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Abstract

We propose CLASS; a novel unified model for the syn-
thesis and search for design layouts, two tasks that are
often handled separately by prior works. We propose to
learn a compact and coherent latent feature of a layout
supporting joint search and synthesis. This allows vari-
ous operations such style-conditioned layout generation, la-
tent space manipulation and provides seamless integration
of search and synthesis for an effective design workflow.
We train CLASS with a dual decoder: a new transformer-
based layout-conditioned decoder and a CNN-based raster
decoder. The latent-conditioned decoder explicitly condi-
tions upon a latent vector while generating a layout in an
auto-regressive fashion. We train CLASS under variational
framework which in conjunction with a raster-decoder en-
hances the latent representation improving both genera-
tion and retrieval performances. We show the effectiveness
of CLASS on the RICO and PubLayNet benchmarks, and
demonstrate that CLASS is capable of high-quality synthe-
sis from scratch, as well as performing self-completion, in-
terpolation, project between design layouts, whilst achiev-
ing close to or better than state-of-the-art search perfor-
mance.

1. Introduction

Design layouts form the core of visual media and in-
teractive applications where design components are orga-
nized for effective communication while providing a better
user experience [5, 36]. Designing a layout from scratch
is daunting and time-consuming. A preferred layout de-
sign workflow is to start from a reference layout matching a
user’s general requirement, based on which a user can fur-
ther customize some key components with the remaining
components being automatically adjusted to maintain the
overall design e.g. retrieve-then-adapt [37]. At any point
during the design process, assistive tools or designers can
generate multiple conditioned layouts or search repositories
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Figure 1. Our proposed CLASS framework supports various lay-
out search and synthesis tasks. The framework conditions upon
latent embedding for generative tasks such as conditional genera-
tion, self-completion, projection, interpolation, unconditional gen-
eration. The latent vectors are also used as search embeddings
which achieve a competitive layout search performance.

with the current layout. In this way, new layouts can be
efficiently created with a personalized experience. Such a
workflow can be achieved with seamless integration of large
repository layout search and user-enforced layout synthesis,
which we explore in this paper.

Recently, strong interests in design layout modeling have
emerged in research problems such as layout synthesis to
generate realistic and diverse layouts, and search and re-
trieval tasks for automatic search on large layout collec-
tions. Although both are being explored actively, the gen-
erative and retrieval tasks have always been studied under
different hoods in the literature and modeled with sepa-
rate architectures, leaving a gap for applying these tech-
niques together in real applications. Existing methods for
layout search are based on convolution and graph-based au-
toencoders [28, 29, 35]. For layout synthesis, researchers
have explored various architectures based on as VAEs
[1,18,19,21] and GANs [9,20,26]. The recent state-of-the-
art methods use Transformer-based models [1, 11, 20, 38]
and diffusion model [14, 16, 39]. While these achieve sig-
nificantly higher generation quality than VAEs and GANs,
they cannot be directly applied for layout search, since they



do not produce a compact layout representation.

In this work, we propose to unify layout synthesis and
search in an elegant architecture. For this purpose, we intro-
duce a novel conditional latent architecture for search and
synthesis (CLASS) of design layouts. As shown in Fig.1,
our CLASS framework is based on an encoder-decoder net-
work architecture. Our method learns the encoding of lay-
outs as a compact latent feature representation, rather than a
sequence. This latent representation can serve as search em-
bedding to perform retrieval, as well as enabling additional
and more practical generative tasks that are not supported
by the existing methods, like interpolation between layouts
and projection to the layout.

We found that a good distribution of the feature repre-
sentations in latent space is important for both retrieval and
interpolation tasks. To this end, we employ two strategies:
i) similar to VAEs, we regularize the distribution of layout
vectors in latent space to approximate a standard normal
distribution; and ii) we add a CNN-based raster image de-
coder, in addition to the Transformer decoder, which allows
us to apply an image-based loss as supervision. The image-
based loss encourages neighboring layouts in latent space
to be visually similar, while the sequence-based loss of the
Transformer decoder encourages latent space neighbors to
be structurally similar. We found that using both structural
and visual similarity improves retrieval performance.

In contrast to the existing methods that tackle the search
and synthesis tasks separately [1,11,20,28,29,35], our uni-
fied CLASS framework seamlessly handles both tasks while
achieving good performance for both search and synthesis –
a key advantage of the proposed method. Different from the
existing works on conditional generation, which often con-
dition the generation using a set of labels [20], or a set of
labels and geometric constraints [24], we for the first time
propose to directly operate on a latent representation for
conditional layout generation. With this novel design, our
method is capable of several generative tasks such as self-
completion, projection of partial layouts towards a given
reference layout, interpolating between layouts as well as
the synthesis of novel layouts by sampling latent vectors
from a known prior distribution as shown in Fig. 1.

We evaluate our method on two benchmark datasets:
RICO [7] and PubLayNet [40]. We show that our method
produces high-quality layouts that are perceptually plau-
sible and diverse while supporting several generative sub-
tasks. We compare with various baselines using standard
metrics and show the effectiveness of the proposed method.
Our method also achieves on-par or even better performance
than state-of-the-art methods tailored to layout search tasks.

2. Related Work

2.1. Layouts Analysis

Early works on layouts have been studied for automated
design and document formatting that mostly relied on tem-
plates [6, 8, 15] and exemplars [23]. These methods often
require expert knowledge as they rely on predefined tem-
plates and heuristic rules, and hence do not capture com-
plex layout distribution. The authors in [31, 32] proposed
optimization techniques leveraging learnable metrics from
exemplars for an interactive interface that assists layout de-
sign by providing automatic suggestions. Similarly, gaze
mechanism [33] has been employed to assist designers in
easily directing users’ attention to desired locations in web
layouts. In terms of design metrics, the aesthetics of docu-
ment layout have been studied by [12] based on alignment,
regularity, uniform separation and balance properties of the
design components.

2.2. Layout Synthesis

Layout synthesis has recently gained great research in-
terests and has been explored using various neural archi-
tectures in the field. LayoutGAN [26] is the first to study
layout representation learning for synthesis with a differen-
tiable wireframe renderer over input graphic elements and
their geometric parameters. While capable of generating
simple layout formats, it does not handle complex design
layouts. READ [34] proposed a recursive neural network
(RvNN) based autoencoder with heuristics to determine re-
lationships between elements for document layout gener-
ation. Neural Design Networks (NDN) [24] proposed a
graph neural network (GNN) based method that models the
relationships of the components given partial user specifica-
tions. READ and NDN methods are both based on heuris-
tics and do not comprehensively learn component relation-
ships. Layout VAE [19] proposed to train two separate net-
works using conditional VAE to generate the counts and
bounding boxes to the given label set. Most of these meth-
ods fail to capture long-range relationships between the de-
sign components, especially in a complex design scenario
with a large number of components.

Transformer architecture has been recently studied for
layout generations [1, 11, 18, 20]. The use of transformer
networks for layouts has two main benefits. First, it natu-
rally handles layouts with varying number of components.
Second, the transformer attention modules inherently cap-
ture the relationships between the components, resulting in
robust layout representation. LayoutTransformer [11] pro-
posed an auto-regressive transformer decoder network with
causal attention modules. Similarly, VTN [1] combined
the standard transformer network with a variational mod-
ule to sample from learned distribution for layout genera-
tion. LayoutGAN++ proposed by [20] used a transformer-



based encoder-decoder network with a GAN objective to-
gether with an auxiliary decoder for reconstruction. Re-
cently, a coarse-to-fine transformer model is proposed by
[18] that generates a layout in two stages, decoding the
regions first and then filling the regions with components.
LayoutFormer++ [17] uses serialized input constraints and
additionally impose restrictions to avoid sequence violation
during decoding.

Concurrent to our work, recent research has explored the
application of diffusion models for the task of layout gen-
eration such as LayoutDiffusion [39] , LDGM [14], Lay-
outDM [16]. These methods are based on discrete state dif-
fusion [3] and are inspired from VQDiffusion [10] to isolate
diffusion process for different layout semantics. Neverthe-
less, these methods only emphasize on the synthesis task.
In contrast, our proposed approach with layout latent repre-
sentation enables a spectrum of generative as well as search
tasks. One of the methods that also relies on a compact la-
tent representation is StructureNet [30], a hierarchical graph
encoder-decoder network for 3D shape generations. We
compare and contrast with a 2D version of StructureNet for
layouts, and show that our proposed CLASS framework ex-
cels at both search and synthesis.

2.3. Layout Search

Layout search methods give an opportunity to discover,
refer, re-use layouts and hence their source code from large
existing repositories. Once a relevant layout is retrieved,
further generative operations including projection, interpo-
lation, completion, can be seamlessly conducted within the
retrieve-and-adapt paradigm [37] . In layout search litera-
ture, [7] proposed an MLP-based auto-encoder to learn the
search embeddings. Similarly, a convolutional auto-encoder
has been proposed by [28]. GCN-CNN proposed by [29]
used a graph network-based encoder to learn the semantic
and geometric properties of the components while captur-
ing their mutual relationships. LayoutGMN [35] used a
graph-matching network to obtain the similarity between
two layouts. We learn our search embedding from trans-
formers within the proposed CLASS framework and show
that it provides competitive or better layout retrieval perfor-
mance than the prior arts.

3. Proposed Method
3.1. Overview of Method

The overall architecture of the proposed CLASS frame-
work is depicted in Figure 2. The encoder qϕ learns the la-
tent representation z which serves a dual purpose: i) search
embedding for layout retrieval, and ii) conditioning vector
for the decoder during layout generation. The encoder is
trained using two decoders to learn robust and discrimi-
native latent representations: 1. a new latent-conditioned

Figure 2. Proposed CLASS framework. The encoder produces a
latent code that is used for both layout search and synthesis, and
trained using dual CNN raster decoder, and a latent-conditioned
transformer decoder.

transformer decoder fθ and 2. an auxiliary raster decoder
rω . The proposed latent-conditioned decoder explicitly
conditions upon the latent codes while predicting the next
token based on visible tokens. The auxiliary decoder in-
jects visual information in the latent space as we show later
this improves both search and synthesis qualities. The la-
tent space is further regularized using a variational module
with KL-Divergence. The following sections describe each
module in detail and present our training objectives.

3.2. Layout as Sequence

A layout can be described with semantic and ge-
ometric information of its Ne elements: {si}Ne

i=1 and
{xi, yi, wi, hi}Ne

i=1 where si indicates the element type
and tuple (x, y, w, h) its upper-left coordinates, width and
height. Following [11], we discretize the spatial informa-
tion using 8-bin uniform quantization into categorical data.
This implicitly introduces alignment constraints, an impor-
tant property for design layouts such as documents and app
wireframes. A layout is hence represented as a sequence l =
{⟨bos⟩, s1, x1, y1, w1, h1, · · · sN , xN , yN , wN , hN , ⟨eos⟩};
⟨bos⟩/⟨eos⟩ indicates the beginning/end of a sequence.

3.3. Architecture and Training Objectives

3.3.1 Encoder

Our encoder is a stack of transformer blocks [38] with
multi-head attention which learns semantic and geometric



properties of layout components while encoding their mu-
tual relationships. It takes an input sequence l= {li}Ni=1 of
any length N and produces a set of hidden vectors which are
then aggregated to produce the latent representation:

z = (ΣN
i hi)/N ; {hi}Ni=1 = qϕ(l). (1)

We observe that the above Average Pooling operation per-
forms the best. We explored various other aggregation tech-
niques. A detailed ablation study is presented in the supple-
mentary materials.

To regularize the latent space, we train the latent repre-
sentation within a Variational Autoencoder (VAE) frame-
work [21]. We parameterize the posterior distribution
qϕ (z|l) as a multivariate standard normal distribution
N (0, I) where I is a unit diagonal matrix. We use the re-
parameterization trick [21] to learn the parameters µ and
σ of the Gaussian distribution, i.e. z = µ + σ · ϵ, where
ϵ ∼ N (0, I). The vectors µ and σ are outputs learned
using two multilayer perceptron (MLP)-based networks on
the aggregated vector within the VAE module. Overall, this
helps to learn a smooth latent space that facilitates various
synthesis tasks such as self-completion, interpolation, and
unconditional generation while boosting search relevance.

3.3.2 Latent-Conditioned Decoder

Different from existing methods that use a naive auto-
regressive decoder [11] or a label sets conditioned decoder
[20], we propose a novel latent conditioned transformer de-
coder fθ (li|z, l1:i−1) that explicitly relies upon the latent
vector while predicting the next token in the sequence based
on the previously visible tokens. The conditional decoder
fθ (li|z, l1:i−1) is implemented with masked multihead at-
tention (MMHA) where the information in the latent rep-
resentation is infused into the feed-forward network of the
decoder block. In particular, the latent conditional block is
realized as follows using MMHA [38], LayerNorm [4] and
residual connections.

ûi = LayerNorm (li + MMHA (li, li−1, · · · , l0)) (2)
ui = LayerNorm (ûi + MLPFF(ûi)) (3)
vi = LayerNorm (ui + MLPCond(LayerNorm(z))) (4)

Here both MLPFF and MLPCond are implemented as a two-
layered feed-forward network with GeLU activation [13].
The final block is fed into an MLP network head that pro-
duces logit oi over the category distribution and trained with
teacher-forcing strategy against the groud-truth.

3.3.3 Auxiliary Raster Decoder

Learning a discriminative latent space is most crucial in our
framework as all the search and synthesis tasks directly rely

upon it. To learn rich representation, we propose to use an
auxiliary decoder on the latent vector. This serves two pur-
poses. First, it enhances the quality of search embeddings
and hence improves the retrieval performance. Second, it
produces a perceptually meaningful and informative latent
representation that the latent conditional decoder can reli-
ably condition upon instead of neglecting the latent vector
during the generation process.

The auxiliary decoder rω is implemented as a CNN
based decoder that outputs a raster representation of the lay-
out from the latent vector, i.e. R̂H×W×C = rω(z), where
H and W are the height and width of the raster, and C rep-
resents the number of component classes in the dataset. The
CNN decoder is implemented as a stack of 4 strided trans-
posed convolution layers that gradually increase the spatial
resolution to match the required output dimensions.

3.3.4 Training Objectives

Our training objective comprises three losses for the latent
conditional decoder, the auxiliary raster decoder, and the
VAE module. The following equations describe the overall
loss.

Ltotal = Lrecon + αLvae + βLraster (5)
Lrecon = LCE(oi, li) (6)
Lvae = KL (qϕ (z|l) || N (0, I)) (7)

Lraster = MSE(R, R̂) (8)

Here, the reconstruction loss is the cross-entropy (CE) loss
on the predicted logits oi and groudtruth class li. The VAE
loss is KL-Divergence loss between the posterior qϕ (z|l)
and Gaussian Normal distribution. Finally, the raster loss
is implemented as mean squared error (MSE) between the
predicted raster R̂ and its groudtruth semantic map R as
defined in [29]. The α and β are weighting parameters for
the losses.

4. Experiments
4.1. Datasets

RICO [7] is a large collection of UX designs curated by
crowd-sourcing and mining 9.3K free mobile apps. It has
25 types of components such as text, icon, image etc. with
annotated Andriod view hierarchies. Following [29], we
divide the dataset into 53K training, 13K test samples, and
additional 50 samples as the query set to perform retrieval.
PubLayNet [40] contains 360K+ scientific document lay-
outs crawled from the internet and includes 5 element types:
text, title, figure, list, table. A set of 200 layouts are held out
from validation as the query to perform retrieval. For both
datasets, we exclude layout samples with over 100 elements
due to GPU memory constraints.



(a) RICO (b) PubLayNet

Figure 3. Conditional generation for the proposed CLASS frame-
work, Trans-Mem, LayoutGAN++ and LayoutDM. We encourage
readers to explore the HTML visualization in the supplementary
for more qualitative comparisons.

4.2. Settings

We use d=512 as the dimension of the transformer
model and latent embeddings, and set the number of trans-
former blocks to 6, each with nhead=8 for MMHA. We
train the network with Adam optimizer with default betas
of (0.9, 0.999) with an initial learning rate of 1e−3. For
generation, we start from scratch with ⟨bos⟩ unless other-
wise specified and use top-k sampling while decoding. The
parameters α and β are empirically set to 1e−5 and 5 re-
spectively.

4.3. Evaluation Metrics

4.3.1 Conditional Generation Metrics

We first measure the latent-conditioning capability of the
proposed CLASS framework. To do so, we use two met-
rics: 1. Class IoU which measures the average inter-
section over union (IoU) for each element class in the
groundtruth layout over generated ones from latent vectors.
2. Edit Distance (ED) measures the number of operations
(add/remove/swap) required from the generated layout to
reach the same set of component classes in the groundtruth.
Note that though we reconstruct from latent space, the pro-
posed decoder is latent-conditioned while being autoregres-
sive, and hence CLASS is able to generate multiple plausi-
ble conditioned layouts from a single latent code.

4.3.2 Generation Metrics

We use a set of standard metrics to comprehensively evalu-
ate the generated layouts from both perceptual and diversity
perspectives following the definitions in [20].
1. Alignment measures how well-aligned the components
are in the layouts. 2. Overlap measures the unusual over-
lapping between components. It is observed that the exist-
ing works apply different pre-processing and experimental
settings, and use different train-val splits due to unavailabil-

ity of an official split. This lack of uniformity introduces
a considerable degree of variability in the reported metrics
in the published papers, particularly concerning alignment
and overlap assessments – an issue also raised by [16]. In
view of this, we advocate towards normalizing the devia-
tions of the metrics from real layouts for alignment and
overlap measures i.e. |r−o|/r, where r is the corresponding
value real data and o is the observed value. This proposition
aims to mitigate the inherent bias and discrepancies arising
from variations in metric implementation and experimental
setups.

3. Maximum Intersection over Union (maxIoU) mea-
sures the similarity between the generated layouts and real
layouts which is based on IoU of the component bound-
ing boxes. We adapt the implementation in [20] to com-
pute MaxIoU between different sets of component classes.
4. Frechet Inception Distance (FID) provides a difference
in the distribution of real and generated layouts. We fol-
low [20] and train a network to differentiate between real
and bounding box perturbed layouts, and then use it to ex-
tract layout features to compute the FID score. We provide
more details on these metrics in the supplementary mate-
rials. Following the standard practice, we compute these
metrics on 1000 layouts generated for all methods.

4.3.3 Retrieval Metrics

Following [29], we use MeanIoU between query and re-
trieval layouts and compute the average for top-k retrievals.
We also report Mean Edit Distance (MED) @k indicating
the edit distance between the query and retrieved layouts.
We report both scores at k = [1, 5, 10].

4.4. Latent Conditional Generation Analysis

We compare latent-conditioning capabilities of our
CLASS framework with existing works [18, 20, 30]. Lay-
outGAN++ [20] generates layouts for a given set of com-
ponent labels by predicting the bounding box for each com-
ponent. Recently, [18] used an average-pooled vector as a
latent representation but as memory input into the standard
transformer decoder [38]. We dub this baseline as ‘Trans-
Mem’ hereafter. We also compare with StructureNet [30]
which uses hierarchical graph networks and relies on la-
tent representation for 3D generative tasks. We implement
StructureNet for 2D layouts for RICO dataset; PubLayNet
lacks the hierarchical data required by StructureNet. We
generate 1000 layouts conditioned upon layouts from the
test set as groundtruth. We report the Class-IoU and ED
metrics in Table 1. The columns VAE and Raster indicate
whether or not the KLD loss Eq.(7) and auxiliary decoder
loss Eq.(8) are used.

From Table 1, the proposed CLASS outperforms other
methods on both datasets. On RICO, our CLASS frame-



Table 1. Conditional generation: Trans-Mem [18], LayoutGAN++
[20] , StructureNet [30], LayoutDM [16] and CLASS.

RICO PubLayNet
Method VAE Raster Class-IoU ED Class-IoU ED
Trans-Mem ✓ 0.1287 23.103 0.0768 11.05
LayoutGAN++ 0.3114 0.0 0.2623 0.0
StructureNet ✓ 0.3046 8.04 - -
LayoutDM 0.4805 0.0 0.4547 0.0
CLASS 0.4551 4.25 0.5925 0.298
CLASS ✓ 0.4896 4.03 0.6269 0.589
CLASS ✓ 0.5389 3.91 0.7161 0.360
CLASS ✓ ✓ 0.5259 3.86 0.6649 0.532

work achieves a Class-IoU of 0.455, CLASS with VAE
module achieves 0.489, and CLASS with raster achieves
the best Class-IoU of 0.538. The observations show that the
conditional generation indeed benefits from the proposed
VAE and the auxiliary decoder modules in the framework.
This holds for the PubLayNet dataset as well. Next, we
see that only using the raster decoder performs better than
CLASS with both VAE and raster. The reason behind this
observation can be explained by the tension between recon-
struction and KL-divergence losses [2]. Note that Layout-
GAN++ and LayoutDM have null values for ED metrics as
it directly uses the groudtruth class labels during generation.
Overall, our proposed CLASS achieves 0.538 IoU and 3.86
ED on RICO, and the best scores of 0.716 IoU and 0.29 ED
on PubLayNet outperforming existing the graph-based [30],
GAN-based [20] and transformer-based [18] architectures.

Figure 3 shows conditional generation for various meth-
ods. We noticed that Trans-Mem often generates layouts
with limited variations and are barely conditioned upon the
given layout. LayoutGAN++ generates layouts with the
required types of components but accompanied by unde-
sired overlapping and misalignment. StructureNet could not
handle the complex layouts well. Compared to these, our
method conditions upon the latent embedding of the given
layout and generates different while perceptually plausi-
ble layout variations, demonstrating its effectiveness. Lay-
outDM sets a strong baseline but CLASS has provide more
aligned and less overlapped layouts (as also observed in
Tab. 2). We provide an easy visualization for more quali-
tative results to give a sense of how different methods com-
pare with one another - please refer to supplementary for
more conditional and multiple generations from the same
latent embedding.

4.5. Generation Quality Analysis

We compare our methods with several baselines includ-
ing the non-sequential methods [25, 30], the transformer-
based methods [1,11,17,18,20,22], and the recent diffusion-
based models [14, 16, 39]. Table 2 summarizes results for
the set of metrics in presented in Sec 4.3.2. For a fair com-
parison, we compare both unconditional and conditional
generation, and report them on the top and bottom of the

table respectively.
We highlight that the goal here is not to achieve the

lowest/highest value on each metric but to obtain balanced
scores for all metrics which imply that the generations are
both good from both perceptual and diversity perspectives.
For both unconditional and conditional generation, our pro-
posed method is frequently ranked on the top 2 while ob-
taining a balanced set of scores for all the metrics While
comparing individually, some of the metric may perform
well than our approach. For example, under conditional
generation, StructureNet achieves the highest score of max-
IoU 0.590 while our CLASS-raster and LDGM achieve
slightly lower maxIoUs of 0.573 and 0.580. However, we
note that StructureNet comparatively obtains larger mis-
alignments and overlaps errors, and has less diversity in
generation.

Further, our method performs the best according to neg-
ative log-likelihood (NLL) and we note that NLL improves
with the VAE module and auxiliary decoder. We encour-
age readers to refer to qualitative visualisation results in the
supplementary. In a nutshell, our method achieves a good
balance between perceptual quality of the layouts (align-
ment and overlap) while maintaining the diversity in the
generation with the lower FID scores. Most importantly,
our approach stand out with seamlessly integration of joint
search and generation, setting it apart from all other gener-
ative methods in the table.

4.6. Generative Sub-tasks

Besides generation shown in Fig. 3, we further ex-
plore advantages of the proposed architecture and show our
CLASS framework is capable of self-completion, projec-
tion of layouts, interpolation, and unconditional generation
as represented in Fig. 1. In the following, we briefly discuss
them and present respective qualitative results.
Self-Completion Given a partial layout with only a few ini-
tial components, our method can complete the layout by de-
coding a latent vector sampled from Normal Gaussian dis-
tribution. Fig. 4 shows examples of self-completions. This
can be a useful application where users want to complete
their initial designs into plausible layouts. CLASS indeed
provides multiple versions of completions from a single par-
tial design allowing the user to choose from the generated
corpus (See Supplementary for such examples).
Projection As CLASS operates on latent conditioning, it
can project partial layouts to a reference layout by taking the
reference latent embedding as conditioning. Fig. 5 shows
sample projections where the initial partial designs are com-
pleted based on another reference. This can serve users to
complete the partial initial layout designs with inspiration
from the reference layouts they desire/require.

* and ‡ indicate values referenced from [39] and the corresponding
papers respectively.



Table 2. Quantitative evaluation of generated layouts for RICO and PubLayNet datasets using Alignment, Overlap, maxIoU, FID. We
include the negative log-likelihood (NLL) loss on the test set for applicable methods. For reference, the FID score for real layouts is
computed between the train and test set. The best values are bold and the runner-ups are underlined.
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LayoutTransformer [11] 0.075 0.087 0.549 28.05 1.12 0.023 0.182 0.499 18.75 1.32
VTN* [1] 4.129 0.204 0.336 88.12 - 8.409 70.290 0.312 105.91 -
Coarse2Fine* [18] 0.376 0.451 0.360 46.48 - 9.045 44.806 0.361 50.85 -
LayoutFormer++* [17] 0.452 0.172 0.634 20.2 - 0.273 0.677 0.401 47.08 -
Diffusion-LM* [27] 0.978 0.354 0.662 11.45 - 2.455 3.032 0.439 11.9 -
LayoutDM [16] 0.828 0.056 0.3852 12.03 7.893 41.22 0.470 13.73
LDGM‡ [14] 0.385 0.130 0.620 26.06 30.25 2.828 0.460 25.94
LayoutDiffusion* [39] 0.258 0.077 0.620 2.49 - 1.955 0.032 0.417 8.63 -
CLASS (Ours) 0.085 0.010 0.568 26.19 1.12 0.230 0.166 0.493 18.53 1.29

C
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l

LayoutGAN++ [20] 0.288 0.235 0.371 4.05 - 10.254 106.743 0.388 16.64 -
Trans.-Mem [18] ✓ 0.090 0.121 0.527 47.26 1.47 11.451 529.864 0.211 125.84 1.64
StructureNet [30] ✓ 0.169 0.206 0.590 64.37 - - - - - -
NDN-none* [24] 5.022 0.180 0.350 13.76 - 14.909 53.839 0.310 35.67 -
BLT* [22] 0.613 1.109 0.216 25.63 - 0.636 62.226 0.140 38.68 -
LayoutFormer++* [17] 0.333 0.152 0.377 2.48 - 0.136 1.903 0.333 10.15 -
Diffusion-LM* [27] 1.14 0.232 0.324 6.53 - 1.091 7.387 0.316 7.4 -
LDGM‡ [14] 0.500 0.121 0.580 16.64 17.750 2.259 0.440 20.69
LayoutDiffusion* [39] 0.333 0.054 0.345 1.56 - 0.318 0.613 0.343 3.73 -
LayoutDM [16] 0.262 0.032 0.461 12.71 3.67 56.55 0.490 4.56
CLASS 0.037 0.047 0.571 3.80 0.94 0.948 8.234 0.604 3.89 0.39
CLASS ✓ 0.026 0.004 0.566 2.57 0.85 1.455 5.541 0.640 3.65 0.37
CLASS ✓ 0.014 0.018 0.573 2.52 0.78 1.751 5.548 0.691 3.87 0.29
CLASS ✓ ✓ 0.035 0.016 0.565 2.28 0.83 1.441 4.435 0.654 3.56 0.35

Figure 4. Self-Completion. Given a partial layout (left), CLASS
self-completes them into visually plausible layouts (right). Top
row is for RICO and the bottom for PubLayNet.

Figure 5. Projection. For each example, given initial partial layouts
(middle), our CLASS framework completes them into plausible
projected layouts (right) based on the inspiration/style of the refer-
ence (left). Top row is for RICO and the bottom for PubLayNet.

Unconditional Generation Our conditional CLASS net-
work is also capable of unconditional generations without
any reference. We sample a latent embedding from a normal
Gaussian distribution and decode the layout using the pro-
posed latent conditional decoder, thanks to the VAE module

in the proposed CLASS framework. Fig. 6 shows samples
of unconditionally generated visually layouts.
Interpolation CLASS supports interpolation operation be-
tween the latent representations and is capable of generating
new plausible layouts based on intermediate latent codes.
Fig.7 shows layouts generated by a linear walk in latent
space between two layouts. Such an application can en-
ables users to blend two layouts. For example, a user may
want to combine the top retrieved layouts obtained from a
layout search of interest.

Figure 6. Unconditional layouts generations by the proposed
method by sampling the latent vectors from Gaussian distribution.

4.7. Evaluations on Layout Search

We use CLASS embedding for the layout retrieval task
and compare our method against other baselines AutoEn-
coder (AE) [7], convolutional autoencoder (CAE) [28],
StructureNet [30], (GCN-CNN) [29] as shown in Table 3 .
Note that AE, CAE, GCN-CNN are search-tailored meth-
ods and do not support generative tasks. Our method



Table 3. Layout search performance comparison on RICO and PubLayNet datasets using MIoU and Mean ED at k = [1, 5, 10]. The best
values are bold and the runner-ups are underlined. Methods in the upper part of the table are non-generative methods tailored for search,
and the lower part shows methods capable of both search and synthesis.

Method

VA
E

R
as

te
r

RICO PubLayNet

MIoU (%) ↑ MED ↓ MIoU (%) ↑ MED ↓
k 1 5 10 1 5 10 1 5 10 1 5 10

Non-generative
AE [7] 43.0 34.7 28.9 19.44 18.68 19.32 31.5 29.5 28.3 2.84 3.08 3.25
CAE [28] 59.5 47.1 43.9 8.76 9.56 11.2 31.2 29.2 28.1 3.03 3.2 3.39
GCN-CNN [29] 60.0 51.6 48.3 7.98 8.91 10.06 31.1 29.9 29.2 2.10 2.33 2.50

Generative

StructureNet [30] † ✓ 51.9 40.3 38.5 4.5 5.8 6.3 - - - - -
Trans-Mem [18] ✓ 33.3 26.5 24.5 5.96 7.16 7.47 20.1 19.4 18.8 1.53 1.65 1.77
LayoutGMN [35] 44.6 38.4 34.2 - - - - - - - - -
CLASS 54.4 44.3 41.3 5.54 6.91 7.69 27.3 25.8 25.0 2.44 2.56 2.73
CLASS ✓ 54.1 40.7 37.9 7.68 8.74 9.70 27.0 25.6 24.9 2.43 2.58 2.70
CLASS ✓ 58.5 45.0 42.6 7.52 10.15 10.71 28.8 27.4 26.6 2.41 2.69 2.89
CLASS ✓ ✓ 58.2 44.9 42.0 7.54 8.66 9.27 28.4 27.0 26.1 2.31 2.50 2.59

Figure 7. Layout interpolation. Intermediate layouts slowly resemble
to Layout2 from left to right and vice-versa.

Figure 8. Layout retrievals using the proposed CLASS. Layouts in
the first column are query layouts followed by top-5 retrievals. The
first two rows show the results for RICO and the bottom two for Pub-
LayNet.

achieves competitive performance on MIoU metrics. For
example, CLASS-Raster achieves 58.5% MIoU@1 which
is ∼ 1.5% lower than the best GCN-CNN method. Our
method achieves strong performances on both datasets
and even outperforms the state-of-the-art method on RICO
dataset obtaining a MED@1 score of 5.54. The AE, CAE,
and GCN-CNN are trained based on spatial reconstruction
and hence they are better at MIoU metrics but may poten-
tially ignore small components leading to poorer MED val-
ues. On PubLayNet, CLASS performs on-par with SOTA
with runner-up MED scores. Compared to the transformer-

based method [18], our method is better in terms of MIou
while achieving on par or slightly lower MED values for
Publaynet. Upon visualization, we noted that Trans-Mem
retrieves layouts with a similar set of components but of-
ten fails to take overall spatial arrangements into accounts.
In a nutshell, our method achieves a good balance between
MIoU and MED retrieval metrics and performs the best
among the generative models. Fig. 8 shows retrieval results
obtained using the proposed method. We provide additional
results and analysis in the supplementary materials includ-
ing qualitative retrieval comparisons.

5. Conclusion
We proposed a novel unified framework for search and

synthesis of design layouts under an elegant architecture.
We introduced a new latent-conditioned decoder that con-
ditions upon the latent vectors during layout synthesis. We
learned discriminative latent representation with an encoder
trained with a dual pair of a latent conditional decoder and
a raster decoder. We demonstrated our model is capable of
generating high-quality design layouts with a good balance
between perceptual quality and diversity while being capa-
ble of various practical sub-tasks such as self-completion,
projection and interpolation. We established competitive re-
sults for layout retrieval against the state-of-the-art. Over-
all, we validated the effectiveness of the proposed CLASS
framework for both search and synthesis tasks on the bench-
mark layout datasets. We believe our model can be inte-
grated into AI-assistive design tools for efficient and per-
sonalized design workflow.
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