
A Bag of Features Approach to Ambient Fall Detection for Domestic Elder-care

Emmanouil Syngelakis
Centre for Vision Speech and Signal Processing

University of Surrey
Guildford, United Kingdom.

Email: es00034@surrey.ac.uk

John Collomosse
Centre for Vision Speech and Signal Processing

University of Surrey
Guildford, United Kingdom.
Email: jc0028@surrey.ac.uk

Abstract—Falls in the home are a major source of injury
for the elderly. The affordability of commodity video cameras
is prompting the development of ambient intelligent environ-
ments to monitor the occurence of falls in the home. This
paper describes an automated fall detection system, capable
of tracking movement and detecting falls in real-time. In
particular we explore the application of the Bag of Features
paradigm, frequently applied to general activity recognition in
Computer Vision, to the domestic fall detection problem. We
show that fall detection is feasible using such a framework,
evaluted our approach in both controlled test scenarios and
domestic scenarios exhibiting uncontrolled fall direction and
visually cluttered environments.

Keywords-Ambient domestic monitoring, fall detection, ac-
tivity recognition, bag of features.

I. INTRODUCTION

Falls are one of the most common and dangerous ac-
cidents for older people, especially when living alone. It
is estimated that about one third of people aged 65 and
above endure a fall at some time each year, and 6 in 10 of
these falls occur in the home [1]. These incidents contribute
to physical injury and can introduce ongoing psychological
problems. The increasing trend toward domestic care, driven
by rising costs and an ageing population, motivates new
ambient monitoring technologies to detect and alert carers
to falls within the home.

This paper reports an experiment into the application of
“Bag of Features” (BoF) framework, commonly used in
Computer Vision for general activity recognition [2], [3],
to the detection of falls in the home. BoF frameworks
regularly top the performance tables of international bench-
marking competitions in video activity recognition (e.g.
TRECVid, VideoOlympics). Such benchmark footage often
exhibits visual clutter and moving cameras, yet BoF based
approaches are able to identify complex actions such as
drinking, kissing, running, etc. in movies. In this paper we
apply the BoF paradigm to the problem of domestic fall
detection, for which good performance in unconstrained and
cluttered domestic environments is essential.

Our passive visual monitoring system uses trained de-
scriptors based on motion patterns rather than shape, and
so can, for example, discriminate between video of people
lying down and falling. Further our system is robust to the

direction of the fall relative to the camera, which can be
problematic for ambient monitoring systems relying upon
on the outline of the body shape.

We evaluate our system over two datasets each comprising
100 video clips capturing, equally, examples of falls and
other normal domestic activities undertaken by 3 individu-
als. We show mean average precision (MAP) of 90% for
uncluttered outdoor visual environments, and similar levels
of performance (89%) for cluttered indoor domestic visual
environments.

II. RELATED WORK

The most common fall alert systems perform no detection
and are based on manually operated panic buttons, worn on
the wrist or around the neck. A number of passive moni-
toring technologies have also been developed, the majority
of which are mechanically based sensors. An accelerometer
based solution in the form of wrist watch [4] was developed
by CSEM (Centre Suisse d’Electronique et de Microtech-
niuqe). A similar sensing platform (the eWatch [5]) is
composed of multiple sensors such as temperature, light,
dual axis accelerometers and a microphone. A sensor fu-
sion technique is used to classify user activity in real-
time. Orientation of body is also considered in [6], [7];
these systems also consider the possibility of non-horiztonal
end positions, for example detecting falls against walls or
furniture. These systems underline the importance of using
motion information rather than end-body shape of position
in determining if a fall has occurred. Typically mechanical
sensors yield best results when worn close to the centre of
gravity [5]. An alternative form of mechanical sensor is built
into a cane in [8], taking measurements of motion, force and
pressure. Three stages of fall must be identified to trigger
an alarm; a swift change from vertical to horizontal, the
detection of force on ground impact, and a motionless cane.
These stages are designed to avoid false positive detections
when, for example, the cane is dropped.

The majority of vision based fall detection systems rely
upon the extraction of a region (silhouette) representing the
monitored subject. Analysis of this region’s shape indicates
a fall. One example of such a system was presented by Lee
and Mihailidis [9], using a ceiling mounted camera, which



Figure 1. Illustrating the Bag of Features pipeline used in our real-time fall detection system. During training, features are extracted from temporally
local windows in the video and clustered via k-means to form a codebook. At run-time the codebook is used to bag features from the current time instant
into codewords. The frequency histogram of codewords is classified to determine if the current temporal window contains a fall.

could discriminate between five different action types. Wide-
angle [10] lens cameras and omni-directional cameras [11]
have also been explored for ambient monitoring. Spehr et
al. [10] using a hybrid background subtraction techniques
to determine the person region invariant to clothes, lighting
etc. and used body orientation to determine fall occurance.
Specifically a change in orientation of over 28 degrees
indicated a fall. A similar orientation based system was
presented by Zhang et al. [12]. Such shape analysis demands
accurate segmentation of the person, and could generate false
alarms if a person lies down in the monitored area.

Three dimensional (3D) tracking solutions within the
living space have also been explored for fall detection,
using calibrated video cameras [13], [14] and time of flight
cameras [15]. Rougier and Meunier [13] track the head of
a subject using a particle filter and identify falls from the
trajectory of the head. The main disadvantage of their lab
based prototype was the necessity to manually bootstrap the
system by indicating the location of the head. Jansen et al.
[14] used 3D tracking to distill a set of features comprising
head distance to floor, orientation of body and level of
activity (motion) to determine occurance of a fall. Although
3D camera systems convey an accurate representation of the
environment to the detection algorithm, they require multiple
calibrated cameras to be installed within the living space —
whereas our system consists of a single camera that can be
relocated as desired e.g. on a table or mantlepiece within
the living room.

III. FALL DETECTION SYSTEM

We now describe the process for detecting falls in real-
time. In contrast to typical fall detection systems that isolate
the region of interest corresponding to the person, our system

requires no such pre-segmentation of the scene. Rather, we
detect stable points of interest anywhere in the scene and
extract features from the motion of these points recognising
the characteristic motion of a fall. By removing the need
for identifying the the person in the scene, our system is
able to operate in cluttered visual environments that may
frustrate segmentation algorithms based on appearance or
motion subtraction.

A. Codebook Extraction

Our system captures VGA (640 × 480) resolution video
frames, and identifies points of interest within each video
frame It at time t using the Kanade-Lucas tracker (KLT)
across multiple (octave internal) spatial scales [16]. These
points are tracked to the subseqeuent frame yielding a
set n motion vectors F(t) = {f1, f2, ..., fn} where fi =(
δIt
δx ,

δIt
δy

)
; typically n = [20, 50] resulting in a variable

number of features per frame. These features form the basis
for detection of falls in our system, being trained to learn
and later used recognise the pattern of motion vectors present
during a fall.

During training we capture several videos of simulated
falls and other unrelated domestic actions, resulting in a
large set of motion vectors from each frame of each video.
Following the standard BoF hard-assignment method, these
features are bagged into “codewords” using unsupervised
k-means clustering to form k = 100 groups. The cluster
centres in the feature space C = {c1, c2, ..., ck} are used
to assign each feature in the training data to a codeword
k = {1..k}. We compute a frequency histogram H(t) =
{h1,h2, ...,hk} for each training video frame by counting
the occurance of codewords present within that frame. Due
to the varying number of features in each frame, H(t) is



Figure 2. Evaluation dataset: examples of falls present with our two 100 video datasets captured in cluttered and uncluttered conditions. Red circles
indicate features; green lines indicate the feature trajectories.

normalised to enable the comparison of histograms between
frames.

B. Fall Classification

The training video clips are separated into positive (falls
present) and negative (falls absent) categories, and a set of
histograms H+ and H− computed using codebook C. Col-
lectively these histograms are points {p1,p2, ...,pm} ∈ <k

from which we a mean (µ) and covariance (C).

µ =

m∑
i=1

pi (1)

C = (p− µ)(p− µ)T (2)

from which we compute the eigenvectors {u1,u2, ...,uk}
and eigenvalues {λ1, λ2, ..., λk} of C:

C = UVUT

U =
[
u1 u2 ... uk

]
V =

 λ1 0
...

0 λk

 (3)

We compute d such that
∑d
i=1 λi ≥ 0.95 creating a

projection space P =
[
u1 u2 ... ud

]
from which

we compute a reduced dimension representation H retaining
95% of the variance in the training set:

Ĥ+ = PTH+

Ĥ− = PTH− (4)

From the d−dimensional training examples {Ĥ+, Ĥ−} the
respective means {µ+, µ−} and covariances {C+,C−} are
computed, so comprising Eigenmodels for the positive and
negative fall detection cases.

At run-time, each video frame is classified in real-time
as being a positive or negative fall detection case by
comparison with these Eigenmodels. First, motion features
are extracted and codebook applied to create a query his-
togram q ∈ <k, which is subsequently projected into the
d−dimensional classification space:

q̂ = PTq (5)

The Mahalanobis distance to each Eigenmodel is computed
to determine whether a fall has taken place. A fall has



occured if:

(q− u+)C
−1
+ (q− u+)

T < (q− u−)C
−1
− (q− u−)

T (6)

We low-pass filter this per-frame decision on fall presence
by counting the occurance of falls within a short temporal
window (10 frames). If more than half of these frames are
deemed to contain falls then the alarm is triggered.

IV. EXPERIMENTAL RESULTS

We evaluted our system over two datasets each containing
100 video clips split evenly between fall and non-fall scenar-
ios. The datasets were created using three participants. Non-
fall scenarios included a random spread of activities likely to
occur in domestic scenarios such as sitting and reclining on
couches and ambualtion within the visual field of the camera.
In the case of the cluttered dataset, footage was captured in a
living room with typical visual clutter. To enable participants
to realistically simulate falling, cushions were placed on
the floor of the capture area. In the uncluttered dataset,
fall direction was lateral with respect to the camera. In
the cluttered dataset, fall direction was unconstrained and
occured in all directions; left, right, towards and away from
the camera.

The performance of the system is summarised in the
confusion matrix of Table I. For the cluttered and uncluttered
scenarios the mean average precision (MAP) was 89% and
90% respectively, with a split of 20:80 between training
and classification test data. The 20% of the dataset used
for training was selected at random.

The optimized detection of KLT tracker using the
OpenCV library, and the relatively few multiplications and
additions requried to compute (6) enables processing of
video in real-time at a sustained rate of 20 frames per
second on a Pentium 4 2.2Ghz laptop with 2Gb RAM.
In our experiments video was captured using the low cost
embedded web camera of the laptop.

V. DISCUSSION AND CONCLUSION

We have demonstrated that a Bag of Features (BoF)
framework can be effectively applied to the problem of
fall detection in real-time, even in the presence of visual
clutter and unconstrained fall direction. In contrast to visual
detectors based on segmenting and analysing the contour,
our system is based on the learned motion signatures of falls.
This enables us to be robust to visual clutter and distinguish
between individuals lying down voluntarily in a controlled
manner or falling quickly.

We were surprised at the sustained strong performance
of the system when switching from the uncluttered to the
cluttered dataset, despite the simiplicity of our features
(comprising motion flow only). Future work will explore the
possibility of including appearance information in the feature
vector, as this has recently been shown [3] to enhance the
performance of more general BoF based activity recognition.

Results
+ve -ve

G.Truth
+ve 0.92 0.08
-ve 0.16 0.84

Results
+ve -ve

G.Truth
+ve 0.84 0.16
-ve 0.6 0.94

Table I
PRECISION OF THE SYSTEM ON THE CLUTTERED (LEFT) AND

UNCLUTTERED (RIGHT) DATASETS (80 VIDEOS PER DATASET).

A further refinement could also be in the deployment of
our system. Currently we employ a laptop with integrated
web camera, running our software in real-time. In future
development we could leverage small form factor devices
specifically built to co-locate within the shared living space
— much as modern Carbon Monoxide and smoke alarms
do. However we do not believe such enhancements are nec-
essary to further demonstrate the potential of deploying BoF
for real-time fall detection in low-cost ambient monitoring
solutions.
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