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Abstract
A real-time motion capture system is presented which uses input from multiple standard video cameras and inertial measure-
ment units (IMUs). The system is able to track multiple people simultaneously and requires no optical markers, specialized
infra-red cameras or foreground/background segmentation, making it applicable to general indoor and outdoor scenarios
with dynamic backgrounds and lighting. To overcome limitations of prior video or IMU-only approaches, we propose to use
flexible combinations of multiple-view, calibrated video and IMU input along with a pose prior in an online optimization-
based framework, which allows the full 6-DoF motion to be recovered including axial rotation of limbs and drift-free global
position. A method for sorting and assigning raw input 2D keypoint detections into corresponding subjects is presented which
facilitates multi-person tracking and rejection of any bystanders in the scene. The approach is evaluated on data from several
indoor and outdoor capture environments with one or more subjects and the trade-off between input sparsity and tracking
performance is discussed. State-of-the-art pose estimation performance is obtained on the Total Capture (mutli-view video
and IMU) and Human 3.6M (multi-view video) datasets. Finally, a live demonstrator for the approach is presented showing
real-time capture, solving and character animation using a light-weight, commodity hardware setup.

Keywords Pose estimation · Motion capture · IMU · Multi-view video · Real-time · Multi-person

1 Introduction

Real-time capture of human motion is of considerable inter-
est in various domains including entertainment and the life
sciences. Recent advances in computer vision (e.g. Captury
2017) and the availability of commoditywireless inertial sen-
sors (e.g. Roetenberg et al. 2013; PerceptionNeuron 2017)
are beginning to take motion capture from constrained stu-
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dio settings to more natural, outdoor environments, and with
less encumbrance of the performers from specialized cos-
tumes and optical marker setups traditionally required (e.g.
Vicon 2017; OptiTrack 2017), while still retaining a high
level of capture fidelity.

In the proposed approach, we fusemulti-modal input from
inertial sensors and multiple cameras to produce an estimate
of the full 3D pose of one or more subjects in real time with-
out requiring optical markers or a complex hardware setup
(Fig. 1). A solver optimizes the kinematic pose of the subject
based on a cost function comprising orientation, acceleration,
2D position and statistical pose prior terms. The orienta-
tion and acceleration constraints are provided by a sparse set
of inertial measurement units (IMUs) attached to body seg-
ments, and positional constraints are obtained from 2D joint
detections from video cameras (Cao et al. 2017). Combining
video and IMUdata improves the tracking performance com-
pared to one or the other. The IMUs provide full rotational
information for body segments, while the video information
provides drift-free 3D global position information.

This work is an extension of the work of Malleson et al.
(2017). The proposed approach leads to significant improve-
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Fig. 1 Real-time full-3D motion capture of multiple people in uncon-
strained environments without visual markers

ments in solved pose accuracy compared to Malleson et al.
(2017) and supports tracking of multiple subjects. Further-
more, several additional experiments have been performed,
with additional test datasets and comparisons to furthermeth-
ods from the literature. The contributions of this work are as
follows:

(1) Improved kinematic pose accuracy through, (a) use
of calibrated 3D offsets between detected keypoint locations
and solve skeleton, (b) use of an expanded 25 keypoint CPM
detection input (vs. 12 used in Malleson et al. (2017)), and
(c) addition of a floor penetration term. (2) Simultaneous
tracking ofmultiple subjects throughuse of an efficient detec-
tion sorting mechanism which can operate in the presence of
bystanders and mis-detections in the images. (3) Extensive
further evaluation with additional test datasets, more detailed
error statistics and treatment of single modality and monoc-
ular input cases. (4) Creation of a new multi-view video plus
IMU datasetOutdoor Duo featuring two subjects performing
diverse actions in uncontrolled outdoor settings. (5) Exposi-
tion of a light-weight demonstrator implementation with live
motion output to a game engine environment and displayed
in VR.

The remainder of the paper is structured as follows. Sec-
tion 2 puts this work in the context of related work. Section 3
describes the approach. In Sect. 4, quantitative and quali-
tative evaluation is presented followed by a description of
the implementation of our live demonstrator system. Finally,
conclusions and future work are presented in Sect. 5.

2 RelatedWork

Various approaches exist in the literature for estimating
human pose from video and other sensor data. To the best
of our knowledge, the proposed approach is the first to use

multiple views of natural video along with IMU input to esti-
mate the global kinematic pose of one ormore subjects in real
time. Below we cover the most closely related prior works.

Convolutional Pose Machines (CPMs), proposed by Wei
et al. (2016) and Cao et al. (2017), use deep neural networks
to estimate 2D pose (joint and surface keypoint locations) for
multiple people from a single image, with video rate detec-
tion possible using GPU acceleration. As the pose is 2D,
there is no explicit conservation of bone lengths, and the
axial rotations of limbs are not estimated. Our approach uses
keypoint detections from CPMs over multiple camera views
in combination with IMU data as input in a robust kinematic
optimization to obtain accurate global 3D pose in real time.
This kinematic pose output inherently maintains bone length
and can be used directly to drive 3D character animation.Var-
iousworks use neural networks to infer 3Dpose directly from
monocular cameras, e.g. Li et al. (2017), Tekin et al. (2016),
Lin et al. (2017), Martinez et al. (2017), Mehta et al. (2018)
and Tome et al. (2018). In Tome et al. (2017), CPMs are
extended to ‘lift’ 3D pose from a single RGB image by incor-
porating knowledge of plausible human poses in the training,
while in Tome et al. (2018) the lifting approach is improved
by refining detection estimates in an end-to-end approach. In
‘VNect’, proposed by Mehta et al. (2017), 3D pose is esti-
mated in real time from a single camera using convolutional
neural networks (CNNs) and kinematic fitting, while Zhou
et al. (2016) perform 2D joint detection using CNNs and esti-
mate 3D pose using offline Expectation-Maximization over
an entire sequence. Mehta et al. (2018) performmulti-person
3D pose estimation frommonocular video usingCNNs along
with a occlusion-robust pose-map (ORPM) formulation for
handling of strong partial occlusion. In Zanfir et al. (2018),
the 3D pose and shape of multiple people are estimated from
monocular video by fitting parametric body models using
optimization of an estimated ground plane, exclusion of mul-
tiple occupancy, and temporal trajectory optimization while
in the DensePose approach of Alp Güler et al. (2018), sur-
face meshes are fitted to single view images producing dense
pose correspondences. In unconstrained settings, monocu-
lar approaches are inherently subject to ambiguity in depth
limiting their ability to recover absolute position and scale.

Elhayek et al. (2015) use CNNs to track multiple subjects
from a sparse set of two or more cameras (the approach is
not real-time on current hardware, with a reported runtime
of> 1 second per frame for a single subject using three cam-
eras). Rhodin et al. (201b) use 2D joint keypoint detections
as well as body contours to jointly optimize body shape and
pose from a small number of camera views while Joo et al.
(2018) capture body, hand and facial motion from multiple
view video by offline optimization of a deformable 3D body
model.

IMUs and multi-view video data have been combined by
VonMarcard et al. (2016) to exploit the complementary prop-
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erties of the data sources, i.e. drift free position from video
and 3D limb orientation from IMUs.However no comparison
is performed against commercial reference-quality motion
capture (instead the results are compared with respect to
consistency with silhouettes and IMU measurements), and
processing time is not specified. Andrews et al. (2016) per-
form real-time body tracking using a sparse set of labelled
optical markers, IMUs, and a motion prior in an inverse
dynamics formulation. In contrast, our approach does not
use optical markers and does not require setting up a physics
model of the subject. The ‘Sparse Inertial Poser’ (SIP) system
proposed by von Marcard et al. (2017) uses orientation and
acceleration from 6 IMUs as input and is assisted by a prior
posemodel in the form of the SMPL bodymodel (Loper et al.
2015). However, because SIP processes sequences as a batch
it is not suitable for online operation and the lack of visual
informationmakes it susceptible to drift in global position. In
‘Deep Inertial Poser’ (DIP), Huang et al. (2018) recover local
pose using a sparse set of 6 IMUs using a sliding window of
frames for online operation.Our systemuses input from cam-
eras in addition to sparse IMUs, processes sequences online
in real-time and is able to recover drift-free global position.
In their ‘Video Inertial Poser’ (VIP) approach, von Marcard
et al. (2018) estimate the 3D pose of multiple subjects given
monocular camera and IMU input. Association between 2D
detections and 3D subjects are obtained using a graph based
optimization enforcing 3D to 2D coherency within a frame
and across long range frames. Parameters for the shape and
pose of the SMPL statistical body model (Loper et al. 2015)
are jointly optimized alongwith IMUheadingdrift. InVIP, all
frames are optimized simultaneously, precluding real-time
operation. In contrast our approach, with its frame-to-frame
processing and simple detection sorting mechanism operates
online with multiple subjects at at video rates.

Trumble et al. (2016) use convolutional neural networks
on multi-view video data to perform human pose estima-
tion. In subsequent work, Trumble et al. (2017) combined
video and IMU input in a deep learning framework, includ-
ing using an LSTM (long short term memory, Hochreiter
and Schmidhuber (1997)) for temporal prediction to reduce
noise, and later using a deep autoencoder (Trumble et al.
2018) to recover a both skeletal pose (as joint positions)
and detailed 3D body shape over time. These approaches
require extensive training from multi-view video data and
the axial rotation of the limbs cannot be recovered since
the input is based on visual hulls. Furthermore, in common
with all visual-hull based approaches, they require accurate
foreground-background segmentation, typically requiring
controlled capture conditions, extensive computation time
or manually-assisted segmentation. In contrast, our method
requires minimal, simple training of the pose prior, while
using a pre-trained CPM detector for 2D detections. By
incorporating IMU data, our method is able to recover axial

rotation of the limbs while handling dynamic backgrounds
and occlusions.

Introducing environmental constraints into video-based
pose estimation can help resolve ambiguities in detection. For
instance, Rosenhahn et al. (2008) integrate knowledge of the
floor location to discourage vertices in a solved body surface
mesh from penetrating the floor. In the proposed approach,
which does not consider surface geometry, a simple floor pen-
etration constraint is applied to specific targets in the skeleton
(i.e. the foot and toe joints).

Various recent approaches to real-time body tracking use
other types of capture hardware, for example two fisheye
cameras attached to the subject (Rhodin et al. 2016a), Kinect
RGBD cameras (Wei et al. 2012; Ichim and Tombari 2016),
Kinect plus IMUs (Helten et al. 2013), HTC Vive infra-red
VRcontrollers strapped to the limbs (IKinema2017), or radio
frequency (RF) equipment (Zhao et al. 2018). Such hardware
is typically limited to indoor capture environments.

In Malleson et al. (2017), full-body markerless tracking
of a single subject is performed in real-time in unconstrained
environments using multiple-view video with as few as two
cameras and 6 IMUs as input, recovering the full DoF includ-
ing axial rotation and drift-free global position. In this work,
we extend the approach of Malleson et al. to provide more
accurate pose and to handle multiple people simultaneously.
Furthermore, we demonstrate operation with further reduced
camera/IMU input configurations and in less constrained
capture environments.

3 Method

The proposed approach obtains the kinematic pose of multi-
ple subjects in real time given input from any configuration of
IMU or video input. First, the notation and pose parametriza-
tion are presented in Sect. 3.1 followed by descriptions of the
kinematic pose cost function and its optimization in Sect. 3.2.
Next, in Sect. 3.3, details of the generation and use of 2D
keypoint detections are presented, i.e. efficiently performing
2D detection across multiple camera views, assigning 2D
detected people to their corresponding tracked subjects, and
use of optimized offsets between detections and their cor-
responding bones in the skeleton. Implementation details,
including details of the capture setups used and live imple-
mentation of our approach are deferred to the results section.

3.1 Notation and Skeleton Parametrization

For each tracked subject, a kinematic skeleton is defined con-
sisting of a pre-defined hierarchy of nb rigid bones, b attached
at joints. The root bone b = 1 (i.e. the hips) has a global posi-
tion, t1 and orientation, R1. Each child bone, b ∈ [2, nb] is
attached to its parent with a fixed translational offset, tb, and

123



International Journal of Computer Vision

pose-varying rotation,Rb, w.r.t. the parent bone coordinates.
In this work, nb = 21 bones are used. The total degrees of
freedom (DoF) are d = 3 + 3 × 21 = 66, consisting of
the root translation and 3 rotational degrees of freedom per
joint. The skeleton topology is the same for all subjects and
appropriate bone lengths are determined per subject (either
from the calibrated skeleton obtained from the optical ref-
erence data, if available, or by scaling a reference skeleton
according to the subject’s known height).

We encode the pose of the skeleton as a single 66-
dimensional vector θ containing the 3D global translation of
the root, followed by the stacked local joint rotations of each
bone (including the root), represented as 3D angle-axis vec-
tors (i.e. the axis of rotationmultiplied by the angle of rotation
in radians). This parameter vector is the variable which is
optimized, with the root translation t1 and joint rotations Rb

being extracted and used in calculations as applicable.
For each bone, b, the global rigid body transform Tg

b is
computed by concatenating bone offset and joint rotation
transforms along the kinematic chain as follows:

Tg
b(θ) =

∏

b′∈P(b)

[
Rb′ tb′
0 1

]
(1)

where P(b) is the ordered set of parent joints of bone b.
We define a set of ni IMU track targets, i , each attached

to a bone bi . The rotational and translational offsets of the
IMU w.r.t. the bone are denoted Rib and tib, respectively.
The rotational transform between each IMU reference frame
and the global coordinates is denoted Rig . IMU orientation
measurements (w.r.t. the IMU inertial reference frame) and
acceleration measurements (w.r.t. the IMU device frame) are
denoted Ri and ai , respectively. Likewise, we define a set of
n p positional track targets, p, each attached to a bone bp with
translational offset tpb w.r.t. the bone. Note that here we use
the term ‘track target’ to refer to any specific point on or in
the body for which motion is estimated, not a physical opti-
cal marker. In our approach 2D joint positions are estimated
using natural images and no visual markers are required.

Finally, we define a set of nc cameras, c with calibrated
3×4 projection matrices Pc and let tcp denote the 2D position
measurement for track target p in the local coordinates of
camera c.

3.2 Pose Optimization

The kinematic pose of each tracked subject is optimized inde-
pendently according to the following cost function:

E(θ) = EData(θ) + EPrior (θ). (2)

The data cost

EData(θ) =
V ideo︷ ︸︸ ︷
EP (θ)+

I MU︷ ︸︸ ︷
ER(θ) + EA(θ)

(3)

incorporates positional constraints, EP based on 2Dkeypoint
detections from the input video as well as orientation and
acceleration constraints, ER and EA from the input IMU
measurements. The prior cost

EPrior (θ) =
PCA︷ ︸︸ ︷

EPP (θ) + EPD(θ)+
Floor︷ ︸︸ ︷

EFP (θ) (4)

contain PCA pose prior projection and deviation terms, EPP

and EPD as well as an optional floor penetration term, EFP .
The proposed cost function extends that of Malleson et al.

(2017) by including the floor penetration term. Each term in
Eq. 2 is described in the following subsections, where solved
values have a ‘∧’ circumflex and their dependence on θ is
omitted for clarity. Unless otherwise specified, values are for
the current frame, t . In order to assess the effectiveness of
each term in the cost function, an ablation study is presented
in Sect. 4.1.2.

3.2.1 Position Term

For each 2D positional measurement from each camera, a
constraint is added which seeks to minimize the Euclidean
distance between the measured 2D location in camera coor-
dinates and the solved global track target location projected
into the camera (Fig. 2).

The solved global track target location, t̂gp is determined
by applying the translational offset tpb to the global bone
transform Tg

bp
(as calculated according to Eq. 1):

t̂gp = τ t

(
τ T (tpb) · Tg

bp

)
(5)

where the operators τ T (·) and τ t (·) are shorthand for creating
a transform matrix from a translation vector and extracting
the translation vector from a transform matrix, respectively.
This global target position is projected into each camera to
obtain 2D solved targets t̂cp in camera coordinates:

t̂cp = dh(Pc t̂
g
p) (6)

where the operator dh(·) performs de-homogenization of a
homogeneous vector.

The position cost is defined as

EP (θ) =
∑

c∈[1,nc]

∑

p∈[1,n p]
ρP

(
λPwc

p

∥∥t̂cp − tcp
∥∥2
2

)
(7)
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Collision target
Floor level

r
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Fig. 2 The solver objective function (Eq. 2) comprises several terms, visualized in this figure. These are described in detail in Sect. 3.2 and their
relative importance is assessed through an ablation study in Sect. 4.1.2

wherewc
p ∈ [0, 1] is a confidence weighting for constraint p

obtained from the image-based keypoint position measure-
ment mechanism (in our case from a CPM-based detection,
see Sect. 3.3), λP is a position constraint weighting factor,
ρP (·) is a loss function (see Sect. 3.2.6). The confidence
weighting wc

p and loss function enable robust output pose
estimates in spite of persistently high levels of noise and fre-
quent outliers in input position detections.

Note that in Malleson et al. (2017), only joint keypoints
were used as track targets and these were assumed to cor-
respond on average, to the joints in the reference skeleton
and thus have zero offset w.r.t. the bone (tpb = 0). In order
to account for any systematic offset between the reference
detected keypoints and the corresponding joint in the refer-
ence skeleton, and to allow surface keypoints such as the ears
and eyes to be used aswell, we propose to calibrate offsets tpb
for the reference skeleton and detector used (see Sect. 3.3.2
for details).

3.2.2 Orientation Term

For each IMU, i , an orientation constraint is added which
seeks to minimize the relative orientation between the mea-
sured and solved global bone orientation (Fig. 2).

The measured global bone orientation, Rg
bi

is obtained
from the IMU measurement Ri using the IMU-bone offset
Rib and IMU reference frame-global offset as follows:

Rg
bi

= Rig · Ri · (Rib)
−1 . (8)

The solved global bone orientation, R̂g
b is obtained using the

kinematic chain, ignoring translations:

R̂g
b =

∏

b′∈P(bi )

Rb′ . (9)

and the orientation cost is

ER(θ) =
∑

i∈[1,ni ]
ρR

(
λR

∥∥∥ψ
((
R̂g
bi

)−1Rg
bi

)∥∥∥
2

2

)
(10)

where ψ(·) extracts the vector part of the quaternion repre-
sentation of the rotation matrix, λR is orientation constraint
weighting factor, ρR(·) is a loss function. Discussion of the
weightings and loss functions are deferred to Sect. 3.2.6.

3.2.3 Acceleration Term

In addition to orientation, the IMUs provide acceleration
measurements (in the local IMU coordinates). In order to
include an acceleration term, it is necessary to consider a
window of three frames: current frame to be solved, t , and
the previous two solved frames, t − 1 and t − 2. For each
IMU, a constraint is added which seeks to minimize the dif-
ference between the measured and solved acceleration of the
track target site (Fig. 2). The solved acceleration âgi is com-
puted by central finite differences using the solved pose from
previous two frames along with the current frame:

âgi (t − 1) =
(
t̂gi (t) − 2t̂gi (t − 1) + t̂gi (t − 2)

)
/(�t)2. (11)

where the solved IMUpositions t̂gi are computed analogously
with Eq. 5 (replacing subscripts p with i) and�t is the frame
period.

Themeasured local accelerations from the previous frame
of IMU data1 are converted to global coordinates as follows:

agi (t − 1) = Rig · Ri (t − 1) · ai (t − 1) − ag (12)

where ag = [0, 9.8707, 0]T is the acceleration of gravity,
which needs to be subtracted. The acceleration cost is then
simply defined as

EA(θ) =
∑

i∈[1,ni ]
ρA

(
λA

∥∥∥âgi − agi

∥∥∥
2

2

)
(13)

where once again λA is a constraint weighting factor, ρA(·)
is a loss function (see Sect. 3.2.6).

Note that the orientation constraints only require the orien-
tation offset of the IMUw.r.t. the bone to be known, whereas

1 The previous frame is used because central differences are employed
to estimate the solved acceleration.
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the acceleration constraints require the translational offset to
be known as well.

It is well known that double integrating acceleration to
obtain position is prone to drift, thus these acceleration terms
alone are not sufficient to locate the body in global coor-
dinates over any length of time. The acceleration term is
included in the method for completeness, however in the
experiments, it was found not to improve performance.

3.2.4 PCA Prior Terms

In practice, not all the body segments are observed in the input
- the kinematic skeleton has more degrees of freedom than
are constrained by the IMUs and positional measurements.
For instance, the spine has several segments, but has only one
or two IMUs attached to it. A pose prior is therefore required
to constrain all degrees of freedom and produce plausible
poses in spite of sparse or noisy sensor input.

In these experiments, two prior terms are incorporated
based on a principal component analysis (PCA) of a corpus
of motion capture data. The pose prior should be invariant to
the global position and heading of the subject. We therefore
use θ̄ , denoting the dp = d − 6 pose vector excluding the
first six elements, in the pose prior formulation.

A subset of ground-truth motion sequences from the Total
Capture dataset (Trumble et al. 2017), covering a wide vari-
ety of poses were used as training of the PCA pose model.
In order to obtain a representative sample of poses without
over-emphasis on commonly recurring poses for standing
and walking, for instance, we perform k-means clustering
on the full set of n f = 126,000 training frames, with
k = n f /100 = 1260. The cluster centres are concatenated
to form a k × dp data matrix D and PCA is performed on
the mean-centered data. The dimensionality is reduced to
dr = 23 (chosen so as to keep 95%of the variance in the data)
and the resulting PCA model is a dp × dr coefficient matrix,
M, a dp-dimensional mean vector, μ and a dr -dimensional
vector of standard deviations, σ (the square-roots of the prin-
cipal component eigenvalues).

Similar to Ichim and Tombari (2016), we use two priors
based on the PCA of the pose: PCA projection and PCA
deviation. The projection prior encourages the solved body
pose to lie close to the reduced dimensionality subspace of
prior poses (soft reduction in the degrees of freedom of the
joints), while the deviation prior discourages deviation from
the prior observed pose variation (soft joint rotation limits).
The pose projection cost is

EPP (θ) = ρPP

(
λPP

∥∥∥(θ̄ − μ) − MMT (θ̄ − μ)

∥∥∥
2

2

)
(14)

and the pose deviation cost is

EPD(θ) = ρPD

(
λPD

∥∥∥diag(σ )−1MT (θ̄ − μ)

∥∥∥
2

2

)
(15)

where as with the data terms, weighting factors λ and loss
functions ρ are used (see Sect. 3.2.6). A geometric interpre-
tation of these constraints is shown in Fig. 2. Together these
terms produce soft constraints that yield plausible motion
while not strictly enforcing a reduced dimensionality on the
solved pose, thus allowing novel motion to bemore faithfully
reproduced at run time.

3.2.5 Floor Penetration Term

For indoor operation on a level surface, we are able to include
a simple constraint which disallows solved positions of joints
being below the floor level:

EFP (θ) =
∑

p∈pe

λFP
∥∥H(−[t̂gp]y + rp)

∥∥2
2 (16)

where rp is a collision radius used to approximate the dis-
tance between the joint and the surface (set to 5 cm in our
experiments), the operator []y extracts the y component of a
vector, H is the Heaviside step function and pi are the set of
targets (joint centres) on for which the constraint is enabled
(see Fig. 2). This constraint is used for indoor capture sce-
narios in which the floor level is known from the camera
calibration, during which the world coordinates are centred
at floor level with the y-axis up. Note that this term is not
applicable to outdoor scenes which feature uneven terrain,
and is thus disabled for all our outdoor experiments. In our
experiments the constraint is added for the feet and toe joints
only in order to keep computation time low.

3.2.6 Energy Minimization

As described in the previous subsections, weightings λ are
used to control the contributions of each term to the over-
all cost in Eq. 2. These are required because the different
terms compare different physical quantities, and because
some sources of data may be more reliable than others -
for instance IMU orientations may be more stable than noisy
position triangulations from images. Throughout the experi-
ments, the same weightings were used for the cost function
terms, namely λP = 1 × 10−3, λR = 1, λA = 1 × 10−3,
λPP = 0.7, λPD = 0.06 and λFP = 10. These values were
arrived at by a gradient-based parameter optimization over
200 frames of one motion sequence (S1, FS1) from the Total
Capture dataset.

Furthermore, each term has a loss function, ρ(·) for each
residual. The purpose of the loss function is to make the
cost robust against outlier data (as well as to allow devia-
tion from the prior, when the measurements support it). For
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the orientation constraints, a null loss is used (standard L2
distance), since the IMUs tend not to produce outlier mea-
surements. For the position, acceleration, PCA projection
prior and PCA deviation prior a robust Cauchy loss function
is used, ρ(x) = log(1+ x). The Cauchy loss function limits
the effect of gross outliers by penalizing large residual val-
ues proportionally less than small values. Using the robust
loss functions was found to be necessary to get good pose
estimations in the presence of outlier measurements as well
as novel, unseen poses.

The pose cost function E(θ) is optimized using the Ceres
non-linear least-squares solver (Agarwal et al. 2017). The
position, orientation and acceleration constraints are only
affected by parameters associated with the bone to which
they are attached and its parent bones in the kinematic chain.
Therefore, the Jacobian is sparse and its computation can
be sped up by using parameter blocks. The computation is
further sped up using multi-threaded Jacobian computation.
The solving is performed using Levenberg–Marquardt with
a sparse normal Cholesky linear solver. For each frame, the
pose vector is initialized with the solved value from the pre-
vious frame, yielding full-body 6-DoF pose estimation at
real-time video rates.

3.3 2D Keypoint Detections fromMulti-viewVideo

The convolutional pose machines (CPMs) detector of Cao
et al. (2017) as implemented in OpenPose2 is used to obtain
2D keypoint detections tcp. The detector also outputs con-
fidences, wc

p. The detections are used in the positional
constraints for each view in the cost function (Sect. 3.2.1)
for each subject. Section 3.3.1 describes our approach to
resolving and assigning unordered input 2D detections to
each tracked subject.

Whereas Malleson et al. (2017) use 12 joint keypoints
from the 15 keypoint MPI model in OpenPose (shoulders,
elbows, wrists, upper legs, knees and ankles), we use the
‘Body25’model (which includes the above aswell as themid
hip, nose, eyes, ears, neck, big toes, small toes and heels). In
our experiments we found the ‘Body25’ model to produce
more accurate results (with reduced processing time) com-
pared to the ‘MPI15’ and ‘COCO18’ models also available
in OpenPose. In Sect. 3.3.2, we describe a procedure for cal-
ibrating 3D offsets between the CPM detector keypoints and
the corresponding bones in the kinematic skeleton. Note that
our approach is agnostic as to the source of the 2D keypoint
detections and any suitable 2D pose keypoint detector could
be used in place of the CPM detector.

In order to increase detection throughput and maintain
real-time frame-rates with multiple cameras, we pack multi-

2 The implementation used is available from: https://github.com/CMU-
Perceptual-Computing-Lab/openpose.

ple camera views into a single frame for detection (refer to
Sect. 3.4 for details of the live implementation).

3.3.1 Detection Sorting

In order to track multiple subjects simultaneously and to be
robust against any incidental 2D detections in the images
(caused by bystanders or spurious detections), we sort the
2D detections as described below. In our approach, only a
designated set of subjects are tracked and their initial loca-
tions are set manually (e.g. through having the subjects begin
at designated locations in the capture space). Any other sub-
jects in the scene should be designated as bystanders and
rejected by the detection sorter.

The CPM-based 2D keypoint detector ofWei et al. (2016)
produces a set of 2D keypoints with confidences for each
detected person in each camera viewpoint C . For brevity, we
refer to each of these as a ‘2D person’, P . In order to use
these as input in our multi-person 3D tracking approach, the
correct 2D personmust be assigned to each tracked subject S.
The order of the raw input 2D person detections is arbitrary
and generally not consistent between cameras or over time.
In general wide-baseline camera setups, assumptions such
as left/right consistency cannot be used. Moreover, a given
subjectmaybe absent in a viewdue to occlusion, and spurious
detections may occur due to mis-detections or bystanders
being visible in the scene. In order to use the 2D person
detections in our framework, they first need to be sorted and
assigned to the corresponding tracked subject or discarded if
they do not belong to any of the tracked subjects.

The procedure for sorting the 2D person detections over
all subjects and camera views is presented in Algorithm 1.
In summary, all pairings of 2D person detections over each
pair of camera views are putatively triangulated and checked
for consistency in re-projection. Valid candidates are then
matched to the expected 3D locations of each tracked subject
or discarded if no match is found.

First, a set of 3Dperson candidatesCandsAll is initialized
(line 1). This is used to store source camera and 2D person
indices as well as triangulated 3D positions for subject can-
didates. (Note that these putative 3D triangulations are only
used in the detection sorting stage and not in the kinematic
pose optimization, Eq. 2, which uses the sorted 2D keypoints
directly and does not employ explicit triangulation.)

Triangulation is attempted across all pairs of 2D people
across all pairs of views to obtain a candidate 3D person
P3D (line 2–6). Note that only keypoints with non-zero
confidences in both 2D person detections are considered.
Candidates which have an average re-projection error above
a threshold ThreshTri Error are rejected as these are likely
to come from different people (line 7). Note that this thresh-
old needs to be set relatively high, due to levels of noise
in the 2D detections. However, if set too high, a high level
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Fig. 3 Visualization of the proposed approach to sorting and assign-
ing 2D detections to tracked subjects. All possible pairings of detected
person instances across views are tested for image re-projection error.
Triangulations with high re-projection error are regarded as invalid,
while viable triangulations are clustered into candidate 3D subjects.
Finally, each tracked subject is assigned to the candidate 3D subject
closest to its last seen location

of invalid matches occurs. In the experiments, an empirical
value of 1.5% of the image width was used.

Next, P3D is compared to all candidates already in
CandsAll. If on average distance between the keypoints in
P3D and those in any existing candidate CandEx is less
than a threshold ThreshDist SamePerson (empirically set
to 30 cm in the experiments), P3D is assumed to correspond
to the same person and the current source indices and 2D
person are appended to CandEx (line 8–9), otherwise they
form a new candidate,CandNew, which in turn is appended
to CandsAll (line 10–12).

The candidate 3D detections CandsAll are assigned to
the tracked subjects S. In order to prevent assignment of the
same detections to more than one subject, a condition vari-
able Cand Assigned is maintained to keep track of which
candidates have already been assigned to a subject (line 19–
21). The sorted detections are initialized empty (line 23).
Finally, the closest un-used candidate in CandsAll to the
last viewed location of the subject S, Subjects3DLast is
determined and SortedDetections(S) set if it is within a
threshold Thresh Inter f rameMovement (empirically set
to 1 m in the experiments), the assumed maximum distance
between the current and last viewed position of the sub-
ject (line 24–30). A conceptual visualization of the sorting
approach is presented in Fig. 3. Note that the detection sorter
requires at least two input cameras due to the requirement for
3D triangulation, thus our approach cannot currently handle
multiple subjects in the case of monocular input.

Algorithm 1 Sorting of 2D detections into subjects for a
single frame. Takes as input all 2D person detections P from
all camera views C and attempts to assign each 2D detection
to its corresponding 3D tracked subject S while disregarding
any non-matching detections (e.g. due to bystanders in the
scene).
1: CandsAll ← []
2: for all cams Ca : a ∈ [1, nc] do
3: for all 2D people Pa in Ca do
4: for all cams Cb : b ∈ [a + 1, nc] do
5: for all 2D people Pb in Cb do
6: P3D ← Triagulate(Pa , Pb)
7: if TriError(P3D) < ThreshTri Error then
8: if ∃ CandEx ∈ CandsAll such

that AveDist(CandEx , P3D) <

ThreshDist SamePerson then
9: CandEx

+← [(Ca, Pa), (Cb, Pb), P3D]
10: else
11: CandNew ← [(Ca, Pa), (Cb, Pb), P3D]
12: CandsAll

+← CandNew
13: end if
14: end if
15: end for
16: end for
17: end for
18: end for
19: for all candidates i in CandsAll do
20: Cand Assigned(i) ← f alse
21: end for
22: for S ∈ [1, ns ] do
23: SortedDetectons(S) ← []
24: [ibest , dbest ] ← ClosestPersonInSet(CandsAll,

Subjects3DLast(S))
25: if dbest < Thresh Inter FrameMovement and

Cand Assigned(ibest ) = f alse then
26: SortedDetectons(S) ← CandsAll(ibest )
27: Cand Assigned(ibest ) = true
28: Subjects3DLast(S) ← CandsAll(ibest )
29: end if
30: end for

3.3.2 Positional Track Target Offset Calibration

As described in Sect. 3.1, the positional track targets, p are
defined by a translational offset tpb w.r.t. their corresponding
bone b. Whereas surface keypoints (e.g. ears, eyes) should
clearly exhibit offsets from the joints of their corresponding
bones in the skeleton, joint keypoints (e.g. knees, elbows)
should theoretically not be offset w.r.t. the bone joint (i.e.
tpb = 0). In practice, however, systematic differences in
reference and estimated joint position can and do arise, for
instance due to inaccurate calibration of subject-specific opti-
cal mo-cap skeletons, or the characteristics of the data used
to train the detector. InMalleson et al. (2017), only joint key-
points were used and the assumption of zero offset w.r.t. the
skeleton bones was made. In this work, we attempt to miti-
gate systematic bias caused by this by estimating calibrated
offsets between the CPMdetected keypoints and our ‘ground
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Fig. 4 Visualization calibrated positional track targets (blue) offsets
for the CPM Body25 keypoint set w.r.t. the optical reference skeleton
(yellow). Note the offset for both the surface and the joint keypoints
(Color figure online)

truth’ optical reference skeleton. As is shown in Sect. 4.1.2,
including these calibrated offsets in the solve reduces the
output error substantially.

The followingprocedure is used to estimate constant bone-
space offsets tpb for all keypoints p. For a given input frame,
for each keypoint, p, a confidence-weighted multi-view tri-
angulation across all cameras is performed to obtain a global
3D position estimate, t̂pg:

t̂pg = argmin
tpg

∑

c∈[1,nc]
ρP

(
wc

p

∥∥∥dh(Pctpg) − tcp
∥∥∥
2

2

)
. (17)

This is converted to bone-local coordinates using the ground
truth global pose of the bone, Tg

b :

t̂pb = (Tg
b)

−1 t̂pg (18)

Finally, tpb is taken as the per-axis median of t̂pb over all
input frames, ensuring robustness against outlier detections.
Figure 4 illustrates the calibrated offets on our solving skele-
ton, for both surface and joint keypoints, with the calibrated
offsets up to 6.5 cm from the joint centre.

3.4 Implementation Details

3.4.1 Input Data

Xsens MTw wireless IMUs (Roetenberg et al. 2013) were
used for all our datasets as well as the live demonstrator
system. Each MTw IMU contains gyroscopes, accelerome-
ters and magnetometers and through internal onboard sensor
fusion outputs an orientation and acceleration at 60 Hz. The

inertial reference frame of each IMU, Rig is assumed to be
consistent between IMUs and in alignment with the world
coordinates through the global up direction and magnetic
north. The IMU-bone positions tib are specified by manual
visual alignment and the IMU-bone orientations Rib are cal-
ibrated using the measured orientations with the subject in
a known pose (the T-pose, facing the direction of a given
axis). To temporally align the IMU and video data an initial
footstamp was performed by the actor, which is visible in the
video and produces a strong peak in acceleration in the IMU
data.

The camera intrinsics and extrinsic calibration is deter-
mined using a checker-board chart (after Zhang 1999) and
for simplicity of integration with the inertial measurements,
the global reference frame of the camera system is chosen to
lie on the floor and to alignwith the up direction andmagnetic
north. The number of input cameras, their resolution and their
frame-rate vary between datasets (between 0.5 and 4k pixels
wide and from 30 to 60 fps). The CPM detector, however,
operates on relatively low-resolution images (656 × 368),
and the input is downscaled accordingly.

3.4.2 Live Implementation

Here we briefly describe a portable live implementation of
the proposed real-time motion capture approach. Note that,
unless otherwise specified, the same core implementation
and processing parameters are used in all experiments (live
or offline). The live system differs from the offline results
only that the input video frames are temporally sub-sampled
and the detections interpolated online so as to maintain live
operation, whereas for the (recorded) datasets, detection is
performed on all input frames.

The capture and pose solving of one or more subjects is
performed in real timeona single commodity laptopPC (Intel
i7 3.6 GHz with 32GB RAM, NVIDIA GTX 1080 mobile
GPU with 8GB RAM) using multi-threaded C++ code. The
laptop is connected to 4 PointGrey Grasshopper 3 machine
vision cameras (each capturing at 472 × 512, 60 fps), and
optionally to 1 or 2Xsens receivers (with up to 17XsensMTw
wireless IMUs for per subject). The solved motion of each
character may be recorded or streamed live to a game engine
environment (e.g. Unity or Unreal Engine) on a second lap-
top, which displays the game environment and character in
VR (see Fig. 15 and the supplementary video).

Becausehardware synchronization is not available between
camera and IMU inputs and because the GPU-accelerated
CPM-based detector runs at a lower rate than our kinematic
solver, it is not possible to process with fixed frame intervals
while maintaining live operation. The system is therefore run
asynchronously, with a fixed delay between output solver
time and ‘wall’ time. Buffers of the 2D keypoint detections
and IMU input are sampled and interpolated according to
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Fig. 5 Processing flow for live operation showing 4 camera capture,
packing multiple frames into single images, CPM detection, detection
sorting and interpolation for input into the kinematic solve (timing not
shown to scale). Note that the cameras are not assumed to be synchro-
nised, and that the cameras may operate at a higher frame-rate than the
CPMprocessing achieves, as illustrated here by the alternate greyed-out
frames in the capture sequence

the current solve time (linear interpolation is used for the 2D
keypoint detections and quaternion interpolation for the IMU
orientations).

To increase the through-put of the CPM-based 2D key-
point detection, 2 frames of each of the 4 cameras are packed
into a single image for detection (the CPM detection time
is independent of the number of subjects in the image, see
Cao et al. 2017). The live processing pipeline is illustrated in
Fig. 5, showing the main tasks of multi-camera capture, key-
point detection and kinematic solving being run in parallel,
with the current solver time delayed by a fixed latency.

3.4.3 Timing

On our system, the typical CPM detection time is approx.
110 ms per image, giving an effective 2D detection rate of
approx. 18 fps (compared to approx. 2.3 fps with sequential
detection of frames). Since the GPU is only approx. 60%
utilized, further increases in detection frame-rate might be
achieved in future work by using two CPM detectors in par-
allel.

The solved kinematic pose is output at approx. 40 fps with
a single subject and approx. 25 fps with two subjects, making

it well suited to real-time media production and interactive
applications. The end-to-end latency of the system is approx.
230 ms.

4 Results and Evaluation

The proposed approach is designed to take multi-view video
and IMUs as input. It is flexible in terms of the number of
input cameras and IMUs, degrading gracefully as the num-
ber of cameras and IMUs is reduced and still functioning
in extreme cases such as using a single (monocular) camera
with no IMUs or one modality without the other. Note that
in this work, all positional constraint information is obtained
from the multiple-view video based on per-view CPM as dis-
cussed in Sect. 3.3 and no optical markers or visible targets
are used.

We quantitatively evaluate our approach using the Total
Capture dataset (Trumble et al. 2017), which features a single
subject captured with multi-view video, IMU and a commer-
cial opticalmo-cap system for ground truth referencemotion.
To thebest of our knowledge,TotalCapture is the onlydataset
which contains multi-view video, IMU and optical reference
data. For completeness, we also evaluate our approach on the
widely used Human 3.6M dataset of Ionescu et al. (2014),
which does not contain IMUs input.

In addition to the quantitative evaluation, we perform
extensive qualitative evaluation on various multi-view video
plus IMU datasets including the single-person Total Capture
Outdoor dataset (Malleson et al. 2017) and three new multi-
person datasets, Ping Pong, Karate andOutdoor Duo. These
were captured with natural, loose clothing, and, in the case of
Outdoor Duo, in unconstrained outdoor environments. The
Ping Pong and Outdoor Duo datasets will be made available
for research use upon publication.

Finally, we show results from our real-time, live imple-
mentation, which is portable and runs on a single laptop PC
with 4machine vision cameras andup to 13 IMUsper subject.
The live tracked motion can be streamed to a game engine
environment and displayed in a virtual reality headset.

4.1 Quantitative Evaluation

The Total Capture dataset includes five subjects (S) perform-
ing various motions including range of motion (ROM), walk-
ing (W ), acting (A), and ‘freestyle’ (FS). These sequences
vary in complexity and speed from slow ROM sequences
to challenging sequences including fast motion and unusual
poses such as crouching on the floor (see Fig. 6 and refer to
the supplementary video). The subjects were recorded simul-
taneously using 13 Xsens MTw IMUs, 8 HD video cameras
and a commercial infra-red motion capture system consist-
ing of 16 cameras and a dense set of retro-reflecting markers
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Fig. 6 Ground truth optical skeleton (yellow) and the solved skeleton
(blue) overlaid along with visualizations of the CPM detections from
each view back-projected with a line showing where each detection is
pulling the corresponding track target. The proposed robust cost func-
tion yields a high-quality pose estimate despite several views containing
mis-detections (e.g. swapped feet). Sequence: Total Capture, S5, FS1

worn by the subject. The marker-based input is not used in
the runtime solver and is only used in this work as a ‘ground
truth’ reference for evaluation.

Detailed results with the full input (8 cameras, 13 IMUs)
are presented and compared to prior methods in Table 1,
in which the proposed approach performs best on average
with an average global joint position error of 26.1 mm, and
average global joint orientation error of 7.5◦.3 Note that for
this dataset, the proposed approach as well as the prior works
compared against, are evaluated across all 21 solved joints
in the kinematic skeleton (i.e. hip, four spine bones, neck,
head, shoulders, elbows, wrists, uppers legs, knees, ankles
and toe bases). In addition to mean global joint position and
orientation errors, we report standard deviations as well as
robust statistics, i.e. median and median absolute deviation
(MAD). Furthermore, we include errors w.r.t. the position
root joint (hips) of the subject, as is done by Trumble et al.
(2017) andwith procrustes alignment, giving an indication of
the pose accuracy independent of errors in root position and
orientation. Figure 6 shows the robustness of our approach
to typical misdetections from the CPM joint detector.

4.1.1 Number of Cameras and IMUs

It is desirable to have a minimal capture hardware setup in
order to reduce cost as well as actor setup time. We simu-
late the effect of reduced capture hardware (sparse input) by
excluding selected cameras and IMUs from the input. For
completeness, the special cases with no IMUs, no cameras,

3 In line with standard practice, the global joint orientation error is
computed as the magnitude of the 3D rotation required to bring the
solved and ground truth joint orientations into alignment (using the
angle-axis norm).

or a single camera, are included, effectively evaluating on
IMU-only and monocular camera cases. The 13 IMUs in the
full set are placed on the pelvis, sternum, upper and lower
limbs, head and feet. The 6 IMUs in the reduced set are posi-
tioned on the pelvis, lower limbs and head. The full set of
cameras form a ring around the subject and a the subsets
used in the tests are the adjacent cameras starting from the
first camera.

Figure 7 shows the error with 0–8 cameras along with
0, 6 or 13 IMUs. The results show show reasonable results
can be obtained even with the minimal input configura-
tions, including IMU only and monocular cases. The best
results are obtained by combining IMU and multiple camera
input. Using only 3 cameras is enough to provide accurate
global position, with a more gradual improvement as further
cameras are added. The sparse set of 6 IMUs provides sub-
stantial improvement in orientation error, while including all
13 IMUs improves the orientation error further. This demon-
strates the flexibility of our approach in trading hardware
requirements and set-up time for accuracy. Table 2 shows a
comparison of our approach under the 0 camera, 6 IMU and
1 camera, 13 IMU cases to DIP (Huang et al. 2018) and VIP
(von Marcard et al. 2018), respectively. Our approach yields
comparable results on DIP while outperforming VIP, on the
respective sensor configurations. A grid of visual results for
two sequences across the camera/IMU sweep is shown in
Fig. 8.

4.1.2 Cost Function Ablation Study

In order to assess the effectiveness of each term in the cost
function, Eq. 2, we evaluate the solver with selected terms
switched off. These results are summarized in Table 3, which
shows the mean and standard deviation in solved joint posi-
tion and orientation error with specific terms omitted from
Eq. 2, relative to the error using the full cost function. This
shows the effectiveness of fusing input frommultiple modal-
ities to obtain high quality pose estimates.

From the IMU input, the orientation term is effective in
resolving the bone orientations, which are not fully defined
by the joint locations. In addition the orientation term reduces
the error in position, helping to mitigate jitter and mis-
detections present in the CPM keypoints. On the other hand,
the acceleration term does not improve performance in the
proposed formulation.With the optimized parameter weight-
ings used, acceleration is weighted relatively low. As shown
in Fig. 9, increasing the acceleration weighting by an order
of magnitude, reduces the error in acceleration slightly, but
ultimately increases the error in position. While the fusion
of acceleration with positional information prevents long-
term runaway drift, local overshooting occurs resulting in
increased positional error and ‘swimming’ artefacts in the
solved motion.
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Table 1 Results for 8 sequences from the TotalCapture dataset (Trumble et al. 2017), using input from all 8 cameras and 13 IMUs

Method seq. S1, FS3 S2, FS1 S2, R3 S3, FS1 S3, FS3 S4, FS3 S5, A3 S5, FS1 Mean

Mean (std) pos. error (mm), global

Malleson’17 74.0 53.0 39.0 67.0 64.0 67.0 74.0 70.0 63.5

Proposed 36.1 (21.6) 16.1 (10.7) 12.8 (10.8) 27.1 (21.6) 26.2 (20.8) 40.0 (22.8) 20.9 (13.1) 29.2 (17.5) 26.1 (9.3)

Mean (std) pos. error (mm), w.r.t. root

Trumble’17 94.0 167.0 93.0 136.0 86.0 116.0 140.0 105.0 117.1

Trumble’18 39.5 10.4 21.3 10.6 63.7 87.4 33.6 17.3 35.5

Proposed 31.7 (25.3) 15.7 (11.9) 13.7 (13.2) 25.5 (25.5) 23.4 (23.9) 26.5 (21.4) 19.3 (15.5) 24.4 (20.8) 22.5 (5.9)

Mean (std) pos. error (mm), with procrustes

Proposed 23.1 (16.5) 9.0 (6.4) 10.2 (8.7) 20.8 (18.8) 18.2 (19.6) 18.8 (13.7) 14.3 (8.6) 18.6 (13.2) 16.6 (5.0)

Mean (std) ori. error (deg), global

Malleson’17 11.2 5.1 5.0 8.3 9.3 8.0 7.6 8.2 7.8

Proposed 11.0 (8.3) 4.9 (3.7) 4.5 (4.3) 7.8 (7.3) 8.8 (8.2) 8.1 (5.8) 7.1 (5.8) 7.8 (5.8) 7.5 (2.1)

Mean (std) ori. error (deg), with procrustes

Proposed 10.9 (8.1) 4.6 (3.5) 4.6 (4.2) 7.8 (7.2) 8.8 (8.2) 8.0 (5.7) 7.1 (5.8) 7.7 (5.7) 7.4 (2.1)

Lowest errors are highlighted in bold
Mean error in absolute position (mm) and orientation (deg) over all joints and all frames is reported, as per the headings. Where available, standard
deviations are shown in brackets (for the individual sequences, the standard deviation is computed across bones and frames, for the mean over
all sequences (right most column), the standard deviation is calculated across sequences). Results are shown w.r.t. global coordinates, w.r.t. the
root position, and with per-frame procrustes alignment. The results with procrustes alignment express the error in pose with the global rigid body
pose component factored out. On average, our approach yields substantially lower positional error than previous approaches, while orientation is
improved slightly
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Fig. 7 Position and orientation error over 8 Total Capture sequences
with different sensor configurations, with 0–8 cameras and 0, 6 and 13
IMUs. The dashed lines show mean and standard deviation in abso-
lute position and orientation errors over all frames and bones, while the
solid lines show the corresponding median and median absolute devi-

ation (MAD). Results are measured w.r.t. global coordinates as well
as w.r.t. the root position and with procrustes alignment. Reasonable
results are achieved even with minimal input and high quality results
are obtained with as few as three cameras

The position term is required in order to lock down the
global position of the subject in 3D, thus an arbitrarily high
global position error results without it. The local positional
error as well as the orientation error are reduced by the posi-
tion term.

The prior terms are effective in reducing the output error
by encouraging plausible poses in the presence of noise in the
input data and otherwise unconstrained degrees of freedom
in the skeletal pose. Inclusion of the prior projection more
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Table 2 Mean joint position and orientation error (with procrustes
alignment) for the Total Capture dataset using sparse input data com-
pared to DIP-online (Huang et al. 2018) and VIP (von Marcard et al.
2018)

Input config. Approach Mean (std) pos.
error (mm)

Mean (std) ori
error (deg.)

0 cam., 6 IMU DIP-online 59.6 (61.3) 15.8 (13.4)

Proposed 68.6 (55.1) 18.5 (15.9)

1 cam., 13 IMU VIP 26.0 12.1

Proposed 19.2 (14.9) 7.7 (6.0)

Lowest errors are highlighted in bold

Fig. 8 Visualization of results of the proposed approach for Total Cap-
ture S1, FS1 (a) and the more challenging S5, FS1 (b) over a range of
input configurations. Note how the quality of the solved pose degrades
gracefully as the input is made more sparse

than halves the error in position and orientation, while the
prior deviation term results in a small improvement.

While the floor penetration term can improve the qualita-
tive appearance of the solved motion (see Fig. 10) it does not
significantly improve the numerical performance. Although
it prevents the feet being reconstructed below the floor, the
term does not necessarily cause the limbs to be reconstructed
closer to their correct positions.

Finally, the last five rows of table show the effects of
using improved input keypoints. Whereas Malleson et al.

(2017) use a subset of 12 keypoints from the ‘MPI15’ detec-
tion model of OpenPose, the proposed approach uses all 25
keypoints available with the ‘Body25’ detection model of
OpenPose (see Sect. 3.3) and furthermore applies calibrated
offsets to the targets (Sect. 3.3.2). In all cases, the mean error
in solved joint position is improved by using the calibrated
offsets. Note that the same calibrated offsets are used for
all subjects. (While the subjects in the Total Capture dataset
range in height from 152 and 180 cm, scaling these offsets
according to subject height was found not to significantly
improve the results.) On the 12 keypoint subset, the body
‘Body25’ model provides a marginal improvement in accu-
racy, however a significant improvement is obtained by using
all 25 keypoints with the ‘Body25’ detection model.

4.1.3 Human 3.6M Dataset

For completeness, we further test the proposed approach on
the Human 3.6M dataset, which contains only four cameras
and no IMU input. We follow the evaluation procedure used
in prior works (e.g. Tome et al. 2017) reporting the mean
joint position error across 17 joints (which correspond to
those used on the Total Capture dataset, but without the four
intermediate spine joints) and show results for each activ-
ity averaged over all takes of subjects S9 and S11, using
global position for the multi-camera case and per-frame pro-
crustes aligned position for the monocular case. As shown in
Table 4, the proposed approach yields state-of-the-art perfor-
mance using 4 camera input, while in the case of monocular
input, the proposed approach is outperformed by specialised
monocular pose estimation approaches.

We note that a simplistic baseline approach ‘Tri-CPM’
reported by Trumble et al. (2017), which consists of explicit
3D triangulation of OpenPose 2D keypoint detections across
all camera views, performs poorly compared to the proposed
approach, which is able to make better use of such 2D detec-
tions through its use of a robust kinematic solve.

Note that we do not perform any re-training of our PCA
pose prior or changing of cost function term weightings for
these experiments, the pose prior created from the Total Cap-
ture dataset is used throughout all our experiments. The
bone offsets, however, are re-calibrated for this dataset, as
we found significant differences between our ground truth
skeleton and that of Human 3.6M (refer to Sect. 3.3.2). Fig-
ure 10 shows our results on the ‘Directions’ and ‘Sitting
Down’ sequences. The floor penetration term can improve
the perceptual quality of the results since visually obvious
pose errors in the form of the legs being reconstructed under
the floor are eliminated, however, since error within the floor
plane is still possible, the numerical error is not necessarily
improved by the term (on this dataset, results are marginally
worse by approx. 2% when the floor penetration term is dis-
abled).
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Table 3 Mean and standard
deviations in solved joint
position and orientation error
with specific terms omitted,
relative to the error using the
full cost function, Eq. 2

Cost terms Relative mean (std) pos. error Relative mean (std) ori. error

Global Local
(procrustes)

Global Local
(procrustes)

Full (Eq. 2) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Without IMU 1.14 (1.20) 1.33 (1.35) 1.57 (1.34) 1.59 (1.39)

Without ER 1.17 (1.25) 1.37 (1.40) 1.60 (1.36) 1.61 (1.41)

Without EA 0.99 (0.98) 0.98 (0.99) 1.00 (1.00) 1.00 (1.00)

Without EP 49.0 (36.5) 1.33 (1.44) 1.09 (1.08) 1.11 (1.17)

Without prior 1.86 (2.00) 2.55 (2.58) 3.14 (5.91) 3.32 (5.99)

Without EPP 1.33 (1.37) 2.50 (2.77) 2.25 (2.61) 2.48 (3.15)

Without EPD 1.02 (1.04) 1.06 (1.11) 1.16 (1.47) 1.18 (1.49)

Without EFP 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (0.99)

M15/K12 no calib. 1.29 (1.15) 1.23 (1.17) 1.09 (1.06) 1.07 (1.06)

M15/K12 calib. 1.18 (1.14) 1.10 (1.19) 1.04 (1.02) 1.03 (1.02)

B25/K25 no calib. 1.22 (1.14) 1.24 (1.11) 1.06 (1.02) 1.07 (1.02)

B25/K12 no calib. 1.23 (1.12) 1.09 (1.07) 1.05 (1.02) 1.03 (1.02)

B25/K12 calib. 1.17 (1.10) 1.04 (1.10) 1.02 (1.00) 1.01 (1.00)

The last five rows show the relative error when using different variations of input keypoints: the 12 keypoint
subset (K12) from the ‘MPI15’ detection model (M15), the ‘Body25’ model without calibrated offsets (B25),
and using the 12 keypoint subset of the ‘Body25’ detection model (B25/K12) (results averaged over S1 FS1
and S2 FS1 of Total Capture dataset with 8 cameras, 13 IMUs)
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Fig. 9 Plots of the z-axis component of the root position, and corre-
sponding absolute error in position, velocity and acceleration with the
default low weighting of the acceleration term, λA = 1 × 10−3 (NA),
and with an increased weighting, λA = 1×10−2 (WA). Note that while
increasing the weight of the acceleration term results in a decrease in
the mean error in acceleration, it causes increases in the mean errors in
velocity and position, with the solved position exhibiting overshooting
artefacts. Sequence: Total Capture, S1, FS1

Fig. 10 Results on theHuman 3.6Mdataset. aHigh-quality resultswith
4 camera input. b Monocular solve without (left) and with (right) the
floor penetration term enabled, the latter avoiding objectionable floor
penetration artifacts
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Table 4 Evaluation of mean joint position error (mm) for all sequences for test subjects S9 and S11 of the Human 3.6M dataset (Ionescu et al.
2014), left: 4 cameras, video input only, right: monocular video only

Approach 4 cameras (global) Monocular (local - procrustes)

Seq. Ionescu Tri-CPM Tekin Tome’17 Trum’17 Trum’18 Tome’18 Proposed Lin Martinez Tome’18 Proposed

Directions 132.7 125.0 85.0 65.0 92.7 41.7 43.3 38.5 58.0 39.5 38.2 65.5

Discussion 183.6 111.4 108.8 73.5 85.9 43.2 49.6 42.1 68.3 43.2 40.2 69.9

Eating 132.4 101.9 84.4 76.8 72.3 52.9 42.0 43.5 63.3 46.4 38.8 94.8

Greeting 164.4 142.2 98.9 86.4 93.2 70.0 48.8 42.1 65.8 47.0 41.7 63.2

Phoning 162.1 125.4 119.4 86.3 86.2 64.9 51.1 56.2 75.3 51.0 44.5 109.8

Photo 205.9 147.6 95.7 110.7 101.2 83.0 64.3 50.2 93.1 56.0 54.9 92.5

Posing 150.6 109.1 98.5 68.9 75.1 57.3 40.3 41.5 61.2 41.4 34.8 72.3

Purchases 171.3 133.1 93.8 74.8 78.0 63.5 43.3 42.5 65.7 40.6 35.0 61.7

Sitting 151.6 135.7 73.8 110.2 83.5 61.0 66.0 60.8 98.7 56.5 52.9 105.6

Sit. Down 243.0 142.1 170.4 173.9 94.8 95.0 95.2 77.7 127.7 69.4 75.7 150.1

Smoking 162.1 116.8 85.1 85.0 85.8 70.0 50.2 54.8 70.4 49.2 43.3 94.7

Waiting 170.7 128.9 116.9 85.8 82.0 62.3 52.2 46.9 68.2 45.0 46.3 78.1

Walking 96.6 105.2 62.1 71.4 94.9 53.7 51.1 50.0 50.6 49.5 44.7 74.6

Walk. Dog 177.1 111.2 113.7 86.3 114.6 66.2 43.9 53.6 73.0 38.0 35.7 71.4

Walk. Together 127.9 124.2 94.8 73.1 79.7 52.4 45.3 46.9 57.7 43.1 37.5 71.5

Mean 162.1 124.0 100.1 88.5 88.0 62.5 52.8 49.8 73.1 47.7 44.6 85.0

Lowest errors are highlighted in bold
Note that IMU input is not available for this dataset. On average, The proposed approach out-performs previous approaches when usingmulti-camera
input

Fig. 11 Results on the single-person outdoor dataset Total Capture
Outdoor, Props

4.2 Qualitative Evaluation

4.2.1 Single Subject

The Total Capture Outdoor dataset (Malleson et al. 2017)
was recorded outdoors in challenging uncontrolled condi-
tions with a moving background and varying illumination. A
set of 6 cameras were placed in a 120◦ arc around the subject
and 13 Xsens IMUs. No ground truth data is available for
this dataset. Figure 11 shows the 3D solved motion overlaid
on each input view. The background models for this and the
other outdoor sequences are generated from photogramme-
try for visualization purposes. This background geometry is

Fig. 12 Results for four frames of the two-person sequence Karate,
Action 13 (8 cameras, 2 × 13 IMUs per subject). Inset are top view
visualizations of the subject sorter showing 3D candidates and labelled
sorted subjects

not used in the solver. Additional sequences for this dataset
are presented in the supplementary video.

4.2.2 Multiple Subjects

The multi-person capability of the proposed approach was
tested on two indoor datasetsKarate (Fig. 12) and Ping Pong
(Fig. 13) as well as on a new outdoor dataset Outdoor Duo,
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Fig. 13 Results on the Ping Pong dataset, sequences P4 and P5 (6
cameras, 0 IMUs)

which will be released for research use along with this paper.
Details of the datasets are provided in Table 5.

These sequences are diverse in terms of environment and
activities performed and include dynamic backgrounds, fast
motion, close interaction, occlusion, and props. Results for
four of the Outdoor Duo sequences are shown in Fig. 14.
Finally, results from the live implementation with two sub-
jects are shown in Fig. 15. Refer to the supplementary video
for the full sequences and further visualizations.

Due to the ambiguity and imprecision of triangulation
with approximate keypoints, the proposed detection sort-
ing approach occasionally misassigns detections to subjects
resulting in tracking failure. An example of such a failure
case is shown in the supplementary video, in which the sub-
jects are swapped following a close interaction. Suggestions
for improving the robustness of the sorter are presented in
the conclusion.

5 Conclusion

The proposed approach is able to obtain high-quality pose
of one or more subjects in real-time. It is flexible in terms of
camera and IMU hardware requirements, degrading grace-
fully as the number of cameras and IMUs is reduced. By
combining multi-view video and IMU input, it is able to
recover the full 6-DoF pose, without drift in global position.
The system can operate both in constrained studio environ-
ments and in unconstrained setups such as outdoor scenes
with varying illumination, moving backgrounds and occlu-
sion. The detection sorter is able to assign 2D detections to
their corresponding tracked subjects. Missing or outlier key-
point detections and even short periods of complete occlusion

Fig. 14 Results for four sequence of the two-person outdoor dataset
Outdoor Duo (7 cameras, 2 × 13 IMUs)

4 Cam. live setup

VR display Kinematic solving

Capture/detection Sorting

Fig. 15 Light-weight live implementation of the proposed approach
with 4 camera capture and solving running on a single laptop PC (cap-
ture area approx. 3 × 3 m). The solved motion is streamed live to a
game engine environment on a second laptop and displayed on a virtual
reality headset

can be handled due to the robust cost function incorporating
multi-modal input and a PCA-based statistical pose prior.

A limitation of our approach is that the available accelera-
tion input from the IMUs is not being effectively utilized.Our
experiments show no benefit to including the acceleration
term. Using acceleration directly in a frame-by-frame solve

Table 5 Details of the recorded multi-person datasets

Dataset Num. seqs./subjects Num. cams. Cam. config. IMUs per subject

Karate 12 × 1 sub., 3 × 2 sub. 8 720p @ 30fps, sync, 360◦ ring 13

Ping Pong 5 × 2 sub., 1 × 4 sub. 6 720p @ 60fps, approx. sync, 120◦ arc 17

Outdoor Duo 17 × 2 sub. 7 720p @ 60fps, approx. sync, 120◦ arc 13

For all datasets, XsensMTwwireless IMUs are used. For theKarate dataset, the cameras are hardware synchronised; for the Ping Pong andOutdoor
Duo datasets, the cameras are approximately synchronized (to the nearest frame) using a clapper board
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proves problematic due to integration error, as is noted by von
Marcard et al. (2017). Future work could investigate extend-
ing the proposed approach to solve a small window of frames
simultaneously thus more robustly incorporating the acceler-
ation information, maintaining online real-time performance
at the expense of a small additional latency as is done in ‘deep
inertial poser’ (Huang et al. 2018). Another avenue for fur-
ther work is improving the robustness of the detection sorter
in challenging scenarios where the subjects are very close
together, or moving very fast, for example by using cues
from image appearance in the region of the detected key-
points. Finally, we note that to the best of our knowledge, no
dataset is currently available featuring multiple-view video,
IMU and optical ground truth capture of multiple subjects in
uncontrolled conditions. Such a dataset, while challenging to
acquire, would allow for detailed quantitative evaluation of
multi-person motion capture in the wild and is therefore an
interesting avenue of future investigation.
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