individually cover only small areas in the pixel space. Given our use of the regions
as patches we extract for ALADIN and the patch co-occurrence discriminator, we could
not accurately use these small regions without the patches mainly containing pixel data
from the surrounding regions. Instead, we group up the regions into 3 larger classes
which typically cover larger areas of a portrait: (1) Hair, (2) Face, and (3) Background.
Due to overlap that cannot be avoided, the Face region also contains eyes, noses, and
lips. Furthermore, some images do not contain hair, for which this semantic class is not
used. In the semantically driven patch co-occurrence loss, we use 3 patches for each
region, totaling 9 patches.

4 Evaluation

Experiments generally required around 24 hours to converge. We ran our experiments
on a single NVIDIA RTX 3090 with 24GB of VRAM. The HyperNST experiments
were executed with a batch size of 1, which required around 22GB of VRAM, due to
the high number of weights needed in the hypernetwork configuration.

4.1 Datasets

We create a test dataset for use in evaluation, using images from FFHQ [11], and AAHQ
[16]. We extract 100 random content images from FFHQ and 100 random style images
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from AAHQ. Together, these result in 10’000 evaluation images, when models are used
to stylize all combinations.

We measure the content similarity using the two LPIPS variants (Alexnet [15], and
VGG [25]), and we measure the style similarity using SIFID.

LPIPS [27] evaluates the variance between two images based on perceptual infor-
mation better aligned to human perception compared to more traditional statistics based
methods. We use this LPIPS variation to compute the average variation between each
stylized image and its original content image. A lower average variation value would
indicate a more similar semantic structure, therefore, a lower value is better.

Like Swapping Autoencoders, we employ the Single Image Fréchet Inception Dis-
tance (SIFID) introduced in SinGAN [23]. This metric evaluates FID, but uses only a
single image at a time, which is most appropriate when evaluating style transfer com-
puted using a single source sample. A lower value indicates better style transfer here.

Finally, we measure the time it takes to synthesize the stylized image in seconds per
image. A low inference time is essential for the practicality of a model in real use cases.
All timings were computed on an RTX 3090 GPU.

4.2 Baselines

To test the performance of our approach, we train 7 other methods on the FFHQ and
AAHQ datasets: Swapping Autoencoders [19], Gatys [6], ArtFlow [3], PAMA [17],
SANet [18], NNST [14], and ContraAST [4]. From these, Swapping Autoencoders is
the most closely related, as it also operates over a StyleGAN2 space, thus, we separate
it from the other more traditional methods which do not.

Table 1 shows the LPIPS, SIFID, and timing results computed for our own Hyper-
NST method, and the other methods we evaluate against. The results show the superiority
of HyperNST in retaining the most semantic structure in the facial reconstructions, in-
dicated by the lowest LPIPS value. Meanwhile, we achieve comparable SIFID values
(2.279) to Swapping AutoEncoders (1.948), indicating a small gap in stylization quality.
Only our HyperNST model can embed a portrait into a model with semantic editing
capabilities. Finally, the inference time of our model is similar to other methods and low
enough for practical use of the model in real applications.

One disadvantage of the hypernetwork based approach is the current limitation with
how strongly the StyleGAN2 model can be fine-tuned. As per our findings and the
HyperStyle authors’, hyper-learning weight deltas for every individual weight would be
infeasible on current hardware (requiring over 3 billion parameters for a StyleGAN2
model) - we are limited by the technology of our time. So at best, we can aim to at most
match a method where the model is fully trained, the closest comparison being Swapping
AutoEncoders. The Swapping AutoEncoders model also fine-tunes a StyleGAN2 model.
However, the more straightforward training approach affords the luxury to fine-tune
individual weights in the generator, compared to the channel-wise mean shifts, currently
possible with a hyper-network on today’s hardware.

Nevertheless, hyper-network based NST is interesting to study, as such limitations
are temporary. Both model and hardware improvements with subsequent works will
reduce such limitations in time. We can compare hyper-network approaches directly
with fully-trained counterparts for the current state of the art.
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Model LPIPS (Alexnet)LPIPS (VGG)SIFID Time (s/img)InterpolationEditing
SAE [19] 0.334500 0.4857 1.948 0.10 3 7
HyperNST (ours) 0.000042 0.0017 2.279 0.35 3 3
Gatys [6] 0.000164 0.0030 1.369 14.43 7 7
ArtFlow [3] 0.000080 0.0022 1.347 0.32 7 7
PAMA [17] 0.000109 0.0029 0.522 0.14 3 7
SANet [18] 0.000180 0.0068 0.486 0.11 3 7
NNST [14] 0.000149 0.0030 0.871 55.40 7 7
ContraAST [4] 0.000133 0.0035 0.666 0.10 7 7

Table 1. Overall results, comparing metrics for our model's content, style, and timing and the
closest most similar model, Swapping AutoEncoders (top), and some further, more traditional
methods (bottom). All methods were trained using AAHQ as the style dataset and FFHQ as the
content dataset.

Style loss strengthLPIPS (Alexnet)LPIPS (VGG)SIFID
0.5 0.001480 0.002657 3.312
1.0 0.001310 0.002626 2.590
2.0 0.000042 0.001688 2.279
5.0 0.000097 0.000191 2.463
10.0 0.000091 0.000222 2.571
Table 2.Ablation results for varying the style loss strength

Figure 4 visualizes some style transfer results obtained with a Swapping Autoen-
coders (SAE) model, re-trained with the AAHQ dataset. Figure 2 shows the same vi-
sualization, obtained with HyperStyle. It is worth noting that the SAE model generates
1024x1024 images, whereas the target StyleGAN2 model in the hypernetwork setting
uses a smaller, 256x256 version. Quality of stylization is somewhat equivocal for these
approaches; in most cases, the SAE results are slightly more faithful in their style trans-
fer accuracy but are less faithful at retaining the semantic structure of the portraits vs.
HyperNST. The SAE model also has dif�culty stylizing backgrounds.

Layer LPIPS (Alexnet)LPIPS (VGG)SIFID
3 0.000140 0.00399 3.123
7 0.000190 0.00302 2.792
13 0.000042 0.00169 2.279
17 0.000153 0.00268 3.337
22 0.000042 0.00104 3.506

Table 3.Ablation results for varying the starting StyleGAN2 layer past which layers are included
in the stylization �ne-tuning.

4.3 Ablations

We perform the stylization �ne-tuning on only part of the StyleGAN2 layers' hyper-
weight generators. Out of 25 layers, we �nd layer 13 to be a good balance between
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Fig. 2.Qualitative HyperNST visualization of portrait style transfer.

inducing style transfer and retaining semantic structure. The earlier the target Style-
GAN2 layers that hyper-weight generators get �ne-tuned for stylization, the stronger
the emphasis on style is, therefore losing structure reconstruction quality. Conversely,
the later the starting layer is, the less pronounced the stylization is, thereby focusing
the training more on the semantic reconstruction quality and instead just performing a
color transfer. Figure 3 shows a representative visualization of this effect, and Tbl. 3
shows quantitative metrics. The images further to the left represent a deeper �ne-tuning
of layers of style and losing structure. The images to the right show a more shallow �ne-
tuning for style, retaining more structure from the original content image. We targeted
these speci�c layers, as these are toRGB layers in the target StyleGAN2 layer, which
are known to more signi�cantly affect color and texture.

Finally, we ablate the use of facial semantic region information in the model and
training pipeline. We explore the effect of including the semantic regions as a condi-
tioning signal in the pipeline (cond) and as a way to match region types in the patch
co-occurrence discriminator (loss). We populate the results in Tbl4, showing the useful-
ness of these components.




