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Abstract

We present a novel hierarchical modeling method for lay-
out representation learning, the core of design documents
(e.g., user interface, poster, template). Existing works on lay-
out representation often ignore element hierarchies, which is
an important facet of layouts, and mainly rely on the spa-
tial bounding boxes for feature extraction. This paper pro-
poses a Spatial-Structural Hierarchical Auto-Encoder (SSH-
AE) that learns hierarchical representation by treating a hi-
erarchically annotated layout as a tree format. On the one
side, we model SSH-AE from both spatial (semantic views)
and structural (organization and relationships) perspectives,
which are two complementary aspects to represent a layout.
On the other side, the semantic/geometric properties are as-
sociated at multiple resolutions/granularities, naturally han-
dling complex layouts. Our learned representations are used
for effective layout search from both spatial and structural
similarity perspectives. We also newly involve the tree-edit
distance (TED) as an evaluation metric to construct a compre-
hensive evaluation protocol for layout similarity assessment,
which benefits a systematic and customized layout search. We
further present a new dataset of POSTER layouts which we
believe will be useful for future layout research. We show
that our proposed SSH-AE outperforms the existing meth-
ods achieving state-of-the-art performance on two benchmark
datasets. Code will be released.

Introduction

Layout design is widely used in user interface (UI), graphics
templates, architecture plan, etc. Given the increasing num-
ber of these creative products with diverse layout designs
available to users, it is important to have scalable approaches
to represent the layout in a customized fashion which bene-
fits downstream tasks such as searching, and recommenda-
tion. There are recent works (Deka et al. 2017; Patil et al.
2021; Liu et al. 2018; Manandhar, Ruta, and Collomosse
2020; Patil et al. 2020; Li et al. 2019) on layout represen-
tation learning which aim to represent a layout sample as a
latent vector to support various tasks.

Different from typical visual data, layout is a special data
type featuring both visual characteristics and topological re-
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Figure 1: Layouts contain several elements with nested con-
tainment and alignments as highlighted by bounding boxes.
They are modelled as graphs: elements as nodes and their
relationships as edges. Previous works treat all nodes equiv-
alently as a dense graph ignoring the structural character-
istic. We propose to utilize rich hierarchy information and
construct a sparse tree leading to a discriminative represen-
tation. Different colors mean different element levels.

lationships of contained elements. In our work, we refer to
visual characteristics as term “spatial” and relational pat-
terns among different elements as “structural” and learn
layout representation from these two aspects. Both the spa-
tial and structural aspects are critical in practice. For exam-
ple, when users want to explore design variations with sim-
ilar content, spatial aspect is more important as it provides
cues on how the designs are perceived visually (Bylinskii
et al. 2017; O’Donovan, Agarwala, and Hertzmann 2014).
On the another hand, when users want to customize de-
signs arrangement, structural properties such as groupings
and alignments are critical aspects as these relationships and
structure define the blueprint of layout (Yang et al. 2017).

The spatial and structural aspects are seen as an orthogo-
nal pair as any content can be designed into any layout for-
mats. However, both of them exhibit a hierarchical charac-
teristic, decomposed into a multi-level format. Concretely,
for spatial aspect, the elements in a layout typically have
varying spatial sizes and attain the most visual salience when
being viewed at a certain spatial resolution: larger elements
(e.g., toolbar and teaser image) serve as an outline forming
the top of a hierarchy; smaller elements contain detailed con-
tents relevant to larger elements forming the bottom levels of
a hierarchy. Similarly, for structural aspect, a sample hierar-



chy can be constructed based grouping geometric relation-
ships of design elements. These structural relationships are
intrinsically encoded in the digital layout documents. Fig. 1
illustrates a layout example with multiple elements which
are structurally aligned by geometric relationships.

Motivated by these insights, we introduce a novel hierar-
chical approach that jointly considers both the spatial and
structural nature of layout. Our Spatial-Structural Hierar-
chical Auto-Encoder (SSH-AE) is a self-supervised repre-
sentation learning framework: 1) a layout hierarchy is de-
composed into multiple levels; 2) level-wise features are re-
cursively aggregated capturing layout attributes at different
granularities; 3) a two-pathway training strategy orthogo-
nally maintains the trade-off between spatial and structural
layout information. Our work differs from the existing meth-
ods mainly in two ways: 1) the works in (Deka et al. 2017;
Liu et al. 2018) treat layout as images without encoding ex-
plicit geometric hierarchy. Although the recent works (Man-
andhar, Ruta, and Collomosse 2020; Patil et al. 2021) use
GNNs to employ geometric features, but they form dense
graphs which negates the hierarchical information. In con-
trast, SSH-AE utilizes rich layout hierarchy information to
naturally handle complex layouts and obtain discriminative
embeddings; 2) most of the layout representations (Deka
et al. 2017; Liu et al. 2018; Manandhar, Ruta, and Collo-
mosse 2020; Patil et al. 2021) are designed only from spatial
perspective by training to decode semantic maps. We pro-
pose to model the layout with dual perspective capturing
both spatial and structural properties. Moreover, in addition
to the existing intersection-of-union (IoU) and human eval-
uation, we also present to use a Tree-Edit Distance (TED)
to measure the layout structural similarity. We believe this
comprehensive evaluation protocol will help future research
to systematically evaluate layout retrieval. We summarize
our key technical contributions as follows:

* A hierarchical layout representation learning approach is
proposed that recursively extracts coarse-to-fine-grained
representation. It enables learning the layout representa-
tion at different granularity. Most importantly, it naturally
handles the complex layouts with a huge number of com-
ponents by organizing them into a tree structure.

* We are the first to learn the layout representation by con-
sidering both spatial (semantic map) and structural (el-
ement organization) perspectives. The SSH-AE handles
the dual aspects by training the model with the recon-
struction of semantic map and a newly proposed adjacent
matrix which defines the structure in the layout.

* A comprehensive evaluation protocol is proposed to sys-
tematically measure layout similarity by newly involving
TED metric to supplement structural aspect evaluation.
We argue that structural similarity is also a necessary as-
pect compared with the spatial measurement. Our quan-
titative evaluation shows improved consistency with hu-
man subjective evaluation, and enables tuning models for
trade-off between spatial and structural similarities.

* We achieve state-of-the-art performance on both RICO
and POSTER. The new evaluation protocol and POSTER
dataset (to be released upon paper acceptance) are ex-
pected to benefit further layout researches.

Related Work

Layout Analysis. Pioneering works (Hurst, Li, and Marriott
2009; Breuel 2003; O’Gorman and Kasturi 1995; Simon,
Pret, and Johnson 1997) involve prior knowledge to study
document layout structure. Exploring layout from aesthetic
angle is a distinctive direction compared with classic vision
analysis (Harrington et al. 2004). In addition, numerically
analyzing layout needs defining appropriate distance met-
rics (Ritchie, Kejriwal, and Klemmer 2011; Geigel and Loui
2000), and extract object elements to represent the whole
sample layout based on detection techniques (Yang et al.
2017; Swearngin et al. 2018). Several new layout datasets
are collected such as RICO (Deka et al. 2017), Floor-
plan (Wessel, Bliimel, and Klein 2008), ICDAR2015 (An-
tonacopoulos et al. 2015), and PubLayNet (Zhong, Tang,
and Yepes 2019). An MLP-based auto-encoder (Deka et al.
2017) is proposed to obtain hidden layout representation
used for downstream retrieval. Similarly, a convolutional
auto-encoder (Liu et al. 2018) is designed for a better lay-
out retrieval. A GCN-CNN auto-encoder framework (Man-
andhar, Ruta, and Collomosse 2020) is also developed to ex-
tract layout structural patterns using GCN and further im-
prove the retrieval performance. A graph matching based re-
trieval framework LayoutGMN (Patil et al. 2021) process
a pair of layout as graphs then deploy graph matching al-
gorithm to obtain layout similarity. Our work is related to
learning layout representation for search embeddings and
closely aligned with (Deka et al. 2017; Liu et al. 2018; Man-
andhar, Ruta, and Collomosse 2020; Patil et al. 2021).

Graph/Hierarchical Modeling GNNs have been popular
recently as they are suitable for modeling topologically
structured data (Zhang, Cui, and Zhu 2020). The works
in (Manandhar, Ruta, and Collomosse 2020; Patil et al.
2021) have used graph encoding to obtain layout represen-
tations. Graph learning algorithms effectively handle non-
euclidean but still lose the specificity for data with high hi-
erarchies. Hierarchical modeling further considers the fine-
grained structural patterns to learn more discriminative fea-
tures. The differentiable pooling technique (Ying et al. 2018)
is developed for general graph representation learning. The
higher-order structural information is extracted to preserve
graph hierarchies (Chen et al. 2018). It can be widely used to
enhance graph mining methods. Practically, modeling hier-
archies benefits visual-related tasks which involve highly ar-
chitectural data. For instance, StructureNet (Mo et al. 2019)
uses a hierarchical graph network to achieve 3D shape gen-
eration. Point cloud 3D object detection is realized by uti-
lizing a hierarchical graph module (Chen et al. 2020). Doc-
ument layout analysis is studied by leveraging the sample
hierarchy for different tasks (e.g., generation (Patil et al.
2020) and classification (Simon, Pret, and Johnson 1997)).
Similarly, natural language contains even more complex
hierarchies. Several hierarchy-based models are proposed
for different language tasks (e.g., document summariza-
tion (Zhang, Wei, and Zhou 2019; Liu and Lapata 2019) and
text classification (Pappagari et al. 2019)). Our work, for the
first time, employs the hierarchical modeling to learn layout
representation for designs (e.g., Ul, posters, and templates).
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Figure 2: The illustration of Spatial-Structural Hierarchical Auto-Encoder (SSH-AE). Given an input layout containing a set of
elements with hierarchical annotations, we separate elements and construct a tree hierarchy. Then we obtain level-wise layout
features based on multi-level encoding and progressive level fusion. The multi-level features are then decoded as semantic
segmentation maps and structural adjacency matrices in each level to capture layout information from both spatial and structural
aspects. The highest level representation is recursively aggregated from lower levels and serves for downstream retrieval.

Method

We propose Spatial-Structural Hierarchical Auto-Encoder
(SSH-AE) to learn discriminative representations for lay-
outs in a self-supervised fashion (see Fig. 2). Our framework
jointly considers the given layout from two ways: spatial-
structural and multi-level hierarchical aspects. In this way,
we represent layouts using hierarchy annotations which are
divided into several hierarchy levels based on different spa-
tial resolutions and structural granularities. The encoder is
realized by a graph-based network that recursively encodes
layouts from coarse to fine-grained levels by conducting
a fusion operation. The obtained features are decoded to
semantic maps/structural adjacent matrix as supervision of
spatial/structural aspects for training (see Fig. 3).

Hierarchy Construction

Given a layout containing design components with corre-
sponding classes (e.g., background, button, and slider) and
bounding box coordinates, we organize all the components
into a tree hierarchy 7" with different depth d. Specifically,
the root node (depth d = 1) is the background covering the
entire design. The leaf nodes with no children are basic de-
sign elements in layouts. Several leaf nodes are grouped by
geometric alignments and contained by intermediate nodes
with edge between them to represent the containment rela-
tionship. Such hierarchies are readily available in many de-
sign layouts or can be extracted by components geometric
alignment (see supplementary for hierarchy extraction used
on layouts without original hierarchy annotations). In this
way, a layout sample can be represented as a hierarchical
tree data format 7". We separate 7" with overall D depth into
L levels so that layout information of different scales and
granularities can be encoded and aggregated appropriately.
As an example, if we have a layout 7" with 6-depth (D = 6),
we may separate it into 3 levels (L = 3), where depth 1/2,
3/4, and 5/6 are grouped into level 1, 2, and 3, respectively.
Jointly, we separate the layout from spatial or structural as-
pects. Each element is denoted as a node ¢ in tree T". We rank
all the nodes according to either their elements’ spatial area

a; (spatial) or their levels in the hierarchy i.e. depth d; (struc-
tural), and evenly divide them into L levels (root node be-
longs to level 1 and leaf nodes with the largest depth belong
to level L). For either spatial or structural aspect, the com-
plete tree is represented as T=T"1UT?U, ..., UT with nodes
V=V1UuV2y,..., UV and edges C=C' U C?U,...,UC*,
where C! means all the edges connected from a node in V.

Hierarchical Auto-Encoder

Given the layout spatial/structural hierarchy, we utilize an
auto-encoder to learn representation in multi-level format. It
consists of a multi-level encoding and decoding architecture
(see Fig. 2). A multi-level encoder first processes each level
individually, and then progressively aggregates the level-
wise feature from low to high level by a feature fusion oper-
ation. In this way, we obtain an integrated multi-level layout
representation. The decoding also adopts a multi-level re-
construction strategy in accordance with the encoding.

Level-wise Encoding FEach level [ has a subset of the
whole tree 7! = {V!, C'} and the encoder is given by

fl=EV',Ch, (1)
where E takes the attributes of nodes and edges in 7" as
inputs, and generates the level-wise feature f!. We use a

weight-shared encoder E for any level [ to encode common
layout patterns across all the levels.

Level Fusion All level-wise features {f!, f2,..., fI'} are
recursively fused to obtain the entire layout representation
from low to high level. In this way, the feature f' of each
level [ is progressively constructed with more detailed infor-
mation from lower levels:

fl=rir=v"tfhefiz2, @
where U'~! is an MLP that aligns the feature from level [ — 1
to [, and & is the fusion operation which is implemented as
summation operation. In this way, each level has a feature
that contains integrated information from itself and all lev-
els below it. The multi-level feature set F={f* f2 ..., f¥}
is passed to the decoder during training, and used for down-
stream retrieval.
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Figure 3: The spatial perspective (left): decoders of different levels reconstruct spatial semantic maps in different resolutions.
The structural perspective (right): decoders of different levels reconstruct structural adjacent matrices in different granularities.

Level-wise Decoding Each level feature f' is fed into
level-specific decoder D' to generate an output I':

I'=D'(f"), (3)
where D' is implemented as deconvolution blocks contain-
ing several layers of strided convolution that upsample the
output to match the reconstruction supervision tensor.

Spatial and Structural Encoding

We design two variations of layout encoder from spatial and
structural perspectives. Either of these can be deployed in
the hierarchical auto-encoder in a multi-level fashion. For
simplicity, we omit the superscript [ for each level and intro-
duce the realization for spatial and structural aspects.
Spatial Encoding. A layout hierarchy is represented as
T={V,C} with nodes V={vy,...,v;,...,v,} denoting el-
ements and edges C={ci2,...,C; j,...,Cn—1,} denoting
tree-like architecture. Each node v; has a semantic label s;
and a geometric feature g; (Manandhar, Ruta, and Collo-
mosse 2020). We encode the s; as one-hot vector represent-
ing the element class. The geometric feature g; is given by

“

where x;, y;, w;, hi, d;, and A; are the centroid coordinates,
width, height, node depth, and the square root of the area
for v;. w and h are the width and height of the entire layout.
‘We first concatenate the one-hot semantic label s; and node
geometric feature g} for each node € V. Then, we project it
as a complete node feature f; for spatial content learning:

fi = E([si,971), &)
where EV is implemented as a MLP. Then all the node fea-
tures are combined with a semantic-keyed attention module:

v=Yalf, (©)

where a? o exp(w, s;) are attention weights with learnable
parameter w,.

Structural Encoding. We define the geometric feature for
edge ¢; ; as

65,0 Az Ay w; h;
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where Az = x; — x;, Ay = y; — y;, and D = Vw? + h2.
The orientation 6 = atanQ(%) € [—m, 7. ¢i; serves
as the Intersection over Union (IoU) between node v; and

v; given by ¢ = % where M (-) represents the

single element mask. Since the edge features are calculated
based on two corresponding nodes, there is no symmetrical
relation and g5 ; # g5 ;. Based on this definition, we project
each edge feature gf ; for edge (i,7)€C together with the
paired node features with an MLP E°. Finally, all the edge
features are aggreagated with a node-keyed attention module
which are given by
=20l

, f}]) are attention weights with

Z(‘]:E(‘([ ; gzyaf (8)

where af . oc exp(w/ [f?
learnable parameter We.

Spatial and Structural Supervision

The feature f' for each level ! contains information from
level [ itself and other lower levels. To achieve the self-
supervised training, we use reconstruction loss for multi-
level decoding from both spatial and structural aspects. We
refer O' as the reconstruction supervision for f!. Basically,
we use L2 loss ||O' — I'|| as the optimization objective to
train the encoder and decoder of all the levels. Training SSH-
AE with spatial and structural hierarchy are achieved by
different O' implementations. They are illustrated in Fig. 3
and elaborated as below. Please note the level [ in decoding
represents the subset containing both current level [ and its
lower levels of a given layout sample.

Spatial Pathway: Semantic Map. For each component
in level [ of a given layout sample, it has bounding box
(4, yi, wi, h;) and semantic label s;. We construct a multi-
channel binary image O' € RM*wiXM a5 semantic seg-
mentation ground truth for the current level. M is the total
number of semantic classes. Each channel m € M is 2D bi-
nary mask for the components belonging to class m. (wy, h;)
is the spatial size of O' which matches the decoder output
resolution at level /. Larger resolutions are used for higher
level as more detailed components are included. This spa-
tial pathway focuses more on modeling visual patterns by
reconstructing semantic label maps.



Table 1: Retrieval performance on RICO dataset based on MIoU, TED, and NDCG evaluation metrics. Best results are bold-
faced and best ideal values are underlined. The ideal NDCG values are 1.

Method MIloU TED NDCG
Top@1 Top@5 Top@l0 Top@l Top@5 Top@l0 Top@l Top@5 Top@10

AE (Deka et al. 2017) 0.430 0.362 0.312 15960 19.132  19.930 0.325 0.318 0.324
CAE (Liu et al. 2018) 0.595 0.471 0.440 14.100 16.124  17.976 0.482 0.434 0.416
SN (Mo et al. 2019) 0.407 0.379 0.360 17.540 19.268  18.994 0.428 0.448 0.466
GCN-CNN (Manandhar, Ruta, and Collomosse 2020) 0.600 0.514 0.482 15.360 17.644  19.398 0.576 0.564 0.574
GCN-CNN+Triplet (Manandhar, Ruta, and Collomosse 2020)  0.617 0.541 0.513 13.820 16.748 17.696 0.601 0.576 0.588
LayoutGMN (Patil et al. 2021) 0.446 0.384 0.342 15.174  17.139  18.241 - - -
MIoU OPT 0.715 0.634 0.607 14720 19.840  21.260 0.579 0.525 0.547
TED OPT 0.468 0.372 0.343 6.520 8.560 9.552 0.572 0.530 0.542
MIoU+TED OPT 0.546 0.452 0.430 6.580 8.704 9.710 0.607 0.550 0.561
SSH-AE-(L1 SP) 0.624 0.549 0.536 19.480 21.704  23.260 0.552 0.525 0.547
SSH-AE-(L2 SP) 0.678 0.601 0.574 17.640 20.184  21.512 0.555 0.546 0.553
SSH-AE-(L3 SP) 0.694 0.610 0.580 15.540 19.220  21.880 0.585 0.536 0.546
SSH-AE-(L1 ST) 0.498 0.399 0.371 13.000 15700 16.612 0.553 0.502 0.526
SSH-AE-(L2 ST) 0.476 0.386 0.367 12.300 14.512 15618 0.539 0.487 0.510
SSH-AE-(L3 ST) 0.493 0.390 0.362 10.520 14.144 15.264 0.597 0.510 0.520
SSH-AE-(L3 SP+ L3 ST) 0.684 0.582 0.554 13.380 15.352  15.830 0.656 0.565 0.562

Structural Pathway: Adjacent Matrix. Spatial supervi-
sion is naturally constructed by the typical decoding recon-
struction, but this is not straightforward for structural path-
way. Inspired by the concept of adjacency matrix in graph
learning, we integrate the structural information into a multi-
channel adjacent matrix which follows the same format of
spatial aspect. Given the hierarchy at level [, we construct
an adjacent matrix O € RM*Mx(xD) 1t contains [ x I
channels to represent all the combinations between different
levels. Each channel has a M x M matrix, where the value
of each element denotes how many edges are connected be-
tween the corresponding two classes. For example, each el-
ement of the tensor Olc;, ¢;, L, I,] denotes the number of
edges between component class ¢ to class j from level m to
level n. Ignoring class dimension for simplicity, O[:,:, 2, 2]
represents edges between nodes at level 2, O[:,:, 2, 3] de-
notes edges from level 2 to level 3 forming parent-child re-
lations. In this way, we obtain a tensor O! € RM*Mx(ixl)
with [ x [ channels, where each channel is a M x M ad-
jacency matrix representing the class-wise connection rela-
tionship and overall O' provides supervision of the structural
patterns from both class-wise and level-wise perspectives.

Experiments

Datasets

RICO (Deka et al. 2017) is largest publicly available dataset
of UI layout. It contains 66K samples from mobile apps
screenshots. Every screenshots are annotated with bound-
ing boxes for design elements. There are totally 25 classes
for elements such as “text”, “button”, and “icon”. We fol-
low (Manandhar, Ruta, and Collomosse 2020) to assign 53K
samples as training, 13K samples as gallery, and 50 samples
as query set. RICO originally only has flat structure, thus,
we extract rich hierarchy annotations for its layouts using
geometric properties of their elements (see supplementary).
POSTER is a new dataset we collected from
https://www.adobe.com/express/trial/create-togetherAdobe

Spark website. It contains 35K poster templates created by
design professionals. There are 4 element classes including
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“background”, “text”, “image” and “vector”’. We split the
POSTER into 28K training set, 7K gallery set, and 50 query
set. We plan to release this data conditioned on internal
approval. POSTER dataset originally contains the hierarchy
annotations, thus, we directly employ our model on it.

Please note, since we target at hierarchical layout, we
demonstrate our model advantages on RICO and POSTER,
while not using other datasets with relatively flat or se-
quential structure, such as floorplans (Wu et al. 2019),
ICDAR2015 (Antonacopoulos et al. 2015), and Pub-
LayNet (Zhong, Tang, and Yepes 2019).

Evaluation Protocol

Existing works mainly rely on the IoU values to measure
layout similarity. Besides, human subjective evaluation is
also a necessary measurement for layout searching. In our
work, we newly propose to use tree-edit distance (TED) to
evaluate layout similarity from structural perspective. Our
evaluation protocol allows a comprehensive evaluation for
layouts from both spatial (IoU) and structural (TED) aspects
accompanied with human subjective evaluation.

Mean Intersection Over Union (MlIoU). Existing
works (Manandhar, Ruta, and Collomosse 2020; Deka
et al. 2017) mainly focus on spatial similarity computed as
overlapping element area, which is measured by MIoU:

1 M
MIoU(Q,9) = 5 >N

Q;eQ j=1

A;(Q1) NA(G)
Aj(Qi) UAj(G)’

(©))

where A, (-) is the area class j elements in this sample. O,
G are query and gallery sets. We use top@k, k = {1,5,10}
retrievals for MIoU calculation.

Tree-Edit Distance (TED). We propose to measure layout
structural similarity by involving TED metric. TED is orig-
inally defined to measure the distance between two trees. It
calculates minimum cost to transform one tree to another
by three basic operations: 1) insert a node, Z(+); 2) delete
a node, D(-); 3) revise the label of a node, R(-) (Sidorov
et al. 2015). Each operation has a cost value given by F(-).
The edit distance §(771,72) is the sum of cost for a editing



Table 2: Retrieval performance on the POSTER dataset based on MIoU, TED, and NDCG evaluation metrics. Best results are

boldfaced and best ideal values are underlined. The ideal NDCG values are 1.

Method MIoU TED NDCG
Top@l Top@5 Top@l10 Top@l Top@5 Top@10 Top@l Top@5 Top@10
AE (Deka et al. 2017) 0.484 0.408 0.395 16.300 19.764  20.624 0.728 0.798 0.838
CAE (Liu et al. 2018) 0.460 0.404 0.376 14980 18.160 19.508 0.757 0.800 0.838
GCN-CNN (Manandhar, Ruta, and Collomosse 2020)  0.586 0.547 0.538 19.420 20.604  20.800 0.677 0.766 0.816
SN (Mo et al. 2019) 0322 0325 0319  18.149 16494 15940 0652 0757 0811
MIoU OPT 0.666  0.626  0.609  17.160 19.812 20.738  0.726  0.796  0.843
TED OPT 0.359 0.331 0.321 2.740 3.860 4.386 0.637 0.744 0.795
MIoU+TED OPT 0.648 0.607 0.591 7.700 9.608 10.308 0.769 0.827 0.855
SSH-AE-(L1 SP) 0.624 0.579 0.565 18.900 20.592  20.486 0.702 0.774 0.831
SSH-AE-(L2 SP) 0.647 0.604 0.587 14980 20.776  20.570 0.748 0.798 0.845
SSH-AE-(L3 SP) 0.654 0.612 0596 16.060 21.084 20.608 0733  0.794  0.841
SSH-AE-(L1 ST) 0.378 0.347 0.344 8.140 10.048 11.940 0.622 0.719 0.782
SSH-AE-(L2 ST) 0.396 0.354 0.348 7.020 9.276 11.090 0.629 0.715 0.782
SSH-AE-(L3 ST) 0.405 0.359 0.353 6.420 7.952 8.922 0.653 0.737 0.787
SSH-AE-(L3 SP+L3 ST) 0.653 0.611 0.593 16.740  20.924  20.512 0.744 0.801 0.845
sequence to transfer 77 to 7s: In Tab. 1, we observe GCN-CNN serves as strong base-
5 line, and can be further improved when trained with auxil-
(T, 72) = Z F(S;(T); (10) iary triplet supervision. Our SSH-AE-(L3 SP) achieves the
G=1,...,J

where S; € {Z,D, R} and To = S;(Sy-1(...81(T1))). J is
the length of the operation sequence to transfer 77 to 75. In
our work, we employ the Zhang-Shasha algorithm (Zhang
and Shasha 1989) to implement our TED measurement for
2D layout data. We report TED at top@k, k = {1,5,10}.
Normalized Discounted Cumulative Gain (NDCG). We
also report NDCG for layout retrieval based on subjective
user study (see supplementary for more details).

Baseline Methods

A MLP-based auto-encoder (AE) is proposed in (Deka et al.
2017) which reconstructs rasterized images. A convolutional
auto-encoder (CAE) (Liu et al. 2018) is designed to im-
prove the layout feature capacity. Representative hierarchy-
based generation model StructureNet (SN) (Mo et al. 2019)
uses the hierarchical characteristics to generate 3D objects.
We implement SN on layout as a baseline for hierarchical
modeling. LayoutGMN (Patil et al. 2021) employs a graph
matching approach for the layout retrieval. The state-of-the-
art layout retrieval model GCN-CNN (Manandhar, Ruta,
and Collomosse 2020) is also included for comparisons.

Experimental Analysis

RICO Retrieval. Tab. 1 shows the RICO retrieval results.
The first block contains baseline methods. Since the retrieval
results of LayoutGMN paper (Patil et al. 2021) is based on
a non-standard query set, we cannot report its NDCG re-
sults with our human evaluation data. The second block con-
tains the optimal retrieval performance with respect to MIoU
(MIoU OPT) and TED (TED OPT) on the given test set.
We also combine the ranking scores of MIoU and TED as a
trade-off between the two metrics (MIoU+TED OPT). They
serves as the upper bound for MIoU and TED. The third
block contains our SSH-AE with different settings. The last
block contains the combined ranking scores of two level 3
settings (L3 SP+L3 ST) as an ensemble result to provide a
trade-off between the spatial and structural aspects.

best performance in terms of MIoU for spatial similarity, and
SSH-AE-(L3 ST) is the best in terms of TED for structural
similarity. Note that our models are trained without triplet
loss, and the combined setting SSH-AE-(L3 SP+L3 ST) out-
performs GCN-CNN without triplet on all the metrics.

The third block shows the ablation study of different SSH-
AE variations. It clearly shows our models trained with spa-
tial (SP) and structural supervision (ST) are good for MIoU
and TED metric, respectively. We find adding more hier-
archical levels leads to improvement for both supervisions
on all the metrics. These results demonstrate the effective-
ness of our multi-level modeling for layout hierarchy and
necessity of considering layout from spatial and structural
perspectives. Compared with the second block, we find our
SSH-AE-(L3 SP) (0.694) is very close to the MIoU upper
bound (0.715), but there is still a relatively large gap be-
tween the perfect TED OPT (6.520) and SSH-AE-(L3 ST)
(10.520). It indicates there is room for further improvement.
Also from the second block, we note MIoU and TED are in-
deed two facets of the layout matching. The optimal results
for MIoU are not competitive for TED, and vice versa. This
justifies the need to examine the two metrics jointly.

The NDCG is based on a user study in the similar way
as (Manandhar, Ruta, and Collomosse 2020). We can see the
best NDCG performance is achieved by methods keeping
a good trade-off between spatial and structural losses (L3
SP+L3 ST). Such observation offers strong support to our
method with joint spatial and structural layout modeling.
POSTER Retrieval. Tab. 2 shows the retrieval results on
POSTER. We report results for GCN-CNN, optimal metric
rankings, six variations of our SSH-AE, and the L3 ensem-
ble. We observe similar trend as what has been seen from the
RICO. Note the SSH-AE-(L3 SP) model alone achieves bet-
ter results than GCN-CNN. We attribute this to our hierar-
chical modeling strategy. The ensemble trade-off model also
achieves the most promising results for subjective NDCG.
Trade-off Analysis. The ensemble of SSH-AE-(L3 SP+L3
ST) is obtained by a particular weighted ranking combina-
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Figure 4: Visualization of different methods’ operating
curves and points for spatial/structural trade-off on RICO
(top) and POSTER (bottom). The operating curve for each
method exhibits inverse relationship between MIoU@ 10
and TED@10. SSH-AE has better results than others with
the reference of the optimal metric (OPT) curve. The big dot
on each curve indicates the point with best NDCG value.

tion of SSH-AE-(L3 SP) and SSH-AE-(L3 ST). It serves as
a trade-off to balance the spatial and structural aspects. More
generally, we can tune the combination weight within [0, 1]
to obtain an operating curve that connects the two operat-
ing points representing two base methods. They are plotted
in the 2D space of MIoU and TED metrics (see Fig. 4). We
find the curves of SSH-AE are closer to the optimal curves
(OPT) than all the baselines. SSH-AE performs better when
it is configured with more levels.

The operating curves are similar as ROC curves for de-
tection. It provides a comprehensive evaluation and enable
us to compare two methods with different spatial/structural
emphasis. In Fig. 4, the point on each curve with the best
NDCG is highlighted as a big dot. For RICO, it is inter-
esting to note the best NDCG operating points almost have
the best trade-off between MIoU and TED, indicating a high
consistency between the subjective evaluation and our new
objective evaluation. However, the NDCG points on differ-
ent curves are not always consistent with their locations, as
the best point on OPT curve has lower NDCG result than
the best point on SSH-AE curve. For POSTER, the subjec-
tive evaluation prefers the pure SP setting, and the synergy
between SP and ST settings is not strong. This can be ex-
plained by the fact the curves for SSH-AE looks like “con-
cave” in top right region, and therefore the linear combina-
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Figure 5: RICO retrieval visualization with query (RGB/se-
mantic map) and top1 retrieval of GCN-CNN (tri)/ours (L3
SP+L3 ST ensemble)/MIoU OPT/TED OPT. For the first
example, ours obtains more organized retrieval than GCN-
CNN compared with the query. For the second/third exam-
ples, both ours and GCN-CNN retrieve good results. How-
ever, ours captures better horizontal element arrangement
(second) and detailed design element in the middle (third).
Compared with the query and MIoU/TED optimal results,
our method generally captures more layout details and ob-
tains better results than the strong baseline GCN-CNN.

tion of two operating points may become worse than each of
them. We believe this new evaluation protocol opens a direc-
tion to explore better objective evaluation for layout match-
ing. Overall, SSH-AE outperforms baseline methods under
a wide range of spatial-structural trade-off.

Qualitative Retrieval Results. We provide RICO repre-
sentative retrieval visualization in Fig. 5. We show the
query (RGB and semantic map) and top1 retrieval of GCN-
CNN (triplet), our method (L3 SP+L3 ST ensemble), and
MIoU/TED OPT. Compared with most competitive GCN-
CNN, ours captures more fine-grained details and retrieve
better results based on both the query sample and the op-
timal retrieval of MIoU and TED. More qualitative results
with discussions are in supplementary material.

Conclusion

We learn layout representation from a novel way — consid-
ering both spatial and structural perspectives in a multi-level
hierarchical fashion. Our Spatial-Structural Auto-Encoder
(SSH-AE) is built to handle layout data with hierarchi-
cal annotations based on its elements. A hierarchical auto-
encoder is used to extract and fuse layout features with dif-
ferent spatial and structural significance. Orthogonally, a
two-pathway optimization and inference design is used to
enforce layout information from spatial and structural as-
pects. Accordingly, we also introduce a new evaluation pro-
tocol with a newly involved tree-edit distance (TED) metric
for a comprehensive layout similarity measurement which
better aligns with human judgement. Experiments on both
RICO and POSTER datasets demonstrate the superiority of
SSH-AE in layout retrieval. The new collected POSTER
dataset and our SSH-AE with new evaluation protocol are
expected to benefit future researches in layout area.
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